Properties

Label 169.3.f.g.89.10
Level $169$
Weight $3$
Character 169.89
Analytic conductor $4.605$
Analytic rank $0$
Dimension $48$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [169,3,Mod(19,169)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(169, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([5]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("169.19");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 169 = 13^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 169.f (of order \(12\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.60491646769\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(12\) over \(\Q(\zeta_{12})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 89.10
Character \(\chi\) \(=\) 169.89
Dual form 169.3.f.g.19.10

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.609234 - 2.27369i) q^{2} +(2.51175 + 4.35048i) q^{3} +(-1.33442 - 0.770425i) q^{4} +(-1.10964 - 1.10964i) q^{5} +(11.4219 - 3.06049i) q^{6} +(1.70128 + 6.34925i) q^{7} +(4.09315 - 4.09315i) q^{8} +(-8.11776 + 14.0604i) q^{9} +(-3.19902 + 1.84696i) q^{10} +(-1.12372 - 0.301099i) q^{11} -7.74046i q^{12} +15.4727 q^{14} +(2.04033 - 7.61462i) q^{15} +(-9.89459 - 17.1379i) q^{16} +(21.4473 + 12.3826i) q^{17} +(27.0234 + 27.0234i) q^{18} +(-0.650797 + 0.174381i) q^{19} +(0.625828 + 2.33562i) q^{20} +(-23.3491 + 23.3491i) q^{21} +(-1.36921 + 2.37154i) q^{22} +(1.92917 - 1.11381i) q^{23} +(28.0881 + 7.52619i) q^{24} -22.5374i q^{25} -36.3476 q^{27} +(2.62141 - 9.78324i) q^{28} +(-9.58516 - 16.6020i) q^{29} +(-16.0703 - 9.27818i) q^{30} +(-40.7907 - 40.7907i) q^{31} +(-22.6291 + 6.06346i) q^{32} +(-1.51257 - 5.64498i) q^{33} +(41.2206 - 41.2206i) q^{34} +(5.15759 - 8.93321i) q^{35} +(21.6649 - 12.5082i) q^{36} +(3.84185 + 1.02942i) q^{37} +1.58595i q^{38} -9.08389 q^{40} +(3.12729 - 11.6712i) q^{41} +(38.8636 + 67.3137i) q^{42} +(-43.5991 - 25.1720i) q^{43} +(1.26753 + 1.26753i) q^{44} +(24.6098 - 6.59418i) q^{45} +(-1.35714 - 5.06491i) q^{46} +(-24.3090 + 24.3090i) q^{47} +(49.7054 - 86.0923i) q^{48} +(5.01666 - 2.89637i) q^{49} +(-51.2431 - 13.7305i) q^{50} +124.408i q^{51} +65.5668 q^{53} +(-22.1442 + 82.6433i) q^{54} +(0.912811 + 1.58104i) q^{55} +(32.9520 + 19.0249i) q^{56} +(-2.39328 - 2.39328i) q^{57} +(-43.5874 + 11.6792i) q^{58} +(-19.1991 - 71.6521i) q^{59} +(-8.58915 + 8.58915i) q^{60} +(-45.4338 + 78.6937i) q^{61} +(-117.597 + 67.8945i) q^{62} +(-103.083 - 27.6211i) q^{63} -24.0109i q^{64} -13.7565 q^{66} +(-24.4650 + 91.3047i) q^{67} +(-19.0797 - 33.0470i) q^{68} +(9.69118 + 5.59520i) q^{69} +(-17.1692 - 17.1692i) q^{70} +(-65.5740 + 17.5705i) q^{71} +(24.3240 + 90.7785i) q^{72} +(51.8021 - 51.8021i) q^{73} +(4.68118 - 8.10804i) q^{74} +(98.0483 - 56.6082i) q^{75} +(1.00278 + 0.268695i) q^{76} -7.64700i q^{77} -49.1050 q^{79} +(-8.03753 + 29.9965i) q^{80} +(-18.2361 - 31.5859i) q^{81} +(-24.6315 - 14.2210i) q^{82} +(70.5618 + 70.5618i) q^{83} +(49.1461 - 13.1686i) q^{84} +(-10.0586 - 37.5391i) q^{85} +(-83.7955 + 83.7955i) q^{86} +(48.1510 - 83.4000i) q^{87} +(-5.83198 + 3.36710i) q^{88} +(81.4201 + 21.8165i) q^{89} -59.9726i q^{90} -3.43242 q^{92} +(75.0030 - 279.915i) q^{93} +(40.4613 + 70.0810i) q^{94} +(0.915654 + 0.528653i) q^{95} +(-83.2176 - 83.2176i) q^{96} +(65.3566 - 17.5122i) q^{97} +(-3.52914 - 13.1709i) q^{98} +(13.3556 - 13.3556i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q - 12 q^{3} - 84 q^{9} + 376 q^{14} - 188 q^{16} + 136 q^{22} + 120 q^{27} - 84 q^{29} - 176 q^{35} - 1048 q^{40} + 368 q^{42} + 368 q^{48} - 88 q^{53} + 704 q^{55} + 8 q^{61} - 1480 q^{66} + 168 q^{68}+ \cdots - 1132 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/169\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{7}{12}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.609234 2.27369i 0.304617 1.13685i −0.628657 0.777683i \(-0.716395\pi\)
0.933274 0.359164i \(-0.116938\pi\)
\(3\) 2.51175 + 4.35048i 0.837249 + 1.45016i 0.892186 + 0.451669i \(0.149171\pi\)
−0.0549364 + 0.998490i \(0.517496\pi\)
\(4\) −1.33442 0.770425i −0.333604 0.192606i
\(5\) −1.10964 1.10964i −0.221929 0.221929i 0.587381 0.809310i \(-0.300159\pi\)
−0.809310 + 0.587381i \(0.800159\pi\)
\(6\) 11.4219 3.06049i 1.90365 0.510081i
\(7\) 1.70128 + 6.34925i 0.243039 + 0.907035i 0.974359 + 0.225000i \(0.0722382\pi\)
−0.731319 + 0.682035i \(0.761095\pi\)
\(8\) 4.09315 4.09315i 0.511644 0.511644i
\(9\) −8.11776 + 14.0604i −0.901973 + 1.56226i
\(10\) −3.19902 + 1.84696i −0.319902 + 0.184696i
\(11\) −1.12372 0.301099i −0.102156 0.0273726i 0.207379 0.978261i \(-0.433507\pi\)
−0.309535 + 0.950888i \(0.600173\pi\)
\(12\) 7.74046i 0.645038i
\(13\) 0 0
\(14\) 15.4727 1.10519
\(15\) 2.04033 7.61462i 0.136022 0.507642i
\(16\) −9.89459 17.1379i −0.618412 1.07112i
\(17\) 21.4473 + 12.3826i 1.26160 + 0.728387i 0.973385 0.229178i \(-0.0736037\pi\)
0.288218 + 0.957565i \(0.406937\pi\)
\(18\) 27.0234 + 27.0234i 1.50130 + 1.50130i
\(19\) −0.650797 + 0.174381i −0.0342525 + 0.00917793i −0.275905 0.961185i \(-0.588977\pi\)
0.241652 + 0.970363i \(0.422311\pi\)
\(20\) 0.625828 + 2.33562i 0.0312914 + 0.116781i
\(21\) −23.3491 + 23.3491i −1.11186 + 1.11186i
\(22\) −1.36921 + 2.37154i −0.0622369 + 0.107797i
\(23\) 1.92917 1.11381i 0.0838770 0.0484264i −0.457475 0.889223i \(-0.651246\pi\)
0.541352 + 0.840796i \(0.317913\pi\)
\(24\) 28.0881 + 7.52619i 1.17034 + 0.313591i
\(25\) 22.5374i 0.901495i
\(26\) 0 0
\(27\) −36.3476 −1.34621
\(28\) 2.62141 9.78324i 0.0936218 0.349401i
\(29\) −9.58516 16.6020i −0.330523 0.572482i 0.652092 0.758140i \(-0.273892\pi\)
−0.982614 + 0.185658i \(0.940558\pi\)
\(30\) −16.0703 9.27818i −0.535676 0.309273i
\(31\) −40.7907 40.7907i −1.31583 1.31583i −0.917045 0.398785i \(-0.869432\pi\)
−0.398785 0.917045i \(-0.630568\pi\)
\(32\) −22.6291 + 6.06346i −0.707160 + 0.189483i
\(33\) −1.51257 5.64498i −0.0458354 0.171060i
\(34\) 41.2206 41.2206i 1.21237 1.21237i
\(35\) 5.15759 8.93321i 0.147360 0.255235i
\(36\) 21.6649 12.5082i 0.601803 0.347451i
\(37\) 3.84185 + 1.02942i 0.103834 + 0.0278222i 0.310362 0.950618i \(-0.399550\pi\)
−0.206528 + 0.978441i \(0.566216\pi\)
\(38\) 1.58595i 0.0417356i
\(39\) 0 0
\(40\) −9.08389 −0.227097
\(41\) 3.12729 11.6712i 0.0762754 0.284664i −0.917244 0.398326i \(-0.869591\pi\)
0.993519 + 0.113662i \(0.0362581\pi\)
\(42\) 38.8636 + 67.3137i 0.925323 + 1.60271i
\(43\) −43.5991 25.1720i −1.01393 0.585395i −0.101592 0.994826i \(-0.532394\pi\)
−0.912341 + 0.409431i \(0.865727\pi\)
\(44\) 1.26753 + 1.26753i 0.0288075 + 0.0288075i
\(45\) 24.6098 6.59418i 0.546885 0.146537i
\(46\) −1.35714 5.06491i −0.0295030 0.110107i
\(47\) −24.3090 + 24.3090i −0.517212 + 0.517212i −0.916727 0.399515i \(-0.869179\pi\)
0.399515 + 0.916727i \(0.369179\pi\)
\(48\) 49.7054 86.0923i 1.03553 1.79359i
\(49\) 5.01666 2.89637i 0.102381 0.0591096i
\(50\) −51.2431 13.7305i −1.02486 0.274611i
\(51\) 124.408i 2.43937i
\(52\) 0 0
\(53\) 65.5668 1.23711 0.618555 0.785742i \(-0.287718\pi\)
0.618555 + 0.785742i \(0.287718\pi\)
\(54\) −22.1442 + 82.6433i −0.410078 + 1.53043i
\(55\) 0.912811 + 1.58104i 0.0165966 + 0.0287461i
\(56\) 32.9520 + 19.0249i 0.588429 + 0.339730i
\(57\) −2.39328 2.39328i −0.0419873 0.0419873i
\(58\) −43.5874 + 11.6792i −0.751507 + 0.201366i
\(59\) −19.1991 71.6521i −0.325409 1.21444i −0.913900 0.405938i \(-0.866945\pi\)
0.588492 0.808503i \(-0.299722\pi\)
\(60\) −8.58915 + 8.58915i −0.143152 + 0.143152i
\(61\) −45.4338 + 78.6937i −0.744816 + 1.29006i 0.205464 + 0.978665i \(0.434130\pi\)
−0.950280 + 0.311395i \(0.899204\pi\)
\(62\) −117.597 + 67.8945i −1.89672 + 1.09507i
\(63\) −103.083 27.6211i −1.63624 0.438430i
\(64\) 24.0109i 0.375171i
\(65\) 0 0
\(66\) −13.7565 −0.208431
\(67\) −24.4650 + 91.3047i −0.365149 + 1.36276i 0.502069 + 0.864828i \(0.332572\pi\)
−0.867218 + 0.497929i \(0.834094\pi\)
\(68\) −19.0797 33.0470i −0.280584 0.485985i
\(69\) 9.69118 + 5.59520i 0.140452 + 0.0810899i
\(70\) −17.1692 17.1692i −0.245274 0.245274i
\(71\) −65.5740 + 17.5705i −0.923578 + 0.247472i −0.689114 0.724653i \(-0.742000\pi\)
−0.234464 + 0.972125i \(0.575333\pi\)
\(72\) 24.3240 + 90.7785i 0.337834 + 1.26081i
\(73\) 51.8021 51.8021i 0.709617 0.709617i −0.256837 0.966455i \(-0.582680\pi\)
0.966455 + 0.256837i \(0.0826804\pi\)
\(74\) 4.68118 8.10804i 0.0632592 0.109568i
\(75\) 98.0483 56.6082i 1.30731 0.754776i
\(76\) 1.00278 + 0.268695i 0.0131945 + 0.00353545i
\(77\) 7.64700i 0.0993116i
\(78\) 0 0
\(79\) −49.1050 −0.621582 −0.310791 0.950478i \(-0.600594\pi\)
−0.310791 + 0.950478i \(0.600594\pi\)
\(80\) −8.03753 + 29.9965i −0.100469 + 0.374956i
\(81\) −18.2361 31.5859i −0.225138 0.389950i
\(82\) −24.6315 14.2210i −0.300384 0.173427i
\(83\) 70.5618 + 70.5618i 0.850142 + 0.850142i 0.990150 0.140008i \(-0.0447129\pi\)
−0.140008 + 0.990150i \(0.544713\pi\)
\(84\) 49.1461 13.1686i 0.585072 0.156770i
\(85\) −10.0586 37.5391i −0.118336 0.441636i
\(86\) −83.7955 + 83.7955i −0.974366 + 0.974366i
\(87\) 48.1510 83.4000i 0.553460 0.958621i
\(88\) −5.83198 + 3.36710i −0.0662725 + 0.0382625i
\(89\) 81.4201 + 21.8165i 0.914833 + 0.245129i 0.685375 0.728190i \(-0.259638\pi\)
0.229457 + 0.973319i \(0.426305\pi\)
\(90\) 59.9726i 0.666362i
\(91\) 0 0
\(92\) −3.43242 −0.0373089
\(93\) 75.0030 279.915i 0.806484 3.00984i
\(94\) 40.4613 + 70.0810i 0.430439 + 0.745543i
\(95\) 0.915654 + 0.528653i 0.00963846 + 0.00556477i
\(96\) −83.2176 83.2176i −0.866850 0.866850i
\(97\) 65.3566 17.5122i 0.673779 0.180539i 0.0943225 0.995542i \(-0.469932\pi\)
0.579457 + 0.815003i \(0.303265\pi\)
\(98\) −3.52914 13.1709i −0.0360116 0.134397i
\(99\) 13.3556 13.3556i 0.134905 0.134905i
\(100\) −17.3634 + 30.0742i −0.173634 + 0.300742i
\(101\) 65.4023 37.7600i 0.647547 0.373862i −0.139968 0.990156i \(-0.544700\pi\)
0.787516 + 0.616294i \(0.211367\pi\)
\(102\) 282.865 + 75.7934i 2.77319 + 0.743073i
\(103\) 79.8956i 0.775685i −0.921726 0.387843i \(-0.873220\pi\)
0.921726 0.387843i \(-0.126780\pi\)
\(104\) 0 0
\(105\) 51.8183 0.493507
\(106\) 39.9456 149.079i 0.376845 1.40640i
\(107\) −37.3751 64.7356i −0.349300 0.605005i 0.636825 0.771008i \(-0.280247\pi\)
−0.986125 + 0.166003i \(0.946914\pi\)
\(108\) 48.5028 + 28.0031i 0.449100 + 0.259288i
\(109\) −21.0819 21.0819i −0.193412 0.193412i 0.603757 0.797169i \(-0.293670\pi\)
−0.797169 + 0.603757i \(0.793670\pi\)
\(110\) 4.15091 1.11223i 0.0377355 0.0101112i
\(111\) 5.17130 + 19.2995i 0.0465882 + 0.173870i
\(112\) 91.9795 91.9795i 0.821246 0.821246i
\(113\) −46.1016 + 79.8504i −0.407979 + 0.706641i −0.994663 0.103175i \(-0.967100\pi\)
0.586684 + 0.809816i \(0.300433\pi\)
\(114\) −6.89965 + 3.98351i −0.0605232 + 0.0349431i
\(115\) −3.37662 0.904763i −0.0293619 0.00786750i
\(116\) 29.5386i 0.254643i
\(117\) 0 0
\(118\) −174.612 −1.47976
\(119\) −42.1323 + 157.240i −0.354053 + 1.32134i
\(120\) −22.8164 39.5192i −0.190137 0.329327i
\(121\) −103.617 59.8233i −0.856339 0.494407i
\(122\) 151.245 + 151.245i 1.23972 + 1.23972i
\(123\) 58.6303 15.7099i 0.476669 0.127723i
\(124\) 23.0056 + 85.8579i 0.185529 + 0.692403i
\(125\) −52.7496 + 52.7496i −0.421996 + 0.421996i
\(126\) −125.604 + 217.552i −0.996855 + 1.72660i
\(127\) −4.02217 + 2.32220i −0.0316706 + 0.0182850i −0.515752 0.856738i \(-0.672487\pi\)
0.484081 + 0.875023i \(0.339154\pi\)
\(128\) −145.110 38.8821i −1.13367 0.303767i
\(129\) 252.903i 1.96049i
\(130\) 0 0
\(131\) 58.5190 0.446710 0.223355 0.974737i \(-0.428299\pi\)
0.223355 + 0.974737i \(0.428299\pi\)
\(132\) −2.33064 + 8.69807i −0.0176564 + 0.0658945i
\(133\) −2.21437 3.83540i −0.0166494 0.0288376i
\(134\) 192.694 + 111.252i 1.43801 + 0.830238i
\(135\) 40.3329 + 40.3329i 0.298762 + 0.298762i
\(136\) 138.471 37.1031i 1.01817 0.272817i
\(137\) 42.8498 + 159.918i 0.312772 + 1.16728i 0.926046 + 0.377411i \(0.123186\pi\)
−0.613274 + 0.789871i \(0.710148\pi\)
\(138\) 18.6260 18.6260i 0.134971 0.134971i
\(139\) 38.3858 66.4861i 0.276156 0.478317i −0.694270 0.719715i \(-0.744273\pi\)
0.970426 + 0.241398i \(0.0776059\pi\)
\(140\) −13.7647 + 7.94708i −0.0983196 + 0.0567648i
\(141\) −166.814 44.6976i −1.18307 0.317004i
\(142\) 159.800i 1.12535i
\(143\) 0 0
\(144\) 321.288 2.23116
\(145\) −7.78617 + 29.0584i −0.0536977 + 0.200403i
\(146\) −86.2225 149.342i −0.590565 1.02289i
\(147\) 25.2012 + 14.5499i 0.171437 + 0.0989790i
\(148\) −4.33354 4.33354i −0.0292807 0.0292807i
\(149\) −115.585 + 30.9709i −0.775737 + 0.207858i −0.624904 0.780701i \(-0.714862\pi\)
−0.150833 + 0.988559i \(0.548195\pi\)
\(150\) −68.9754 257.420i −0.459836 1.71613i
\(151\) −158.935 + 158.935i −1.05255 + 1.05255i −0.0540078 + 0.998541i \(0.517200\pi\)
−0.998541 + 0.0540078i \(0.982800\pi\)
\(152\) −1.95005 + 3.37758i −0.0128293 + 0.0222209i
\(153\) −348.207 + 201.037i −2.27586 + 1.31397i
\(154\) −17.3869 4.65881i −0.112902 0.0302520i
\(155\) 90.5263i 0.584041i
\(156\) 0 0
\(157\) 121.589 0.774451 0.387225 0.921985i \(-0.373434\pi\)
0.387225 + 0.921985i \(0.373434\pi\)
\(158\) −29.9165 + 111.650i −0.189345 + 0.706644i
\(159\) 164.687 + 285.247i 1.03577 + 1.79401i
\(160\) 31.8385 + 18.3820i 0.198991 + 0.114887i
\(161\) 10.3539 + 10.3539i 0.0643098 + 0.0643098i
\(162\) −82.9268 + 22.2202i −0.511894 + 0.137162i
\(163\) 38.3498 + 143.124i 0.235275 + 0.878059i 0.978025 + 0.208489i \(0.0668546\pi\)
−0.742750 + 0.669569i \(0.766479\pi\)
\(164\) −13.1649 + 13.1649i −0.0802738 + 0.0802738i
\(165\) −4.58550 + 7.94233i −0.0277909 + 0.0481353i
\(166\) 203.425 117.447i 1.22545 0.707513i
\(167\) −30.6587 8.21496i −0.183585 0.0491914i 0.165855 0.986150i \(-0.446962\pi\)
−0.349440 + 0.936959i \(0.613628\pi\)
\(168\) 191.143i 1.13775i
\(169\) 0 0
\(170\) −91.4803 −0.538120
\(171\) 2.83116 10.5660i 0.0165565 0.0617897i
\(172\) 38.7862 + 67.1797i 0.225501 + 0.390580i
\(173\) 75.3542 + 43.5058i 0.435574 + 0.251478i 0.701718 0.712455i \(-0.252417\pi\)
−0.266145 + 0.963933i \(0.585750\pi\)
\(174\) −160.291 160.291i −0.921211 0.921211i
\(175\) 143.095 38.3423i 0.817688 0.219099i
\(176\) 5.95849 + 22.2374i 0.0338551 + 0.126349i
\(177\) 263.497 263.497i 1.48868 1.48868i
\(178\) 99.2079 171.833i 0.557348 0.965354i
\(179\) 125.261 72.3192i 0.699780 0.404018i −0.107486 0.994207i \(-0.534280\pi\)
0.807265 + 0.590189i \(0.200947\pi\)
\(180\) −37.9200 10.1606i −0.210667 0.0564480i
\(181\) 57.4932i 0.317642i 0.987307 + 0.158821i \(0.0507693\pi\)
−0.987307 + 0.158821i \(0.949231\pi\)
\(182\) 0 0
\(183\) −456.473 −2.49439
\(184\) 3.33741 12.4554i 0.0181381 0.0676923i
\(185\) −3.12080 5.40538i −0.0168692 0.0292183i
\(186\) −590.746 341.068i −3.17606 1.83370i
\(187\) −20.3722 20.3722i −0.108942 0.108942i
\(188\) 51.1665 13.7100i 0.272162 0.0729257i
\(189\) −61.8372 230.780i −0.327181 1.22106i
\(190\) 1.75984 1.75984i 0.00926233 0.00926233i
\(191\) 33.9463 58.7966i 0.177729 0.307836i −0.763373 0.645958i \(-0.776458\pi\)
0.941102 + 0.338122i \(0.109792\pi\)
\(192\) 104.459 60.3095i 0.544058 0.314112i
\(193\) 207.634 + 55.6354i 1.07582 + 0.288266i 0.752884 0.658153i \(-0.228662\pi\)
0.322940 + 0.946419i \(0.395329\pi\)
\(194\) 159.270i 0.820979i
\(195\) 0 0
\(196\) −8.92575 −0.0455395
\(197\) −40.9476 + 152.818i −0.207856 + 0.775728i 0.780704 + 0.624901i \(0.214861\pi\)
−0.988560 + 0.150828i \(0.951806\pi\)
\(198\) −22.2299 38.5032i −0.112272 0.194461i
\(199\) 36.3122 + 20.9649i 0.182473 + 0.105351i 0.588454 0.808530i \(-0.299737\pi\)
−0.405981 + 0.913882i \(0.633070\pi\)
\(200\) −92.2490 92.2490i −0.461245 0.461245i
\(201\) −458.669 + 122.900i −2.28193 + 0.611442i
\(202\) −46.0094 171.710i −0.227769 0.850047i
\(203\) 89.1031 89.1031i 0.438931 0.438931i
\(204\) 95.8468 166.012i 0.469837 0.813782i
\(205\) −16.4211 + 9.48070i −0.0801027 + 0.0462473i
\(206\) −181.658 48.6751i −0.881835 0.236287i
\(207\) 36.1665i 0.174717i
\(208\) 0 0
\(209\) 0.783817 0.00375032
\(210\) 31.5695 117.819i 0.150331 0.561042i
\(211\) 35.3826 + 61.2844i 0.167690 + 0.290447i 0.937607 0.347696i \(-0.113036\pi\)
−0.769917 + 0.638144i \(0.779703\pi\)
\(212\) −87.4934 50.5143i −0.412705 0.238275i
\(213\) −241.146 241.146i −1.13214 1.13214i
\(214\) −169.959 + 45.5404i −0.794201 + 0.212806i
\(215\) 20.4476 + 76.3114i 0.0951050 + 0.354937i
\(216\) −148.776 + 148.776i −0.688779 + 0.688779i
\(217\) 189.594 328.386i 0.873705 1.51330i
\(218\) −60.7776 + 35.0899i −0.278796 + 0.160963i
\(219\) 355.477 + 95.2499i 1.62318 + 0.434931i
\(220\) 2.81301i 0.0127864i
\(221\) 0 0
\(222\) 47.0318 0.211855
\(223\) 39.5031 147.428i 0.177144 0.661110i −0.819033 0.573747i \(-0.805489\pi\)
0.996177 0.0873632i \(-0.0278441\pi\)
\(224\) −76.9968 133.362i −0.343735 0.595367i
\(225\) 316.884 + 182.953i 1.40837 + 0.813124i
\(226\) 153.469 + 153.469i 0.679065 + 0.679065i
\(227\) 70.6452 18.9293i 0.311212 0.0833891i −0.0998323 0.995004i \(-0.531831\pi\)
0.411045 + 0.911615i \(0.365164\pi\)
\(228\) 1.34979 + 5.03747i 0.00592011 + 0.0220942i
\(229\) −182.706 + 182.706i −0.797845 + 0.797845i −0.982755 0.184911i \(-0.940800\pi\)
0.184911 + 0.982755i \(0.440800\pi\)
\(230\) −4.11431 + 7.12619i −0.0178883 + 0.0309834i
\(231\) 33.2681 19.2073i 0.144018 0.0831486i
\(232\) −107.188 28.7209i −0.462017 0.123797i
\(233\) 263.622i 1.13142i 0.824603 + 0.565712i \(0.191399\pi\)
−0.824603 + 0.565712i \(0.808601\pi\)
\(234\) 0 0
\(235\) 53.9486 0.229568
\(236\) −29.5830 + 110.405i −0.125352 + 0.467818i
\(237\) −123.339 213.630i −0.520419 0.901393i
\(238\) 331.847 + 191.592i 1.39432 + 0.805009i
\(239\) 260.543 + 260.543i 1.09014 + 1.09014i 0.995513 + 0.0946270i \(0.0301659\pi\)
0.0946270 + 0.995513i \(0.469834\pi\)
\(240\) −150.687 + 40.3765i −0.627863 + 0.168235i
\(241\) −16.0235 59.8004i −0.0664874 0.248134i 0.924681 0.380742i \(-0.124332\pi\)
−0.991169 + 0.132608i \(0.957665\pi\)
\(242\) −199.147 + 199.147i −0.822921 + 0.822921i
\(243\) −71.9549 + 124.630i −0.296111 + 0.512879i
\(244\) 121.255 70.0067i 0.496947 0.286913i
\(245\) −8.78065 2.35277i −0.0358394 0.00960313i
\(246\) 142.878i 0.580806i
\(247\) 0 0
\(248\) −333.925 −1.34647
\(249\) −129.744 + 484.211i −0.521060 + 1.94462i
\(250\) 87.7995 + 152.073i 0.351198 + 0.608293i
\(251\) −97.1096 56.0663i −0.386891 0.223372i 0.293921 0.955830i \(-0.405040\pi\)
−0.680812 + 0.732458i \(0.738373\pi\)
\(252\) 116.276 + 116.276i 0.461412 + 0.461412i
\(253\) −2.50320 + 0.670731i −0.00989408 + 0.00265111i
\(254\) 2.82953 + 10.5599i 0.0111399 + 0.0415746i
\(255\) 138.048 138.048i 0.541365 0.541365i
\(256\) −128.790 + 223.071i −0.503087 + 0.871372i
\(257\) −323.389 + 186.709i −1.25832 + 0.726493i −0.972748 0.231863i \(-0.925518\pi\)
−0.285575 + 0.958356i \(0.592185\pi\)
\(258\) −575.023 154.077i −2.22877 0.597198i
\(259\) 26.1442i 0.100943i
\(260\) 0 0
\(261\) 311.240 1.19249
\(262\) 35.6518 133.054i 0.136076 0.507841i
\(263\) −163.801 283.712i −0.622818 1.07875i −0.988959 0.148192i \(-0.952655\pi\)
0.366141 0.930559i \(-0.380679\pi\)
\(264\) −29.2969 16.9146i −0.110973 0.0640704i
\(265\) −72.7558 72.7558i −0.274550 0.274550i
\(266\) −10.0696 + 2.69814i −0.0378557 + 0.0101434i
\(267\) 109.595 + 409.014i 0.410468 + 1.53189i
\(268\) 102.990 102.990i 0.384291 0.384291i
\(269\) −137.084 + 237.436i −0.509605 + 0.882661i 0.490333 + 0.871535i \(0.336875\pi\)
−0.999938 + 0.0111263i \(0.996458\pi\)
\(270\) 116.277 67.1324i 0.430655 0.248639i
\(271\) 217.372 + 58.2447i 0.802112 + 0.214925i 0.636511 0.771268i \(-0.280377\pi\)
0.165601 + 0.986193i \(0.447044\pi\)
\(272\) 490.082i 1.80177i
\(273\) 0 0
\(274\) 389.709 1.42230
\(275\) −6.78597 + 25.3256i −0.0246763 + 0.0920931i
\(276\) −8.62137 14.9327i −0.0312369 0.0541038i
\(277\) −349.428 201.742i −1.26147 0.728312i −0.288114 0.957596i \(-0.593028\pi\)
−0.973360 + 0.229284i \(0.926362\pi\)
\(278\) −127.783 127.783i −0.459651 0.459651i
\(279\) 904.661 242.403i 3.24251 0.868829i
\(280\) −15.4542 57.6758i −0.0551935 0.205985i
\(281\) 356.187 356.187i 1.26757 1.26757i 0.320228 0.947340i \(-0.396240\pi\)
0.947340 0.320228i \(-0.103760\pi\)
\(282\) −203.257 + 352.052i −0.720770 + 1.24841i
\(283\) −302.969 + 174.919i −1.07056 + 0.618089i −0.928335 0.371746i \(-0.878759\pi\)
−0.142226 + 0.989834i \(0.545426\pi\)
\(284\) 101.040 + 27.0735i 0.355774 + 0.0953293i
\(285\) 5.31137i 0.0186364i
\(286\) 0 0
\(287\) 79.4237 0.276738
\(288\) 98.4433 367.396i 0.341817 1.27568i
\(289\) 162.156 + 280.863i 0.561095 + 0.971845i
\(290\) 61.3263 + 35.4067i 0.211470 + 0.122092i
\(291\) 240.346 + 240.346i 0.825931 + 0.825931i
\(292\) −109.035 + 29.2159i −0.373408 + 0.100054i
\(293\) −139.304 519.890i −0.475441 1.77437i −0.619710 0.784831i \(-0.712750\pi\)
0.144269 0.989539i \(-0.453917\pi\)
\(294\) 48.4355 48.4355i 0.164747 0.164747i
\(295\) −58.2041 + 100.812i −0.197302 + 0.341737i
\(296\) 19.9389 11.5117i 0.0673611 0.0388909i
\(297\) 40.8443 + 10.9442i 0.137523 + 0.0368492i
\(298\) 281.673i 0.945211i
\(299\) 0 0
\(300\) −174.450 −0.581499
\(301\) 85.6489 319.646i 0.284548 1.06195i
\(302\) 264.541 + 458.198i 0.875962 + 1.51721i
\(303\) 328.548 + 189.687i 1.08432 + 0.626031i
\(304\) 9.42790 + 9.42790i 0.0310128 + 0.0310128i
\(305\) 137.737 36.9066i 0.451598 0.121005i
\(306\) 244.958 + 914.195i 0.800516 + 2.98757i
\(307\) −340.580 + 340.580i −1.10938 + 1.10938i −0.116150 + 0.993232i \(0.537055\pi\)
−0.993232 + 0.116150i \(0.962945\pi\)
\(308\) −5.89144 + 10.2043i −0.0191280 + 0.0331307i
\(309\) 347.584 200.678i 1.12487 0.649442i
\(310\) 205.829 + 55.1517i 0.663965 + 0.177909i
\(311\) 100.353i 0.322679i 0.986899 + 0.161339i \(0.0515814\pi\)
−0.986899 + 0.161339i \(0.948419\pi\)
\(312\) 0 0
\(313\) 89.9264 0.287305 0.143652 0.989628i \(-0.454115\pi\)
0.143652 + 0.989628i \(0.454115\pi\)
\(314\) 74.0761 276.456i 0.235911 0.880432i
\(315\) 83.7361 + 145.035i 0.265829 + 0.460429i
\(316\) 65.5265 + 37.8317i 0.207362 + 0.119721i
\(317\) −285.497 285.497i −0.900622 0.900622i 0.0948677 0.995490i \(-0.469757\pi\)
−0.995490 + 0.0948677i \(0.969757\pi\)
\(318\) 748.897 200.666i 2.35502 0.631026i
\(319\) 5.77215 + 21.5420i 0.0180945 + 0.0675297i
\(320\) −26.6436 + 26.6436i −0.0832612 + 0.0832612i
\(321\) 187.754 325.199i 0.584902 1.01308i
\(322\) 29.8495 17.2336i 0.0927003 0.0535205i
\(323\) −16.1171 4.31856i −0.0498981 0.0133702i
\(324\) 56.1983i 0.173452i
\(325\) 0 0
\(326\) 348.783 1.06989
\(327\) 38.7638 144.669i 0.118544 0.442412i
\(328\) −34.9716 60.5725i −0.106621 0.184672i
\(329\) −195.700 112.987i −0.594832 0.343427i
\(330\) 15.2648 + 15.2648i 0.0462569 + 0.0462569i
\(331\) −148.507 + 39.7923i −0.448661 + 0.120218i −0.476073 0.879406i \(-0.657940\pi\)
0.0274116 + 0.999624i \(0.491274\pi\)
\(332\) −39.7962 148.521i −0.119868 0.447353i
\(333\) −45.6613 + 45.6613i −0.137121 + 0.137121i
\(334\) −37.3566 + 64.7036i −0.111846 + 0.193723i
\(335\) 128.463 74.1682i 0.383472 0.221398i
\(336\) 631.184 + 169.125i 1.87852 + 0.503349i
\(337\) 366.843i 1.08855i −0.838905 0.544277i \(-0.816804\pi\)
0.838905 0.544277i \(-0.183196\pi\)
\(338\) 0 0
\(339\) −463.183 −1.36632
\(340\) −15.4987 + 57.8421i −0.0455845 + 0.170124i
\(341\) 33.5551 + 58.1192i 0.0984021 + 0.170437i
\(342\) −22.2991 12.8744i −0.0652020 0.0376444i
\(343\) 254.675 + 254.675i 0.742493 + 0.742493i
\(344\) −281.491 + 75.4252i −0.818287 + 0.219259i
\(345\) −4.54507 16.9624i −0.0131741 0.0491665i
\(346\) 144.827 144.827i 0.418576 0.418576i
\(347\) −200.347 + 347.011i −0.577369 + 1.00003i 0.418411 + 0.908258i \(0.362587\pi\)
−0.995780 + 0.0917743i \(0.970746\pi\)
\(348\) −128.507 + 74.1935i −0.369273 + 0.213200i
\(349\) −435.035 116.567i −1.24652 0.334004i −0.425529 0.904945i \(-0.639912\pi\)
−0.820991 + 0.570941i \(0.806579\pi\)
\(350\) 348.715i 0.996327i
\(351\) 0 0
\(352\) 27.2544 0.0774273
\(353\) 116.929 436.385i 0.331244 1.23622i −0.576641 0.816998i \(-0.695637\pi\)
0.907885 0.419220i \(-0.137696\pi\)
\(354\) −438.580 759.643i −1.23893 2.14589i
\(355\) 92.2608 + 53.2668i 0.259890 + 0.150047i
\(356\) −91.8403 91.8403i −0.257978 0.257978i
\(357\) −789.895 + 211.652i −2.21259 + 0.592862i
\(358\) −88.1187 328.863i −0.246142 0.918613i
\(359\) 167.150 167.150i 0.465598 0.465598i −0.434887 0.900485i \(-0.643212\pi\)
0.900485 + 0.434887i \(0.143212\pi\)
\(360\) 73.7408 127.723i 0.204836 0.354786i
\(361\) −312.242 + 180.273i −0.864936 + 0.499371i
\(362\) 130.722 + 35.0269i 0.361111 + 0.0967593i
\(363\) 601.044i 1.65577i
\(364\) 0 0
\(365\) −114.964 −0.314969
\(366\) −278.099 + 1037.88i −0.759834 + 2.83574i
\(367\) −339.395 587.849i −0.924782 1.60177i −0.791912 0.610635i \(-0.790914\pi\)
−0.132870 0.991133i \(-0.542419\pi\)
\(368\) −38.1767 22.0413i −0.103741 0.0598949i
\(369\) 138.715 + 138.715i 0.375921 + 0.375921i
\(370\) −14.1915 + 3.80259i −0.0383553 + 0.0102773i
\(371\) 111.547 + 416.300i 0.300666 + 1.12210i
\(372\) −315.739 + 315.739i −0.848760 + 0.848760i
\(373\) 55.5691 96.2484i 0.148979 0.258039i −0.781872 0.623440i \(-0.785735\pi\)
0.930850 + 0.365401i \(0.119068\pi\)
\(374\) −58.7317 + 33.9087i −0.157037 + 0.0906651i
\(375\) −361.979 96.9920i −0.965278 0.258645i
\(376\) 199.001i 0.529257i
\(377\) 0 0
\(378\) −562.396 −1.48782
\(379\) −89.2768 + 333.186i −0.235559 + 0.879118i 0.742337 + 0.670027i \(0.233717\pi\)
−0.977896 + 0.209091i \(0.932949\pi\)
\(380\) −0.814575 1.41089i −0.00214362 0.00371286i
\(381\) −20.2053 11.6656i −0.0530324 0.0306183i
\(382\) −113.004 113.004i −0.295823 0.295823i
\(383\) −375.095 + 100.507i −0.979361 + 0.262419i −0.712776 0.701392i \(-0.752562\pi\)
−0.266586 + 0.963811i \(0.585896\pi\)
\(384\) −195.324 728.960i −0.508657 1.89833i
\(385\) −8.48544 + 8.48544i −0.0220401 + 0.0220401i
\(386\) 252.996 438.201i 0.655429 1.13524i
\(387\) 707.854 408.680i 1.82908 1.05602i
\(388\) −100.705 26.9837i −0.259548 0.0695457i
\(389\) 391.807i 1.00722i 0.863932 + 0.503608i \(0.167994\pi\)
−0.863932 + 0.503608i \(0.832006\pi\)
\(390\) 0 0
\(391\) 55.1672 0.141093
\(392\) 8.67868 32.3893i 0.0221395 0.0826257i
\(393\) 146.985 + 254.586i 0.374008 + 0.647801i
\(394\) 322.516 + 186.205i 0.818568 + 0.472600i
\(395\) 54.4890 + 54.4890i 0.137947 + 0.137947i
\(396\) −28.1114 + 7.53243i −0.0709884 + 0.0190213i
\(397\) 40.7905 + 152.232i 0.102747 + 0.383456i 0.998080 0.0619411i \(-0.0197291\pi\)
−0.895333 + 0.445397i \(0.853062\pi\)
\(398\) 69.7904 69.7904i 0.175353 0.175353i
\(399\) 11.1239 19.2671i 0.0278794 0.0482886i
\(400\) −386.244 + 222.998i −0.965610 + 0.557495i
\(401\) 514.202 + 137.780i 1.28230 + 0.343591i 0.834731 0.550658i \(-0.185623\pi\)
0.447569 + 0.894249i \(0.352290\pi\)
\(402\) 1117.75i 2.78047i
\(403\) 0 0
\(404\) −116.365 −0.288032
\(405\) −14.8135 + 55.2848i −0.0365766 + 0.136506i
\(406\) −148.308 256.878i −0.365292 0.632704i
\(407\) −4.00719 2.31355i −0.00984568 0.00568441i
\(408\) 509.220 + 509.220i 1.24809 + 1.24809i
\(409\) −269.003 + 72.0792i −0.657710 + 0.176233i −0.572212 0.820106i \(-0.693915\pi\)
−0.0854974 + 0.996338i \(0.527248\pi\)
\(410\) 11.5519 + 43.1124i 0.0281755 + 0.105152i
\(411\) −588.090 + 588.090i −1.43088 + 1.43088i
\(412\) −61.5536 + 106.614i −0.149402 + 0.258772i
\(413\) 422.274 243.800i 1.02245 0.590314i
\(414\) 82.2314 + 22.0338i 0.198627 + 0.0532219i
\(415\) 156.597i 0.377342i
\(416\) 0 0
\(417\) 385.661 0.924847
\(418\) 0.477528 1.78216i 0.00114241 0.00426354i
\(419\) 244.472 + 423.438i 0.583465 + 1.01059i 0.995065 + 0.0992269i \(0.0316370\pi\)
−0.411599 + 0.911365i \(0.635030\pi\)
\(420\) −69.1471 39.9221i −0.164636 0.0950526i
\(421\) −375.601 375.601i −0.892163 0.892163i 0.102563 0.994726i \(-0.467296\pi\)
−0.994726 + 0.102563i \(0.967296\pi\)
\(422\) 160.898 43.1125i 0.381275 0.102162i
\(423\) −144.459 539.127i −0.341510 1.27453i
\(424\) 268.375 268.375i 0.632960 0.632960i
\(425\) 279.071 483.365i 0.656637 1.13733i
\(426\) −695.205 + 401.377i −1.63194 + 0.942200i
\(427\) −576.941 154.591i −1.35115 0.362039i
\(428\) 115.179i 0.269110i
\(429\) 0 0
\(430\) 185.966 0.432480
\(431\) 30.7479 114.753i 0.0713407 0.266247i −0.921038 0.389473i \(-0.872657\pi\)
0.992379 + 0.123226i \(0.0393239\pi\)
\(432\) 359.644 + 622.922i 0.832510 + 1.44195i
\(433\) −120.208 69.4021i −0.277617 0.160282i 0.354727 0.934970i \(-0.384574\pi\)
−0.632344 + 0.774688i \(0.717907\pi\)
\(434\) −631.143 631.143i −1.45425 1.45425i
\(435\) −145.975 + 39.1138i −0.335574 + 0.0899168i
\(436\) 11.8900 + 44.3740i 0.0272706 + 0.101775i
\(437\) −1.06127 + 1.06127i −0.00242854 + 0.00242854i
\(438\) 433.138 750.217i 0.988900 1.71282i
\(439\) 121.509 70.1532i 0.276786 0.159802i −0.355182 0.934797i \(-0.615581\pi\)
0.631967 + 0.774995i \(0.282248\pi\)
\(440\) 10.2077 + 2.73515i 0.0231993 + 0.00621624i
\(441\) 94.0482i 0.213261i
\(442\) 0 0
\(443\) 390.577 0.881664 0.440832 0.897590i \(-0.354684\pi\)
0.440832 + 0.897590i \(0.354684\pi\)
\(444\) 7.96819 29.7377i 0.0179464 0.0669768i
\(445\) −66.1388 114.556i −0.148627 0.257429i
\(446\) −311.139 179.636i −0.697620 0.402771i
\(447\) −425.058 425.058i −0.950913 0.950913i
\(448\) 152.451 40.8492i 0.340293 0.0911813i
\(449\) 78.1501 + 291.660i 0.174054 + 0.649577i 0.996711 + 0.0810394i \(0.0258240\pi\)
−0.822657 + 0.568538i \(0.807509\pi\)
\(450\) 609.036 609.036i 1.35341 1.35341i
\(451\) −7.02837 + 12.1735i −0.0155840 + 0.0269922i
\(452\) 123.038 71.0357i 0.272207 0.157159i
\(453\) −1090.65 292.238i −2.40761 0.645116i
\(454\) 172.158i 0.379203i
\(455\) 0 0
\(456\) −19.5921 −0.0429652
\(457\) −78.9361 + 294.593i −0.172727 + 0.644625i 0.824201 + 0.566297i \(0.191625\pi\)
−0.996928 + 0.0783273i \(0.975042\pi\)
\(458\) 304.107 + 526.729i 0.663990 + 1.15006i
\(459\) −779.556 450.077i −1.69838 0.980559i
\(460\) 3.80876 + 3.80876i 0.00827992 + 0.00827992i
\(461\) 780.401 209.108i 1.69284 0.453596i 0.721722 0.692183i \(-0.243351\pi\)
0.971121 + 0.238587i \(0.0766842\pi\)
\(462\) −23.4035 87.3432i −0.0506570 0.189054i
\(463\) 411.381 411.381i 0.888512 0.888512i −0.105868 0.994380i \(-0.533762\pi\)
0.994380 + 0.105868i \(0.0337620\pi\)
\(464\) −189.682 + 328.540i −0.408798 + 0.708059i
\(465\) −393.832 + 227.379i −0.846951 + 0.488988i
\(466\) 599.395 + 160.608i 1.28626 + 0.344651i
\(467\) 279.834i 0.599215i 0.954062 + 0.299608i \(0.0968558\pi\)
−0.954062 + 0.299608i \(0.903144\pi\)
\(468\) 0 0
\(469\) −621.338 −1.32481
\(470\) 32.8673 122.663i 0.0699305 0.260984i
\(471\) 305.400 + 528.969i 0.648408 + 1.12308i
\(472\) −371.868 214.698i −0.787856 0.454869i
\(473\) 41.4138 + 41.4138i 0.0875555 + 0.0875555i
\(474\) −560.872 + 150.285i −1.18327 + 0.317057i
\(475\) 3.93008 + 14.6673i 0.00827386 + 0.0308785i
\(476\) 177.364 177.364i 0.372613 0.372613i
\(477\) −532.255 + 921.894i −1.11584 + 1.93269i
\(478\) 751.128 433.664i 1.57140 0.907247i
\(479\) −258.576 69.2853i −0.539825 0.144646i −0.0214037 0.999771i \(-0.506814\pi\)
−0.518422 + 0.855125i \(0.673480\pi\)
\(480\) 184.684i 0.384758i
\(481\) 0 0
\(482\) −145.730 −0.302344
\(483\) −19.0380 + 71.0507i −0.0394161 + 0.147103i
\(484\) 92.1788 + 159.658i 0.190452 + 0.329873i
\(485\) −91.9548 53.0902i −0.189598 0.109464i
\(486\) 239.532 + 239.532i 0.492864 + 0.492864i
\(487\) 523.877 140.372i 1.07572 0.288239i 0.322881 0.946440i \(-0.395349\pi\)
0.752843 + 0.658201i \(0.228682\pi\)
\(488\) 136.138 + 508.073i 0.278971 + 1.04113i
\(489\) −526.330 + 526.330i −1.07634 + 1.07634i
\(490\) −10.6989 + 18.5311i −0.0218346 + 0.0378186i
\(491\) −20.3866 + 11.7702i −0.0415205 + 0.0239719i −0.520617 0.853791i \(-0.674298\pi\)
0.479096 + 0.877762i \(0.340965\pi\)
\(492\) −90.3405 24.2067i −0.183619 0.0492005i
\(493\) 474.756i 0.962993i
\(494\) 0 0
\(495\) −29.6399 −0.0598786
\(496\) −295.461 + 1102.68i −0.595688 + 2.22314i
\(497\) −223.119 386.453i −0.448932 0.777572i
\(498\) 1021.90 + 589.996i 2.05201 + 1.18473i
\(499\) −105.552 105.552i −0.211527 0.211527i 0.593389 0.804916i \(-0.297790\pi\)
−0.804916 + 0.593389i \(0.797790\pi\)
\(500\) 111.029 29.7502i 0.222059 0.0595005i
\(501\) −41.2678 154.014i −0.0823709 0.307412i
\(502\) −186.640 + 186.640i −0.371793 + 0.371793i
\(503\) 328.495 568.970i 0.653071 1.13115i −0.329302 0.944225i \(-0.606813\pi\)
0.982374 0.186928i \(-0.0598532\pi\)
\(504\) −534.993 + 308.878i −1.06149 + 0.612854i
\(505\) −114.473 30.6731i −0.226680 0.0607387i
\(506\) 6.10015i 0.0120556i
\(507\) 0 0
\(508\) 7.15632 0.0140873
\(509\) 202.293 754.970i 0.397433 1.48324i −0.420163 0.907449i \(-0.638027\pi\)
0.817596 0.575792i \(-0.195306\pi\)
\(510\) −229.776 397.983i −0.450540 0.780359i
\(511\) 417.034 + 240.775i 0.816113 + 0.471183i
\(512\) 3.82036 + 3.82036i 0.00746164 + 0.00746164i
\(513\) 23.6549 6.33831i 0.0461109 0.0123554i
\(514\) 227.499 + 849.037i 0.442605 + 1.65182i
\(515\) −88.6556 + 88.6556i −0.172147 + 0.172147i
\(516\) −194.843 + 337.477i −0.377602 + 0.654026i
\(517\) 34.6357 19.9970i 0.0669937 0.0386788i
\(518\) 59.4439 + 15.9279i 0.114757 + 0.0307489i
\(519\) 437.102i 0.842201i
\(520\) 0 0
\(521\) 408.859 0.784758 0.392379 0.919804i \(-0.371652\pi\)
0.392379 + 0.919804i \(0.371652\pi\)
\(522\) 189.618 707.664i 0.363253 1.35568i
\(523\) −179.678 311.211i −0.343553 0.595050i 0.641537 0.767092i \(-0.278297\pi\)
−0.985090 + 0.172042i \(0.944964\pi\)
\(524\) −78.0887 45.0845i −0.149024 0.0860392i
\(525\) 526.227 + 526.227i 1.00234 + 1.00234i
\(526\) −744.867 + 199.586i −1.41610 + 0.379442i
\(527\) −369.754 1379.94i −0.701621 2.61849i
\(528\) −81.7770 + 81.7770i −0.154881 + 0.154881i
\(529\) −262.019 + 453.830i −0.495310 + 0.857902i
\(530\) −209.750 + 121.099i −0.395754 + 0.228489i
\(531\) 1163.31 + 311.707i 2.19079 + 0.587020i
\(532\) 6.82403i 0.0128271i
\(533\) 0 0
\(534\) 996.741 1.86656
\(535\) −30.3604 + 113.306i −0.0567484 + 0.211788i
\(536\) 273.585 + 473.863i 0.510420 + 0.884073i
\(537\) 629.246 + 363.295i 1.17178 + 0.676528i
\(538\) 456.340 + 456.340i 0.848216 + 0.848216i
\(539\) −6.50939 + 1.74419i −0.0120768 + 0.00323597i
\(540\) −22.7473 84.8943i −0.0421247 0.157212i
\(541\) −62.1232 + 62.1232i −0.114830 + 0.114830i −0.762187 0.647357i \(-0.775874\pi\)
0.647357 + 0.762187i \(0.275874\pi\)
\(542\) 264.861 458.753i 0.488674 0.846408i
\(543\) −250.123 + 144.409i −0.460632 + 0.265946i
\(544\) −560.414 150.162i −1.03017 0.276034i
\(545\) 46.7868i 0.0858473i
\(546\) 0 0
\(547\) −215.610 −0.394167 −0.197084 0.980387i \(-0.563147\pi\)
−0.197084 + 0.980387i \(0.563147\pi\)
\(548\) 66.0251 246.409i 0.120484 0.449652i
\(549\) −737.641 1277.63i −1.34361 2.32720i
\(550\) 53.4484 + 30.8585i 0.0971789 + 0.0561063i
\(551\) 9.13306 + 9.13306i 0.0165754 + 0.0165754i
\(552\) 62.5695 16.7655i 0.113351 0.0303722i
\(553\) −83.5411 311.780i −0.151069 0.563797i
\(554\) −671.584 + 671.584i −1.21225 + 1.21225i
\(555\) 15.6773 27.1539i 0.0282474 0.0489260i
\(556\) −102.445 + 59.1467i −0.184254 + 0.106379i
\(557\) 879.229 + 235.589i 1.57851 + 0.422960i 0.938464 0.345377i \(-0.112249\pi\)
0.640045 + 0.768338i \(0.278916\pi\)
\(558\) 2204.60i 3.95090i
\(559\) 0 0
\(560\) −204.129 −0.364516
\(561\) 37.4590 139.799i 0.0667718 0.249196i
\(562\) −592.858 1026.86i −1.05491 1.82715i
\(563\) −203.525 117.505i −0.361501 0.208713i 0.308238 0.951309i \(-0.400261\pi\)
−0.669739 + 0.742597i \(0.733594\pi\)
\(564\) 188.162 + 188.162i 0.333621 + 0.333621i
\(565\) 139.762 37.4491i 0.247366 0.0662816i
\(566\) 213.133 + 795.425i 0.376561 + 1.40534i
\(567\) 169.522 169.522i 0.298981 0.298981i
\(568\) −196.486 + 340.324i −0.345926 + 0.599161i
\(569\) 607.150 350.538i 1.06705 0.616060i 0.139674 0.990198i \(-0.455394\pi\)
0.927373 + 0.374137i \(0.122061\pi\)
\(570\) 12.0764 + 3.23587i 0.0211867 + 0.00567697i
\(571\) 323.381i 0.566341i 0.959070 + 0.283170i \(0.0913862\pi\)
−0.959070 + 0.283170i \(0.908614\pi\)
\(572\) 0 0
\(573\) 341.058 0.595214
\(574\) 48.3877 180.585i 0.0842991 0.314608i
\(575\) −25.1023 43.4784i −0.0436562 0.0756147i
\(576\) 337.603 + 194.915i 0.586116 + 0.338394i
\(577\) 465.169 + 465.169i 0.806186 + 0.806186i 0.984054 0.177868i \(-0.0569201\pi\)
−0.177868 + 0.984054i \(0.556920\pi\)
\(578\) 737.388 197.583i 1.27576 0.341838i
\(579\) 279.484 + 1043.05i 0.482701 + 1.80147i
\(580\) 32.7773 32.7773i 0.0565126 0.0565126i
\(581\) −327.969 + 568.059i −0.564491 + 0.977727i
\(582\) 692.900 400.046i 1.19055 0.687364i
\(583\) −73.6784 19.7421i −0.126378 0.0338629i
\(584\) 424.068i 0.726143i
\(585\) 0 0
\(586\) −1266.94 −2.16201
\(587\) −59.0221 + 220.274i −0.100549 + 0.375253i −0.997802 0.0662628i \(-0.978892\pi\)
0.897253 + 0.441516i \(0.145559\pi\)
\(588\) −22.4192 38.8313i −0.0381280 0.0660396i
\(589\) 33.6596 + 19.4334i 0.0571470 + 0.0329939i
\(590\) 193.757 + 193.757i 0.328401 + 0.328401i
\(591\) −767.683 + 205.700i −1.29896 + 0.348054i
\(592\) −20.3714 76.0271i −0.0344112 0.128424i
\(593\) 332.603 332.603i 0.560883 0.560883i −0.368675 0.929558i \(-0.620189\pi\)
0.929558 + 0.368675i \(0.120189\pi\)
\(594\) 49.7675 86.1999i 0.0837837 0.145118i
\(595\) 221.232 127.729i 0.371819 0.214670i
\(596\) 178.099 + 47.7215i 0.298824 + 0.0800696i
\(597\) 210.634i 0.352821i
\(598\) 0 0
\(599\) −1027.71 −1.71571 −0.857853 0.513895i \(-0.828202\pi\)
−0.857853 + 0.513895i \(0.828202\pi\)
\(600\) 169.621 633.033i 0.282701 1.05506i
\(601\) 230.493 + 399.225i 0.383515 + 0.664268i 0.991562 0.129633i \(-0.0413799\pi\)
−0.608047 + 0.793901i \(0.708047\pi\)
\(602\) −674.597 389.479i −1.12059 0.646975i
\(603\) −1085.18 1085.18i −1.79963 1.79963i
\(604\) 334.532 89.6377i 0.553862 0.148407i
\(605\) 48.5954 + 181.361i 0.0803230 + 0.299769i
\(606\) 631.454 631.454i 1.04200 1.04200i
\(607\) −183.169 + 317.257i −0.301761 + 0.522665i −0.976535 0.215360i \(-0.930908\pi\)
0.674774 + 0.738024i \(0.264241\pi\)
\(608\) 13.6696 7.89216i 0.0224829 0.0129805i
\(609\) 611.445 + 163.836i 1.00401 + 0.269025i
\(610\) 335.657i 0.550258i
\(611\) 0 0
\(612\) 619.537 1.01232
\(613\) −34.8392 + 130.022i −0.0568339 + 0.212107i −0.988503 0.151201i \(-0.951686\pi\)
0.931669 + 0.363308i \(0.118353\pi\)
\(614\) 566.882 + 981.868i 0.923260 + 1.59913i
\(615\) −82.4911 47.6263i −0.134132 0.0774411i
\(616\) −31.3003 31.3003i −0.0508122 0.0508122i
\(617\) 764.980 204.976i 1.23984 0.332214i 0.421436 0.906858i \(-0.361526\pi\)
0.818403 + 0.574645i \(0.194860\pi\)
\(618\) −244.519 912.559i −0.395662 1.47663i
\(619\) 170.666 170.666i 0.275713 0.275713i −0.555682 0.831395i \(-0.687543\pi\)
0.831395 + 0.555682i \(0.187543\pi\)
\(620\) 69.7437 120.800i 0.112490 0.194838i
\(621\) −70.1207 + 40.4842i −0.112916 + 0.0651919i
\(622\) 228.172 + 61.1386i 0.366836 + 0.0982935i
\(623\) 554.072i 0.889361i
\(624\) 0 0
\(625\) −446.368 −0.714189
\(626\) 54.7863 204.465i 0.0875180 0.326622i
\(627\) 1.96875 + 3.40998i 0.00313995 + 0.00543856i
\(628\) −162.250 93.6750i −0.258360 0.149164i
\(629\) 69.6503 + 69.6503i 0.110732 + 0.110732i
\(630\) 380.781 102.030i 0.604414 0.161952i
\(631\) 20.6148 + 76.9356i 0.0326701 + 0.121926i 0.980335 0.197340i \(-0.0632302\pi\)
−0.947665 + 0.319266i \(0.896564\pi\)
\(632\) −200.994 + 200.994i −0.318029 + 0.318029i
\(633\) −177.744 + 307.862i −0.280796 + 0.486354i
\(634\) −823.068 + 475.199i −1.29821 + 0.749525i
\(635\) 7.03999 + 1.88636i 0.0110866 + 0.00297064i
\(636\) 507.517i 0.797983i
\(637\) 0 0
\(638\) 52.4964 0.0822828
\(639\) 285.266 1064.63i 0.446426 1.66608i
\(640\) 117.875 + 204.166i 0.184180 + 0.319009i
\(641\) 449.661 + 259.612i 0.701500 + 0.405011i 0.807906 0.589312i \(-0.200601\pi\)
−0.106406 + 0.994323i \(0.533934\pi\)
\(642\) −625.017 625.017i −0.973546 0.973546i
\(643\) −483.537 + 129.563i −0.752002 + 0.201498i −0.614406 0.788990i \(-0.710604\pi\)
−0.137596 + 0.990488i \(0.543938\pi\)
\(644\) −5.83949 21.7933i −0.00906753 0.0338405i
\(645\) −280.632 + 280.632i −0.435088 + 0.435088i
\(646\) −19.6382 + 34.0143i −0.0303997 + 0.0526538i
\(647\) −257.204 + 148.497i −0.397533 + 0.229516i −0.685419 0.728149i \(-0.740381\pi\)
0.287886 + 0.957665i \(0.407048\pi\)
\(648\) −203.929 54.6427i −0.314706 0.0843252i
\(649\) 86.2973i 0.132970i
\(650\) 0 0
\(651\) 1904.85 2.92604
\(652\) 59.0914 220.532i 0.0906309 0.338239i
\(653\) 445.183 + 771.079i 0.681750 + 1.18083i 0.974446 + 0.224620i \(0.0721142\pi\)
−0.292696 + 0.956205i \(0.594552\pi\)
\(654\) −305.316 176.274i −0.466844 0.269532i
\(655\) −64.9353 64.9353i −0.0991378 0.0991378i
\(656\) −230.964 + 61.8865i −0.352079 + 0.0943392i
\(657\) 307.840 + 1148.87i 0.468553 + 1.74866i
\(658\) −376.126 + 376.126i −0.571620 + 0.571620i
\(659\) 321.640 557.097i 0.488073 0.845367i −0.511833 0.859085i \(-0.671033\pi\)
0.999906 + 0.0137177i \(0.00436660\pi\)
\(660\) 12.2379 7.06558i 0.0185423 0.0107054i
\(661\) 196.045 + 52.5302i 0.296589 + 0.0794708i 0.404045 0.914739i \(-0.367604\pi\)
−0.107456 + 0.994210i \(0.534271\pi\)
\(662\) 361.902i 0.546680i
\(663\) 0 0
\(664\) 577.641 0.869941
\(665\) −1.79877 + 6.71309i −0.00270491 + 0.0100949i
\(666\) 76.0014 + 131.638i 0.114116 + 0.197655i
\(667\) −36.9828 21.3520i −0.0554465 0.0320120i
\(668\) 34.5824 + 34.5824i 0.0517700 + 0.0517700i
\(669\) 740.602 198.444i 1.10703 0.296627i
\(670\) −90.3717 337.272i −0.134883 0.503390i
\(671\) 74.7492 74.7492i 0.111400 0.111400i
\(672\) 386.793 669.945i 0.575585 0.996942i
\(673\) 236.376 136.472i 0.351228 0.202781i −0.313998 0.949424i \(-0.601669\pi\)
0.665226 + 0.746642i \(0.268335\pi\)
\(674\) −834.088 223.493i −1.23752 0.331592i
\(675\) 819.179i 1.21360i
\(676\) 0 0
\(677\) −413.547 −0.610852 −0.305426 0.952216i \(-0.598799\pi\)
−0.305426 + 0.952216i \(0.598799\pi\)
\(678\) −282.187 + 1053.14i −0.416205 + 1.55330i
\(679\) 222.379 + 385.172i 0.327510 + 0.567263i
\(680\) −194.824 112.482i −0.286506 0.165415i
\(681\) 259.795 + 259.795i 0.381490 + 0.381490i
\(682\) 152.588 40.8859i 0.223736 0.0599499i
\(683\) −309.658 1155.66i −0.453379 1.69203i −0.692809 0.721121i \(-0.743627\pi\)
0.239430 0.970914i \(-0.423039\pi\)
\(684\) −11.9183 + 11.9183i −0.0174244 + 0.0174244i
\(685\) 129.904 225.000i 0.189640 0.328466i
\(686\) 734.210 423.896i 1.07028 0.617925i
\(687\) −1253.77 335.947i −1.82500 0.489006i
\(688\) 996.265i 1.44806i
\(689\) 0 0
\(690\) −41.3364 −0.0599078
\(691\) −218.661 + 816.053i −0.316441 + 1.18097i 0.606200 + 0.795313i \(0.292693\pi\)
−0.922640 + 0.385661i \(0.873973\pi\)
\(692\) −67.0359 116.110i −0.0968727 0.167788i
\(693\) 107.520 + 62.0764i 0.155151 + 0.0895764i
\(694\) 666.939 + 666.939i 0.961007 + 0.961007i
\(695\) −116.370 + 31.1813i −0.167439 + 0.0448652i
\(696\) −144.280 538.459i −0.207298 0.773647i
\(697\) 211.591 211.591i 0.303574 0.303574i
\(698\) −530.077 + 918.121i −0.759423 + 1.31536i
\(699\) −1146.88 + 662.152i −1.64074 + 0.947284i
\(700\) −220.489 59.0797i −0.314984 0.0843996i
\(701\) 765.186i 1.09156i −0.837927 0.545782i \(-0.816233\pi\)
0.837927 0.545782i \(-0.183767\pi\)
\(702\) 0 0
\(703\) −2.67978 −0.00381192
\(704\) −7.22966 + 26.9815i −0.0102694 + 0.0383259i
\(705\) 135.505 + 234.702i 0.192206 + 0.332911i
\(706\) −920.969 531.721i −1.30449 0.753147i
\(707\) 351.015 + 351.015i 0.496485 + 0.496485i
\(708\) −554.620 + 148.610i −0.783361 + 0.209901i
\(709\) 125.630 + 468.858i 0.177193 + 0.661295i 0.996168 + 0.0874645i \(0.0278764\pi\)
−0.818974 + 0.573830i \(0.805457\pi\)
\(710\) 177.321 177.321i 0.249748 0.249748i
\(711\) 398.622 690.434i 0.560650 0.971075i
\(712\) 422.563 243.967i 0.593488 0.342650i
\(713\) −124.125 33.2592i −0.174089 0.0466469i
\(714\) 1924.92i 2.69597i
\(715\) 0 0
\(716\) −222.866 −0.311266
\(717\) −479.068 + 1787.91i −0.668157 + 2.49359i
\(718\) −278.214 481.881i −0.387484 0.671143i
\(719\) 732.510 + 422.915i 1.01879 + 0.588199i 0.913753 0.406269i \(-0.133170\pi\)
0.105037 + 0.994468i \(0.466504\pi\)
\(720\) −356.515 356.515i −0.495159 0.495159i
\(721\) 507.277 135.924i 0.703574 0.188522i
\(722\) 219.657 + 819.771i 0.304234 + 1.13542i
\(723\) 219.913 219.913i 0.304168 0.304168i
\(724\) 44.2942 76.7199i 0.0611799 0.105967i
\(725\) −374.165 + 216.024i −0.516090 + 0.297965i
\(726\) −1366.59 366.177i −1.88236 0.504376i
\(727\) 1019.65i 1.40255i −0.712892 0.701274i \(-0.752615\pi\)
0.712892 0.701274i \(-0.247385\pi\)
\(728\) 0 0
\(729\) −1051.18 −1.44195
\(730\) −70.0398 + 261.392i −0.0959450 + 0.358072i
\(731\) −623.388 1079.74i −0.852788 1.47707i
\(732\) 609.125 + 351.678i 0.832138 + 0.480435i
\(733\) −565.267 565.267i −0.771170 0.771170i 0.207141 0.978311i \(-0.433584\pi\)
−0.978311 + 0.207141i \(0.933584\pi\)
\(734\) −1543.36 + 413.542i −2.10267 + 0.563409i
\(735\) −11.8191 44.1096i −0.0160804 0.0600130i
\(736\) −36.9019 + 36.9019i −0.0501385 + 0.0501385i
\(737\) 54.9834 95.2341i 0.0746044 0.129219i
\(738\) 399.905 230.885i 0.541877 0.312853i
\(739\) −271.089 72.6381i −0.366832 0.0982924i 0.0706941 0.997498i \(-0.477479\pi\)
−0.437526 + 0.899206i \(0.644145\pi\)
\(740\) 9.61737i 0.0129964i
\(741\) 0 0
\(742\) 1014.50 1.36725
\(743\) −252.379 + 941.890i −0.339675 + 1.26768i 0.559036 + 0.829143i \(0.311171\pi\)
−0.898711 + 0.438541i \(0.855495\pi\)
\(744\) −838.736 1452.73i −1.12733 1.95260i
\(745\) 162.625 + 93.8913i 0.218288 + 0.126029i
\(746\) −184.985 184.985i −0.247969 0.247969i
\(747\) −1564.93 + 419.321i −2.09495 + 0.561340i
\(748\) 11.4897 + 42.8803i 0.0153606 + 0.0573266i
\(749\) 347.437 347.437i 0.463867 0.463867i
\(750\) −441.060 + 763.939i −0.588081 + 1.01859i
\(751\) −732.187 + 422.729i −0.974950 + 0.562888i −0.900742 0.434355i \(-0.856976\pi\)
−0.0742082 + 0.997243i \(0.523643\pi\)
\(752\) 657.133 + 176.078i 0.873847 + 0.234146i
\(753\) 563.297i 0.748071i
\(754\) 0 0
\(755\) 352.722 0.467181
\(756\) −95.2819 + 355.597i −0.126034 + 0.470366i
\(757\) 607.165 + 1051.64i 0.802067 + 1.38922i 0.918253 + 0.395994i \(0.129600\pi\)
−0.116186 + 0.993227i \(0.537067\pi\)
\(758\) 703.172 + 405.976i 0.927667 + 0.535589i
\(759\) −9.20542 9.20542i −0.0121283 0.0121283i
\(760\) 5.91177 1.58405i 0.00777865 0.00208428i
\(761\) −173.566 647.756i −0.228076 0.851191i −0.981149 0.193254i \(-0.938096\pi\)
0.753073 0.657937i \(-0.228571\pi\)
\(762\) −38.8337 + 38.8337i −0.0509629 + 0.0509629i
\(763\) 97.9880 169.720i 0.128425 0.222438i
\(764\) −90.5968 + 52.3061i −0.118582 + 0.0684635i
\(765\) 609.466 + 163.306i 0.796687 + 0.213472i
\(766\) 914.084i 1.19332i
\(767\) 0 0
\(768\) −1293.95 −1.68484
\(769\) 282.232 1053.30i 0.367011 1.36971i −0.497662 0.867371i \(-0.665808\pi\)
0.864673 0.502334i \(-0.167525\pi\)
\(770\) 14.1237 + 24.4629i 0.0183424 + 0.0317700i
\(771\) −1624.54 937.931i −2.10706 1.21651i
\(772\) −234.207 234.207i −0.303377 0.303377i
\(773\) 156.639 41.9712i 0.202637 0.0542965i −0.156073 0.987746i \(-0.549883\pi\)
0.358710 + 0.933449i \(0.383217\pi\)
\(774\) −497.964 1858.43i −0.643364 2.40107i
\(775\) −919.316 + 919.316i −1.18621 + 1.18621i
\(776\) 195.834 339.195i 0.252364 0.437107i
\(777\) −113.740 + 65.6677i −0.146383 + 0.0845144i
\(778\) 890.849 + 238.702i 1.14505 + 0.306815i
\(779\) 8.14093i 0.0104505i
\(780\) 0 0
\(781\) 78.9770 0.101123
\(782\) 33.6098 125.433i 0.0429792 0.160401i
\(783\) 348.397 + 603.442i 0.444952 + 0.770679i
\(784\) −99.2756 57.3168i −0.126627 0.0731082i
\(785\) −134.920 134.920i −0.171873 0.171873i
\(786\) 668.398 179.097i 0.850379 0.227858i
\(787\) 2.27714 + 8.49841i 0.00289345 + 0.0107985i 0.967357 0.253416i \(-0.0815541\pi\)
−0.964464 + 0.264214i \(0.914887\pi\)
\(788\) 172.376 172.376i 0.218752 0.218752i
\(789\) 822.854 1425.22i 1.04291 1.80637i
\(790\) 157.088 90.6948i 0.198846 0.114804i
\(791\) −585.421 156.863i −0.740103 0.198310i
\(792\) 109.333i 0.138047i
\(793\) 0 0
\(794\) 370.980 0.467230
\(795\) 133.778 499.267i 0.168274 0.628008i
\(796\) −32.3037 55.9517i −0.0405826 0.0702911i
\(797\) −618.344 357.001i −0.775840 0.447931i 0.0591141 0.998251i \(-0.481172\pi\)
−0.834954 + 0.550320i \(0.814506\pi\)
\(798\) −37.0305 37.0305i −0.0464042 0.0464042i
\(799\) −822.368 + 220.353i −1.02925 + 0.275786i
\(800\) 136.654 + 510.001i 0.170818 + 0.637502i
\(801\) −967.696 + 967.696i −1.20811 + 1.20811i
\(802\) 626.540 1085.20i 0.781221 1.35312i
\(803\) −73.8083 + 42.6132i −0.0919157 + 0.0530676i
\(804\) 706.740 + 189.370i 0.879030 + 0.235535i
\(805\) 22.9782i 0.0285444i
\(806\) 0 0
\(807\) −1377.28 −1.70666
\(808\) 113.144 422.259i 0.140030 0.522598i
\(809\) −190.814 330.499i −0.235864 0.408528i 0.723659 0.690157i \(-0.242459\pi\)
−0.959523 + 0.281629i \(0.909125\pi\)
\(810\) 116.676 + 67.3627i 0.144044 + 0.0831639i
\(811\) 139.562 + 139.562i 0.172086 + 0.172086i 0.787895 0.615809i \(-0.211171\pi\)
−0.615809 + 0.787895i \(0.711171\pi\)
\(812\) −187.548 + 50.2533i −0.230970 + 0.0618883i
\(813\) 292.592 + 1091.97i 0.359892 + 1.34314i
\(814\) −7.70163 + 7.70163i −0.00946146 + 0.00946146i
\(815\) 116.261 201.371i 0.142652 0.247081i
\(816\) 2132.09 1230.96i 2.61286 1.50853i
\(817\) 32.7637 + 8.77901i 0.0401025 + 0.0107454i
\(818\) 655.544i 0.801399i
\(819\) 0 0
\(820\) 29.2167 0.0356301
\(821\) 196.368 732.854i 0.239181 0.892635i −0.737039 0.675851i \(-0.763776\pi\)
0.976219 0.216785i \(-0.0695569\pi\)
\(822\) 978.851 + 1695.42i 1.19082 + 2.06256i
\(823\) 1372.60 + 792.473i 1.66781 + 0.962908i 0.968818 + 0.247773i \(0.0796989\pi\)
0.698987 + 0.715134i \(0.253634\pi\)
\(824\) −327.025 327.025i −0.396875 0.396875i
\(825\) −127.223 + 34.0893i −0.154210 + 0.0413204i
\(826\) −297.062 1108.65i −0.359640 1.34219i
\(827\) 380.972 380.972i 0.460668 0.460668i −0.438207 0.898874i \(-0.644386\pi\)
0.898874 + 0.438207i \(0.144386\pi\)
\(828\) 27.8635 48.2611i 0.0336516 0.0582863i
\(829\) 926.803 535.090i 1.11798 0.645464i 0.177093 0.984194i \(-0.443331\pi\)
0.940884 + 0.338730i \(0.109997\pi\)
\(830\) −356.053 95.4042i −0.428980 0.114945i
\(831\) 2026.91i 2.43912i
\(832\) 0 0
\(833\) 143.458 0.172219
\(834\) 234.958 876.876i 0.281724 1.05141i
\(835\) 24.9045 + 43.1359i 0.0298258 + 0.0516597i
\(836\) −1.04594 0.603872i −0.00125112 0.000722335i
\(837\) 1482.64 + 1482.64i 1.77138 + 1.77138i
\(838\) 1111.71 297.882i 1.32662 0.355467i
\(839\) 217.481 + 811.649i 0.259214 + 0.967400i 0.965697 + 0.259670i \(0.0836139\pi\)
−0.706483 + 0.707730i \(0.749719\pi\)
\(840\) 212.100 212.100i 0.252500 0.252500i
\(841\) 236.750 410.062i 0.281510 0.487589i
\(842\) −1082.83 + 625.172i −1.28602 + 0.742485i
\(843\) 2444.23 + 654.930i 2.89945 + 0.776904i
\(844\) 109.038i 0.129192i
\(845\) 0 0
\(846\) −1313.82 −1.55298
\(847\) 203.552 759.666i 0.240321 0.896890i
\(848\) −648.757 1123.68i −0.765043 1.32509i
\(849\) −1521.96 878.705i −1.79265 1.03499i
\(850\) −929.004 929.004i −1.09295 1.09295i
\(851\) 8.55817 2.29315i 0.0100566 0.00269466i
\(852\) 136.004 + 507.573i 0.159629 + 0.595743i
\(853\) 500.522 500.522i 0.586778 0.586778i −0.349979 0.936757i \(-0.613811\pi\)
0.936757 + 0.349979i \(0.113811\pi\)
\(854\) −702.984 + 1217.60i −0.823167 + 1.42577i
\(855\) −14.8661 + 8.58295i −0.0173873 + 0.0100385i
\(856\) −417.955 111.991i −0.488265 0.130830i
\(857\) 175.305i 0.204556i −0.994756 0.102278i \(-0.967387\pi\)
0.994756 0.102278i \(-0.0326132\pi\)
\(858\) 0 0
\(859\) 1523.72 1.77384 0.886918 0.461928i \(-0.152842\pi\)
0.886918 + 0.461928i \(0.152842\pi\)
\(860\) 31.5067 117.584i 0.0366357 0.136726i
\(861\) 199.492 + 345.531i 0.231698 + 0.401314i
\(862\) −242.180 139.822i −0.280951 0.162207i
\(863\) −525.826 525.826i −0.609300 0.609300i 0.333463 0.942763i \(-0.391783\pi\)
−0.942763 + 0.333463i \(0.891783\pi\)
\(864\) 822.514 220.392i 0.951984 0.255083i
\(865\) −35.3404 131.892i −0.0408560 0.152477i
\(866\) −231.034 + 231.034i −0.266783 + 0.266783i
\(867\) −814.592 + 1410.91i −0.939552 + 1.62735i
\(868\) −505.994 + 292.136i −0.582943 + 0.336562i
\(869\) 55.1800 + 14.7854i 0.0634983 + 0.0170143i
\(870\) 355.731i 0.408887i
\(871\) 0 0
\(872\) −172.583 −0.197916
\(873\) −284.320 + 1061.10i −0.325682 + 1.21546i
\(874\) 1.76645 + 3.05957i 0.00202110 + 0.00350066i
\(875\) −424.661 245.178i −0.485327 0.280204i
\(876\) −400.972 400.972i −0.457730 0.457730i
\(877\) −618.447 + 165.712i −0.705185 + 0.188954i −0.593552 0.804796i \(-0.702275\pi\)
−0.111633 + 0.993749i \(0.535608\pi\)
\(878\) −85.4795 319.014i −0.0973571 0.363342i
\(879\) 1911.87 1911.87i 2.17505 2.17505i
\(880\) 18.0638 31.2874i 0.0205270 0.0355539i
\(881\) 964.522 556.867i 1.09480 0.632085i 0.159953 0.987125i \(-0.448866\pi\)
0.934851 + 0.355039i \(0.115533\pi\)
\(882\) 213.837 + 57.2974i 0.242445 + 0.0649630i
\(883\) 206.038i 0.233338i 0.993171 + 0.116669i \(0.0372217\pi\)
−0.993171 + 0.116669i \(0.962778\pi\)
\(884\) 0 0
\(885\) −584.776 −0.660764
\(886\) 237.953 888.052i 0.268570 1.00232i
\(887\) −299.698 519.092i −0.337878 0.585222i 0.646155 0.763206i \(-0.276376\pi\)
−0.984033 + 0.177984i \(0.943042\pi\)
\(888\) 100.163 + 57.8291i 0.112796 + 0.0651228i
\(889\) −21.5870 21.5870i −0.0242824 0.0242824i
\(890\) −300.759 + 80.5881i −0.337931 + 0.0905484i
\(891\) 10.9818 + 40.9845i 0.0123252 + 0.0459983i
\(892\) −166.295 + 166.295i −0.186430 + 0.186430i
\(893\) 11.5812 20.0592i 0.0129689 0.0224627i
\(894\) −1225.41 + 707.492i −1.37071 + 0.791378i
\(895\) −219.243 58.7460i −0.244964 0.0656380i
\(896\) 987.489i 1.10211i
\(897\) 0 0
\(898\) 710.758 0.791489
\(899\) −286.221 + 1068.19i −0.318377 + 1.18820i
\(900\) −281.903 488.271i −0.313226 0.542523i
\(901\) 1406.23 + 811.886i 1.56074 + 0.901094i
\(902\) 23.3969 + 23.3969i 0.0259389 + 0.0259389i
\(903\) 1605.74 430.257i 1.77823 0.476475i
\(904\) 138.139 + 515.541i 0.152808 + 0.570289i
\(905\) 63.7970 63.7970i 0.0704939 0.0704939i
\(906\) −1328.92 + 2301.75i −1.46680 + 2.54057i
\(907\) −399.745 + 230.793i −0.440733 + 0.254457i −0.703908 0.710291i \(-0.748563\pi\)
0.263176 + 0.964748i \(0.415230\pi\)
\(908\) −108.854 29.1673i −0.119883 0.0321225i
\(909\) 1226.11i 1.34885i
\(910\) 0 0
\(911\) 1377.94 1.51256 0.756281 0.654247i \(-0.227014\pi\)
0.756281 + 0.654247i \(0.227014\pi\)
\(912\) −17.3353 + 64.6964i −0.0190080 + 0.0709390i
\(913\) −58.0453 100.537i −0.0635765 0.110118i
\(914\) 621.725 + 358.953i 0.680224 + 0.392728i
\(915\) 506.523 + 506.523i 0.553577 + 0.553577i
\(916\) 384.568 103.045i 0.419834 0.112494i
\(917\) 99.5570 + 371.552i 0.108568 + 0.405182i
\(918\) −1498.27 + 1498.27i −1.63210 + 1.63210i
\(919\) 58.7147 101.697i 0.0638898 0.110660i −0.832311 0.554309i \(-0.812983\pi\)
0.896201 + 0.443648i \(0.146316\pi\)
\(920\) −17.5244 + 10.1177i −0.0190482 + 0.0109975i
\(921\) −2337.14 626.234i −2.53761 0.679950i
\(922\) 1901.79i 2.06268i
\(923\) 0 0
\(924\) −59.1912 −0.0640598
\(925\) 23.2005 86.5853i 0.0250816 0.0936058i
\(926\) −684.727 1185.98i −0.739446 1.28076i
\(927\) 1123.36 + 648.573i 1.21182 + 0.699647i
\(928\) 317.569 + 317.569i 0.342208 + 0.342208i
\(929\) 551.276 147.714i 0.593408 0.159003i 0.0503975 0.998729i \(-0.483951\pi\)
0.543010 + 0.839726i \(0.317285\pi\)
\(930\) 277.055 + 1033.98i 0.297908 + 1.11181i
\(931\) −2.75976 + 2.75976i −0.00296430 + 0.00296430i
\(932\) 203.101 351.781i 0.217919 0.377448i
\(933\) −436.584 + 252.062i −0.467935 + 0.270163i
\(934\) 636.256 + 170.484i 0.681216 + 0.182531i
\(935\) 45.2118i 0.0483549i
\(936\) 0 0
\(937\) −26.9894 −0.0288040 −0.0144020 0.999896i \(-0.504584\pi\)
−0.0144020 + 0.999896i \(0.504584\pi\)
\(938\) −378.540 + 1412.73i −0.403561 + 1.50611i
\(939\) 225.873 + 391.223i 0.240546 + 0.416638i
\(940\) −71.9898 41.5633i −0.0765849 0.0442163i
\(941\) 1244.04 + 1244.04i 1.32204 + 1.32204i 0.912119 + 0.409926i \(0.134445\pi\)
0.409926 + 0.912119i \(0.365555\pi\)
\(942\) 1388.77 372.121i 1.47428 0.395033i
\(943\) −6.96639 25.9989i −0.00738748 0.0275705i
\(944\) −1038.00 + 1038.00i −1.09958 + 1.09958i
\(945\) −187.466 + 324.701i −0.198377 + 0.343598i
\(946\) 119.393 68.9315i 0.126208 0.0728663i
\(947\) 71.4365 + 19.1413i 0.0754345 + 0.0202126i 0.296339 0.955083i \(-0.404234\pi\)
−0.220904 + 0.975295i \(0.570901\pi\)
\(948\) 380.095i 0.400944i
\(949\) 0 0
\(950\) 35.7432 0.0376245
\(951\) 524.952 1959.15i 0.551999 2.06009i
\(952\) 471.154 + 816.062i 0.494909 + 0.857208i
\(953\) −334.954 193.386i −0.351474 0.202923i 0.313861 0.949469i \(-0.398378\pi\)
−0.665334 + 0.746546i \(0.731711\pi\)
\(954\) 1771.84 + 1771.84i 1.85727 + 1.85727i
\(955\) −102.912 + 27.5751i −0.107761 + 0.0288744i
\(956\) −146.944 548.402i −0.153707 0.573643i
\(957\) −79.2196 + 79.2196i −0.0827791 + 0.0827791i
\(958\) −315.067 + 545.712i −0.328880 + 0.569637i
\(959\) −942.457 + 544.128i −0.982749 + 0.567391i
\(960\) −182.834 48.9903i −0.190452 0.0510316i
\(961\) 2366.76i 2.46281i
\(962\) 0 0
\(963\) 1213.61 1.26024
\(964\) −24.6898 + 92.1435i −0.0256118 + 0.0955845i
\(965\) −168.664 292.135i −0.174782 0.302731i
\(966\) 149.949 + 86.5730i 0.155227 + 0.0896201i
\(967\) 503.064 + 503.064i 0.520232 + 0.520232i 0.917641 0.397409i \(-0.130091\pi\)
−0.397409 + 0.917641i \(0.630091\pi\)
\(968\) −668.986 + 179.254i −0.691102 + 0.185180i
\(969\) −21.6943 80.9642i −0.0223883 0.0835544i
\(970\) −176.733 + 176.733i −0.182199 + 0.182199i
\(971\) −452.612 + 783.946i −0.466129 + 0.807360i −0.999252 0.0386784i \(-0.987685\pi\)
0.533122 + 0.846038i \(0.321019\pi\)
\(972\) 192.035 110.872i 0.197567 0.114066i
\(973\) 487.441 + 130.609i 0.500967 + 0.134234i
\(974\) 1276.66i 1.31074i
\(975\) 0 0
\(976\) 1798.20 1.84241
\(977\) −213.703 + 797.549i −0.218733 + 0.816324i 0.766085 + 0.642739i \(0.222202\pi\)
−0.984819 + 0.173585i \(0.944465\pi\)
\(978\) 876.055 + 1517.37i 0.895762 + 1.55151i
\(979\) −84.9241 49.0310i −0.0867458 0.0500827i
\(980\) 9.90440 + 9.90440i 0.0101065 + 0.0101065i
\(981\) 467.557 125.281i 0.476612 0.127708i
\(982\) 14.3416 + 53.5236i 0.0146045 + 0.0545047i
\(983\) 99.0983 99.0983i 0.100812 0.100812i −0.654902 0.755714i \(-0.727290\pi\)
0.755714 + 0.654902i \(0.227290\pi\)
\(984\) 175.680 304.286i 0.178536 0.309234i
\(985\) 215.011 124.137i 0.218286 0.126027i
\(986\) −1079.45 289.238i −1.09478 0.293344i
\(987\) 1135.18i 1.15013i
\(988\) 0 0
\(989\) −112.147 −0.113394
\(990\) −18.0577 + 67.3921i −0.0182401 + 0.0680728i
\(991\) 58.8966 + 102.012i 0.0594315 + 0.102938i 0.894210 0.447647i \(-0.147738\pi\)
−0.834779 + 0.550585i \(0.814405\pi\)
\(992\) 1170.39 + 675.725i 1.17983 + 0.681175i
\(993\) −546.127 546.127i −0.549977 0.549977i
\(994\) −1014.61 + 271.864i −1.02073 + 0.273505i
\(995\) −17.0301 63.5572i −0.0171157 0.0638766i
\(996\) 546.180 546.180i 0.548374 0.548374i
\(997\) 531.702 920.934i 0.533302 0.923705i −0.465942 0.884815i \(-0.654284\pi\)
0.999243 0.0388901i \(-0.0123822\pi\)
\(998\) −304.298 + 175.687i −0.304908 + 0.176039i
\(999\) −139.642 37.4170i −0.139782 0.0374544i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 169.3.f.g.89.10 48
13.2 odd 12 169.3.d.e.70.10 yes 24
13.3 even 3 169.3.d.e.99.10 yes 24
13.4 even 6 inner 169.3.f.g.150.10 48
13.5 odd 4 inner 169.3.f.g.80.3 48
13.6 odd 12 inner 169.3.f.g.19.10 48
13.7 odd 12 inner 169.3.f.g.19.3 48
13.8 odd 4 inner 169.3.f.g.80.10 48
13.9 even 3 inner 169.3.f.g.150.3 48
13.10 even 6 169.3.d.e.99.3 yes 24
13.11 odd 12 169.3.d.e.70.3 24
13.12 even 2 inner 169.3.f.g.89.3 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
169.3.d.e.70.3 24 13.11 odd 12
169.3.d.e.70.10 yes 24 13.2 odd 12
169.3.d.e.99.3 yes 24 13.10 even 6
169.3.d.e.99.10 yes 24 13.3 even 3
169.3.f.g.19.3 48 13.7 odd 12 inner
169.3.f.g.19.10 48 13.6 odd 12 inner
169.3.f.g.80.3 48 13.5 odd 4 inner
169.3.f.g.80.10 48 13.8 odd 4 inner
169.3.f.g.89.3 48 13.12 even 2 inner
169.3.f.g.89.10 48 1.1 even 1 trivial
169.3.f.g.150.3 48 13.9 even 3 inner
169.3.f.g.150.10 48 13.4 even 6 inner