Properties

Label 169.3.f.g.80.3
Level $169$
Weight $3$
Character 169.80
Analytic conductor $4.605$
Analytic rank $0$
Dimension $48$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [169,3,Mod(19,169)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(169, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([5]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("169.19");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 169 = 13^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 169.f (of order \(12\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.60491646769\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(12\) over \(\Q(\zeta_{12})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 80.3
Character \(\chi\) \(=\) 169.80
Dual form 169.3.f.g.150.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.27369 - 0.609234i) q^{2} +(2.51175 + 4.35048i) q^{3} +(1.33442 + 0.770425i) q^{4} +(-1.10964 + 1.10964i) q^{5} +(-3.06049 - 11.4219i) q^{6} +(-6.34925 + 1.70128i) q^{7} +(4.09315 + 4.09315i) q^{8} +(-8.11776 + 14.0604i) q^{9} +(3.19902 - 1.84696i) q^{10} +(0.301099 - 1.12372i) q^{11} +7.74046i q^{12} +15.4727 q^{14} +(-7.61462 - 2.04033i) q^{15} +(-9.89459 - 17.1379i) q^{16} +(-21.4473 - 12.3826i) q^{17} +(27.0234 - 27.0234i) q^{18} +(0.174381 + 0.650797i) q^{19} +(-2.33562 + 0.625828i) q^{20} +(-23.3491 - 23.3491i) q^{21} +(-1.36921 + 2.37154i) q^{22} +(-1.92917 + 1.11381i) q^{23} +(-7.52619 + 28.0881i) q^{24} +22.5374i q^{25} -36.3476 q^{27} +(-9.78324 - 2.62141i) q^{28} +(-9.58516 - 16.6020i) q^{29} +(16.0703 + 9.27818i) q^{30} +(-40.7907 + 40.7907i) q^{31} +(6.06346 + 22.6291i) q^{32} +(5.64498 - 1.51257i) q^{33} +(41.2206 + 41.2206i) q^{34} +(5.15759 - 8.93321i) q^{35} +(-21.6649 + 12.5082i) q^{36} +(-1.02942 + 3.84185i) q^{37} -1.58595i q^{38} -9.08389 q^{40} +(-11.6712 - 3.12729i) q^{41} +(38.8636 + 67.3137i) q^{42} +(43.5991 + 25.1720i) q^{43} +(1.26753 - 1.26753i) q^{44} +(-6.59418 - 24.6098i) q^{45} +(5.06491 - 1.35714i) q^{46} +(-24.3090 - 24.3090i) q^{47} +(49.7054 - 86.0923i) q^{48} +(-5.01666 + 2.89637i) q^{49} +(13.7305 - 51.2431i) q^{50} -124.408i q^{51} +65.5668 q^{53} +(82.6433 + 22.1442i) q^{54} +(0.912811 + 1.58104i) q^{55} +(-32.9520 - 19.0249i) q^{56} +(-2.39328 + 2.39328i) q^{57} +(11.6792 + 43.5874i) q^{58} +(71.6521 - 19.1991i) q^{59} +(-8.58915 - 8.58915i) q^{60} +(-45.4338 + 78.6937i) q^{61} +(117.597 - 67.8945i) q^{62} +(27.6211 - 103.083i) q^{63} +24.0109i q^{64} -13.7565 q^{66} +(91.3047 + 24.4650i) q^{67} +(-19.0797 - 33.0470i) q^{68} +(-9.69118 - 5.59520i) q^{69} +(-17.1692 + 17.1692i) q^{70} +(17.5705 + 65.5740i) q^{71} +(-90.7785 + 24.3240i) q^{72} +(51.8021 + 51.8021i) q^{73} +(4.68118 - 8.10804i) q^{74} +(-98.0483 + 56.6082i) q^{75} +(-0.268695 + 1.00278i) q^{76} +7.64700i q^{77} -49.1050 q^{79} +(29.9965 + 8.03753i) q^{80} +(-18.2361 - 31.5859i) q^{81} +(24.6315 + 14.2210i) q^{82} +(70.5618 - 70.5618i) q^{83} +(-13.1686 - 49.1461i) q^{84} +(37.5391 - 10.0586i) q^{85} +(-83.7955 - 83.7955i) q^{86} +(48.1510 - 83.4000i) q^{87} +(5.83198 - 3.36710i) q^{88} +(-21.8165 + 81.4201i) q^{89} +59.9726i q^{90} -3.43242 q^{92} +(-279.915 - 75.0030i) q^{93} +(40.4613 + 70.0810i) q^{94} +(-0.915654 - 0.528653i) q^{95} +(-83.2176 + 83.2176i) q^{96} +(-17.5122 - 65.3566i) q^{97} +(13.1709 - 3.52914i) q^{98} +(13.3556 + 13.3556i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q - 12 q^{3} - 84 q^{9} + 376 q^{14} - 188 q^{16} + 136 q^{22} + 120 q^{27} - 84 q^{29} - 176 q^{35} - 1048 q^{40} + 368 q^{42} + 368 q^{48} - 88 q^{53} + 704 q^{55} + 8 q^{61} - 1480 q^{66} + 168 q^{68}+ \cdots - 1132 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/169\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{1}{12}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.27369 0.609234i −1.13685 0.304617i −0.359164 0.933274i \(-0.616938\pi\)
−0.777683 + 0.628657i \(0.783605\pi\)
\(3\) 2.51175 + 4.35048i 0.837249 + 1.45016i 0.892186 + 0.451669i \(0.149171\pi\)
−0.0549364 + 0.998490i \(0.517496\pi\)
\(4\) 1.33442 + 0.770425i 0.333604 + 0.192606i
\(5\) −1.10964 + 1.10964i −0.221929 + 0.221929i −0.809310 0.587381i \(-0.800159\pi\)
0.587381 + 0.809310i \(0.300159\pi\)
\(6\) −3.06049 11.4219i −0.510081 1.90365i
\(7\) −6.34925 + 1.70128i −0.907035 + 0.243039i −0.682035 0.731319i \(-0.738905\pi\)
−0.225000 + 0.974359i \(0.572238\pi\)
\(8\) 4.09315 + 4.09315i 0.511644 + 0.511644i
\(9\) −8.11776 + 14.0604i −0.901973 + 1.56226i
\(10\) 3.19902 1.84696i 0.319902 0.184696i
\(11\) 0.301099 1.12372i 0.0273726 0.102156i −0.950888 0.309535i \(-0.899827\pi\)
0.978261 + 0.207379i \(0.0664933\pi\)
\(12\) 7.74046i 0.645038i
\(13\) 0 0
\(14\) 15.4727 1.10519
\(15\) −7.61462 2.04033i −0.507642 0.136022i
\(16\) −9.89459 17.1379i −0.618412 1.07112i
\(17\) −21.4473 12.3826i −1.26160 0.728387i −0.288218 0.957565i \(-0.593063\pi\)
−0.973385 + 0.229178i \(0.926396\pi\)
\(18\) 27.0234 27.0234i 1.50130 1.50130i
\(19\) 0.174381 + 0.650797i 0.00917793 + 0.0342525i 0.970363 0.241652i \(-0.0776893\pi\)
−0.961185 + 0.275905i \(0.911023\pi\)
\(20\) −2.33562 + 0.625828i −0.116781 + 0.0312914i
\(21\) −23.3491 23.3491i −1.11186 1.11186i
\(22\) −1.36921 + 2.37154i −0.0622369 + 0.107797i
\(23\) −1.92917 + 1.11381i −0.0838770 + 0.0484264i −0.541352 0.840796i \(-0.682087\pi\)
0.457475 + 0.889223i \(0.348754\pi\)
\(24\) −7.52619 + 28.0881i −0.313591 + 1.17034i
\(25\) 22.5374i 0.901495i
\(26\) 0 0
\(27\) −36.3476 −1.34621
\(28\) −9.78324 2.62141i −0.349401 0.0936218i
\(29\) −9.58516 16.6020i −0.330523 0.572482i 0.652092 0.758140i \(-0.273892\pi\)
−0.982614 + 0.185658i \(0.940558\pi\)
\(30\) 16.0703 + 9.27818i 0.535676 + 0.309273i
\(31\) −40.7907 + 40.7907i −1.31583 + 1.31583i −0.398785 + 0.917045i \(0.630568\pi\)
−0.917045 + 0.398785i \(0.869432\pi\)
\(32\) 6.06346 + 22.6291i 0.189483 + 0.707160i
\(33\) 5.64498 1.51257i 0.171060 0.0458354i
\(34\) 41.2206 + 41.2206i 1.21237 + 1.21237i
\(35\) 5.15759 8.93321i 0.147360 0.255235i
\(36\) −21.6649 + 12.5082i −0.601803 + 0.347451i
\(37\) −1.02942 + 3.84185i −0.0278222 + 0.103834i −0.978441 0.206528i \(-0.933784\pi\)
0.950618 + 0.310362i \(0.100450\pi\)
\(38\) 1.58595i 0.0417356i
\(39\) 0 0
\(40\) −9.08389 −0.227097
\(41\) −11.6712 3.12729i −0.284664 0.0762754i 0.113662 0.993519i \(-0.463742\pi\)
−0.398326 + 0.917244i \(0.630409\pi\)
\(42\) 38.8636 + 67.3137i 0.925323 + 1.60271i
\(43\) 43.5991 + 25.1720i 1.01393 + 0.585395i 0.912341 0.409431i \(-0.134273\pi\)
0.101592 + 0.994826i \(0.467606\pi\)
\(44\) 1.26753 1.26753i 0.0288075 0.0288075i
\(45\) −6.59418 24.6098i −0.146537 0.546885i
\(46\) 5.06491 1.35714i 0.110107 0.0295030i
\(47\) −24.3090 24.3090i −0.517212 0.517212i 0.399515 0.916727i \(-0.369179\pi\)
−0.916727 + 0.399515i \(0.869179\pi\)
\(48\) 49.7054 86.0923i 1.03553 1.79359i
\(49\) −5.01666 + 2.89637i −0.102381 + 0.0591096i
\(50\) 13.7305 51.2431i 0.274611 1.02486i
\(51\) 124.408i 2.43937i
\(52\) 0 0
\(53\) 65.5668 1.23711 0.618555 0.785742i \(-0.287718\pi\)
0.618555 + 0.785742i \(0.287718\pi\)
\(54\) 82.6433 + 22.1442i 1.53043 + 0.410078i
\(55\) 0.912811 + 1.58104i 0.0165966 + 0.0287461i
\(56\) −32.9520 19.0249i −0.588429 0.339730i
\(57\) −2.39328 + 2.39328i −0.0419873 + 0.0419873i
\(58\) 11.6792 + 43.5874i 0.201366 + 0.751507i
\(59\) 71.6521 19.1991i 1.21444 0.325409i 0.405938 0.913900i \(-0.366945\pi\)
0.808503 + 0.588492i \(0.200278\pi\)
\(60\) −8.58915 8.58915i −0.143152 0.143152i
\(61\) −45.4338 + 78.6937i −0.744816 + 1.29006i 0.205464 + 0.978665i \(0.434130\pi\)
−0.950280 + 0.311395i \(0.899204\pi\)
\(62\) 117.597 67.8945i 1.89672 1.09507i
\(63\) 27.6211 103.083i 0.438430 1.63624i
\(64\) 24.0109i 0.375171i
\(65\) 0 0
\(66\) −13.7565 −0.208431
\(67\) 91.3047 + 24.4650i 1.36276 + 0.365149i 0.864828 0.502069i \(-0.167428\pi\)
0.497929 + 0.867218i \(0.334094\pi\)
\(68\) −19.0797 33.0470i −0.280584 0.485985i
\(69\) −9.69118 5.59520i −0.140452 0.0810899i
\(70\) −17.1692 + 17.1692i −0.245274 + 0.245274i
\(71\) 17.5705 + 65.5740i 0.247472 + 0.923578i 0.972125 + 0.234464i \(0.0753335\pi\)
−0.724653 + 0.689114i \(0.758000\pi\)
\(72\) −90.7785 + 24.3240i −1.26081 + 0.337834i
\(73\) 51.8021 + 51.8021i 0.709617 + 0.709617i 0.966455 0.256837i \(-0.0826804\pi\)
−0.256837 + 0.966455i \(0.582680\pi\)
\(74\) 4.68118 8.10804i 0.0632592 0.109568i
\(75\) −98.0483 + 56.6082i −1.30731 + 0.754776i
\(76\) −0.268695 + 1.00278i −0.00353545 + 0.0131945i
\(77\) 7.64700i 0.0993116i
\(78\) 0 0
\(79\) −49.1050 −0.621582 −0.310791 0.950478i \(-0.600594\pi\)
−0.310791 + 0.950478i \(0.600594\pi\)
\(80\) 29.9965 + 8.03753i 0.374956 + 0.100469i
\(81\) −18.2361 31.5859i −0.225138 0.389950i
\(82\) 24.6315 + 14.2210i 0.300384 + 0.173427i
\(83\) 70.5618 70.5618i 0.850142 0.850142i −0.140008 0.990150i \(-0.544713\pi\)
0.990150 + 0.140008i \(0.0447129\pi\)
\(84\) −13.1686 49.1461i −0.156770 0.585072i
\(85\) 37.5391 10.0586i 0.441636 0.118336i
\(86\) −83.7955 83.7955i −0.974366 0.974366i
\(87\) 48.1510 83.4000i 0.553460 0.958621i
\(88\) 5.83198 3.36710i 0.0662725 0.0382625i
\(89\) −21.8165 + 81.4201i −0.245129 + 0.914833i 0.728190 + 0.685375i \(0.240362\pi\)
−0.973319 + 0.229457i \(0.926305\pi\)
\(90\) 59.9726i 0.666362i
\(91\) 0 0
\(92\) −3.43242 −0.0373089
\(93\) −279.915 75.0030i −3.00984 0.806484i
\(94\) 40.4613 + 70.0810i 0.430439 + 0.745543i
\(95\) −0.915654 0.528653i −0.00963846 0.00556477i
\(96\) −83.2176 + 83.2176i −0.866850 + 0.866850i
\(97\) −17.5122 65.3566i −0.180539 0.673779i −0.995542 0.0943225i \(-0.969932\pi\)
0.815003 0.579457i \(-0.196735\pi\)
\(98\) 13.1709 3.52914i 0.134397 0.0360116i
\(99\) 13.3556 + 13.3556i 0.134905 + 0.134905i
\(100\) −17.3634 + 30.0742i −0.173634 + 0.300742i
\(101\) −65.4023 + 37.7600i −0.647547 + 0.373862i −0.787516 0.616294i \(-0.788633\pi\)
0.139968 + 0.990156i \(0.455300\pi\)
\(102\) −75.7934 + 282.865i −0.743073 + 2.77319i
\(103\) 79.8956i 0.775685i 0.921726 + 0.387843i \(0.126780\pi\)
−0.921726 + 0.387843i \(0.873220\pi\)
\(104\) 0 0
\(105\) 51.8183 0.493507
\(106\) −149.079 39.9456i −1.40640 0.376845i
\(107\) −37.3751 64.7356i −0.349300 0.605005i 0.636825 0.771008i \(-0.280247\pi\)
−0.986125 + 0.166003i \(0.946914\pi\)
\(108\) −48.5028 28.0031i −0.449100 0.259288i
\(109\) −21.0819 + 21.0819i −0.193412 + 0.193412i −0.797169 0.603757i \(-0.793670\pi\)
0.603757 + 0.797169i \(0.293670\pi\)
\(110\) −1.11223 4.15091i −0.0101112 0.0377355i
\(111\) −19.2995 + 5.17130i −0.173870 + 0.0465882i
\(112\) 91.9795 + 91.9795i 0.821246 + 0.821246i
\(113\) −46.1016 + 79.8504i −0.407979 + 0.706641i −0.994663 0.103175i \(-0.967100\pi\)
0.586684 + 0.809816i \(0.300433\pi\)
\(114\) 6.89965 3.98351i 0.0605232 0.0349431i
\(115\) 0.904763 3.37662i 0.00786750 0.0293619i
\(116\) 29.5386i 0.254643i
\(117\) 0 0
\(118\) −174.612 −1.47976
\(119\) 157.240 + 42.1323i 1.32134 + 0.354053i
\(120\) −22.8164 39.5192i −0.190137 0.329327i
\(121\) 103.617 + 59.8233i 0.856339 + 0.494407i
\(122\) 151.245 151.245i 1.23972 1.23972i
\(123\) −15.7099 58.6303i −0.127723 0.476669i
\(124\) −85.8579 + 23.0056i −0.692403 + 0.185529i
\(125\) −52.7496 52.7496i −0.421996 0.421996i
\(126\) −125.604 + 217.552i −0.996855 + 1.72660i
\(127\) 4.02217 2.32220i 0.0316706 0.0182850i −0.484081 0.875023i \(-0.660846\pi\)
0.515752 + 0.856738i \(0.327513\pi\)
\(128\) 38.8821 145.110i 0.303767 1.13367i
\(129\) 252.903i 1.96049i
\(130\) 0 0
\(131\) 58.5190 0.446710 0.223355 0.974737i \(-0.428299\pi\)
0.223355 + 0.974737i \(0.428299\pi\)
\(132\) 8.69807 + 2.33064i 0.0658945 + 0.0176564i
\(133\) −2.21437 3.83540i −0.0166494 0.0288376i
\(134\) −192.694 111.252i −1.43801 0.830238i
\(135\) 40.3329 40.3329i 0.298762 0.298762i
\(136\) −37.1031 138.471i −0.272817 1.01817i
\(137\) −159.918 + 42.8498i −1.16728 + 0.312772i −0.789871 0.613274i \(-0.789852\pi\)
−0.377411 + 0.926046i \(0.623186\pi\)
\(138\) 18.6260 + 18.6260i 0.134971 + 0.134971i
\(139\) 38.3858 66.4861i 0.276156 0.478317i −0.694270 0.719715i \(-0.744273\pi\)
0.970426 + 0.241398i \(0.0776059\pi\)
\(140\) 13.7647 7.94708i 0.0983196 0.0567648i
\(141\) 44.6976 166.814i 0.317004 1.18307i
\(142\) 159.800i 1.12535i
\(143\) 0 0
\(144\) 321.288 2.23116
\(145\) 29.0584 + 7.78617i 0.200403 + 0.0536977i
\(146\) −86.2225 149.342i −0.590565 1.02289i
\(147\) −25.2012 14.5499i −0.171437 0.0989790i
\(148\) −4.33354 + 4.33354i −0.0292807 + 0.0292807i
\(149\) 30.9709 + 115.585i 0.207858 + 0.775737i 0.988559 + 0.150833i \(0.0481954\pi\)
−0.780701 + 0.624904i \(0.785138\pi\)
\(150\) 257.420 68.9754i 1.71613 0.459836i
\(151\) −158.935 158.935i −1.05255 1.05255i −0.998541 0.0540078i \(-0.982800\pi\)
−0.0540078 0.998541i \(-0.517200\pi\)
\(152\) −1.95005 + 3.37758i −0.0128293 + 0.0222209i
\(153\) 348.207 201.037i 2.27586 1.31397i
\(154\) 4.65881 17.3869i 0.0302520 0.112902i
\(155\) 90.5263i 0.584041i
\(156\) 0 0
\(157\) 121.589 0.774451 0.387225 0.921985i \(-0.373434\pi\)
0.387225 + 0.921985i \(0.373434\pi\)
\(158\) 111.650 + 29.9165i 0.706644 + 0.189345i
\(159\) 164.687 + 285.247i 1.03577 + 1.79401i
\(160\) −31.8385 18.3820i −0.198991 0.114887i
\(161\) 10.3539 10.3539i 0.0643098 0.0643098i
\(162\) 22.2202 + 82.9268i 0.137162 + 0.511894i
\(163\) −143.124 + 38.3498i −0.878059 + 0.235275i −0.669569 0.742750i \(-0.733521\pi\)
−0.208489 + 0.978025i \(0.566855\pi\)
\(164\) −13.1649 13.1649i −0.0802738 0.0802738i
\(165\) −4.58550 + 7.94233i −0.0277909 + 0.0481353i
\(166\) −203.425 + 117.447i −1.22545 + 0.707513i
\(167\) 8.21496 30.6587i 0.0491914 0.183585i −0.936959 0.349440i \(-0.886372\pi\)
0.986150 + 0.165855i \(0.0530385\pi\)
\(168\) 191.143i 1.13775i
\(169\) 0 0
\(170\) −91.4803 −0.538120
\(171\) −10.5660 2.83116i −0.0617897 0.0165565i
\(172\) 38.7862 + 67.1797i 0.225501 + 0.390580i
\(173\) −75.3542 43.5058i −0.435574 0.251478i 0.266145 0.963933i \(-0.414250\pi\)
−0.701718 + 0.712455i \(0.747583\pi\)
\(174\) −160.291 + 160.291i −0.921211 + 0.921211i
\(175\) −38.3423 143.095i −0.219099 0.817688i
\(176\) −22.2374 + 5.95849i −0.126349 + 0.0338551i
\(177\) 263.497 + 263.497i 1.48868 + 1.48868i
\(178\) 99.2079 171.833i 0.557348 0.965354i
\(179\) −125.261 + 72.3192i −0.699780 + 0.404018i −0.807265 0.590189i \(-0.799053\pi\)
0.107486 + 0.994207i \(0.465720\pi\)
\(180\) 10.1606 37.9200i 0.0564480 0.210667i
\(181\) 57.4932i 0.317642i −0.987307 0.158821i \(-0.949231\pi\)
0.987307 0.158821i \(-0.0507693\pi\)
\(182\) 0 0
\(183\) −456.473 −2.49439
\(184\) −12.4554 3.33741i −0.0676923 0.0181381i
\(185\) −3.12080 5.40538i −0.0168692 0.0292183i
\(186\) 590.746 + 341.068i 3.17606 + 1.83370i
\(187\) −20.3722 + 20.3722i −0.108942 + 0.108942i
\(188\) −13.7100 51.1665i −0.0729257 0.272162i
\(189\) 230.780 61.8372i 1.22106 0.327181i
\(190\) 1.75984 + 1.75984i 0.00926233 + 0.00926233i
\(191\) 33.9463 58.7966i 0.177729 0.307836i −0.763373 0.645958i \(-0.776458\pi\)
0.941102 + 0.338122i \(0.109792\pi\)
\(192\) −104.459 + 60.3095i −0.544058 + 0.314112i
\(193\) −55.6354 + 207.634i −0.288266 + 1.07582i 0.658153 + 0.752884i \(0.271338\pi\)
−0.946419 + 0.322940i \(0.895329\pi\)
\(194\) 159.270i 0.820979i
\(195\) 0 0
\(196\) −8.92575 −0.0455395
\(197\) 152.818 + 40.9476i 0.775728 + 0.207856i 0.624901 0.780704i \(-0.285139\pi\)
0.150828 + 0.988560i \(0.451806\pi\)
\(198\) −22.2299 38.5032i −0.112272 0.194461i
\(199\) −36.3122 20.9649i −0.182473 0.105351i 0.405981 0.913882i \(-0.366930\pi\)
−0.588454 + 0.808530i \(0.700263\pi\)
\(200\) −92.2490 + 92.2490i −0.461245 + 0.461245i
\(201\) 122.900 + 458.669i 0.611442 + 2.28193i
\(202\) 171.710 46.0094i 0.850047 0.227769i
\(203\) 89.1031 + 89.1031i 0.438931 + 0.438931i
\(204\) 95.8468 166.012i 0.469837 0.813782i
\(205\) 16.4211 9.48070i 0.0801027 0.0462473i
\(206\) 48.6751 181.658i 0.236287 0.881835i
\(207\) 36.1665i 0.174717i
\(208\) 0 0
\(209\) 0.783817 0.00375032
\(210\) −117.819 31.5695i −0.561042 0.150331i
\(211\) 35.3826 + 61.2844i 0.167690 + 0.290447i 0.937607 0.347696i \(-0.113036\pi\)
−0.769917 + 0.638144i \(0.779703\pi\)
\(212\) 87.4934 + 50.5143i 0.412705 + 0.238275i
\(213\) −241.146 + 241.146i −1.13214 + 1.13214i
\(214\) 45.5404 + 169.959i 0.212806 + 0.794201i
\(215\) −76.3114 + 20.4476i −0.354937 + 0.0951050i
\(216\) −148.776 148.776i −0.688779 0.688779i
\(217\) 189.594 328.386i 0.873705 1.51330i
\(218\) 60.7776 35.0899i 0.278796 0.160963i
\(219\) −95.2499 + 355.477i −0.434931 + 1.62318i
\(220\) 2.81301i 0.0127864i
\(221\) 0 0
\(222\) 47.0318 0.211855
\(223\) −147.428 39.5031i −0.661110 0.177144i −0.0873632 0.996177i \(-0.527844\pi\)
−0.573747 + 0.819033i \(0.694511\pi\)
\(224\) −76.9968 133.362i −0.343735 0.595367i
\(225\) −316.884 182.953i −1.40837 0.813124i
\(226\) 153.469 153.469i 0.679065 0.679065i
\(227\) −18.9293 70.6452i −0.0833891 0.311212i 0.911615 0.411045i \(-0.134836\pi\)
−0.995004 + 0.0998323i \(0.968169\pi\)
\(228\) −5.03747 + 1.34979i −0.0220942 + 0.00592011i
\(229\) −182.706 182.706i −0.797845 0.797845i 0.184911 0.982755i \(-0.440800\pi\)
−0.982755 + 0.184911i \(0.940800\pi\)
\(230\) −4.11431 + 7.12619i −0.0178883 + 0.0309834i
\(231\) −33.2681 + 19.2073i −0.144018 + 0.0831486i
\(232\) 28.7209 107.188i 0.123797 0.462017i
\(233\) 263.622i 1.13142i −0.824603 0.565712i \(-0.808601\pi\)
0.824603 0.565712i \(-0.191399\pi\)
\(234\) 0 0
\(235\) 53.9486 0.229568
\(236\) 110.405 + 29.5830i 0.467818 + 0.125352i
\(237\) −123.339 213.630i −0.520419 0.901393i
\(238\) −331.847 191.592i −1.39432 0.805009i
\(239\) 260.543 260.543i 1.09014 1.09014i 0.0946270 0.995513i \(-0.469834\pi\)
0.995513 0.0946270i \(-0.0301659\pi\)
\(240\) 40.3765 + 150.687i 0.168235 + 0.627863i
\(241\) 59.8004 16.0235i 0.248134 0.0664874i −0.132608 0.991169i \(-0.542335\pi\)
0.380742 + 0.924681i \(0.375668\pi\)
\(242\) −199.147 199.147i −0.822921 0.822921i
\(243\) −71.9549 + 124.630i −0.296111 + 0.512879i
\(244\) −121.255 + 70.0067i −0.496947 + 0.286913i
\(245\) 2.35277 8.78065i 0.00960313 0.0358394i
\(246\) 142.878i 0.580806i
\(247\) 0 0
\(248\) −333.925 −1.34647
\(249\) 484.211 + 129.744i 1.94462 + 0.521060i
\(250\) 87.7995 + 152.073i 0.351198 + 0.608293i
\(251\) 97.1096 + 56.0663i 0.386891 + 0.223372i 0.680812 0.732458i \(-0.261627\pi\)
−0.293921 + 0.955830i \(0.594960\pi\)
\(252\) 116.276 116.276i 0.461412 0.461412i
\(253\) 0.670731 + 2.50320i 0.00265111 + 0.00989408i
\(254\) −10.5599 + 2.82953i −0.0415746 + 0.0111399i
\(255\) 138.048 + 138.048i 0.541365 + 0.541365i
\(256\) −128.790 + 223.071i −0.503087 + 0.871372i
\(257\) 323.389 186.709i 1.25832 0.726493i 0.285575 0.958356i \(-0.407815\pi\)
0.972748 + 0.231863i \(0.0744822\pi\)
\(258\) 154.077 575.023i 0.597198 2.22877i
\(259\) 26.1442i 0.100943i
\(260\) 0 0
\(261\) 311.240 1.19249
\(262\) −133.054 35.6518i −0.507841 0.136076i
\(263\) −163.801 283.712i −0.622818 1.07875i −0.988959 0.148192i \(-0.952655\pi\)
0.366141 0.930559i \(-0.380679\pi\)
\(264\) 29.2969 + 16.9146i 0.110973 + 0.0640704i
\(265\) −72.7558 + 72.7558i −0.274550 + 0.274550i
\(266\) 2.69814 + 10.0696i 0.0101434 + 0.0378557i
\(267\) −409.014 + 109.595i −1.53189 + 0.410468i
\(268\) 102.990 + 102.990i 0.384291 + 0.384291i
\(269\) −137.084 + 237.436i −0.509605 + 0.882661i 0.490333 + 0.871535i \(0.336875\pi\)
−0.999938 + 0.0111263i \(0.996458\pi\)
\(270\) −116.277 + 67.1324i −0.430655 + 0.248639i
\(271\) −58.2447 + 217.372i −0.214925 + 0.802112i 0.771268 + 0.636511i \(0.219623\pi\)
−0.986193 + 0.165601i \(0.947044\pi\)
\(272\) 490.082i 1.80177i
\(273\) 0 0
\(274\) 389.709 1.42230
\(275\) 25.3256 + 6.78597i 0.0920931 + 0.0246763i
\(276\) −8.62137 14.9327i −0.0312369 0.0541038i
\(277\) 349.428 + 201.742i 1.26147 + 0.728312i 0.973360 0.229284i \(-0.0736384\pi\)
0.288114 + 0.957596i \(0.406972\pi\)
\(278\) −127.783 + 127.783i −0.459651 + 0.459651i
\(279\) −242.403 904.661i −0.868829 3.24251i
\(280\) 57.6758 15.4542i 0.205985 0.0551935i
\(281\) 356.187 + 356.187i 1.26757 + 1.26757i 0.947340 + 0.320228i \(0.103760\pi\)
0.320228 + 0.947340i \(0.396240\pi\)
\(282\) −203.257 + 352.052i −0.720770 + 1.24841i
\(283\) 302.969 174.919i 1.07056 0.618089i 0.142226 0.989834i \(-0.454574\pi\)
0.928335 + 0.371746i \(0.121241\pi\)
\(284\) −27.0735 + 101.040i −0.0953293 + 0.355774i
\(285\) 5.31137i 0.0186364i
\(286\) 0 0
\(287\) 79.4237 0.276738
\(288\) −367.396 98.4433i −1.27568 0.341817i
\(289\) 162.156 + 280.863i 0.561095 + 0.971845i
\(290\) −61.3263 35.4067i −0.211470 0.122092i
\(291\) 240.346 240.346i 0.825931 0.825931i
\(292\) 29.2159 + 109.035i 0.100054 + 0.373408i
\(293\) 519.890 139.304i 1.77437 0.475441i 0.784831 0.619710i \(-0.212750\pi\)
0.989539 + 0.144269i \(0.0460829\pi\)
\(294\) 48.4355 + 48.4355i 0.164747 + 0.164747i
\(295\) −58.2041 + 100.812i −0.197302 + 0.341737i
\(296\) −19.9389 + 11.5117i −0.0673611 + 0.0388909i
\(297\) −10.9442 + 40.8443i −0.0368492 + 0.137523i
\(298\) 281.673i 0.945211i
\(299\) 0 0
\(300\) −174.450 −0.581499
\(301\) −319.646 85.6489i −1.06195 0.284548i
\(302\) 264.541 + 458.198i 0.875962 + 1.51721i
\(303\) −328.548 189.687i −1.08432 0.626031i
\(304\) 9.42790 9.42790i 0.0310128 0.0310128i
\(305\) −36.9066 137.737i −0.121005 0.451598i
\(306\) −914.195 + 244.958i −2.98757 + 0.800516i
\(307\) −340.580 340.580i −1.10938 1.10938i −0.993232 0.116150i \(-0.962945\pi\)
−0.116150 0.993232i \(-0.537055\pi\)
\(308\) −5.89144 + 10.2043i −0.0191280 + 0.0331307i
\(309\) −347.584 + 200.678i −1.12487 + 0.649442i
\(310\) −55.1517 + 205.829i −0.177909 + 0.663965i
\(311\) 100.353i 0.322679i −0.986899 0.161339i \(-0.948419\pi\)
0.986899 0.161339i \(-0.0515814\pi\)
\(312\) 0 0
\(313\) 89.9264 0.287305 0.143652 0.989628i \(-0.454115\pi\)
0.143652 + 0.989628i \(0.454115\pi\)
\(314\) −276.456 74.0761i −0.880432 0.235911i
\(315\) 83.7361 + 145.035i 0.265829 + 0.460429i
\(316\) −65.5265 37.8317i −0.207362 0.119721i
\(317\) −285.497 + 285.497i −0.900622 + 0.900622i −0.995490 0.0948677i \(-0.969757\pi\)
0.0948677 + 0.995490i \(0.469757\pi\)
\(318\) −200.666 748.897i −0.631026 2.35502i
\(319\) −21.5420 + 5.77215i −0.0675297 + 0.0180945i
\(320\) −26.6436 26.6436i −0.0832612 0.0832612i
\(321\) 187.754 325.199i 0.584902 1.01308i
\(322\) −29.8495 + 17.2336i −0.0927003 + 0.0535205i
\(323\) 4.31856 16.1171i 0.0133702 0.0498981i
\(324\) 56.1983i 0.173452i
\(325\) 0 0
\(326\) 348.783 1.06989
\(327\) −144.669 38.7638i −0.442412 0.118544i
\(328\) −34.9716 60.5725i −0.106621 0.184672i
\(329\) 195.700 + 112.987i 0.594832 + 0.343427i
\(330\) 15.2648 15.2648i 0.0462569 0.0462569i
\(331\) 39.7923 + 148.507i 0.120218 + 0.448661i 0.999624 0.0274116i \(-0.00872647\pi\)
−0.879406 + 0.476073i \(0.842060\pi\)
\(332\) 148.521 39.7962i 0.447353 0.119868i
\(333\) −45.6613 45.6613i −0.137121 0.137121i
\(334\) −37.3566 + 64.7036i −0.111846 + 0.193723i
\(335\) −128.463 + 74.1682i −0.383472 + 0.221398i
\(336\) −169.125 + 631.184i −0.503349 + 1.87852i
\(337\) 366.843i 1.08855i 0.838905 + 0.544277i \(0.183196\pi\)
−0.838905 + 0.544277i \(0.816804\pi\)
\(338\) 0 0
\(339\) −463.183 −1.36632
\(340\) 57.8421 + 15.4987i 0.170124 + 0.0455845i
\(341\) 33.5551 + 58.1192i 0.0984021 + 0.170437i
\(342\) 22.2991 + 12.8744i 0.0652020 + 0.0376444i
\(343\) 254.675 254.675i 0.742493 0.742493i
\(344\) 75.4252 + 281.491i 0.219259 + 0.818287i
\(345\) 16.9624 4.54507i 0.0491665 0.0131741i
\(346\) 144.827 + 144.827i 0.418576 + 0.418576i
\(347\) −200.347 + 347.011i −0.577369 + 1.00003i 0.418411 + 0.908258i \(0.362587\pi\)
−0.995780 + 0.0917743i \(0.970746\pi\)
\(348\) 128.507 74.1935i 0.369273 0.213200i
\(349\) 116.567 435.035i 0.334004 1.24652i −0.570941 0.820991i \(-0.693421\pi\)
0.904945 0.425529i \(-0.139912\pi\)
\(350\) 348.715i 0.996327i
\(351\) 0 0
\(352\) 27.2544 0.0774273
\(353\) −436.385 116.929i −1.23622 0.331244i −0.419220 0.907885i \(-0.637696\pi\)
−0.816998 + 0.576641i \(0.804363\pi\)
\(354\) −438.580 759.643i −1.23893 2.14589i
\(355\) −92.2608 53.2668i −0.259890 0.150047i
\(356\) −91.8403 + 91.8403i −0.257978 + 0.257978i
\(357\) 211.652 + 789.895i 0.592862 + 2.21259i
\(358\) 328.863 88.1187i 0.918613 0.246142i
\(359\) 167.150 + 167.150i 0.465598 + 0.465598i 0.900485 0.434887i \(-0.143212\pi\)
−0.434887 + 0.900485i \(0.643212\pi\)
\(360\) 73.7408 127.723i 0.204836 0.354786i
\(361\) 312.242 180.273i 0.864936 0.499371i
\(362\) −35.0269 + 130.722i −0.0967593 + 0.361111i
\(363\) 601.044i 1.65577i
\(364\) 0 0
\(365\) −114.964 −0.314969
\(366\) 1037.88 + 278.099i 2.83574 + 0.759834i
\(367\) −339.395 587.849i −0.924782 1.60177i −0.791912 0.610635i \(-0.790914\pi\)
−0.132870 0.991133i \(-0.542419\pi\)
\(368\) 38.1767 + 22.0413i 0.103741 + 0.0598949i
\(369\) 138.715 138.715i 0.375921 0.375921i
\(370\) 3.80259 + 14.1915i 0.0102773 + 0.0383553i
\(371\) −416.300 + 111.547i −1.12210 + 0.300666i
\(372\) −315.739 315.739i −0.848760 0.848760i
\(373\) 55.5691 96.2484i 0.148979 0.258039i −0.781872 0.623440i \(-0.785735\pi\)
0.930850 + 0.365401i \(0.119068\pi\)
\(374\) 58.7317 33.9087i 0.157037 0.0906651i
\(375\) 96.9920 361.979i 0.258645 0.965278i
\(376\) 199.001i 0.529257i
\(377\) 0 0
\(378\) −562.396 −1.48782
\(379\) 333.186 + 89.2768i 0.879118 + 0.235559i 0.670027 0.742337i \(-0.266283\pi\)
0.209091 + 0.977896i \(0.432949\pi\)
\(380\) −0.814575 1.41089i −0.00214362 0.00371286i
\(381\) 20.2053 + 11.6656i 0.0530324 + 0.0306183i
\(382\) −113.004 + 113.004i −0.295823 + 0.295823i
\(383\) 100.507 + 375.095i 0.262419 + 0.979361i 0.963811 + 0.266586i \(0.0858956\pi\)
−0.701392 + 0.712776i \(0.747438\pi\)
\(384\) 728.960 195.324i 1.89833 0.508657i
\(385\) −8.48544 8.48544i −0.0220401 0.0220401i
\(386\) 252.996 438.201i 0.655429 1.13524i
\(387\) −707.854 + 408.680i −1.82908 + 1.05602i
\(388\) 26.9837 100.705i 0.0695457 0.259548i
\(389\) 391.807i 1.00722i −0.863932 0.503608i \(-0.832006\pi\)
0.863932 0.503608i \(-0.167994\pi\)
\(390\) 0 0
\(391\) 55.1672 0.141093
\(392\) −32.3893 8.67868i −0.0826257 0.0221395i
\(393\) 146.985 + 254.586i 0.374008 + 0.647801i
\(394\) −322.516 186.205i −0.818568 0.472600i
\(395\) 54.4890 54.4890i 0.137947 0.137947i
\(396\) 7.53243 + 28.1114i 0.0190213 + 0.0709884i
\(397\) −152.232 + 40.7905i −0.383456 + 0.102747i −0.445397 0.895333i \(-0.646938\pi\)
0.0619411 + 0.998080i \(0.480271\pi\)
\(398\) 69.7904 + 69.7904i 0.175353 + 0.175353i
\(399\) 11.1239 19.2671i 0.0278794 0.0482886i
\(400\) 386.244 222.998i 0.965610 0.557495i
\(401\) −137.780 + 514.202i −0.343591 + 1.28230i 0.550658 + 0.834731i \(0.314377\pi\)
−0.894249 + 0.447569i \(0.852290\pi\)
\(402\) 1117.75i 2.78047i
\(403\) 0 0
\(404\) −116.365 −0.288032
\(405\) 55.2848 + 14.8135i 0.136506 + 0.0365766i
\(406\) −148.308 256.878i −0.365292 0.632704i
\(407\) 4.00719 + 2.31355i 0.00984568 + 0.00568441i
\(408\) 509.220 509.220i 1.24809 1.24809i
\(409\) 72.0792 + 269.003i 0.176233 + 0.657710i 0.996338 + 0.0854974i \(0.0272479\pi\)
−0.820106 + 0.572212i \(0.806085\pi\)
\(410\) −43.1124 + 11.5519i −0.105152 + 0.0281755i
\(411\) −588.090 588.090i −1.43088 1.43088i
\(412\) −61.5536 + 106.614i −0.149402 + 0.258772i
\(413\) −422.274 + 243.800i −1.02245 + 0.590314i
\(414\) −22.0338 + 82.2314i −0.0532219 + 0.198627i
\(415\) 156.597i 0.377342i
\(416\) 0 0
\(417\) 385.661 0.924847
\(418\) −1.78216 0.477528i −0.00426354 0.00114241i
\(419\) 244.472 + 423.438i 0.583465 + 1.01059i 0.995065 + 0.0992269i \(0.0316370\pi\)
−0.411599 + 0.911365i \(0.635030\pi\)
\(420\) 69.1471 + 39.9221i 0.164636 + 0.0950526i
\(421\) −375.601 + 375.601i −0.892163 + 0.892163i −0.994726 0.102563i \(-0.967296\pi\)
0.102563 + 0.994726i \(0.467296\pi\)
\(422\) −43.1125 160.898i −0.102162 0.381275i
\(423\) 539.127 144.459i 1.27453 0.341510i
\(424\) 268.375 + 268.375i 0.632960 + 0.632960i
\(425\) 279.071 483.365i 0.656637 1.13733i
\(426\) 695.205 401.377i 1.63194 0.942200i
\(427\) 154.591 576.941i 0.362039 1.35115i
\(428\) 115.179i 0.269110i
\(429\) 0 0
\(430\) 185.966 0.432480
\(431\) −114.753 30.7479i −0.266247 0.0713407i 0.123226 0.992379i \(-0.460676\pi\)
−0.389473 + 0.921038i \(0.627343\pi\)
\(432\) 359.644 + 622.922i 0.832510 + 1.44195i
\(433\) 120.208 + 69.4021i 0.277617 + 0.160282i 0.632344 0.774688i \(-0.282093\pi\)
−0.354727 + 0.934970i \(0.615426\pi\)
\(434\) −631.143 + 631.143i −1.45425 + 1.45425i
\(435\) 39.1138 + 145.975i 0.0899168 + 0.335574i
\(436\) −44.3740 + 11.8900i −0.101775 + 0.0272706i
\(437\) −1.06127 1.06127i −0.00242854 0.00242854i
\(438\) 433.138 750.217i 0.988900 1.71282i
\(439\) −121.509 + 70.1532i −0.276786 + 0.159802i −0.631967 0.774995i \(-0.717752\pi\)
0.355182 + 0.934797i \(0.384419\pi\)
\(440\) −2.73515 + 10.2077i −0.00621624 + 0.0231993i
\(441\) 94.0482i 0.213261i
\(442\) 0 0
\(443\) 390.577 0.881664 0.440832 0.897590i \(-0.354684\pi\)
0.440832 + 0.897590i \(0.354684\pi\)
\(444\) −29.7377 7.96819i −0.0669768 0.0179464i
\(445\) −66.1388 114.556i −0.148627 0.257429i
\(446\) 311.139 + 179.636i 0.697620 + 0.402771i
\(447\) −425.058 + 425.058i −0.950913 + 0.950913i
\(448\) −40.8492 152.451i −0.0911813 0.340293i
\(449\) −291.660 + 78.1501i −0.649577 + 0.174054i −0.568538 0.822657i \(-0.692491\pi\)
−0.0810394 + 0.996711i \(0.525824\pi\)
\(450\) 609.036 + 609.036i 1.35341 + 1.35341i
\(451\) −7.02837 + 12.1735i −0.0155840 + 0.0269922i
\(452\) −123.038 + 71.0357i −0.272207 + 0.157159i
\(453\) 292.238 1090.65i 0.645116 2.40761i
\(454\) 172.158i 0.379203i
\(455\) 0 0
\(456\) −19.5921 −0.0429652
\(457\) 294.593 + 78.9361i 0.644625 + 0.172727i 0.566297 0.824201i \(-0.308375\pi\)
0.0783273 + 0.996928i \(0.475042\pi\)
\(458\) 304.107 + 526.729i 0.663990 + 1.15006i
\(459\) 779.556 + 450.077i 1.69838 + 0.980559i
\(460\) 3.80876 3.80876i 0.00827992 0.00827992i
\(461\) −209.108 780.401i −0.453596 1.69284i −0.692183 0.721722i \(-0.743351\pi\)
0.238587 0.971121i \(-0.423316\pi\)
\(462\) 87.3432 23.4035i 0.189054 0.0506570i
\(463\) 411.381 + 411.381i 0.888512 + 0.888512i 0.994380 0.105868i \(-0.0337620\pi\)
−0.105868 + 0.994380i \(0.533762\pi\)
\(464\) −189.682 + 328.540i −0.408798 + 0.708059i
\(465\) 393.832 227.379i 0.846951 0.488988i
\(466\) −160.608 + 599.395i −0.344651 + 1.28626i
\(467\) 279.834i 0.599215i −0.954062 0.299608i \(-0.903144\pi\)
0.954062 0.299608i \(-0.0968558\pi\)
\(468\) 0 0
\(469\) −621.338 −1.32481
\(470\) −122.663 32.8673i −0.260984 0.0699305i
\(471\) 305.400 + 528.969i 0.648408 + 1.12308i
\(472\) 371.868 + 214.698i 0.787856 + 0.454869i
\(473\) 41.4138 41.4138i 0.0875555 0.0875555i
\(474\) 150.285 + 560.872i 0.317057 + 1.18327i
\(475\) −14.6673 + 3.93008i −0.0308785 + 0.00827386i
\(476\) 177.364 + 177.364i 0.372613 + 0.372613i
\(477\) −532.255 + 921.894i −1.11584 + 1.93269i
\(478\) −751.128 + 433.664i −1.57140 + 0.907247i
\(479\) 69.2853 258.576i 0.144646 0.539825i −0.855125 0.518422i \(-0.826520\pi\)
0.999771 0.0214037i \(-0.00681354\pi\)
\(480\) 184.684i 0.384758i
\(481\) 0 0
\(482\) −145.730 −0.302344
\(483\) 71.0507 + 19.0380i 0.147103 + 0.0394161i
\(484\) 92.1788 + 159.658i 0.190452 + 0.329873i
\(485\) 91.9548 + 53.0902i 0.189598 + 0.109464i
\(486\) 239.532 239.532i 0.492864 0.492864i
\(487\) −140.372 523.877i −0.288239 1.07572i −0.946440 0.322881i \(-0.895349\pi\)
0.658201 0.752843i \(-0.271318\pi\)
\(488\) −508.073 + 136.138i −1.04113 + 0.278971i
\(489\) −526.330 526.330i −1.07634 1.07634i
\(490\) −10.6989 + 18.5311i −0.0218346 + 0.0378186i
\(491\) 20.3866 11.7702i 0.0415205 0.0239719i −0.479096 0.877762i \(-0.659035\pi\)
0.520617 + 0.853791i \(0.325702\pi\)
\(492\) 24.2067 90.3405i 0.0492005 0.183619i
\(493\) 474.756i 0.962993i
\(494\) 0 0
\(495\) −29.6399 −0.0598786
\(496\) 1102.68 + 295.461i 2.22314 + 0.595688i
\(497\) −223.119 386.453i −0.448932 0.777572i
\(498\) −1021.90 589.996i −2.05201 1.18473i
\(499\) −105.552 + 105.552i −0.211527 + 0.211527i −0.804916 0.593389i \(-0.797790\pi\)
0.593389 + 0.804916i \(0.297790\pi\)
\(500\) −29.7502 111.029i −0.0595005 0.222059i
\(501\) 154.014 41.2678i 0.307412 0.0823709i
\(502\) −186.640 186.640i −0.371793 0.371793i
\(503\) 328.495 568.970i 0.653071 1.13115i −0.329302 0.944225i \(-0.606813\pi\)
0.982374 0.186928i \(-0.0598532\pi\)
\(504\) 534.993 308.878i 1.06149 0.612854i
\(505\) 30.6731 114.473i 0.0607387 0.226680i
\(506\) 6.10015i 0.0120556i
\(507\) 0 0
\(508\) 7.15632 0.0140873
\(509\) −754.970 202.293i −1.48324 0.397433i −0.575792 0.817596i \(-0.695306\pi\)
−0.907449 + 0.420163i \(0.861973\pi\)
\(510\) −229.776 397.983i −0.450540 0.780359i
\(511\) −417.034 240.775i −0.816113 0.471183i
\(512\) 3.82036 3.82036i 0.00746164 0.00746164i
\(513\) −6.33831 23.6549i −0.0123554 0.0461109i
\(514\) −849.037 + 227.499i −1.65182 + 0.442605i
\(515\) −88.6556 88.6556i −0.172147 0.172147i
\(516\) −194.843 + 337.477i −0.377602 + 0.654026i
\(517\) −34.6357 + 19.9970i −0.0669937 + 0.0386788i
\(518\) −15.9279 + 59.4439i −0.0307489 + 0.114757i
\(519\) 437.102i 0.842201i
\(520\) 0 0
\(521\) 408.859 0.784758 0.392379 0.919804i \(-0.371652\pi\)
0.392379 + 0.919804i \(0.371652\pi\)
\(522\) −707.664 189.618i −1.35568 0.363253i
\(523\) −179.678 311.211i −0.343553 0.595050i 0.641537 0.767092i \(-0.278297\pi\)
−0.985090 + 0.172042i \(0.944964\pi\)
\(524\) 78.0887 + 45.0845i 0.149024 + 0.0860392i
\(525\) 526.227 526.227i 1.00234 1.00234i
\(526\) 199.586 + 744.867i 0.379442 + 1.41610i
\(527\) 1379.94 369.754i 2.61849 0.701621i
\(528\) −81.7770 81.7770i −0.154881 0.154881i
\(529\) −262.019 + 453.830i −0.495310 + 0.857902i
\(530\) 209.750 121.099i 0.395754 0.228489i
\(531\) −311.707 + 1163.31i −0.587020 + 2.19079i
\(532\) 6.82403i 0.0128271i
\(533\) 0 0
\(534\) 996.741 1.86656
\(535\) 113.306 + 30.3604i 0.211788 + 0.0567484i
\(536\) 273.585 + 473.863i 0.510420 + 0.884073i
\(537\) −629.246 363.295i −1.17178 0.676528i
\(538\) 456.340 456.340i 0.848216 0.848216i
\(539\) 1.74419 + 6.50939i 0.00323597 + 0.0120768i
\(540\) 84.8943 22.7473i 0.157212 0.0421247i
\(541\) −62.1232 62.1232i −0.114830 0.114830i 0.647357 0.762187i \(-0.275874\pi\)
−0.762187 + 0.647357i \(0.775874\pi\)
\(542\) 264.861 458.753i 0.488674 0.846408i
\(543\) 250.123 144.409i 0.460632 0.265946i
\(544\) 150.162 560.414i 0.276034 1.03017i
\(545\) 46.7868i 0.0858473i
\(546\) 0 0
\(547\) −215.610 −0.394167 −0.197084 0.980387i \(-0.563147\pi\)
−0.197084 + 0.980387i \(0.563147\pi\)
\(548\) −246.409 66.0251i −0.449652 0.120484i
\(549\) −737.641 1277.63i −1.34361 2.32720i
\(550\) −53.4484 30.8585i −0.0971789 0.0561063i
\(551\) 9.13306 9.13306i 0.0165754 0.0165754i
\(552\) −16.7655 62.5695i −0.0303722 0.113351i
\(553\) 311.780 83.5411i 0.563797 0.151069i
\(554\) −671.584 671.584i −1.21225 1.21225i
\(555\) 15.6773 27.1539i 0.0282474 0.0489260i
\(556\) 102.445 59.1467i 0.184254 0.106379i
\(557\) −235.589 + 879.229i −0.422960 + 1.57851i 0.345377 + 0.938464i \(0.387751\pi\)
−0.768338 + 0.640045i \(0.778916\pi\)
\(558\) 2204.60i 3.95090i
\(559\) 0 0
\(560\) −204.129 −0.364516
\(561\) −139.799 37.4590i −0.249196 0.0667718i
\(562\) −592.858 1026.86i −1.05491 1.82715i
\(563\) 203.525 + 117.505i 0.361501 + 0.208713i 0.669739 0.742597i \(-0.266406\pi\)
−0.308238 + 0.951309i \(0.599739\pi\)
\(564\) 188.162 188.162i 0.333621 0.333621i
\(565\) −37.4491 139.762i −0.0662816 0.247366i
\(566\) −795.425 + 213.133i −1.40534 + 0.376561i
\(567\) 169.522 + 169.522i 0.298981 + 0.298981i
\(568\) −196.486 + 340.324i −0.345926 + 0.599161i
\(569\) −607.150 + 350.538i −1.06705 + 0.616060i −0.927373 0.374137i \(-0.877939\pi\)
−0.139674 + 0.990198i \(0.544606\pi\)
\(570\) −3.23587 + 12.0764i −0.00567697 + 0.0211867i
\(571\) 323.381i 0.566341i −0.959070 0.283170i \(-0.908614\pi\)
0.959070 0.283170i \(-0.0913862\pi\)
\(572\) 0 0
\(573\) 341.058 0.595214
\(574\) −180.585 48.3877i −0.314608 0.0842991i
\(575\) −25.1023 43.4784i −0.0436562 0.0756147i
\(576\) −337.603 194.915i −0.586116 0.338394i
\(577\) 465.169 465.169i 0.806186 0.806186i −0.177868 0.984054i \(-0.556920\pi\)
0.984054 + 0.177868i \(0.0569201\pi\)
\(578\) −197.583 737.388i −0.341838 1.27576i
\(579\) −1043.05 + 279.484i −1.80147 + 0.482701i
\(580\) 32.7773 + 32.7773i 0.0565126 + 0.0565126i
\(581\) −327.969 + 568.059i −0.564491 + 0.977727i
\(582\) −692.900 + 400.046i −1.19055 + 0.687364i
\(583\) 19.7421 73.6784i 0.0338629 0.126378i
\(584\) 424.068i 0.726143i
\(585\) 0 0
\(586\) −1266.94 −2.16201
\(587\) 220.274 + 59.0221i 0.375253 + 0.100549i 0.441516 0.897253i \(-0.354441\pi\)
−0.0662628 + 0.997802i \(0.521108\pi\)
\(588\) −22.4192 38.8313i −0.0381280 0.0660396i
\(589\) −33.6596 19.4334i −0.0571470 0.0329939i
\(590\) 193.757 193.757i 0.328401 0.328401i
\(591\) 205.700 + 767.683i 0.348054 + 1.29896i
\(592\) 76.0271 20.3714i 0.128424 0.0344112i
\(593\) 332.603 + 332.603i 0.560883 + 0.560883i 0.929558 0.368675i \(-0.120189\pi\)
−0.368675 + 0.929558i \(0.620189\pi\)
\(594\) 49.7675 86.1999i 0.0837837 0.145118i
\(595\) −221.232 + 127.729i −0.371819 + 0.214670i
\(596\) −47.7215 + 178.099i −0.0800696 + 0.298824i
\(597\) 210.634i 0.352821i
\(598\) 0 0
\(599\) −1027.71 −1.71571 −0.857853 0.513895i \(-0.828202\pi\)
−0.857853 + 0.513895i \(0.828202\pi\)
\(600\) −633.033 169.621i −1.05506 0.282701i
\(601\) 230.493 + 399.225i 0.383515 + 0.664268i 0.991562 0.129633i \(-0.0413799\pi\)
−0.608047 + 0.793901i \(0.708047\pi\)
\(602\) 674.597 + 389.479i 1.12059 + 0.646975i
\(603\) −1085.18 + 1085.18i −1.79963 + 1.79963i
\(604\) −89.6377 334.532i −0.148407 0.553862i
\(605\) −181.361 + 48.5954i −0.299769 + 0.0803230i
\(606\) 631.454 + 631.454i 1.04200 + 1.04200i
\(607\) −183.169 + 317.257i −0.301761 + 0.522665i −0.976535 0.215360i \(-0.930908\pi\)
0.674774 + 0.738024i \(0.264241\pi\)
\(608\) −13.6696 + 7.89216i −0.0224829 + 0.0129805i
\(609\) −163.836 + 611.445i −0.269025 + 1.00401i
\(610\) 335.657i 0.550258i
\(611\) 0 0
\(612\) 619.537 1.01232
\(613\) 130.022 + 34.8392i 0.212107 + 0.0568339i 0.363308 0.931669i \(-0.381647\pi\)
−0.151201 + 0.988503i \(0.548314\pi\)
\(614\) 566.882 + 981.868i 0.923260 + 1.59913i
\(615\) 82.4911 + 47.6263i 0.134132 + 0.0774411i
\(616\) −31.3003 + 31.3003i −0.0508122 + 0.0508122i
\(617\) −204.976 764.980i −0.332214 1.23984i −0.906858 0.421436i \(-0.861526\pi\)
0.574645 0.818403i \(-0.305140\pi\)
\(618\) 912.559 244.519i 1.47663 0.395662i
\(619\) 170.666 + 170.666i 0.275713 + 0.275713i 0.831395 0.555682i \(-0.187543\pi\)
−0.555682 + 0.831395i \(0.687543\pi\)
\(620\) 69.7437 120.800i 0.112490 0.194838i
\(621\) 70.1207 40.4842i 0.112916 0.0651919i
\(622\) −61.1386 + 228.172i −0.0982935 + 0.366836i
\(623\) 554.072i 0.889361i
\(624\) 0 0
\(625\) −446.368 −0.714189
\(626\) −204.465 54.7863i −0.326622 0.0875180i
\(627\) 1.96875 + 3.40998i 0.00313995 + 0.00543856i
\(628\) 162.250 + 93.6750i 0.258360 + 0.149164i
\(629\) 69.6503 69.6503i 0.110732 0.110732i
\(630\) −102.030 380.781i −0.161952 0.604414i
\(631\) −76.9356 + 20.6148i −0.121926 + 0.0326701i −0.319266 0.947665i \(-0.603436\pi\)
0.197340 + 0.980335i \(0.436770\pi\)
\(632\) −200.994 200.994i −0.318029 0.318029i
\(633\) −177.744 + 307.862i −0.280796 + 0.486354i
\(634\) 823.068 475.199i 1.29821 0.749525i
\(635\) −1.88636 + 7.03999i −0.00297064 + 0.0110866i
\(636\) 507.517i 0.797983i
\(637\) 0 0
\(638\) 52.4964 0.0822828
\(639\) −1064.63 285.266i −1.66608 0.446426i
\(640\) 117.875 + 204.166i 0.184180 + 0.319009i
\(641\) −449.661 259.612i −0.701500 0.405011i 0.106406 0.994323i \(-0.466066\pi\)
−0.807906 + 0.589312i \(0.799399\pi\)
\(642\) −625.017 + 625.017i −0.973546 + 0.973546i
\(643\) 129.563 + 483.537i 0.201498 + 0.752002i 0.990488 + 0.137596i \(0.0439376\pi\)
−0.788990 + 0.614406i \(0.789396\pi\)
\(644\) 21.7933 5.83949i 0.0338405 0.00906753i
\(645\) −280.632 280.632i −0.435088 0.435088i
\(646\) −19.6382 + 34.0143i −0.0303997 + 0.0526538i
\(647\) 257.204 148.497i 0.397533 0.229516i −0.287886 0.957665i \(-0.592952\pi\)
0.685419 + 0.728149i \(0.259619\pi\)
\(648\) 54.6427 203.929i 0.0843252 0.314706i
\(649\) 86.2973i 0.132970i
\(650\) 0 0
\(651\) 1904.85 2.92604
\(652\) −220.532 59.0914i −0.338239 0.0906309i
\(653\) 445.183 + 771.079i 0.681750 + 1.18083i 0.974446 + 0.224620i \(0.0721142\pi\)
−0.292696 + 0.956205i \(0.594552\pi\)
\(654\) 305.316 + 176.274i 0.466844 + 0.269532i
\(655\) −64.9353 + 64.9353i −0.0991378 + 0.0991378i
\(656\) 61.8865 + 230.964i 0.0943392 + 0.352079i
\(657\) −1148.87 + 307.840i −1.74866 + 0.468553i
\(658\) −376.126 376.126i −0.571620 0.571620i
\(659\) 321.640 557.097i 0.488073 0.845367i −0.511833 0.859085i \(-0.671033\pi\)
0.999906 + 0.0137177i \(0.00436660\pi\)
\(660\) −12.2379 + 7.06558i −0.0185423 + 0.0107054i
\(661\) −52.5302 + 196.045i −0.0794708 + 0.296589i −0.994210 0.107456i \(-0.965729\pi\)
0.914739 + 0.404045i \(0.132396\pi\)
\(662\) 361.902i 0.546680i
\(663\) 0 0
\(664\) 577.641 0.869941
\(665\) 6.71309 + 1.79877i 0.0100949 + 0.00270491i
\(666\) 76.0014 + 131.638i 0.114116 + 0.197655i
\(667\) 36.9828 + 21.3520i 0.0554465 + 0.0320120i
\(668\) 34.5824 34.5824i 0.0517700 0.0517700i
\(669\) −198.444 740.602i −0.296627 1.10703i
\(670\) 337.272 90.3717i 0.503390 0.134883i
\(671\) 74.7492 + 74.7492i 0.111400 + 0.111400i
\(672\) 386.793 669.945i 0.575585 0.996942i
\(673\) −236.376 + 136.472i −0.351228 + 0.202781i −0.665226 0.746642i \(-0.731665\pi\)
0.313998 + 0.949424i \(0.398331\pi\)
\(674\) 223.493 834.088i 0.331592 1.23752i
\(675\) 819.179i 1.21360i
\(676\) 0 0
\(677\) −413.547 −0.610852 −0.305426 0.952216i \(-0.598799\pi\)
−0.305426 + 0.952216i \(0.598799\pi\)
\(678\) 1053.14 + 282.187i 1.55330 + 0.416205i
\(679\) 222.379 + 385.172i 0.327510 + 0.567263i
\(680\) 194.824 + 112.482i 0.286506 + 0.165415i
\(681\) 259.795 259.795i 0.381490 0.381490i
\(682\) −40.8859 152.588i −0.0599499 0.223736i
\(683\) 1155.66 309.658i 1.69203 0.453379i 0.721121 0.692809i \(-0.243627\pi\)
0.970914 + 0.239430i \(0.0769606\pi\)
\(684\) −11.9183 11.9183i −0.0174244 0.0174244i
\(685\) 129.904 225.000i 0.189640 0.328466i
\(686\) −734.210 + 423.896i −1.07028 + 0.617925i
\(687\) 335.947 1253.77i 0.489006 1.82500i
\(688\) 996.265i 1.44806i
\(689\) 0 0
\(690\) −41.3364 −0.0599078
\(691\) 816.053 + 218.661i 1.18097 + 0.316441i 0.795313 0.606200i \(-0.207307\pi\)
0.385661 + 0.922640i \(0.373973\pi\)
\(692\) −67.0359 116.110i −0.0968727 0.167788i
\(693\) −107.520 62.0764i −0.155151 0.0895764i
\(694\) 666.939 666.939i 0.961007 0.961007i
\(695\) 31.1813 + 116.370i 0.0448652 + 0.167439i
\(696\) 538.459 144.280i 0.773647 0.207298i
\(697\) 211.591 + 211.591i 0.303574 + 0.303574i
\(698\) −530.077 + 918.121i −0.759423 + 1.31536i
\(699\) 1146.88 662.152i 1.64074 0.947284i
\(700\) 59.0797 220.489i 0.0843996 0.314984i
\(701\) 765.186i 1.09156i 0.837927 + 0.545782i \(0.183767\pi\)
−0.837927 + 0.545782i \(0.816233\pi\)
\(702\) 0 0
\(703\) −2.67978 −0.00381192
\(704\) 26.9815 + 7.22966i 0.0383259 + 0.0102694i
\(705\) 135.505 + 234.702i 0.192206 + 0.332911i
\(706\) 920.969 + 531.721i 1.30449 + 0.753147i
\(707\) 351.015 351.015i 0.496485 0.496485i
\(708\) 148.610 + 554.620i 0.209901 + 0.783361i
\(709\) −468.858 + 125.630i −0.661295 + 0.177193i −0.573830 0.818974i \(-0.694543\pi\)
−0.0874645 + 0.996168i \(0.527876\pi\)
\(710\) 177.321 + 177.321i 0.249748 + 0.249748i
\(711\) 398.622 690.434i 0.560650 0.971075i
\(712\) −422.563 + 243.967i −0.593488 + 0.342650i
\(713\) 33.2592 124.125i 0.0466469 0.174089i
\(714\) 1924.92i 2.69597i
\(715\) 0 0
\(716\) −222.866 −0.311266
\(717\) 1787.91 + 479.068i 2.49359 + 0.668157i
\(718\) −278.214 481.881i −0.387484 0.671143i
\(719\) −732.510 422.915i −1.01879 0.588199i −0.105037 0.994468i \(-0.533496\pi\)
−0.913753 + 0.406269i \(0.866830\pi\)
\(720\) −356.515 + 356.515i −0.495159 + 0.495159i
\(721\) −135.924 507.277i −0.188522 0.703574i
\(722\) −819.771 + 219.657i −1.13542 + 0.304234i
\(723\) 219.913 + 219.913i 0.304168 + 0.304168i
\(724\) 44.2942 76.7199i 0.0611799 0.105967i
\(725\) 374.165 216.024i 0.516090 0.297965i
\(726\) 366.177 1366.59i 0.504376 1.88236i
\(727\) 1019.65i 1.40255i 0.712892 + 0.701274i \(0.247385\pi\)
−0.712892 + 0.701274i \(0.752615\pi\)
\(728\) 0 0
\(729\) −1051.18 −1.44195
\(730\) 261.392 + 70.0398i 0.358072 + 0.0959450i
\(731\) −623.388 1079.74i −0.852788 1.47707i
\(732\) −609.125 351.678i −0.832138 0.480435i
\(733\) −565.267 + 565.267i −0.771170 + 0.771170i −0.978311 0.207141i \(-0.933584\pi\)
0.207141 + 0.978311i \(0.433584\pi\)
\(734\) 413.542 + 1543.36i 0.563409 + 2.10267i
\(735\) 44.1096 11.8191i 0.0600130 0.0160804i
\(736\) −36.9019 36.9019i −0.0501385 0.0501385i
\(737\) 54.9834 95.2341i 0.0746044 0.129219i
\(738\) −399.905 + 230.885i −0.541877 + 0.312853i
\(739\) 72.6381 271.089i 0.0982924 0.366832i −0.899206 0.437526i \(-0.855855\pi\)
0.997498 + 0.0706941i \(0.0225214\pi\)
\(740\) 9.61737i 0.0129964i
\(741\) 0 0
\(742\) 1014.50 1.36725
\(743\) 941.890 + 252.379i 1.26768 + 0.339675i 0.829143 0.559036i \(-0.188829\pi\)
0.438541 + 0.898711i \(0.355495\pi\)
\(744\) −838.736 1452.73i −1.12733 1.95260i
\(745\) −162.625 93.8913i −0.218288 0.126029i
\(746\) −184.985 + 184.985i −0.247969 + 0.247969i
\(747\) 419.321 + 1564.93i 0.561340 + 2.09495i
\(748\) −42.8803 + 11.4897i −0.0573266 + 0.0153606i
\(749\) 347.437 + 347.437i 0.463867 + 0.463867i
\(750\) −441.060 + 763.939i −0.588081 + 1.01859i
\(751\) 732.187 422.729i 0.974950 0.562888i 0.0742082 0.997243i \(-0.476357\pi\)
0.900742 + 0.434355i \(0.143024\pi\)
\(752\) −176.078 + 657.133i −0.234146 + 0.873847i
\(753\) 563.297i 0.748071i
\(754\) 0 0
\(755\) 352.722 0.467181
\(756\) 355.597 + 95.2819i 0.470366 + 0.126034i
\(757\) 607.165 + 1051.64i 0.802067 + 1.38922i 0.918253 + 0.395994i \(0.129600\pi\)
−0.116186 + 0.993227i \(0.537067\pi\)
\(758\) −703.172 405.976i −0.927667 0.535589i
\(759\) −9.20542 + 9.20542i −0.0121283 + 0.0121283i
\(760\) −1.58405 5.91177i −0.00208428 0.00777865i
\(761\) 647.756 173.566i 0.851191 0.228076i 0.193254 0.981149i \(-0.438096\pi\)
0.657937 + 0.753073i \(0.271429\pi\)
\(762\) −38.8337 38.8337i −0.0509629 0.0509629i
\(763\) 97.9880 169.720i 0.128425 0.222438i
\(764\) 90.5968 52.3061i 0.118582 0.0684635i
\(765\) −163.306 + 609.466i −0.213472 + 0.796687i
\(766\) 914.084i 1.19332i
\(767\) 0 0
\(768\) −1293.95 −1.68484
\(769\) −1053.30 282.232i −1.36971 0.367011i −0.502334 0.864673i \(-0.667525\pi\)
−0.867371 + 0.497662i \(0.834192\pi\)
\(770\) 14.1237 + 24.4629i 0.0183424 + 0.0317700i
\(771\) 1624.54 + 937.931i 2.10706 + 1.21651i
\(772\) −234.207 + 234.207i −0.303377 + 0.303377i
\(773\) −41.9712 156.639i −0.0542965 0.202637i 0.933449 0.358710i \(-0.116783\pi\)
−0.987746 + 0.156073i \(0.950117\pi\)
\(774\) 1858.43 497.964i 2.40107 0.643364i
\(775\) −919.316 919.316i −1.18621 1.18621i
\(776\) 195.834 339.195i 0.252364 0.437107i
\(777\) 113.740 65.6677i 0.146383 0.0845144i
\(778\) −238.702 + 890.849i −0.306815 + 1.14505i
\(779\) 8.14093i 0.0104505i
\(780\) 0 0
\(781\) 78.9770 0.101123
\(782\) −125.433 33.6098i −0.160401 0.0429792i
\(783\) 348.397 + 603.442i 0.444952 + 0.770679i
\(784\) 99.2756 + 57.3168i 0.126627 + 0.0731082i
\(785\) −134.920 + 134.920i −0.171873 + 0.171873i
\(786\) −179.097 668.398i −0.227858 0.850379i
\(787\) −8.49841 + 2.27714i −0.0107985 + 0.00289345i −0.264214 0.964464i \(-0.585113\pi\)
0.253416 + 0.967357i \(0.418446\pi\)
\(788\) 172.376 + 172.376i 0.218752 + 0.218752i
\(789\) 822.854 1425.22i 1.04291 1.80637i
\(790\) −157.088 + 90.6948i −0.198846 + 0.114804i
\(791\) 156.863 585.421i 0.198310 0.740103i
\(792\) 109.333i 0.138047i
\(793\) 0 0
\(794\) 370.980 0.467230
\(795\) −499.267 133.778i −0.628008 0.168274i
\(796\) −32.3037 55.9517i −0.0405826 0.0702911i
\(797\) 618.344 + 357.001i 0.775840 + 0.447931i 0.834954 0.550320i \(-0.185494\pi\)
−0.0591141 + 0.998251i \(0.518828\pi\)
\(798\) −37.0305 + 37.0305i −0.0464042 + 0.0464042i
\(799\) 220.353 + 822.368i 0.275786 + 1.02925i
\(800\) −510.001 + 136.654i −0.637502 + 0.170818i
\(801\) −967.696 967.696i −1.20811 1.20811i
\(802\) 626.540 1085.20i 0.781221 1.35312i
\(803\) 73.8083 42.6132i 0.0919157 0.0530676i
\(804\) −189.370 + 706.740i −0.235535 + 0.879030i
\(805\) 22.9782i 0.0285444i
\(806\) 0 0
\(807\) −1377.28 −1.70666
\(808\) −422.259 113.144i −0.522598 0.140030i
\(809\) −190.814 330.499i −0.235864 0.408528i 0.723659 0.690157i \(-0.242459\pi\)
−0.959523 + 0.281629i \(0.909125\pi\)
\(810\) −116.676 67.3627i −0.144044 0.0831639i
\(811\) 139.562 139.562i 0.172086 0.172086i −0.615809 0.787895i \(-0.711171\pi\)
0.787895 + 0.615809i \(0.211171\pi\)
\(812\) 50.2533 + 187.548i 0.0618883 + 0.230970i
\(813\) −1091.97 + 292.592i −1.34314 + 0.359892i
\(814\) −7.70163 7.70163i −0.00946146 0.00946146i
\(815\) 116.261 201.371i 0.142652 0.247081i
\(816\) −2132.09 + 1230.96i −2.61286 + 1.50853i
\(817\) −8.77901 + 32.7637i −0.0107454 + 0.0401025i
\(818\) 655.544i 0.801399i
\(819\) 0 0
\(820\) 29.2167 0.0356301
\(821\) −732.854 196.368i −0.892635 0.239181i −0.216785 0.976219i \(-0.569557\pi\)
−0.675851 + 0.737039i \(0.736224\pi\)
\(822\) 978.851 + 1695.42i 1.19082 + 2.06256i
\(823\) −1372.60 792.473i −1.66781 0.962908i −0.968818 0.247773i \(-0.920301\pi\)
−0.698987 0.715134i \(-0.746366\pi\)
\(824\) −327.025 + 327.025i −0.396875 + 0.396875i
\(825\) 34.0893 + 127.223i 0.0413204 + 0.154210i
\(826\) 1108.65 297.062i 1.34219 0.359640i
\(827\) 380.972 + 380.972i 0.460668 + 0.460668i 0.898874 0.438207i \(-0.144386\pi\)
−0.438207 + 0.898874i \(0.644386\pi\)
\(828\) 27.8635 48.2611i 0.0336516 0.0582863i
\(829\) −926.803 + 535.090i −1.11798 + 0.645464i −0.940884 0.338730i \(-0.890003\pi\)
−0.177093 + 0.984194i \(0.556669\pi\)
\(830\) 95.4042 356.053i 0.114945 0.428980i
\(831\) 2026.91i 2.43912i
\(832\) 0 0
\(833\) 143.458 0.172219
\(834\) −876.876 234.958i −1.05141 0.281724i
\(835\) 24.9045 + 43.1359i 0.0298258 + 0.0516597i
\(836\) 1.04594 + 0.603872i 0.00125112 + 0.000722335i
\(837\) 1482.64 1482.64i 1.77138 1.77138i
\(838\) −297.882 1111.71i −0.355467 1.32662i
\(839\) −811.649 + 217.481i −0.967400 + 0.259214i −0.707730 0.706483i \(-0.750281\pi\)
−0.259670 + 0.965697i \(0.583614\pi\)
\(840\) 212.100 + 212.100i 0.252500 + 0.252500i
\(841\) 236.750 410.062i 0.281510 0.487589i
\(842\) 1082.83 625.172i 1.28602 0.742485i
\(843\) −654.930 + 2444.23i −0.776904 + 2.89945i
\(844\) 109.038i 0.129192i
\(845\) 0 0
\(846\) −1313.82 −1.55298
\(847\) −759.666 203.552i −0.896890 0.240321i
\(848\) −648.757 1123.68i −0.765043 1.32509i
\(849\) 1521.96 + 878.705i 1.79265 + 1.03499i
\(850\) −929.004 + 929.004i −1.09295 + 1.09295i
\(851\) −2.29315 8.55817i −0.00269466 0.0100566i
\(852\) −507.573 + 136.004i −0.595743 + 0.159629i
\(853\) 500.522 + 500.522i 0.586778 + 0.586778i 0.936757 0.349979i \(-0.113811\pi\)
−0.349979 + 0.936757i \(0.613811\pi\)
\(854\) −702.984 + 1217.60i −0.823167 + 1.42577i
\(855\) 14.8661 8.58295i 0.0173873 0.0100385i
\(856\) 111.991 417.955i 0.130830 0.488265i
\(857\) 175.305i 0.204556i 0.994756 + 0.102278i \(0.0326132\pi\)
−0.994756 + 0.102278i \(0.967387\pi\)
\(858\) 0 0
\(859\) 1523.72 1.77384 0.886918 0.461928i \(-0.152842\pi\)
0.886918 + 0.461928i \(0.152842\pi\)
\(860\) −117.584 31.5067i −0.136726 0.0366357i
\(861\) 199.492 + 345.531i 0.231698 + 0.401314i
\(862\) 242.180 + 139.822i 0.280951 + 0.162207i
\(863\) −525.826 + 525.826i −0.609300 + 0.609300i −0.942763 0.333463i \(-0.891783\pi\)
0.333463 + 0.942763i \(0.391783\pi\)
\(864\) −220.392 822.514i −0.255083 0.951984i
\(865\) 131.892 35.3404i 0.152477 0.0408560i
\(866\) −231.034 231.034i −0.266783 0.266783i
\(867\) −814.592 + 1410.91i −0.939552 + 1.62735i
\(868\) 505.994 292.136i 0.582943 0.336562i
\(869\) −14.7854 + 55.1800i −0.0170143 + 0.0634983i
\(870\) 355.731i 0.408887i
\(871\) 0 0
\(872\) −172.583 −0.197916
\(873\) 1061.10 + 284.320i 1.21546 + 0.325682i
\(874\) 1.76645 + 3.05957i 0.00202110 + 0.00350066i
\(875\) 424.661 + 245.178i 0.485327 + 0.280204i
\(876\) −400.972 + 400.972i −0.457730 + 0.457730i
\(877\) 165.712 + 618.447i 0.188954 + 0.705185i 0.993749 + 0.111633i \(0.0356082\pi\)
−0.804796 + 0.593552i \(0.797725\pi\)
\(878\) 319.014 85.4795i 0.363342 0.0973571i
\(879\) 1911.87 + 1911.87i 2.17505 + 2.17505i
\(880\) 18.0638 31.2874i 0.0205270 0.0355539i
\(881\) −964.522 + 556.867i −1.09480 + 0.632085i −0.934851 0.355039i \(-0.884467\pi\)
−0.159953 + 0.987125i \(0.551134\pi\)
\(882\) −57.2974 + 213.837i −0.0649630 + 0.242445i
\(883\) 206.038i 0.233338i −0.993171 0.116669i \(-0.962778\pi\)
0.993171 0.116669i \(-0.0372217\pi\)
\(884\) 0 0
\(885\) −584.776 −0.660764
\(886\) −888.052 237.953i −1.00232 0.268570i
\(887\) −299.698 519.092i −0.337878 0.585222i 0.646155 0.763206i \(-0.276376\pi\)
−0.984033 + 0.177984i \(0.943042\pi\)
\(888\) −100.163 57.8291i −0.112796 0.0651228i
\(889\) −21.5870 + 21.5870i −0.0242824 + 0.0242824i
\(890\) 80.5881 + 300.759i 0.0905484 + 0.337931i
\(891\) −40.9845 + 10.9818i −0.0459983 + 0.0123252i
\(892\) −166.295 166.295i −0.186430 0.186430i
\(893\) 11.5812 20.0592i 0.0129689 0.0224627i
\(894\) 1225.41 707.492i 1.37071 0.791378i
\(895\) 58.7460 219.243i 0.0656380 0.244964i
\(896\) 987.489i 1.10211i
\(897\) 0 0
\(898\) 710.758 0.791489
\(899\) 1068.19 + 286.221i 1.18820 + 0.318377i
\(900\) −281.903 488.271i −0.313226 0.542523i
\(901\) −1406.23 811.886i −1.56074 0.901094i
\(902\) 23.3969 23.3969i 0.0259389 0.0259389i
\(903\) −430.257 1605.74i −0.476475 1.77823i
\(904\) −515.541 + 138.139i −0.570289 + 0.152808i
\(905\) 63.7970 + 63.7970i 0.0704939 + 0.0704939i
\(906\) −1328.92 + 2301.75i −1.46680 + 2.54057i
\(907\) 399.745 230.793i 0.440733 0.254457i −0.263176 0.964748i \(-0.584770\pi\)
0.703908 + 0.710291i \(0.251437\pi\)
\(908\) 29.1673 108.854i 0.0321225 0.119883i
\(909\) 1226.11i 1.34885i
\(910\) 0 0
\(911\) 1377.94 1.51256 0.756281 0.654247i \(-0.227014\pi\)
0.756281 + 0.654247i \(0.227014\pi\)
\(912\) 64.6964 + 17.3353i 0.0709390 + 0.0190080i
\(913\) −58.0453 100.537i −0.0635765 0.110118i
\(914\) −621.725 358.953i −0.680224 0.392728i
\(915\) 506.523 506.523i 0.553577 0.553577i
\(916\) −103.045 384.568i −0.112494 0.419834i
\(917\) −371.552 + 99.5570i −0.405182 + 0.108568i
\(918\) −1498.27 1498.27i −1.63210 1.63210i
\(919\) 58.7147 101.697i 0.0638898 0.110660i −0.832311 0.554309i \(-0.812983\pi\)
0.896201 + 0.443648i \(0.146316\pi\)
\(920\) 17.5244 10.1177i 0.0190482 0.0109975i
\(921\) 626.234 2337.14i 0.679950 2.53761i
\(922\) 1901.79i 2.06268i
\(923\) 0 0
\(924\) −59.1912 −0.0640598
\(925\) −86.5853 23.2005i −0.0936058 0.0250816i
\(926\) −684.727 1185.98i −0.739446 1.28076i
\(927\) −1123.36 648.573i −1.21182 0.699647i
\(928\) 317.569 317.569i 0.342208 0.342208i
\(929\) −147.714 551.276i −0.159003 0.593408i −0.998729 0.0503975i \(-0.983951\pi\)
0.839726 0.543010i \(-0.182715\pi\)
\(930\) −1033.98 + 277.055i −1.11181 + 0.297908i
\(931\) −2.75976 2.75976i −0.00296430 0.00296430i
\(932\) 203.101 351.781i 0.217919 0.377448i
\(933\) 436.584 252.062i 0.467935 0.270163i
\(934\) −170.484 + 636.256i −0.182531 + 0.681216i
\(935\) 45.2118i 0.0483549i
\(936\) 0 0
\(937\) −26.9894 −0.0288040 −0.0144020 0.999896i \(-0.504584\pi\)
−0.0144020 + 0.999896i \(0.504584\pi\)
\(938\) 1412.73 + 378.540i 1.50611 + 0.403561i
\(939\) 225.873 + 391.223i 0.240546 + 0.416638i
\(940\) 71.9898 + 41.5633i 0.0765849 + 0.0442163i
\(941\) 1244.04 1244.04i 1.32204 1.32204i 0.409926 0.912119i \(-0.365555\pi\)
0.912119 0.409926i \(-0.134445\pi\)
\(942\) −372.121 1388.77i −0.395033 1.47428i
\(943\) 25.9989 6.96639i 0.0275705 0.00738748i
\(944\) −1038.00 1038.00i −1.09958 1.09958i
\(945\) −187.466 + 324.701i −0.198377 + 0.343598i
\(946\) −119.393 + 68.9315i −0.126208 + 0.0728663i
\(947\) −19.1413 + 71.4365i −0.0202126 + 0.0754345i −0.975295 0.220904i \(-0.929099\pi\)
0.955083 + 0.296339i \(0.0957658\pi\)
\(948\) 380.095i 0.400944i
\(949\) 0 0
\(950\) 35.7432 0.0376245
\(951\) −1959.15 524.952i −2.06009 0.551999i
\(952\) 471.154 + 816.062i 0.494909 + 0.857208i
\(953\) 334.954 + 193.386i 0.351474 + 0.202923i 0.665334 0.746546i \(-0.268289\pi\)
−0.313861 + 0.949469i \(0.601622\pi\)
\(954\) 1771.84 1771.84i 1.85727 1.85727i
\(955\) 27.5751 + 102.912i 0.0288744 + 0.107761i
\(956\) 548.402 146.944i 0.573643 0.153707i
\(957\) −79.2196 79.2196i −0.0827791 0.0827791i
\(958\) −315.067 + 545.712i −0.328880 + 0.569637i
\(959\) 942.457 544.128i 0.982749 0.567391i
\(960\) 48.9903 182.834i 0.0510316 0.190452i
\(961\) 2366.76i 2.46281i
\(962\) 0 0
\(963\) 1213.61 1.26024
\(964\) 92.1435 + 24.6898i 0.0955845 + 0.0256118i
\(965\) −168.664 292.135i −0.174782 0.302731i
\(966\) −149.949 86.5730i −0.155227 0.0896201i
\(967\) 503.064 503.064i 0.520232 0.520232i −0.397409 0.917641i \(-0.630091\pi\)
0.917641 + 0.397409i \(0.130091\pi\)
\(968\) 179.254 + 668.986i 0.185180 + 0.691102i
\(969\) 80.9642 21.6943i 0.0835544 0.0223883i
\(970\) −176.733 176.733i −0.182199 0.182199i
\(971\) −452.612 + 783.946i −0.466129 + 0.807360i −0.999252 0.0386784i \(-0.987685\pi\)
0.533122 + 0.846038i \(0.321019\pi\)
\(972\) −192.035 + 110.872i −0.197567 + 0.114066i
\(973\) −130.609 + 487.441i −0.134234 + 0.500967i
\(974\) 1276.66i 1.31074i
\(975\) 0 0
\(976\) 1798.20 1.84241
\(977\) 797.549 + 213.703i 0.816324 + 0.218733i 0.642739 0.766085i \(-0.277798\pi\)
0.173585 + 0.984819i \(0.444465\pi\)
\(978\) 876.055 + 1517.37i 0.895762 + 1.55151i
\(979\) 84.9241 + 49.0310i 0.0867458 + 0.0500827i
\(980\) 9.90440 9.90440i 0.0101065 0.0101065i
\(981\) −125.281 467.557i −0.127708 0.476612i
\(982\) −53.5236 + 14.3416i −0.0545047 + 0.0146045i
\(983\) 99.0983 + 99.0983i 0.100812 + 0.100812i 0.755714 0.654902i \(-0.227290\pi\)
−0.654902 + 0.755714i \(0.727290\pi\)
\(984\) 175.680 304.286i 0.178536 0.309234i
\(985\) −215.011 + 124.137i −0.218286 + 0.126027i
\(986\) 289.238 1079.45i 0.293344 1.09478i
\(987\) 1135.18i 1.15013i
\(988\) 0 0
\(989\) −112.147 −0.113394
\(990\) 67.3921 + 18.0577i 0.0680728 + 0.0182401i
\(991\) 58.8966 + 102.012i 0.0594315 + 0.102938i 0.894210 0.447647i \(-0.147738\pi\)
−0.834779 + 0.550585i \(0.814405\pi\)
\(992\) −1170.39 675.725i −1.17983 0.681175i
\(993\) −546.127 + 546.127i −0.549977 + 0.549977i
\(994\) 271.864 + 1014.61i 0.273505 + 1.02073i
\(995\) 63.5572 17.0301i 0.0638766 0.0171157i
\(996\) 546.180 + 546.180i 0.548374 + 0.548374i
\(997\) 531.702 920.934i 0.533302 0.923705i −0.465942 0.884815i \(-0.654284\pi\)
0.999243 0.0388901i \(-0.0123822\pi\)
\(998\) 304.298 175.687i 0.304908 0.176039i
\(999\) 37.4170 139.642i 0.0374544 0.139782i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 169.3.f.g.80.3 48
13.2 odd 12 169.3.d.e.99.3 yes 24
13.3 even 3 169.3.d.e.70.10 yes 24
13.4 even 6 inner 169.3.f.g.19.3 48
13.5 odd 4 inner 169.3.f.g.89.3 48
13.6 odd 12 inner 169.3.f.g.150.10 48
13.7 odd 12 inner 169.3.f.g.150.3 48
13.8 odd 4 inner 169.3.f.g.89.10 48
13.9 even 3 inner 169.3.f.g.19.10 48
13.10 even 6 169.3.d.e.70.3 24
13.11 odd 12 169.3.d.e.99.10 yes 24
13.12 even 2 inner 169.3.f.g.80.10 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
169.3.d.e.70.3 24 13.10 even 6
169.3.d.e.70.10 yes 24 13.3 even 3
169.3.d.e.99.3 yes 24 13.2 odd 12
169.3.d.e.99.10 yes 24 13.11 odd 12
169.3.f.g.19.3 48 13.4 even 6 inner
169.3.f.g.19.10 48 13.9 even 3 inner
169.3.f.g.80.3 48 1.1 even 1 trivial
169.3.f.g.80.10 48 13.12 even 2 inner
169.3.f.g.89.3 48 13.5 odd 4 inner
169.3.f.g.89.10 48 13.8 odd 4 inner
169.3.f.g.150.3 48 13.7 odd 12 inner
169.3.f.g.150.10 48 13.6 odd 12 inner