Properties

Label 169.6.a.a.1.2
Level $169$
Weight $6$
Character 169.1
Self dual yes
Analytic conductor $27.105$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [169,6,Mod(1,169)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(169, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("169.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 169 = 13^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 169.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(27.1048655484\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{17}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 13)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-1.56155\) of defining polynomial
Character \(\chi\) \(=\) 169.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+4.56155 q^{2} -1.63068 q^{3} -11.1922 q^{4} +103.462 q^{5} -7.43845 q^{6} -126.309 q^{7} -197.024 q^{8} -240.341 q^{9} +471.948 q^{10} +14.8296 q^{11} +18.2510 q^{12} -576.164 q^{14} -168.714 q^{15} -540.582 q^{16} -1051.12 q^{17} -1096.33 q^{18} +213.723 q^{19} -1157.97 q^{20} +205.969 q^{21} +67.6458 q^{22} -4231.16 q^{23} +321.283 q^{24} +7579.41 q^{25} +788.176 q^{27} +1413.68 q^{28} -504.955 q^{29} -769.597 q^{30} -4783.58 q^{31} +3838.86 q^{32} -24.1823 q^{33} -4794.75 q^{34} -13068.2 q^{35} +2689.95 q^{36} +4635.74 q^{37} +974.911 q^{38} -20384.5 q^{40} -7944.15 q^{41} +939.541 q^{42} -8516.41 q^{43} -165.976 q^{44} -24866.2 q^{45} -19300.7 q^{46} -24921.2 q^{47} +881.518 q^{48} -853.113 q^{49} +34573.9 q^{50} +1714.05 q^{51} -7808.46 q^{53} +3595.31 q^{54} +1534.30 q^{55} +24885.8 q^{56} -348.515 q^{57} -2303.38 q^{58} +37337.5 q^{59} +1888.29 q^{60} -18172.2 q^{61} -21820.5 q^{62} +30357.1 q^{63} +34809.8 q^{64} -110.309 q^{66} +34559.9 q^{67} +11764.4 q^{68} +6899.68 q^{69} -59611.1 q^{70} -41255.7 q^{71} +47352.8 q^{72} +1056.42 q^{73} +21146.2 q^{74} -12359.6 q^{75} -2392.04 q^{76} -1873.10 q^{77} -47719.3 q^{79} -55929.8 q^{80} +57117.6 q^{81} -36237.7 q^{82} +74799.0 q^{83} -2305.26 q^{84} -108751. q^{85} -38848.0 q^{86} +823.421 q^{87} -2921.78 q^{88} -9799.26 q^{89} -113428. q^{90} +47356.1 q^{92} +7800.50 q^{93} -113679. q^{94} +22112.3 q^{95} -6259.97 q^{96} +138432. q^{97} -3891.52 q^{98} -3564.15 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 5 q^{2} - 28 q^{3} - 43 q^{4} + 42 q^{5} - 19 q^{6} + 36 q^{7} - 225 q^{8} + 212 q^{9} + 445 q^{10} + 376 q^{11} + 857 q^{12} - 505 q^{14} + 1452 q^{15} + 465 q^{16} - 2630 q^{17} - 898 q^{18} + 312 q^{19}+ \cdots + 159808 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 4.56155 0.806376 0.403188 0.915117i \(-0.367902\pi\)
0.403188 + 0.915117i \(0.367902\pi\)
\(3\) −1.63068 −0.104608 −0.0523042 0.998631i \(-0.516657\pi\)
−0.0523042 + 0.998631i \(0.516657\pi\)
\(4\) −11.1922 −0.349757
\(5\) 103.462 1.85079 0.925393 0.379008i \(-0.123735\pi\)
0.925393 + 0.379008i \(0.123735\pi\)
\(6\) −7.43845 −0.0843537
\(7\) −126.309 −0.974290 −0.487145 0.873321i \(-0.661962\pi\)
−0.487145 + 0.873321i \(0.661962\pi\)
\(8\) −197.024 −1.08841
\(9\) −240.341 −0.989057
\(10\) 471.948 1.49243
\(11\) 14.8296 0.0369527 0.0184764 0.999829i \(-0.494118\pi\)
0.0184764 + 0.999829i \(0.494118\pi\)
\(12\) 18.2510 0.0365875
\(13\) 0 0
\(14\) −576.164 −0.785644
\(15\) −168.714 −0.193608
\(16\) −540.582 −0.527912
\(17\) −1051.12 −0.882126 −0.441063 0.897476i \(-0.645398\pi\)
−0.441063 + 0.897476i \(0.645398\pi\)
\(18\) −1096.33 −0.797552
\(19\) 213.723 0.135821 0.0679107 0.997691i \(-0.478367\pi\)
0.0679107 + 0.997691i \(0.478367\pi\)
\(20\) −1157.97 −0.647326
\(21\) 205.969 0.101919
\(22\) 67.6458 0.0297978
\(23\) −4231.16 −1.66778 −0.833892 0.551928i \(-0.813892\pi\)
−0.833892 + 0.551928i \(0.813892\pi\)
\(24\) 321.283 0.113857
\(25\) 7579.41 2.42541
\(26\) 0 0
\(27\) 788.176 0.208072
\(28\) 1413.68 0.340765
\(29\) −504.955 −0.111495 −0.0557477 0.998445i \(-0.517754\pi\)
−0.0557477 + 0.998445i \(0.517754\pi\)
\(30\) −769.597 −0.156121
\(31\) −4783.58 −0.894022 −0.447011 0.894528i \(-0.647512\pi\)
−0.447011 + 0.894528i \(0.647512\pi\)
\(32\) 3838.86 0.662716
\(33\) −24.1823 −0.00386557
\(34\) −4794.75 −0.711325
\(35\) −13068.2 −1.80320
\(36\) 2689.95 0.345930
\(37\) 4635.74 0.556692 0.278346 0.960481i \(-0.410214\pi\)
0.278346 + 0.960481i \(0.410214\pi\)
\(38\) 974.911 0.109523
\(39\) 0 0
\(40\) −20384.5 −2.01442
\(41\) −7944.15 −0.738054 −0.369027 0.929419i \(-0.620309\pi\)
−0.369027 + 0.929419i \(0.620309\pi\)
\(42\) 939.541 0.0821850
\(43\) −8516.41 −0.702401 −0.351201 0.936300i \(-0.614226\pi\)
−0.351201 + 0.936300i \(0.614226\pi\)
\(44\) −165.976 −0.0129245
\(45\) −24866.2 −1.83053
\(46\) −19300.7 −1.34486
\(47\) −24921.2 −1.64560 −0.822801 0.568330i \(-0.807590\pi\)
−0.822801 + 0.568330i \(0.807590\pi\)
\(48\) 881.518 0.0552241
\(49\) −853.113 −0.0507594
\(50\) 34573.9 1.95579
\(51\) 1714.05 0.0922777
\(52\) 0 0
\(53\) −7808.46 −0.381835 −0.190917 0.981606i \(-0.561146\pi\)
−0.190917 + 0.981606i \(0.561146\pi\)
\(54\) 3595.31 0.167784
\(55\) 1534.30 0.0683916
\(56\) 24885.8 1.06043
\(57\) −348.515 −0.0142081
\(58\) −2303.38 −0.0899073
\(59\) 37337.5 1.39642 0.698209 0.715894i \(-0.253980\pi\)
0.698209 + 0.715894i \(0.253980\pi\)
\(60\) 1888.29 0.0677157
\(61\) −18172.2 −0.625292 −0.312646 0.949870i \(-0.601215\pi\)
−0.312646 + 0.949870i \(0.601215\pi\)
\(62\) −21820.5 −0.720918
\(63\) 30357.1 0.963628
\(64\) 34809.8 1.06231
\(65\) 0 0
\(66\) −110.309 −0.00311710
\(67\) 34559.9 0.940559 0.470279 0.882518i \(-0.344153\pi\)
0.470279 + 0.882518i \(0.344153\pi\)
\(68\) 11764.4 0.308530
\(69\) 6899.68 0.174464
\(70\) −59611.1 −1.45406
\(71\) −41255.7 −0.971265 −0.485632 0.874163i \(-0.661411\pi\)
−0.485632 + 0.874163i \(0.661411\pi\)
\(72\) 47352.8 1.07650
\(73\) 1056.42 0.0232022 0.0116011 0.999933i \(-0.496307\pi\)
0.0116011 + 0.999933i \(0.496307\pi\)
\(74\) 21146.2 0.448903
\(75\) −12359.6 −0.253718
\(76\) −2392.04 −0.0475045
\(77\) −1873.10 −0.0360027
\(78\) 0 0
\(79\) −47719.3 −0.860253 −0.430126 0.902769i \(-0.641531\pi\)
−0.430126 + 0.902769i \(0.641531\pi\)
\(80\) −55929.8 −0.977053
\(81\) 57117.6 0.967291
\(82\) −36237.7 −0.595149
\(83\) 74799.0 1.19179 0.595896 0.803061i \(-0.296797\pi\)
0.595896 + 0.803061i \(0.296797\pi\)
\(84\) −2305.26 −0.0356469
\(85\) −108751. −1.63263
\(86\) −38848.0 −0.566400
\(87\) 823.421 0.0116634
\(88\) −2921.78 −0.0402198
\(89\) −9799.26 −0.131135 −0.0655675 0.997848i \(-0.520886\pi\)
−0.0655675 + 0.997848i \(0.520886\pi\)
\(90\) −113428. −1.47610
\(91\) 0 0
\(92\) 47356.1 0.583320
\(93\) 7800.50 0.0935222
\(94\) −113679. −1.32697
\(95\) 22112.3 0.251376
\(96\) −6259.97 −0.0693257
\(97\) 138432. 1.49385 0.746927 0.664906i \(-0.231528\pi\)
0.746927 + 0.664906i \(0.231528\pi\)
\(98\) −3891.52 −0.0409312
\(99\) −3564.15 −0.0365484
\(100\) −84830.5 −0.848305
\(101\) 139151. 1.35733 0.678663 0.734450i \(-0.262560\pi\)
0.678663 + 0.734450i \(0.262560\pi\)
\(102\) 7818.71 0.0744106
\(103\) 98512.2 0.914950 0.457475 0.889223i \(-0.348754\pi\)
0.457475 + 0.889223i \(0.348754\pi\)
\(104\) 0 0
\(105\) 21310.0 0.188630
\(106\) −35618.7 −0.307902
\(107\) −26848.4 −0.226704 −0.113352 0.993555i \(-0.536159\pi\)
−0.113352 + 0.993555i \(0.536159\pi\)
\(108\) −8821.45 −0.0727747
\(109\) 63220.9 0.509676 0.254838 0.966984i \(-0.417978\pi\)
0.254838 + 0.966984i \(0.417978\pi\)
\(110\) 6998.78 0.0551494
\(111\) −7559.43 −0.0582346
\(112\) 68280.2 0.514340
\(113\) 114434. 0.843058 0.421529 0.906815i \(-0.361494\pi\)
0.421529 + 0.906815i \(0.361494\pi\)
\(114\) −1589.77 −0.0114570
\(115\) −437765. −3.08671
\(116\) 5651.57 0.0389964
\(117\) 0 0
\(118\) 170317. 1.12604
\(119\) 132766. 0.859446
\(120\) 33240.6 0.210725
\(121\) −160831. −0.998634
\(122\) −82893.4 −0.504221
\(123\) 12954.4 0.0772066
\(124\) 53538.9 0.312691
\(125\) 460863. 2.63813
\(126\) 138476. 0.777047
\(127\) −248871. −1.36919 −0.684596 0.728922i \(-0.740022\pi\)
−0.684596 + 0.728922i \(0.740022\pi\)
\(128\) 35943.2 0.193906
\(129\) 13887.6 0.0734770
\(130\) 0 0
\(131\) 102963. 0.524205 0.262102 0.965040i \(-0.415584\pi\)
0.262102 + 0.965040i \(0.415584\pi\)
\(132\) 270.654 0.00135201
\(133\) −26995.1 −0.132329
\(134\) 157647. 0.758444
\(135\) 81546.3 0.385097
\(136\) 207096. 0.960117
\(137\) 36037.4 0.164041 0.0820204 0.996631i \(-0.473863\pi\)
0.0820204 + 0.996631i \(0.473863\pi\)
\(138\) 31473.3 0.140684
\(139\) 152655. 0.670151 0.335076 0.942191i \(-0.391238\pi\)
0.335076 + 0.942191i \(0.391238\pi\)
\(140\) 146262. 0.630683
\(141\) 40638.6 0.172144
\(142\) −188190. −0.783205
\(143\) 0 0
\(144\) 129924. 0.522136
\(145\) −52243.7 −0.206354
\(146\) 4818.92 0.0187097
\(147\) 1391.16 0.00530986
\(148\) −51884.3 −0.194707
\(149\) −72547.1 −0.267704 −0.133852 0.991001i \(-0.542735\pi\)
−0.133852 + 0.991001i \(0.542735\pi\)
\(150\) −56379.0 −0.204592
\(151\) −489021. −1.74536 −0.872681 0.488291i \(-0.837621\pi\)
−0.872681 + 0.488291i \(0.837621\pi\)
\(152\) −42108.6 −0.147830
\(153\) 252627. 0.872473
\(154\) −8544.26 −0.0290317
\(155\) −494919. −1.65464
\(156\) 0 0
\(157\) 89467.9 0.289680 0.144840 0.989455i \(-0.453733\pi\)
0.144840 + 0.989455i \(0.453733\pi\)
\(158\) −217674. −0.693687
\(159\) 12733.1 0.0399431
\(160\) 397177. 1.22655
\(161\) 534432. 1.62490
\(162\) 260545. 0.780000
\(163\) 225668. 0.665275 0.332637 0.943055i \(-0.392061\pi\)
0.332637 + 0.943055i \(0.392061\pi\)
\(164\) 88912.8 0.258140
\(165\) −2501.95 −0.00715434
\(166\) 341200. 0.961033
\(167\) −209528. −0.581367 −0.290683 0.956819i \(-0.593883\pi\)
−0.290683 + 0.956819i \(0.593883\pi\)
\(168\) −40580.9 −0.110930
\(169\) 0 0
\(170\) −496074. −1.31651
\(171\) −51366.5 −0.134335
\(172\) 95317.6 0.245670
\(173\) −465184. −1.18171 −0.590853 0.806779i \(-0.701209\pi\)
−0.590853 + 0.806779i \(0.701209\pi\)
\(174\) 3756.08 0.00940506
\(175\) −957345. −2.36305
\(176\) −8016.60 −0.0195078
\(177\) −60885.7 −0.146077
\(178\) −44699.9 −0.105744
\(179\) −472573. −1.10239 −0.551197 0.834375i \(-0.685829\pi\)
−0.551197 + 0.834375i \(0.685829\pi\)
\(180\) 278308. 0.640243
\(181\) −74099.4 −0.168120 −0.0840598 0.996461i \(-0.526789\pi\)
−0.0840598 + 0.996461i \(0.526789\pi\)
\(182\) 0 0
\(183\) 29633.1 0.0654108
\(184\) 833638. 1.81524
\(185\) 479624. 1.03032
\(186\) 35582.4 0.0754141
\(187\) −15587.7 −0.0325970
\(188\) 278924. 0.575561
\(189\) −99553.5 −0.202722
\(190\) 100866. 0.202704
\(191\) −224128. −0.444543 −0.222271 0.974985i \(-0.571347\pi\)
−0.222271 + 0.974985i \(0.571347\pi\)
\(192\) −56763.8 −0.111127
\(193\) 662265. 1.27979 0.639895 0.768463i \(-0.278978\pi\)
0.639895 + 0.768463i \(0.278978\pi\)
\(194\) 631467. 1.20461
\(195\) 0 0
\(196\) 9548.24 0.0177535
\(197\) −666464. −1.22352 −0.611760 0.791043i \(-0.709538\pi\)
−0.611760 + 0.791043i \(0.709538\pi\)
\(198\) −16258.1 −0.0294717
\(199\) 645720. 1.15588 0.577938 0.816081i \(-0.303858\pi\)
0.577938 + 0.816081i \(0.303858\pi\)
\(200\) −1.49332e6 −2.63985
\(201\) −56356.3 −0.0983903
\(202\) 634746. 1.09451
\(203\) 63780.1 0.108629
\(204\) −19184.0 −0.0322748
\(205\) −821919. −1.36598
\(206\) 449369. 0.737794
\(207\) 1.01692e6 1.64953
\(208\) 0 0
\(209\) 3169.43 0.00501897
\(210\) 97206.9 0.152107
\(211\) −868021. −1.34222 −0.671110 0.741357i \(-0.734182\pi\)
−0.671110 + 0.741357i \(0.734182\pi\)
\(212\) 87394.1 0.133550
\(213\) 67274.9 0.101602
\(214\) −122470. −0.182808
\(215\) −881125. −1.29999
\(216\) −155289. −0.226468
\(217\) 604207. 0.871037
\(218\) 288385. 0.410991
\(219\) −1722.69 −0.00242715
\(220\) −17172.2 −0.0239205
\(221\) 0 0
\(222\) −34482.7 −0.0469590
\(223\) 58342.9 0.0785644 0.0392822 0.999228i \(-0.487493\pi\)
0.0392822 + 0.999228i \(0.487493\pi\)
\(224\) −484882. −0.645678
\(225\) −1.82164e6 −2.39887
\(226\) 521995. 0.679822
\(227\) −111768. −0.143964 −0.0719820 0.997406i \(-0.522932\pi\)
−0.0719820 + 0.997406i \(0.522932\pi\)
\(228\) 3900.67 0.00496937
\(229\) −1.14984e6 −1.44893 −0.724467 0.689309i \(-0.757914\pi\)
−0.724467 + 0.689309i \(0.757914\pi\)
\(230\) −1.99689e6 −2.48905
\(231\) 3054.44 0.00376618
\(232\) 99488.0 0.121353
\(233\) 630470. 0.760807 0.380404 0.924821i \(-0.375785\pi\)
0.380404 + 0.924821i \(0.375785\pi\)
\(234\) 0 0
\(235\) −2.57840e6 −3.04566
\(236\) −417891. −0.488408
\(237\) 77815.0 0.0899897
\(238\) 605618. 0.693037
\(239\) 165628. 0.187559 0.0937797 0.995593i \(-0.470105\pi\)
0.0937797 + 0.995593i \(0.470105\pi\)
\(240\) 91203.8 0.102208
\(241\) −690968. −0.766329 −0.383165 0.923680i \(-0.625166\pi\)
−0.383165 + 0.923680i \(0.625166\pi\)
\(242\) −733639. −0.805275
\(243\) −284667. −0.309259
\(244\) 203387. 0.218700
\(245\) −88264.9 −0.0939448
\(246\) 59092.1 0.0622575
\(247\) 0 0
\(248\) 942478. 0.973065
\(249\) −121974. −0.124671
\(250\) 2.10225e6 2.12733
\(251\) −386887. −0.387615 −0.193807 0.981040i \(-0.562084\pi\)
−0.193807 + 0.981040i \(0.562084\pi\)
\(252\) −339764. −0.337036
\(253\) −62746.2 −0.0616292
\(254\) −1.13524e6 −1.10408
\(255\) 177339. 0.170786
\(256\) −949957. −0.905950
\(257\) 258260. 0.243907 0.121953 0.992536i \(-0.461084\pi\)
0.121953 + 0.992536i \(0.461084\pi\)
\(258\) 63348.8 0.0592501
\(259\) −585535. −0.542379
\(260\) 0 0
\(261\) 121361. 0.110275
\(262\) 469669. 0.422706
\(263\) −1.19053e6 −1.06133 −0.530665 0.847582i \(-0.678058\pi\)
−0.530665 + 0.847582i \(0.678058\pi\)
\(264\) 4764.49 0.00420733
\(265\) −807879. −0.706695
\(266\) −123140. −0.106707
\(267\) 15979.5 0.0137178
\(268\) −386803. −0.328967
\(269\) 850968. 0.717022 0.358511 0.933525i \(-0.383285\pi\)
0.358511 + 0.933525i \(0.383285\pi\)
\(270\) 371978. 0.310533
\(271\) 40926.1 0.0338514 0.0169257 0.999857i \(-0.494612\pi\)
0.0169257 + 0.999857i \(0.494612\pi\)
\(272\) 568218. 0.465685
\(273\) 0 0
\(274\) 164387. 0.132279
\(275\) 112399. 0.0896256
\(276\) −77222.8 −0.0610201
\(277\) 1.00054e6 0.783490 0.391745 0.920074i \(-0.371872\pi\)
0.391745 + 0.920074i \(0.371872\pi\)
\(278\) 696342. 0.540394
\(279\) 1.14969e6 0.884239
\(280\) 2.57474e6 1.96263
\(281\) 1.73596e6 1.31151 0.655757 0.754972i \(-0.272350\pi\)
0.655757 + 0.754972i \(0.272350\pi\)
\(282\) 185375. 0.138813
\(283\) −1.27363e6 −0.945319 −0.472660 0.881245i \(-0.656706\pi\)
−0.472660 + 0.881245i \(0.656706\pi\)
\(284\) 461743. 0.339707
\(285\) −36058.1 −0.0262961
\(286\) 0 0
\(287\) 1.00342e6 0.719078
\(288\) −922636. −0.655464
\(289\) −315001. −0.221854
\(290\) −238312. −0.166399
\(291\) −225739. −0.156270
\(292\) −11823.7 −0.00811515
\(293\) 2043.70 0.00139075 0.000695374 1.00000i \(-0.499779\pi\)
0.000695374 1.00000i \(0.499779\pi\)
\(294\) 6345.84 0.00428174
\(295\) 3.86302e6 2.58447
\(296\) −913351. −0.605910
\(297\) 11688.3 0.00768883
\(298\) −330927. −0.215870
\(299\) 0 0
\(300\) 138332. 0.0887398
\(301\) 1.07570e6 0.684342
\(302\) −2.23070e6 −1.40742
\(303\) −226912. −0.141988
\(304\) −115535. −0.0717018
\(305\) −1.88013e6 −1.15728
\(306\) 1.15237e6 0.703541
\(307\) 401308. 0.243014 0.121507 0.992591i \(-0.461227\pi\)
0.121507 + 0.992591i \(0.461227\pi\)
\(308\) 20964.2 0.0125922
\(309\) −160642. −0.0957114
\(310\) −2.25760e6 −1.33427
\(311\) −1.92628e6 −1.12933 −0.564663 0.825322i \(-0.690994\pi\)
−0.564663 + 0.825322i \(0.690994\pi\)
\(312\) 0 0
\(313\) 1.64519e6 0.949196 0.474598 0.880203i \(-0.342593\pi\)
0.474598 + 0.880203i \(0.342593\pi\)
\(314\) 408113. 0.233591
\(315\) 3.14081e6 1.78347
\(316\) 534085. 0.300880
\(317\) 1.99476e6 1.11492 0.557459 0.830205i \(-0.311777\pi\)
0.557459 + 0.830205i \(0.311777\pi\)
\(318\) 58082.8 0.0322092
\(319\) −7488.26 −0.00412006
\(320\) 3.60150e6 1.96611
\(321\) 43781.2 0.0237151
\(322\) 2.43784e6 1.31028
\(323\) −224649. −0.119812
\(324\) −639273. −0.338317
\(325\) 0 0
\(326\) 1.02940e6 0.536462
\(327\) −103093. −0.0533164
\(328\) 1.56519e6 0.803306
\(329\) 3.14777e6 1.60329
\(330\) −11412.8 −0.00576909
\(331\) 675924. 0.339100 0.169550 0.985522i \(-0.445769\pi\)
0.169550 + 0.985522i \(0.445769\pi\)
\(332\) −837168. −0.416838
\(333\) −1.11416e6 −0.550600
\(334\) −955772. −0.468800
\(335\) 3.57564e6 1.74077
\(336\) −111343. −0.0538042
\(337\) −2.13552e6 −1.02430 −0.512152 0.858895i \(-0.671152\pi\)
−0.512152 + 0.858895i \(0.671152\pi\)
\(338\) 0 0
\(339\) −186605. −0.0881909
\(340\) 1.21717e6 0.571023
\(341\) −70938.3 −0.0330366
\(342\) −234311. −0.108325
\(343\) 2.23063e6 1.02374
\(344\) 1.67793e6 0.764502
\(345\) 713855. 0.322896
\(346\) −2.12196e6 −0.952899
\(347\) −2.57257e6 −1.14695 −0.573473 0.819225i \(-0.694404\pi\)
−0.573473 + 0.819225i \(0.694404\pi\)
\(348\) −9215.92 −0.00407935
\(349\) −2.02363e6 −0.889339 −0.444670 0.895695i \(-0.646679\pi\)
−0.444670 + 0.895695i \(0.646679\pi\)
\(350\) −4.36698e6 −1.90551
\(351\) 0 0
\(352\) 56928.7 0.0244892
\(353\) −2.04810e6 −0.874810 −0.437405 0.899265i \(-0.644102\pi\)
−0.437405 + 0.899265i \(0.644102\pi\)
\(354\) −277733. −0.117793
\(355\) −4.26840e6 −1.79760
\(356\) 109676. 0.0458654
\(357\) −216499. −0.0899053
\(358\) −2.15567e6 −0.888944
\(359\) 1.59901e6 0.654808 0.327404 0.944885i \(-0.393826\pi\)
0.327404 + 0.944885i \(0.393826\pi\)
\(360\) 4.89922e6 1.99238
\(361\) −2.43042e6 −0.981553
\(362\) −338008. −0.135568
\(363\) 262265. 0.104466
\(364\) 0 0
\(365\) 109299. 0.0429424
\(366\) 135173. 0.0527457
\(367\) −3.86389e6 −1.49747 −0.748737 0.662867i \(-0.769339\pi\)
−0.748737 + 0.662867i \(0.769339\pi\)
\(368\) 2.28729e6 0.880444
\(369\) 1.90930e6 0.729977
\(370\) 2.18783e6 0.830824
\(371\) 986276. 0.372018
\(372\) −87305.0 −0.0327101
\(373\) −1.56702e6 −0.583179 −0.291589 0.956544i \(-0.594184\pi\)
−0.291589 + 0.956544i \(0.594184\pi\)
\(374\) −71104.0 −0.0262854
\(375\) −751521. −0.275971
\(376\) 4.91007e6 1.79109
\(377\) 0 0
\(378\) −454118. −0.163471
\(379\) −3.19239e6 −1.14161 −0.570805 0.821086i \(-0.693369\pi\)
−0.570805 + 0.821086i \(0.693369\pi\)
\(380\) −247486. −0.0879208
\(381\) 405829. 0.143229
\(382\) −1.02237e6 −0.358469
\(383\) −400432. −0.139486 −0.0697432 0.997565i \(-0.522218\pi\)
−0.0697432 + 0.997565i \(0.522218\pi\)
\(384\) −58611.9 −0.0202842
\(385\) −193795. −0.0666333
\(386\) 3.02096e6 1.03199
\(387\) 2.04684e6 0.694715
\(388\) −1.54937e6 −0.522487
\(389\) 413440. 0.138528 0.0692642 0.997598i \(-0.477935\pi\)
0.0692642 + 0.997598i \(0.477935\pi\)
\(390\) 0 0
\(391\) 4.44746e6 1.47120
\(392\) 168083. 0.0552471
\(393\) −167899. −0.0548362
\(394\) −3.04011e6 −0.986618
\(395\) −4.93714e6 −1.59214
\(396\) 39890.8 0.0127831
\(397\) 102926. 0.0327753 0.0163877 0.999866i \(-0.494783\pi\)
0.0163877 + 0.999866i \(0.494783\pi\)
\(398\) 2.94548e6 0.932071
\(399\) 44020.5 0.0138428
\(400\) −4.09729e6 −1.28040
\(401\) −2.23365e6 −0.693671 −0.346836 0.937926i \(-0.612744\pi\)
−0.346836 + 0.937926i \(0.612744\pi\)
\(402\) −257072. −0.0793396
\(403\) 0 0
\(404\) −1.55741e6 −0.474734
\(405\) 5.90950e6 1.79025
\(406\) 290937. 0.0875958
\(407\) 68746.0 0.0205713
\(408\) −337708. −0.100436
\(409\) 4.46150e6 1.31878 0.659390 0.751801i \(-0.270815\pi\)
0.659390 + 0.751801i \(0.270815\pi\)
\(410\) −3.74923e6 −1.10149
\(411\) −58765.6 −0.0171600
\(412\) −1.10257e6 −0.320010
\(413\) −4.71606e6 −1.36052
\(414\) 4.63874e6 1.33014
\(415\) 7.73887e6 2.20575
\(416\) 0 0
\(417\) −248931. −0.0701034
\(418\) 14457.5 0.00404718
\(419\) 4.22792e6 1.17650 0.588250 0.808679i \(-0.299817\pi\)
0.588250 + 0.808679i \(0.299817\pi\)
\(420\) −238507. −0.0659748
\(421\) −4.11791e6 −1.13233 −0.566163 0.824293i \(-0.691573\pi\)
−0.566163 + 0.824293i \(0.691573\pi\)
\(422\) −3.95952e6 −1.08233
\(423\) 5.98959e6 1.62759
\(424\) 1.53845e6 0.415594
\(425\) −7.96688e6 −2.13952
\(426\) 306878. 0.0819298
\(427\) 2.29531e6 0.609216
\(428\) 300493. 0.0792912
\(429\) 0 0
\(430\) −4.01930e6 −1.04828
\(431\) −1.15324e6 −0.299038 −0.149519 0.988759i \(-0.547773\pi\)
−0.149519 + 0.988759i \(0.547773\pi\)
\(432\) −426074. −0.109844
\(433\) −33734.3 −0.00864673 −0.00432337 0.999991i \(-0.501376\pi\)
−0.00432337 + 0.999991i \(0.501376\pi\)
\(434\) 2.75612e6 0.702383
\(435\) 85192.9 0.0215864
\(436\) −707583. −0.178263
\(437\) −904298. −0.226521
\(438\) −7858.13 −0.00195719
\(439\) 7.48363e6 1.85332 0.926661 0.375898i \(-0.122666\pi\)
0.926661 + 0.375898i \(0.122666\pi\)
\(440\) −302293. −0.0744383
\(441\) 205038. 0.0502039
\(442\) 0 0
\(443\) −3.28028e6 −0.794148 −0.397074 0.917786i \(-0.629974\pi\)
−0.397074 + 0.917786i \(0.629974\pi\)
\(444\) 84606.9 0.0203680
\(445\) −1.01385e6 −0.242703
\(446\) 266134. 0.0633525
\(447\) 118301. 0.0280040
\(448\) −4.39678e6 −1.03500
\(449\) −7.95356e6 −1.86185 −0.930927 0.365205i \(-0.880999\pi\)
−0.930927 + 0.365205i \(0.880999\pi\)
\(450\) −8.30951e6 −1.93439
\(451\) −117808. −0.0272731
\(452\) −1.28077e6 −0.294866
\(453\) 797439. 0.182579
\(454\) −509837. −0.116089
\(455\) 0 0
\(456\) 68665.8 0.0154642
\(457\) 3.35187e6 0.750753 0.375377 0.926872i \(-0.377513\pi\)
0.375377 + 0.926872i \(0.377513\pi\)
\(458\) −5.24506e6 −1.16839
\(459\) −828468. −0.183546
\(460\) 4.89956e6 1.07960
\(461\) −4.68627e6 −1.02701 −0.513505 0.858086i \(-0.671653\pi\)
−0.513505 + 0.858086i \(0.671653\pi\)
\(462\) 13933.0 0.00303696
\(463\) −6.64697e6 −1.44102 −0.720512 0.693442i \(-0.756093\pi\)
−0.720512 + 0.693442i \(0.756093\pi\)
\(464\) 272969. 0.0588599
\(465\) 807056. 0.173090
\(466\) 2.87592e6 0.613497
\(467\) −3.14141e6 −0.666549 −0.333275 0.942830i \(-0.608154\pi\)
−0.333275 + 0.942830i \(0.608154\pi\)
\(468\) 0 0
\(469\) −4.36522e6 −0.916377
\(470\) −1.17615e7 −2.45594
\(471\) −145894. −0.0303029
\(472\) −7.35638e6 −1.51988
\(473\) −126295. −0.0259556
\(474\) 354957. 0.0725655
\(475\) 1.61990e6 0.329423
\(476\) −1.48595e6 −0.300598
\(477\) 1.87669e6 0.377656
\(478\) 755521. 0.151243
\(479\) 6.68286e6 1.33083 0.665416 0.746473i \(-0.268254\pi\)
0.665416 + 0.746473i \(0.268254\pi\)
\(480\) −647670. −0.128307
\(481\) 0 0
\(482\) −3.15189e6 −0.617950
\(483\) −871489. −0.169979
\(484\) 1.80006e6 0.349280
\(485\) 1.43225e7 2.76481
\(486\) −1.29853e6 −0.249379
\(487\) 4.06478e6 0.776631 0.388316 0.921526i \(-0.373057\pi\)
0.388316 + 0.921526i \(0.373057\pi\)
\(488\) 3.58035e6 0.680575
\(489\) −367993. −0.0695933
\(490\) −402625. −0.0757549
\(491\) −2.10434e6 −0.393923 −0.196962 0.980411i \(-0.563107\pi\)
−0.196962 + 0.980411i \(0.563107\pi\)
\(492\) −144989. −0.0270036
\(493\) 530768. 0.0983530
\(494\) 0 0
\(495\) −368755. −0.0676432
\(496\) 2.58592e6 0.471966
\(497\) 5.21095e6 0.946293
\(498\) −556389. −0.100532
\(499\) −5.96715e6 −1.07279 −0.536396 0.843966i \(-0.680215\pi\)
−0.536396 + 0.843966i \(0.680215\pi\)
\(500\) −5.15808e6 −0.922706
\(501\) 341673. 0.0608158
\(502\) −1.76481e6 −0.312563
\(503\) −1.00144e7 −1.76483 −0.882417 0.470467i \(-0.844085\pi\)
−0.882417 + 0.470467i \(0.844085\pi\)
\(504\) −5.98108e6 −1.04882
\(505\) 1.43969e7 2.51212
\(506\) −286220. −0.0496963
\(507\) 0 0
\(508\) 2.78542e6 0.478885
\(509\) 8.47321e6 1.44962 0.724809 0.688950i \(-0.241928\pi\)
0.724809 + 0.688950i \(0.241928\pi\)
\(510\) 808940. 0.137718
\(511\) −133435. −0.0226057
\(512\) −5.48346e6 −0.924442
\(513\) 168452. 0.0282606
\(514\) 1.17807e6 0.196681
\(515\) 1.01923e7 1.69338
\(516\) −155433. −0.0256991
\(517\) −369571. −0.0608095
\(518\) −2.67095e6 −0.437362
\(519\) 758567. 0.123616
\(520\) 0 0
\(521\) −197614. −0.0318951 −0.0159476 0.999873i \(-0.505076\pi\)
−0.0159476 + 0.999873i \(0.505076\pi\)
\(522\) 553596. 0.0889235
\(523\) 8.27263e6 1.32248 0.661240 0.750174i \(-0.270030\pi\)
0.661240 + 0.750174i \(0.270030\pi\)
\(524\) −1.15238e6 −0.183345
\(525\) 1.56113e6 0.247195
\(526\) −5.43066e6 −0.855831
\(527\) 5.02812e6 0.788640
\(528\) 13072.5 0.00204068
\(529\) 1.14664e7 1.78150
\(530\) −3.68518e6 −0.569862
\(531\) −8.97374e6 −1.38114
\(532\) 302136. 0.0462832
\(533\) 0 0
\(534\) 72891.3 0.0110617
\(535\) −2.77779e6 −0.419580
\(536\) −6.80913e6 −1.02372
\(537\) 770618. 0.115320
\(538\) 3.88174e6 0.578190
\(539\) −12651.3 −0.00187570
\(540\) −912686. −0.134690
\(541\) −363216. −0.0533546 −0.0266773 0.999644i \(-0.508493\pi\)
−0.0266773 + 0.999644i \(0.508493\pi\)
\(542\) 186686. 0.0272970
\(543\) 120833. 0.0175867
\(544\) −4.03511e6 −0.584599
\(545\) 6.54097e6 0.943302
\(546\) 0 0
\(547\) −620452. −0.0886624 −0.0443312 0.999017i \(-0.514116\pi\)
−0.0443312 + 0.999017i \(0.514116\pi\)
\(548\) −403339. −0.0573745
\(549\) 4.36752e6 0.618449
\(550\) 512715. 0.0722719
\(551\) −107921. −0.0151435
\(552\) −1.35940e6 −0.189889
\(553\) 6.02736e6 0.838136
\(554\) 4.56400e6 0.631788
\(555\) −782114. −0.107780
\(556\) −1.70855e6 −0.234390
\(557\) −3.89737e6 −0.532272 −0.266136 0.963935i \(-0.585747\pi\)
−0.266136 + 0.963935i \(0.585747\pi\)
\(558\) 5.24437e6 0.713029
\(559\) 0 0
\(560\) 7.06442e6 0.951933
\(561\) 25418.5 0.00340992
\(562\) 7.91865e6 1.05757
\(563\) 510725. 0.0679073 0.0339536 0.999423i \(-0.489190\pi\)
0.0339536 + 0.999423i \(0.489190\pi\)
\(564\) −454837. −0.0602085
\(565\) 1.18395e7 1.56032
\(566\) −5.80975e6 −0.762283
\(567\) −7.21445e6 −0.942422
\(568\) 8.12834e6 1.05714
\(569\) 9.75625e6 1.26329 0.631644 0.775259i \(-0.282381\pi\)
0.631644 + 0.775259i \(0.282381\pi\)
\(570\) −164481. −0.0212045
\(571\) −1.41952e7 −1.82201 −0.911006 0.412393i \(-0.864693\pi\)
−0.911006 + 0.412393i \(0.864693\pi\)
\(572\) 0 0
\(573\) 365482. 0.0465029
\(574\) 4.57713e6 0.579847
\(575\) −3.20697e7 −4.04506
\(576\) −8.36622e6 −1.05069
\(577\) 1.16423e6 0.145579 0.0727896 0.997347i \(-0.476810\pi\)
0.0727896 + 0.997347i \(0.476810\pi\)
\(578\) −1.43689e6 −0.178898
\(579\) −1.07994e6 −0.133877
\(580\) 584723. 0.0721740
\(581\) −9.44777e6 −1.16115
\(582\) −1.02972e6 −0.126012
\(583\) −115796. −0.0141098
\(584\) −208140. −0.0252536
\(585\) 0 0
\(586\) 9322.45 0.00112147
\(587\) −6.58038e6 −0.788234 −0.394117 0.919060i \(-0.628950\pi\)
−0.394117 + 0.919060i \(0.628950\pi\)
\(588\) −15570.2 −0.00185716
\(589\) −1.02236e6 −0.121427
\(590\) 1.76214e7 2.08406
\(591\) 1.08679e6 0.127991
\(592\) −2.50600e6 −0.293885
\(593\) 1.91423e6 0.223541 0.111771 0.993734i \(-0.464348\pi\)
0.111771 + 0.993734i \(0.464348\pi\)
\(594\) 53316.8 0.00620009
\(595\) 1.37362e7 1.59065
\(596\) 811964. 0.0936313
\(597\) −1.05296e6 −0.120914
\(598\) 0 0
\(599\) −2.33678e6 −0.266104 −0.133052 0.991109i \(-0.542478\pi\)
−0.133052 + 0.991109i \(0.542478\pi\)
\(600\) 2.43514e6 0.276150
\(601\) 1.04273e7 1.17757 0.588786 0.808289i \(-0.299606\pi\)
0.588786 + 0.808289i \(0.299606\pi\)
\(602\) 4.90684e6 0.551837
\(603\) −8.30617e6 −0.930266
\(604\) 5.47324e6 0.610453
\(605\) −1.66399e7 −1.84826
\(606\) −1.03507e6 −0.114495
\(607\) −120274. −0.0132495 −0.00662474 0.999978i \(-0.502109\pi\)
−0.00662474 + 0.999978i \(0.502109\pi\)
\(608\) 820455. 0.0900111
\(609\) −104005. −0.0113635
\(610\) −8.57633e6 −0.933205
\(611\) 0 0
\(612\) −2.82747e6 −0.305154
\(613\) −1.34576e7 −1.44649 −0.723245 0.690592i \(-0.757350\pi\)
−0.723245 + 0.690592i \(0.757350\pi\)
\(614\) 1.83059e6 0.195961
\(615\) 1.34029e6 0.142893
\(616\) 369046. 0.0391858
\(617\) 6.84879e6 0.724270 0.362135 0.932126i \(-0.382048\pi\)
0.362135 + 0.932126i \(0.382048\pi\)
\(618\) −732778. −0.0771794
\(619\) 5.40663e6 0.567153 0.283577 0.958950i \(-0.408479\pi\)
0.283577 + 0.958950i \(0.408479\pi\)
\(620\) 5.53925e6 0.578724
\(621\) −3.33490e6 −0.347019
\(622\) −8.78684e6 −0.910661
\(623\) 1.23773e6 0.127763
\(624\) 0 0
\(625\) 2.39962e7 2.45721
\(626\) 7.50463e6 0.765409
\(627\) −5168.33 −0.000525027 0
\(628\) −1.00135e6 −0.101318
\(629\) −4.87273e6 −0.491072
\(630\) 1.43270e7 1.43815
\(631\) 9.62552e6 0.962390 0.481195 0.876614i \(-0.340203\pi\)
0.481195 + 0.876614i \(0.340203\pi\)
\(632\) 9.40183e6 0.936310
\(633\) 1.41547e6 0.140408
\(634\) 9.09920e6 0.899043
\(635\) −2.57487e7 −2.53408
\(636\) −142512. −0.0139704
\(637\) 0 0
\(638\) −34158.1 −0.00332232
\(639\) 9.91542e6 0.960636
\(640\) 3.71876e6 0.358879
\(641\) −1.58752e7 −1.52607 −0.763037 0.646355i \(-0.776293\pi\)
−0.763037 + 0.646355i \(0.776293\pi\)
\(642\) 199710. 0.0191233
\(643\) −1.57235e7 −1.49976 −0.749880 0.661574i \(-0.769889\pi\)
−0.749880 + 0.661574i \(0.769889\pi\)
\(644\) −5.98149e6 −0.568322
\(645\) 1.43684e6 0.135990
\(646\) −1.02475e6 −0.0966132
\(647\) −1.58173e7 −1.48549 −0.742747 0.669572i \(-0.766477\pi\)
−0.742747 + 0.669572i \(0.766477\pi\)
\(648\) −1.12535e7 −1.05281
\(649\) 553699. 0.0516015
\(650\) 0 0
\(651\) −985270. −0.0911178
\(652\) −2.52573e6 −0.232685
\(653\) 5.31229e6 0.487527 0.243763 0.969835i \(-0.421618\pi\)
0.243763 + 0.969835i \(0.421618\pi\)
\(654\) −470265. −0.0429931
\(655\) 1.06527e7 0.970192
\(656\) 4.29447e6 0.389628
\(657\) −253901. −0.0229483
\(658\) 1.43587e7 1.29286
\(659\) 9.90554e6 0.888514 0.444257 0.895899i \(-0.353468\pi\)
0.444257 + 0.895899i \(0.353468\pi\)
\(660\) 28002.5 0.00250228
\(661\) 1.29988e7 1.15717 0.578587 0.815621i \(-0.303604\pi\)
0.578587 + 0.815621i \(0.303604\pi\)
\(662\) 3.08326e6 0.273442
\(663\) 0 0
\(664\) −1.47372e7 −1.29716
\(665\) −2.79297e6 −0.244913
\(666\) −5.08229e6 −0.443991
\(667\) 2.13654e6 0.185950
\(668\) 2.34508e6 0.203337
\(669\) −95138.8 −0.00821850
\(670\) 1.63105e7 1.40372
\(671\) −269486. −0.0231062
\(672\) 790688. 0.0675433
\(673\) −1.32503e7 −1.12769 −0.563844 0.825881i \(-0.690678\pi\)
−0.563844 + 0.825881i \(0.690678\pi\)
\(674\) −9.74129e6 −0.825975
\(675\) 5.97391e6 0.504660
\(676\) 0 0
\(677\) 2.23310e7 1.87257 0.936284 0.351245i \(-0.114242\pi\)
0.936284 + 0.351245i \(0.114242\pi\)
\(678\) −851208. −0.0711151
\(679\) −1.74852e7 −1.45545
\(680\) 2.14266e7 1.77697
\(681\) 182259. 0.0150598
\(682\) −323589. −0.0266399
\(683\) 1.40049e7 1.14876 0.574380 0.818588i \(-0.305243\pi\)
0.574380 + 0.818588i \(0.305243\pi\)
\(684\) 574906. 0.0469847
\(685\) 3.72851e6 0.303605
\(686\) 1.01751e7 0.825523
\(687\) 1.87502e6 0.151571
\(688\) 4.60382e6 0.370806
\(689\) 0 0
\(690\) 3.25629e6 0.260376
\(691\) 5.24817e6 0.418132 0.209066 0.977902i \(-0.432958\pi\)
0.209066 + 0.977902i \(0.432958\pi\)
\(692\) 5.20645e6 0.413310
\(693\) 450183. 0.0356087
\(694\) −1.17349e7 −0.924870
\(695\) 1.57940e7 1.24031
\(696\) −162233. −0.0126945
\(697\) 8.35027e6 0.651056
\(698\) −9.23090e6 −0.717142
\(699\) −1.02810e6 −0.0795868
\(700\) 1.07148e7 0.826495
\(701\) −2.13994e7 −1.64477 −0.822386 0.568930i \(-0.807358\pi\)
−0.822386 + 0.568930i \(0.807358\pi\)
\(702\) 0 0
\(703\) 990767. 0.0756107
\(704\) 516214. 0.0392553
\(705\) 4.20456e6 0.318601
\(706\) −9.34250e6 −0.705426
\(707\) −1.75760e7 −1.32243
\(708\) 681447. 0.0510915
\(709\) −4.35333e6 −0.325242 −0.162621 0.986689i \(-0.551995\pi\)
−0.162621 + 0.986689i \(0.551995\pi\)
\(710\) −1.94705e7 −1.44954
\(711\) 1.14689e7 0.850839
\(712\) 1.93069e6 0.142729
\(713\) 2.02401e7 1.49104
\(714\) −987571. −0.0724975
\(715\) 0 0
\(716\) 5.28915e6 0.385570
\(717\) −270087. −0.0196203
\(718\) 7.29395e6 0.528021
\(719\) 2.21389e7 1.59710 0.798552 0.601926i \(-0.205600\pi\)
0.798552 + 0.601926i \(0.205600\pi\)
\(720\) 1.34422e7 0.966361
\(721\) −1.24430e7 −0.891426
\(722\) −1.10865e7 −0.791501
\(723\) 1.12675e6 0.0801645
\(724\) 829338. 0.0588010
\(725\) −3.82726e6 −0.270422
\(726\) 1.19633e6 0.0842385
\(727\) −4.83218e6 −0.339084 −0.169542 0.985523i \(-0.554229\pi\)
−0.169542 + 0.985523i \(0.554229\pi\)
\(728\) 0 0
\(729\) −1.34154e7 −0.934940
\(730\) 498575. 0.0346277
\(731\) 8.95178e6 0.619606
\(732\) −331661. −0.0228779
\(733\) 2.47827e7 1.70368 0.851840 0.523803i \(-0.175487\pi\)
0.851840 + 0.523803i \(0.175487\pi\)
\(734\) −1.76253e7 −1.20753
\(735\) 143932. 0.00982741
\(736\) −1.62428e7 −1.10527
\(737\) 512509. 0.0347562
\(738\) 8.70939e6 0.588636
\(739\) −7.09289e6 −0.477762 −0.238881 0.971049i \(-0.576781\pi\)
−0.238881 + 0.971049i \(0.576781\pi\)
\(740\) −5.36806e6 −0.360361
\(741\) 0 0
\(742\) 4.49895e6 0.299986
\(743\) −1.95117e7 −1.29665 −0.648327 0.761362i \(-0.724531\pi\)
−0.648327 + 0.761362i \(0.724531\pi\)
\(744\) −1.53688e6 −0.101791
\(745\) −7.50588e6 −0.495462
\(746\) −7.14803e6 −0.470262
\(747\) −1.79773e7 −1.17875
\(748\) 174461. 0.0114010
\(749\) 3.39118e6 0.220875
\(750\) −3.42810e6 −0.222536
\(751\) 1.66103e7 1.07468 0.537339 0.843366i \(-0.319430\pi\)
0.537339 + 0.843366i \(0.319430\pi\)
\(752\) 1.34720e7 0.868733
\(753\) 630891. 0.0405477
\(754\) 0 0
\(755\) −5.05952e7 −3.23029
\(756\) 1.11423e6 0.0709037
\(757\) 1.22902e6 0.0779508 0.0389754 0.999240i \(-0.487591\pi\)
0.0389754 + 0.999240i \(0.487591\pi\)
\(758\) −1.45622e7 −0.920567
\(759\) 102319. 0.00644693
\(760\) −4.35664e6 −0.273601
\(761\) −1.37482e7 −0.860569 −0.430284 0.902693i \(-0.641587\pi\)
−0.430284 + 0.902693i \(0.641587\pi\)
\(762\) 1.85121e6 0.115496
\(763\) −7.98535e6 −0.496572
\(764\) 2.50850e6 0.155482
\(765\) 2.61374e7 1.61476
\(766\) −1.82659e6 −0.112478
\(767\) 0 0
\(768\) 1.54908e6 0.0947699
\(769\) 1.01549e7 0.619240 0.309620 0.950860i \(-0.399798\pi\)
0.309620 + 0.950860i \(0.399798\pi\)
\(770\) −884007. −0.0537315
\(771\) −421140. −0.0255147
\(772\) −7.41222e6 −0.447616
\(773\) −1.41511e7 −0.851807 −0.425903 0.904769i \(-0.640044\pi\)
−0.425903 + 0.904769i \(0.640044\pi\)
\(774\) 9.33677e6 0.560202
\(775\) −3.62567e7 −2.16837
\(776\) −2.72745e7 −1.62593
\(777\) 954821. 0.0567374
\(778\) 1.88593e6 0.111706
\(779\) −1.69785e6 −0.100243
\(780\) 0 0
\(781\) −611803. −0.0358909
\(782\) 2.02873e7 1.18634
\(783\) −397993. −0.0231991
\(784\) 461178. 0.0267965
\(785\) 9.25654e6 0.536136
\(786\) −765882. −0.0442186
\(787\) 1.03095e6 0.0593338 0.0296669 0.999560i \(-0.490555\pi\)
0.0296669 + 0.999560i \(0.490555\pi\)
\(788\) 7.45923e6 0.427935
\(789\) 1.94137e6 0.111024
\(790\) −2.25210e7 −1.28387
\(791\) −1.44540e7 −0.821383
\(792\) 702222. 0.0397797
\(793\) 0 0
\(794\) 469500. 0.0264292
\(795\) 1.31740e6 0.0739262
\(796\) −7.22705e6 −0.404276
\(797\) −1.43337e7 −0.799303 −0.399651 0.916667i \(-0.630869\pi\)
−0.399651 + 0.916667i \(0.630869\pi\)
\(798\) 200802. 0.0111625
\(799\) 2.61952e7 1.45163
\(800\) 2.90963e7 1.60736
\(801\) 2.35516e6 0.129700
\(802\) −1.01889e7 −0.559360
\(803\) 15666.3 0.000857386 0
\(804\) 630753. 0.0344127
\(805\) 5.52935e7 3.00735
\(806\) 0 0
\(807\) −1.38766e6 −0.0750065
\(808\) −2.74161e7 −1.47733
\(809\) 1.55020e7 0.832751 0.416376 0.909193i \(-0.363300\pi\)
0.416376 + 0.909193i \(0.363300\pi\)
\(810\) 2.69565e7 1.44361
\(811\) −2.45861e7 −1.31261 −0.656307 0.754494i \(-0.727882\pi\)
−0.656307 + 0.754494i \(0.727882\pi\)
\(812\) −713842. −0.0379938
\(813\) −66737.5 −0.00354114
\(814\) 313589. 0.0165882
\(815\) 2.33481e7 1.23128
\(816\) −926583. −0.0487146
\(817\) −1.82016e6 −0.0954011
\(818\) 2.03513e7 1.06343
\(819\) 0 0
\(820\) 9.19911e6 0.477761
\(821\) 3.33396e6 0.172624 0.0863122 0.996268i \(-0.472492\pi\)
0.0863122 + 0.996268i \(0.472492\pi\)
\(822\) −268062. −0.0138375
\(823\) 3.08787e6 0.158913 0.0794564 0.996838i \(-0.474682\pi\)
0.0794564 + 0.996838i \(0.474682\pi\)
\(824\) −1.94092e7 −0.995842
\(825\) −183288. −0.00937559
\(826\) −2.15125e7 −1.09709
\(827\) −6.89555e6 −0.350595 −0.175297 0.984516i \(-0.556089\pi\)
−0.175297 + 0.984516i \(0.556089\pi\)
\(828\) −1.13816e7 −0.576936
\(829\) −2.00007e7 −1.01078 −0.505391 0.862890i \(-0.668652\pi\)
−0.505391 + 0.862890i \(0.668652\pi\)
\(830\) 3.53012e7 1.77867
\(831\) −1.63156e6 −0.0819596
\(832\) 0 0
\(833\) 896725. 0.0447762
\(834\) −1.13551e6 −0.0565297
\(835\) −2.16782e7 −1.07599
\(836\) −35473.0 −0.00175542
\(837\) −3.77030e6 −0.186021
\(838\) 1.92859e7 0.948701
\(839\) −5.23988e6 −0.256990 −0.128495 0.991710i \(-0.541015\pi\)
−0.128495 + 0.991710i \(0.541015\pi\)
\(840\) −4.19858e6 −0.205307
\(841\) −2.02562e7 −0.987569
\(842\) −1.87841e7 −0.913081
\(843\) −2.83079e6 −0.137195
\(844\) 9.71509e6 0.469452
\(845\) 0 0
\(846\) 2.73218e7 1.31245
\(847\) 2.03144e7 0.972959
\(848\) 4.22111e6 0.201575
\(849\) 2.07689e6 0.0988883
\(850\) −3.63413e7 −1.72526
\(851\) −1.96146e7 −0.928442
\(852\) −752957. −0.0355362
\(853\) 1.32853e7 0.625170 0.312585 0.949890i \(-0.398805\pi\)
0.312585 + 0.949890i \(0.398805\pi\)
\(854\) 1.04702e7 0.491257
\(855\) −5.31449e6 −0.248626
\(856\) 5.28976e6 0.246747
\(857\) −8.34473e6 −0.388115 −0.194057 0.980990i \(-0.562165\pi\)
−0.194057 + 0.980990i \(0.562165\pi\)
\(858\) 0 0
\(859\) −4.07521e7 −1.88437 −0.942187 0.335088i \(-0.891234\pi\)
−0.942187 + 0.335088i \(0.891234\pi\)
\(860\) 9.86176e6 0.454683
\(861\) −1.63625e6 −0.0752216
\(862\) −5.26056e6 −0.241137
\(863\) 1.73853e7 0.794614 0.397307 0.917686i \(-0.369945\pi\)
0.397307 + 0.917686i \(0.369945\pi\)
\(864\) 3.02570e6 0.137893
\(865\) −4.81289e7 −2.18708
\(866\) −153881. −0.00697252
\(867\) 513667. 0.0232078
\(868\) −6.76243e6 −0.304652
\(869\) −707656. −0.0317887
\(870\) 388612. 0.0174068
\(871\) 0 0
\(872\) −1.24560e7 −0.554738
\(873\) −3.32710e7 −1.47751
\(874\) −4.12500e6 −0.182661
\(875\) −5.82109e7 −2.57030
\(876\) 19280.7 0.000848912 0
\(877\) −2.58279e6 −0.113394 −0.0566971 0.998391i \(-0.518057\pi\)
−0.0566971 + 0.998391i \(0.518057\pi\)
\(878\) 3.41370e7 1.49447
\(879\) −3332.63 −0.000145484 0
\(880\) −829414. −0.0361048
\(881\) −1.66814e7 −0.724090 −0.362045 0.932161i \(-0.617921\pi\)
−0.362045 + 0.932161i \(0.617921\pi\)
\(882\) 935291. 0.0404833
\(883\) 2.36384e7 1.02027 0.510137 0.860093i \(-0.329595\pi\)
0.510137 + 0.860093i \(0.329595\pi\)
\(884\) 0 0
\(885\) −6.29936e6 −0.270358
\(886\) −1.49632e7 −0.640382
\(887\) −5.25660e6 −0.224334 −0.112167 0.993689i \(-0.535779\pi\)
−0.112167 + 0.993689i \(0.535779\pi\)
\(888\) 1.48939e6 0.0633833
\(889\) 3.14345e7 1.33399
\(890\) −4.62474e6 −0.195710
\(891\) 847029. 0.0357441
\(892\) −652988. −0.0274785
\(893\) −5.32625e6 −0.223508
\(894\) 539638. 0.0225818
\(895\) −4.88935e7 −2.04030
\(896\) −4.53994e6 −0.188921
\(897\) 0 0
\(898\) −3.62806e7 −1.50135
\(899\) 2.41549e6 0.0996795
\(900\) 2.03882e7 0.839022
\(901\) 8.20763e6 0.336826
\(902\) −537389. −0.0219924
\(903\) −1.75412e6 −0.0715879
\(904\) −2.25461e7 −0.917595
\(905\) −7.66648e6 −0.311153
\(906\) 3.63756e6 0.147228
\(907\) 3.22789e7 1.30287 0.651435 0.758705i \(-0.274167\pi\)
0.651435 + 0.758705i \(0.274167\pi\)
\(908\) 1.25094e6 0.0503525
\(909\) −3.34438e7 −1.34247
\(910\) 0 0
\(911\) 4.20975e7 1.68058 0.840292 0.542134i \(-0.182383\pi\)
0.840292 + 0.542134i \(0.182383\pi\)
\(912\) 188401. 0.00750061
\(913\) 1.10924e6 0.0440400
\(914\) 1.52897e7 0.605389
\(915\) 3.06590e6 0.121061
\(916\) 1.28693e7 0.506775
\(917\) −1.30051e7 −0.510728
\(918\) −3.77910e6 −0.148007
\(919\) −2.19460e7 −0.857168 −0.428584 0.903502i \(-0.640987\pi\)
−0.428584 + 0.903502i \(0.640987\pi\)
\(920\) 8.62500e7 3.35961
\(921\) −654407. −0.0254213
\(922\) −2.13767e7 −0.828157
\(923\) 0 0
\(924\) −34186.0 −0.00131725
\(925\) 3.51362e7 1.35021
\(926\) −3.03205e7 −1.16201
\(927\) −2.36765e7 −0.904937
\(928\) −1.93845e6 −0.0738899
\(929\) 1.35921e7 0.516710 0.258355 0.966050i \(-0.416820\pi\)
0.258355 + 0.966050i \(0.416820\pi\)
\(930\) 3.68143e6 0.139575
\(931\) −182330. −0.00689421
\(932\) −7.05637e6 −0.266098
\(933\) 3.14116e6 0.118137
\(934\) −1.43297e7 −0.537489
\(935\) −1.61273e6 −0.0603300
\(936\) 0 0
\(937\) 3.01018e7 1.12007 0.560033 0.828470i \(-0.310788\pi\)
0.560033 + 0.828470i \(0.310788\pi\)
\(938\) −1.99122e7 −0.738944
\(939\) −2.68279e6 −0.0992938
\(940\) 2.88581e7 1.06524
\(941\) 1.06275e7 0.391252 0.195626 0.980679i \(-0.437326\pi\)
0.195626 + 0.980679i \(0.437326\pi\)
\(942\) −665503. −0.0244356
\(943\) 3.36130e7 1.23091
\(944\) −2.01840e7 −0.737187
\(945\) −1.03000e7 −0.375196
\(946\) −576099. −0.0209300
\(947\) 2.41709e7 0.875826 0.437913 0.899017i \(-0.355718\pi\)
0.437913 + 0.899017i \(0.355718\pi\)
\(948\) −870924. −0.0314745
\(949\) 0 0
\(950\) 7.38925e6 0.265639
\(951\) −3.25282e6 −0.116630
\(952\) −2.61580e7 −0.935432
\(953\) 4.27043e7 1.52314 0.761569 0.648084i \(-0.224430\pi\)
0.761569 + 0.648084i \(0.224430\pi\)
\(954\) 8.56063e6 0.304533
\(955\) −2.31888e7 −0.822754
\(956\) −1.85375e6 −0.0656003
\(957\) 12211.0 0.000430993 0
\(958\) 3.04842e7 1.07315
\(959\) −4.55184e6 −0.159823
\(960\) −5.87290e6 −0.205672
\(961\) −5.74655e6 −0.200724
\(962\) 0 0
\(963\) 6.45276e6 0.224223
\(964\) 7.73348e6 0.268029
\(965\) 6.85193e7 2.36862
\(966\) −3.97535e6 −0.137067
\(967\) 4.42692e7 1.52242 0.761211 0.648504i \(-0.224605\pi\)
0.761211 + 0.648504i \(0.224605\pi\)
\(968\) 3.16875e7 1.08693
\(969\) 366332. 0.0125333
\(970\) 6.53329e7 2.22947
\(971\) 3.88962e7 1.32391 0.661956 0.749542i \(-0.269726\pi\)
0.661956 + 0.749542i \(0.269726\pi\)
\(972\) 3.18606e6 0.108166
\(973\) −1.92816e7 −0.652922
\(974\) 1.85417e7 0.626257
\(975\) 0 0
\(976\) 9.82357e6 0.330099
\(977\) 2.71611e7 0.910354 0.455177 0.890401i \(-0.349576\pi\)
0.455177 + 0.890401i \(0.349576\pi\)
\(978\) −1.67862e6 −0.0561184
\(979\) −145319. −0.00484580
\(980\) 987881. 0.0328579
\(981\) −1.51946e7 −0.504099
\(982\) −9.59904e6 −0.317650
\(983\) 1.98048e7 0.653714 0.326857 0.945074i \(-0.394011\pi\)
0.326857 + 0.945074i \(0.394011\pi\)
\(984\) −2.55232e6 −0.0840326
\(985\) −6.89538e7 −2.26448
\(986\) 2.42113e6 0.0793096
\(987\) −5.13301e6 −0.167718
\(988\) 0 0
\(989\) 3.60343e7 1.17145
\(990\) −1.68209e6 −0.0545459
\(991\) −1.44104e7 −0.466115 −0.233057 0.972463i \(-0.574873\pi\)
−0.233057 + 0.972463i \(0.574873\pi\)
\(992\) −1.83635e7 −0.592483
\(993\) −1.10222e6 −0.0354727
\(994\) 2.37700e7 0.763068
\(995\) 6.68075e7 2.13928
\(996\) 1.36516e6 0.0436048
\(997\) 3.16635e7 1.00884 0.504418 0.863459i \(-0.331707\pi\)
0.504418 + 0.863459i \(0.331707\pi\)
\(998\) −2.72195e7 −0.865074
\(999\) 3.65378e6 0.115832
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 169.6.a.a.1.2 2
13.5 odd 4 169.6.b.a.168.1 4
13.8 odd 4 169.6.b.a.168.4 4
13.12 even 2 13.6.a.a.1.1 2
39.38 odd 2 117.6.a.c.1.2 2
52.51 odd 2 208.6.a.h.1.1 2
65.12 odd 4 325.6.b.b.274.1 4
65.38 odd 4 325.6.b.b.274.4 4
65.64 even 2 325.6.a.b.1.2 2
91.90 odd 2 637.6.a.a.1.1 2
104.51 odd 2 832.6.a.i.1.2 2
104.77 even 2 832.6.a.p.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
13.6.a.a.1.1 2 13.12 even 2
117.6.a.c.1.2 2 39.38 odd 2
169.6.a.a.1.2 2 1.1 even 1 trivial
169.6.b.a.168.1 4 13.5 odd 4
169.6.b.a.168.4 4 13.8 odd 4
208.6.a.h.1.1 2 52.51 odd 2
325.6.a.b.1.2 2 65.64 even 2
325.6.b.b.274.1 4 65.12 odd 4
325.6.b.b.274.4 4 65.38 odd 4
637.6.a.a.1.1 2 91.90 odd 2
832.6.a.i.1.2 2 104.51 odd 2
832.6.a.p.1.1 2 104.77 even 2