Properties

Label 832.6.a.i.1.2
Level $832$
Weight $6$
Character 832.1
Self dual yes
Analytic conductor $133.439$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [832,6,Mod(1,832)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(832, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("832.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 832 = 2^{6} \cdot 13 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 832.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(133.439338084\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{17}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 13)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-1.56155\) of defining polynomial
Character \(\chi\) \(=\) 832.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.63068 q^{3} +103.462 q^{5} -126.309 q^{7} -240.341 q^{9} -14.8296 q^{11} +169.000 q^{13} -168.714 q^{15} -1051.12 q^{17} -213.723 q^{19} +205.969 q^{21} +4231.16 q^{23} +7579.41 q^{25} +788.176 q^{27} +504.955 q^{29} -4783.58 q^{31} +24.1823 q^{33} -13068.2 q^{35} +4635.74 q^{37} -275.585 q^{39} +7944.15 q^{41} -8516.41 q^{43} -24866.2 q^{45} -24921.2 q^{47} -853.113 q^{49} +1714.05 q^{51} +7808.46 q^{53} -1534.30 q^{55} +348.515 q^{57} -37337.5 q^{59} +18172.2 q^{61} +30357.1 q^{63} +17485.1 q^{65} -34559.9 q^{67} -6899.68 q^{69} -41255.7 q^{71} -1056.42 q^{73} -12359.6 q^{75} +1873.10 q^{77} +47719.3 q^{79} +57117.6 q^{81} -74799.0 q^{83} -108751. q^{85} -823.421 q^{87} +9799.26 q^{89} -21346.2 q^{91} +7800.50 q^{93} -22112.3 q^{95} -138432. q^{97} +3564.15 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 28 q^{3} + 42 q^{5} + 36 q^{7} + 212 q^{9} - 376 q^{11} + 338 q^{13} + 1452 q^{15} - 2630 q^{17} - 312 q^{19} - 4074 q^{21} + 2624 q^{23} + 8232 q^{25} - 4732 q^{27} + 812 q^{29} - 7720 q^{31} + 9548 q^{33}+ \cdots - 159808 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.63068 −0.104608 −0.0523042 0.998631i \(-0.516657\pi\)
−0.0523042 + 0.998631i \(0.516657\pi\)
\(4\) 0 0
\(5\) 103.462 1.85079 0.925393 0.379008i \(-0.123735\pi\)
0.925393 + 0.379008i \(0.123735\pi\)
\(6\) 0 0
\(7\) −126.309 −0.974290 −0.487145 0.873321i \(-0.661962\pi\)
−0.487145 + 0.873321i \(0.661962\pi\)
\(8\) 0 0
\(9\) −240.341 −0.989057
\(10\) 0 0
\(11\) −14.8296 −0.0369527 −0.0184764 0.999829i \(-0.505882\pi\)
−0.0184764 + 0.999829i \(0.505882\pi\)
\(12\) 0 0
\(13\) 169.000 0.277350
\(14\) 0 0
\(15\) −168.714 −0.193608
\(16\) 0 0
\(17\) −1051.12 −0.882126 −0.441063 0.897476i \(-0.645398\pi\)
−0.441063 + 0.897476i \(0.645398\pi\)
\(18\) 0 0
\(19\) −213.723 −0.135821 −0.0679107 0.997691i \(-0.521633\pi\)
−0.0679107 + 0.997691i \(0.521633\pi\)
\(20\) 0 0
\(21\) 205.969 0.101919
\(22\) 0 0
\(23\) 4231.16 1.66778 0.833892 0.551928i \(-0.186108\pi\)
0.833892 + 0.551928i \(0.186108\pi\)
\(24\) 0 0
\(25\) 7579.41 2.42541
\(26\) 0 0
\(27\) 788.176 0.208072
\(28\) 0 0
\(29\) 504.955 0.111495 0.0557477 0.998445i \(-0.482246\pi\)
0.0557477 + 0.998445i \(0.482246\pi\)
\(30\) 0 0
\(31\) −4783.58 −0.894022 −0.447011 0.894528i \(-0.647512\pi\)
−0.447011 + 0.894528i \(0.647512\pi\)
\(32\) 0 0
\(33\) 24.1823 0.00386557
\(34\) 0 0
\(35\) −13068.2 −1.80320
\(36\) 0 0
\(37\) 4635.74 0.556692 0.278346 0.960481i \(-0.410214\pi\)
0.278346 + 0.960481i \(0.410214\pi\)
\(38\) 0 0
\(39\) −275.585 −0.0290131
\(40\) 0 0
\(41\) 7944.15 0.738054 0.369027 0.929419i \(-0.379691\pi\)
0.369027 + 0.929419i \(0.379691\pi\)
\(42\) 0 0
\(43\) −8516.41 −0.702401 −0.351201 0.936300i \(-0.614226\pi\)
−0.351201 + 0.936300i \(0.614226\pi\)
\(44\) 0 0
\(45\) −24866.2 −1.83053
\(46\) 0 0
\(47\) −24921.2 −1.64560 −0.822801 0.568330i \(-0.807590\pi\)
−0.822801 + 0.568330i \(0.807590\pi\)
\(48\) 0 0
\(49\) −853.113 −0.0507594
\(50\) 0 0
\(51\) 1714.05 0.0922777
\(52\) 0 0
\(53\) 7808.46 0.381835 0.190917 0.981606i \(-0.438854\pi\)
0.190917 + 0.981606i \(0.438854\pi\)
\(54\) 0 0
\(55\) −1534.30 −0.0683916
\(56\) 0 0
\(57\) 348.515 0.0142081
\(58\) 0 0
\(59\) −37337.5 −1.39642 −0.698209 0.715894i \(-0.746020\pi\)
−0.698209 + 0.715894i \(0.746020\pi\)
\(60\) 0 0
\(61\) 18172.2 0.625292 0.312646 0.949870i \(-0.398785\pi\)
0.312646 + 0.949870i \(0.398785\pi\)
\(62\) 0 0
\(63\) 30357.1 0.963628
\(64\) 0 0
\(65\) 17485.1 0.513316
\(66\) 0 0
\(67\) −34559.9 −0.940559 −0.470279 0.882518i \(-0.655847\pi\)
−0.470279 + 0.882518i \(0.655847\pi\)
\(68\) 0 0
\(69\) −6899.68 −0.174464
\(70\) 0 0
\(71\) −41255.7 −0.971265 −0.485632 0.874163i \(-0.661411\pi\)
−0.485632 + 0.874163i \(0.661411\pi\)
\(72\) 0 0
\(73\) −1056.42 −0.0232022 −0.0116011 0.999933i \(-0.503693\pi\)
−0.0116011 + 0.999933i \(0.503693\pi\)
\(74\) 0 0
\(75\) −12359.6 −0.253718
\(76\) 0 0
\(77\) 1873.10 0.0360027
\(78\) 0 0
\(79\) 47719.3 0.860253 0.430126 0.902769i \(-0.358469\pi\)
0.430126 + 0.902769i \(0.358469\pi\)
\(80\) 0 0
\(81\) 57117.6 0.967291
\(82\) 0 0
\(83\) −74799.0 −1.19179 −0.595896 0.803061i \(-0.703203\pi\)
−0.595896 + 0.803061i \(0.703203\pi\)
\(84\) 0 0
\(85\) −108751. −1.63263
\(86\) 0 0
\(87\) −823.421 −0.0116634
\(88\) 0 0
\(89\) 9799.26 0.131135 0.0655675 0.997848i \(-0.479114\pi\)
0.0655675 + 0.997848i \(0.479114\pi\)
\(90\) 0 0
\(91\) −21346.2 −0.270219
\(92\) 0 0
\(93\) 7800.50 0.0935222
\(94\) 0 0
\(95\) −22112.3 −0.251376
\(96\) 0 0
\(97\) −138432. −1.49385 −0.746927 0.664906i \(-0.768472\pi\)
−0.746927 + 0.664906i \(0.768472\pi\)
\(98\) 0 0
\(99\) 3564.15 0.0365484
\(100\) 0 0
\(101\) −139151. −1.35733 −0.678663 0.734450i \(-0.737440\pi\)
−0.678663 + 0.734450i \(0.737440\pi\)
\(102\) 0 0
\(103\) −98512.2 −0.914950 −0.457475 0.889223i \(-0.651246\pi\)
−0.457475 + 0.889223i \(0.651246\pi\)
\(104\) 0 0
\(105\) 21310.0 0.188630
\(106\) 0 0
\(107\) −26848.4 −0.226704 −0.113352 0.993555i \(-0.536159\pi\)
−0.113352 + 0.993555i \(0.536159\pi\)
\(108\) 0 0
\(109\) 63220.9 0.509676 0.254838 0.966984i \(-0.417978\pi\)
0.254838 + 0.966984i \(0.417978\pi\)
\(110\) 0 0
\(111\) −7559.43 −0.0582346
\(112\) 0 0
\(113\) 114434. 0.843058 0.421529 0.906815i \(-0.361494\pi\)
0.421529 + 0.906815i \(0.361494\pi\)
\(114\) 0 0
\(115\) 437765. 3.08671
\(116\) 0 0
\(117\) −40617.6 −0.274315
\(118\) 0 0
\(119\) 132766. 0.859446
\(120\) 0 0
\(121\) −160831. −0.998634
\(122\) 0 0
\(123\) −12954.4 −0.0772066
\(124\) 0 0
\(125\) 460863. 2.63813
\(126\) 0 0
\(127\) 248871. 1.36919 0.684596 0.728922i \(-0.259978\pi\)
0.684596 + 0.728922i \(0.259978\pi\)
\(128\) 0 0
\(129\) 13887.6 0.0734770
\(130\) 0 0
\(131\) 102963. 0.524205 0.262102 0.965040i \(-0.415584\pi\)
0.262102 + 0.965040i \(0.415584\pi\)
\(132\) 0 0
\(133\) 26995.1 0.132329
\(134\) 0 0
\(135\) 81546.3 0.385097
\(136\) 0 0
\(137\) −36037.4 −0.164041 −0.0820204 0.996631i \(-0.526137\pi\)
−0.0820204 + 0.996631i \(0.526137\pi\)
\(138\) 0 0
\(139\) 152655. 0.670151 0.335076 0.942191i \(-0.391238\pi\)
0.335076 + 0.942191i \(0.391238\pi\)
\(140\) 0 0
\(141\) 40638.6 0.172144
\(142\) 0 0
\(143\) −2506.20 −0.0102488
\(144\) 0 0
\(145\) 52243.7 0.206354
\(146\) 0 0
\(147\) 1391.16 0.00530986
\(148\) 0 0
\(149\) −72547.1 −0.267704 −0.133852 0.991001i \(-0.542735\pi\)
−0.133852 + 0.991001i \(0.542735\pi\)
\(150\) 0 0
\(151\) −489021. −1.74536 −0.872681 0.488291i \(-0.837621\pi\)
−0.872681 + 0.488291i \(0.837621\pi\)
\(152\) 0 0
\(153\) 252627. 0.872473
\(154\) 0 0
\(155\) −494919. −1.65464
\(156\) 0 0
\(157\) −89467.9 −0.289680 −0.144840 0.989455i \(-0.546267\pi\)
−0.144840 + 0.989455i \(0.546267\pi\)
\(158\) 0 0
\(159\) −12733.1 −0.0399431
\(160\) 0 0
\(161\) −534432. −1.62490
\(162\) 0 0
\(163\) −225668. −0.665275 −0.332637 0.943055i \(-0.607939\pi\)
−0.332637 + 0.943055i \(0.607939\pi\)
\(164\) 0 0
\(165\) 2501.95 0.00715434
\(166\) 0 0
\(167\) −209528. −0.581367 −0.290683 0.956819i \(-0.593883\pi\)
−0.290683 + 0.956819i \(0.593883\pi\)
\(168\) 0 0
\(169\) 28561.0 0.0769231
\(170\) 0 0
\(171\) 51366.5 0.134335
\(172\) 0 0
\(173\) 465184. 1.18171 0.590853 0.806779i \(-0.298791\pi\)
0.590853 + 0.806779i \(0.298791\pi\)
\(174\) 0 0
\(175\) −957345. −2.36305
\(176\) 0 0
\(177\) 60885.7 0.146077
\(178\) 0 0
\(179\) −472573. −1.10239 −0.551197 0.834375i \(-0.685829\pi\)
−0.551197 + 0.834375i \(0.685829\pi\)
\(180\) 0 0
\(181\) 74099.4 0.168120 0.0840598 0.996461i \(-0.473211\pi\)
0.0840598 + 0.996461i \(0.473211\pi\)
\(182\) 0 0
\(183\) −29633.1 −0.0654108
\(184\) 0 0
\(185\) 479624. 1.03032
\(186\) 0 0
\(187\) 15587.7 0.0325970
\(188\) 0 0
\(189\) −99553.5 −0.202722
\(190\) 0 0
\(191\) 224128. 0.444543 0.222271 0.974985i \(-0.428653\pi\)
0.222271 + 0.974985i \(0.428653\pi\)
\(192\) 0 0
\(193\) −662265. −1.27979 −0.639895 0.768463i \(-0.721022\pi\)
−0.639895 + 0.768463i \(0.721022\pi\)
\(194\) 0 0
\(195\) −28512.7 −0.0536971
\(196\) 0 0
\(197\) −666464. −1.22352 −0.611760 0.791043i \(-0.709538\pi\)
−0.611760 + 0.791043i \(0.709538\pi\)
\(198\) 0 0
\(199\) −645720. −1.15588 −0.577938 0.816081i \(-0.696142\pi\)
−0.577938 + 0.816081i \(0.696142\pi\)
\(200\) 0 0
\(201\) 56356.3 0.0983903
\(202\) 0 0
\(203\) −63780.1 −0.108629
\(204\) 0 0
\(205\) 821919. 1.36598
\(206\) 0 0
\(207\) −1.01692e6 −1.64953
\(208\) 0 0
\(209\) 3169.43 0.00501897
\(210\) 0 0
\(211\) −868021. −1.34222 −0.671110 0.741357i \(-0.734182\pi\)
−0.671110 + 0.741357i \(0.734182\pi\)
\(212\) 0 0
\(213\) 67274.9 0.101602
\(214\) 0 0
\(215\) −881125. −1.29999
\(216\) 0 0
\(217\) 604207. 0.871037
\(218\) 0 0
\(219\) 1722.69 0.00242715
\(220\) 0 0
\(221\) −177639. −0.244658
\(222\) 0 0
\(223\) 58342.9 0.0785644 0.0392822 0.999228i \(-0.487493\pi\)
0.0392822 + 0.999228i \(0.487493\pi\)
\(224\) 0 0
\(225\) −1.82164e6 −2.39887
\(226\) 0 0
\(227\) 111768. 0.143964 0.0719820 0.997406i \(-0.477068\pi\)
0.0719820 + 0.997406i \(0.477068\pi\)
\(228\) 0 0
\(229\) −1.14984e6 −1.44893 −0.724467 0.689309i \(-0.757914\pi\)
−0.724467 + 0.689309i \(0.757914\pi\)
\(230\) 0 0
\(231\) −3054.44 −0.00376618
\(232\) 0 0
\(233\) 630470. 0.760807 0.380404 0.924821i \(-0.375785\pi\)
0.380404 + 0.924821i \(0.375785\pi\)
\(234\) 0 0
\(235\) −2.57840e6 −3.04566
\(236\) 0 0
\(237\) −77815.0 −0.0899897
\(238\) 0 0
\(239\) 165628. 0.187559 0.0937797 0.995593i \(-0.470105\pi\)
0.0937797 + 0.995593i \(0.470105\pi\)
\(240\) 0 0
\(241\) 690968. 0.766329 0.383165 0.923680i \(-0.374834\pi\)
0.383165 + 0.923680i \(0.374834\pi\)
\(242\) 0 0
\(243\) −284667. −0.309259
\(244\) 0 0
\(245\) −88264.9 −0.0939448
\(246\) 0 0
\(247\) −36119.3 −0.0376701
\(248\) 0 0
\(249\) 121974. 0.124671
\(250\) 0 0
\(251\) −386887. −0.387615 −0.193807 0.981040i \(-0.562084\pi\)
−0.193807 + 0.981040i \(0.562084\pi\)
\(252\) 0 0
\(253\) −62746.2 −0.0616292
\(254\) 0 0
\(255\) 177339. 0.170786
\(256\) 0 0
\(257\) 258260. 0.243907 0.121953 0.992536i \(-0.461084\pi\)
0.121953 + 0.992536i \(0.461084\pi\)
\(258\) 0 0
\(259\) −585535. −0.542379
\(260\) 0 0
\(261\) −121361. −0.110275
\(262\) 0 0
\(263\) 1.19053e6 1.06133 0.530665 0.847582i \(-0.321942\pi\)
0.530665 + 0.847582i \(0.321942\pi\)
\(264\) 0 0
\(265\) 807879. 0.706695
\(266\) 0 0
\(267\) −15979.5 −0.0137178
\(268\) 0 0
\(269\) −850968. −0.717022 −0.358511 0.933525i \(-0.616715\pi\)
−0.358511 + 0.933525i \(0.616715\pi\)
\(270\) 0 0
\(271\) 40926.1 0.0338514 0.0169257 0.999857i \(-0.494612\pi\)
0.0169257 + 0.999857i \(0.494612\pi\)
\(272\) 0 0
\(273\) 34808.8 0.0282672
\(274\) 0 0
\(275\) −112399. −0.0896256
\(276\) 0 0
\(277\) −1.00054e6 −0.783490 −0.391745 0.920074i \(-0.628128\pi\)
−0.391745 + 0.920074i \(0.628128\pi\)
\(278\) 0 0
\(279\) 1.14969e6 0.884239
\(280\) 0 0
\(281\) −1.73596e6 −1.31151 −0.655757 0.754972i \(-0.727650\pi\)
−0.655757 + 0.754972i \(0.727650\pi\)
\(282\) 0 0
\(283\) −1.27363e6 −0.945319 −0.472660 0.881245i \(-0.656706\pi\)
−0.472660 + 0.881245i \(0.656706\pi\)
\(284\) 0 0
\(285\) 36058.1 0.0262961
\(286\) 0 0
\(287\) −1.00342e6 −0.719078
\(288\) 0 0
\(289\) −315001. −0.221854
\(290\) 0 0
\(291\) 225739. 0.156270
\(292\) 0 0
\(293\) 2043.70 0.00139075 0.000695374 1.00000i \(-0.499779\pi\)
0.000695374 1.00000i \(0.499779\pi\)
\(294\) 0 0
\(295\) −3.86302e6 −2.58447
\(296\) 0 0
\(297\) −11688.3 −0.00768883
\(298\) 0 0
\(299\) 715066. 0.462560
\(300\) 0 0
\(301\) 1.07570e6 0.684342
\(302\) 0 0
\(303\) 226912. 0.141988
\(304\) 0 0
\(305\) 1.88013e6 1.15728
\(306\) 0 0
\(307\) −401308. −0.243014 −0.121507 0.992591i \(-0.538773\pi\)
−0.121507 + 0.992591i \(0.538773\pi\)
\(308\) 0 0
\(309\) 160642. 0.0957114
\(310\) 0 0
\(311\) 1.92628e6 1.12933 0.564663 0.825322i \(-0.309006\pi\)
0.564663 + 0.825322i \(0.309006\pi\)
\(312\) 0 0
\(313\) 1.64519e6 0.949196 0.474598 0.880203i \(-0.342593\pi\)
0.474598 + 0.880203i \(0.342593\pi\)
\(314\) 0 0
\(315\) 3.14081e6 1.78347
\(316\) 0 0
\(317\) 1.99476e6 1.11492 0.557459 0.830205i \(-0.311777\pi\)
0.557459 + 0.830205i \(0.311777\pi\)
\(318\) 0 0
\(319\) −7488.26 −0.00412006
\(320\) 0 0
\(321\) 43781.2 0.0237151
\(322\) 0 0
\(323\) 224649. 0.119812
\(324\) 0 0
\(325\) 1.28092e6 0.672688
\(326\) 0 0
\(327\) −103093. −0.0533164
\(328\) 0 0
\(329\) 3.14777e6 1.60329
\(330\) 0 0
\(331\) −675924. −0.339100 −0.169550 0.985522i \(-0.554231\pi\)
−0.169550 + 0.985522i \(0.554231\pi\)
\(332\) 0 0
\(333\) −1.11416e6 −0.550600
\(334\) 0 0
\(335\) −3.57564e6 −1.74077
\(336\) 0 0
\(337\) −2.13552e6 −1.02430 −0.512152 0.858895i \(-0.671152\pi\)
−0.512152 + 0.858895i \(0.671152\pi\)
\(338\) 0 0
\(339\) −186605. −0.0881909
\(340\) 0 0
\(341\) 70938.3 0.0330366
\(342\) 0 0
\(343\) 2.23063e6 1.02374
\(344\) 0 0
\(345\) −713855. −0.322896
\(346\) 0 0
\(347\) −2.57257e6 −1.14695 −0.573473 0.819225i \(-0.694404\pi\)
−0.573473 + 0.819225i \(0.694404\pi\)
\(348\) 0 0
\(349\) −2.02363e6 −0.889339 −0.444670 0.895695i \(-0.646679\pi\)
−0.444670 + 0.895695i \(0.646679\pi\)
\(350\) 0 0
\(351\) 133202. 0.0577088
\(352\) 0 0
\(353\) 2.04810e6 0.874810 0.437405 0.899265i \(-0.355898\pi\)
0.437405 + 0.899265i \(0.355898\pi\)
\(354\) 0 0
\(355\) −4.26840e6 −1.79760
\(356\) 0 0
\(357\) −216499. −0.0899053
\(358\) 0 0
\(359\) 1.59901e6 0.654808 0.327404 0.944885i \(-0.393826\pi\)
0.327404 + 0.944885i \(0.393826\pi\)
\(360\) 0 0
\(361\) −2.43042e6 −0.981553
\(362\) 0 0
\(363\) 262265. 0.104466
\(364\) 0 0
\(365\) −109299. −0.0429424
\(366\) 0 0
\(367\) 3.86389e6 1.49747 0.748737 0.662867i \(-0.230661\pi\)
0.748737 + 0.662867i \(0.230661\pi\)
\(368\) 0 0
\(369\) −1.90930e6 −0.729977
\(370\) 0 0
\(371\) −986276. −0.372018
\(372\) 0 0
\(373\) 1.56702e6 0.583179 0.291589 0.956544i \(-0.405816\pi\)
0.291589 + 0.956544i \(0.405816\pi\)
\(374\) 0 0
\(375\) −751521. −0.275971
\(376\) 0 0
\(377\) 85337.3 0.0309233
\(378\) 0 0
\(379\) 3.19239e6 1.14161 0.570805 0.821086i \(-0.306631\pi\)
0.570805 + 0.821086i \(0.306631\pi\)
\(380\) 0 0
\(381\) −405829. −0.143229
\(382\) 0 0
\(383\) −400432. −0.139486 −0.0697432 0.997565i \(-0.522218\pi\)
−0.0697432 + 0.997565i \(0.522218\pi\)
\(384\) 0 0
\(385\) 193795. 0.0666333
\(386\) 0 0
\(387\) 2.04684e6 0.694715
\(388\) 0 0
\(389\) −413440. −0.138528 −0.0692642 0.997598i \(-0.522065\pi\)
−0.0692642 + 0.997598i \(0.522065\pi\)
\(390\) 0 0
\(391\) −4.44746e6 −1.47120
\(392\) 0 0
\(393\) −167899. −0.0548362
\(394\) 0 0
\(395\) 4.93714e6 1.59214
\(396\) 0 0
\(397\) 102926. 0.0327753 0.0163877 0.999866i \(-0.494783\pi\)
0.0163877 + 0.999866i \(0.494783\pi\)
\(398\) 0 0
\(399\) −44020.5 −0.0138428
\(400\) 0 0
\(401\) 2.23365e6 0.693671 0.346836 0.937926i \(-0.387256\pi\)
0.346836 + 0.937926i \(0.387256\pi\)
\(402\) 0 0
\(403\) −808424. −0.247957
\(404\) 0 0
\(405\) 5.90950e6 1.79025
\(406\) 0 0
\(407\) −68746.0 −0.0205713
\(408\) 0 0
\(409\) −4.46150e6 −1.31878 −0.659390 0.751801i \(-0.729185\pi\)
−0.659390 + 0.751801i \(0.729185\pi\)
\(410\) 0 0
\(411\) 58765.6 0.0171600
\(412\) 0 0
\(413\) 4.71606e6 1.36052
\(414\) 0 0
\(415\) −7.73887e6 −2.20575
\(416\) 0 0
\(417\) −248931. −0.0701034
\(418\) 0 0
\(419\) 4.22792e6 1.17650 0.588250 0.808679i \(-0.299817\pi\)
0.588250 + 0.808679i \(0.299817\pi\)
\(420\) 0 0
\(421\) −4.11791e6 −1.13233 −0.566163 0.824293i \(-0.691573\pi\)
−0.566163 + 0.824293i \(0.691573\pi\)
\(422\) 0 0
\(423\) 5.98959e6 1.62759
\(424\) 0 0
\(425\) −7.96688e6 −2.13952
\(426\) 0 0
\(427\) −2.29531e6 −0.609216
\(428\) 0 0
\(429\) 4086.81 0.00107212
\(430\) 0 0
\(431\) −1.15324e6 −0.299038 −0.149519 0.988759i \(-0.547773\pi\)
−0.149519 + 0.988759i \(0.547773\pi\)
\(432\) 0 0
\(433\) −33734.3 −0.00864673 −0.00432337 0.999991i \(-0.501376\pi\)
−0.00432337 + 0.999991i \(0.501376\pi\)
\(434\) 0 0
\(435\) −85192.9 −0.0215864
\(436\) 0 0
\(437\) −904298. −0.226521
\(438\) 0 0
\(439\) −7.48363e6 −1.85332 −0.926661 0.375898i \(-0.877334\pi\)
−0.926661 + 0.375898i \(0.877334\pi\)
\(440\) 0 0
\(441\) 205038. 0.0502039
\(442\) 0 0
\(443\) −3.28028e6 −0.794148 −0.397074 0.917786i \(-0.629974\pi\)
−0.397074 + 0.917786i \(0.629974\pi\)
\(444\) 0 0
\(445\) 1.01385e6 0.242703
\(446\) 0 0
\(447\) 118301. 0.0280040
\(448\) 0 0
\(449\) 7.95356e6 1.86185 0.930927 0.365205i \(-0.119001\pi\)
0.930927 + 0.365205i \(0.119001\pi\)
\(450\) 0 0
\(451\) −117808. −0.0272731
\(452\) 0 0
\(453\) 797439. 0.182579
\(454\) 0 0
\(455\) −2.20852e6 −0.500118
\(456\) 0 0
\(457\) −3.35187e6 −0.750753 −0.375377 0.926872i \(-0.622487\pi\)
−0.375377 + 0.926872i \(0.622487\pi\)
\(458\) 0 0
\(459\) −828468. −0.183546
\(460\) 0 0
\(461\) −4.68627e6 −1.02701 −0.513505 0.858086i \(-0.671653\pi\)
−0.513505 + 0.858086i \(0.671653\pi\)
\(462\) 0 0
\(463\) −6.64697e6 −1.44102 −0.720512 0.693442i \(-0.756093\pi\)
−0.720512 + 0.693442i \(0.756093\pi\)
\(464\) 0 0
\(465\) 807056. 0.173090
\(466\) 0 0
\(467\) −3.14141e6 −0.666549 −0.333275 0.942830i \(-0.608154\pi\)
−0.333275 + 0.942830i \(0.608154\pi\)
\(468\) 0 0
\(469\) 4.36522e6 0.916377
\(470\) 0 0
\(471\) 145894. 0.0303029
\(472\) 0 0
\(473\) 126295. 0.0259556
\(474\) 0 0
\(475\) −1.61990e6 −0.329423
\(476\) 0 0
\(477\) −1.87669e6 −0.377656
\(478\) 0 0
\(479\) 6.68286e6 1.33083 0.665416 0.746473i \(-0.268254\pi\)
0.665416 + 0.746473i \(0.268254\pi\)
\(480\) 0 0
\(481\) 783441. 0.154399
\(482\) 0 0
\(483\) 871489. 0.169979
\(484\) 0 0
\(485\) −1.43225e7 −2.76481
\(486\) 0 0
\(487\) 4.06478e6 0.776631 0.388316 0.921526i \(-0.373057\pi\)
0.388316 + 0.921526i \(0.373057\pi\)
\(488\) 0 0
\(489\) 367993. 0.0695933
\(490\) 0 0
\(491\) −2.10434e6 −0.393923 −0.196962 0.980411i \(-0.563107\pi\)
−0.196962 + 0.980411i \(0.563107\pi\)
\(492\) 0 0
\(493\) −530768. −0.0983530
\(494\) 0 0
\(495\) 368755. 0.0676432
\(496\) 0 0
\(497\) 5.21095e6 0.946293
\(498\) 0 0
\(499\) 5.96715e6 1.07279 0.536396 0.843966i \(-0.319785\pi\)
0.536396 + 0.843966i \(0.319785\pi\)
\(500\) 0 0
\(501\) 341673. 0.0608158
\(502\) 0 0
\(503\) 1.00144e7 1.76483 0.882417 0.470467i \(-0.155915\pi\)
0.882417 + 0.470467i \(0.155915\pi\)
\(504\) 0 0
\(505\) −1.43969e7 −2.51212
\(506\) 0 0
\(507\) −46573.9 −0.00804680
\(508\) 0 0
\(509\) 8.47321e6 1.44962 0.724809 0.688950i \(-0.241928\pi\)
0.724809 + 0.688950i \(0.241928\pi\)
\(510\) 0 0
\(511\) 133435. 0.0226057
\(512\) 0 0
\(513\) −168452. −0.0282606
\(514\) 0 0
\(515\) −1.01923e7 −1.69338
\(516\) 0 0
\(517\) 369571. 0.0608095
\(518\) 0 0
\(519\) −758567. −0.123616
\(520\) 0 0
\(521\) −197614. −0.0318951 −0.0159476 0.999873i \(-0.505076\pi\)
−0.0159476 + 0.999873i \(0.505076\pi\)
\(522\) 0 0
\(523\) 8.27263e6 1.32248 0.661240 0.750174i \(-0.270030\pi\)
0.661240 + 0.750174i \(0.270030\pi\)
\(524\) 0 0
\(525\) 1.56113e6 0.247195
\(526\) 0 0
\(527\) 5.02812e6 0.788640
\(528\) 0 0
\(529\) 1.14664e7 1.78150
\(530\) 0 0
\(531\) 8.97374e6 1.38114
\(532\) 0 0
\(533\) 1.34256e6 0.204699
\(534\) 0 0
\(535\) −2.77779e6 −0.419580
\(536\) 0 0
\(537\) 770618. 0.115320
\(538\) 0 0
\(539\) 12651.3 0.00187570
\(540\) 0 0
\(541\) −363216. −0.0533546 −0.0266773 0.999644i \(-0.508493\pi\)
−0.0266773 + 0.999644i \(0.508493\pi\)
\(542\) 0 0
\(543\) −120833. −0.0175867
\(544\) 0 0
\(545\) 6.54097e6 0.943302
\(546\) 0 0
\(547\) −620452. −0.0886624 −0.0443312 0.999017i \(-0.514116\pi\)
−0.0443312 + 0.999017i \(0.514116\pi\)
\(548\) 0 0
\(549\) −4.36752e6 −0.618449
\(550\) 0 0
\(551\) −107921. −0.0151435
\(552\) 0 0
\(553\) −6.02736e6 −0.838136
\(554\) 0 0
\(555\) −782114. −0.107780
\(556\) 0 0
\(557\) −3.89737e6 −0.532272 −0.266136 0.963935i \(-0.585747\pi\)
−0.266136 + 0.963935i \(0.585747\pi\)
\(558\) 0 0
\(559\) −1.43927e6 −0.194811
\(560\) 0 0
\(561\) −25418.5 −0.00340992
\(562\) 0 0
\(563\) 510725. 0.0679073 0.0339536 0.999423i \(-0.489190\pi\)
0.0339536 + 0.999423i \(0.489190\pi\)
\(564\) 0 0
\(565\) 1.18395e7 1.56032
\(566\) 0 0
\(567\) −7.21445e6 −0.942422
\(568\) 0 0
\(569\) 9.75625e6 1.26329 0.631644 0.775259i \(-0.282381\pi\)
0.631644 + 0.775259i \(0.282381\pi\)
\(570\) 0 0
\(571\) −1.41952e7 −1.82201 −0.911006 0.412393i \(-0.864693\pi\)
−0.911006 + 0.412393i \(0.864693\pi\)
\(572\) 0 0
\(573\) −365482. −0.0465029
\(574\) 0 0
\(575\) 3.20697e7 4.04506
\(576\) 0 0
\(577\) −1.16423e6 −0.145579 −0.0727896 0.997347i \(-0.523190\pi\)
−0.0727896 + 0.997347i \(0.523190\pi\)
\(578\) 0 0
\(579\) 1.07994e6 0.133877
\(580\) 0 0
\(581\) 9.44777e6 1.16115
\(582\) 0 0
\(583\) −115796. −0.0141098
\(584\) 0 0
\(585\) −4.20238e6 −0.507699
\(586\) 0 0
\(587\) 6.58038e6 0.788234 0.394117 0.919060i \(-0.371050\pi\)
0.394117 + 0.919060i \(0.371050\pi\)
\(588\) 0 0
\(589\) 1.02236e6 0.121427
\(590\) 0 0
\(591\) 1.08679e6 0.127991
\(592\) 0 0
\(593\) −1.91423e6 −0.223541 −0.111771 0.993734i \(-0.535652\pi\)
−0.111771 + 0.993734i \(0.535652\pi\)
\(594\) 0 0
\(595\) 1.37362e7 1.59065
\(596\) 0 0
\(597\) 1.05296e6 0.120914
\(598\) 0 0
\(599\) 2.33678e6 0.266104 0.133052 0.991109i \(-0.457522\pi\)
0.133052 + 0.991109i \(0.457522\pi\)
\(600\) 0 0
\(601\) 1.04273e7 1.17757 0.588786 0.808289i \(-0.299606\pi\)
0.588786 + 0.808289i \(0.299606\pi\)
\(602\) 0 0
\(603\) 8.30617e6 0.930266
\(604\) 0 0
\(605\) −1.66399e7 −1.84826
\(606\) 0 0
\(607\) 120274. 0.0132495 0.00662474 0.999978i \(-0.497891\pi\)
0.00662474 + 0.999978i \(0.497891\pi\)
\(608\) 0 0
\(609\) 104005. 0.0113635
\(610\) 0 0
\(611\) −4.21169e6 −0.456408
\(612\) 0 0
\(613\) −1.34576e7 −1.44649 −0.723245 0.690592i \(-0.757350\pi\)
−0.723245 + 0.690592i \(0.757350\pi\)
\(614\) 0 0
\(615\) −1.34029e6 −0.142893
\(616\) 0 0
\(617\) −6.84879e6 −0.724270 −0.362135 0.932126i \(-0.617952\pi\)
−0.362135 + 0.932126i \(0.617952\pi\)
\(618\) 0 0
\(619\) −5.40663e6 −0.567153 −0.283577 0.958950i \(-0.591521\pi\)
−0.283577 + 0.958950i \(0.591521\pi\)
\(620\) 0 0
\(621\) 3.33490e6 0.347019
\(622\) 0 0
\(623\) −1.23773e6 −0.127763
\(624\) 0 0
\(625\) 2.39962e7 2.45721
\(626\) 0 0
\(627\) −5168.33 −0.000525027 0
\(628\) 0 0
\(629\) −4.87273e6 −0.491072
\(630\) 0 0
\(631\) 9.62552e6 0.962390 0.481195 0.876614i \(-0.340203\pi\)
0.481195 + 0.876614i \(0.340203\pi\)
\(632\) 0 0
\(633\) 1.41547e6 0.140408
\(634\) 0 0
\(635\) 2.57487e7 2.53408
\(636\) 0 0
\(637\) −144176. −0.0140781
\(638\) 0 0
\(639\) 9.91542e6 0.960636
\(640\) 0 0
\(641\) −1.58752e7 −1.52607 −0.763037 0.646355i \(-0.776293\pi\)
−0.763037 + 0.646355i \(0.776293\pi\)
\(642\) 0 0
\(643\) 1.57235e7 1.49976 0.749880 0.661574i \(-0.230111\pi\)
0.749880 + 0.661574i \(0.230111\pi\)
\(644\) 0 0
\(645\) 1.43684e6 0.135990
\(646\) 0 0
\(647\) 1.58173e7 1.48549 0.742747 0.669572i \(-0.233523\pi\)
0.742747 + 0.669572i \(0.233523\pi\)
\(648\) 0 0
\(649\) 553699. 0.0516015
\(650\) 0 0
\(651\) −985270. −0.0911178
\(652\) 0 0
\(653\) −5.31229e6 −0.487527 −0.243763 0.969835i \(-0.578382\pi\)
−0.243763 + 0.969835i \(0.578382\pi\)
\(654\) 0 0
\(655\) 1.06527e7 0.970192
\(656\) 0 0
\(657\) 253901. 0.0229483
\(658\) 0 0
\(659\) 9.90554e6 0.888514 0.444257 0.895899i \(-0.353468\pi\)
0.444257 + 0.895899i \(0.353468\pi\)
\(660\) 0 0
\(661\) 1.29988e7 1.15717 0.578587 0.815621i \(-0.303604\pi\)
0.578587 + 0.815621i \(0.303604\pi\)
\(662\) 0 0
\(663\) 289674. 0.0255932
\(664\) 0 0
\(665\) 2.79297e6 0.244913
\(666\) 0 0
\(667\) 2.13654e6 0.185950
\(668\) 0 0
\(669\) −95138.8 −0.00821850
\(670\) 0 0
\(671\) −269486. −0.0231062
\(672\) 0 0
\(673\) −1.32503e7 −1.12769 −0.563844 0.825881i \(-0.690678\pi\)
−0.563844 + 0.825881i \(0.690678\pi\)
\(674\) 0 0
\(675\) 5.97391e6 0.504660
\(676\) 0 0
\(677\) −2.23310e7 −1.87257 −0.936284 0.351245i \(-0.885758\pi\)
−0.936284 + 0.351245i \(0.885758\pi\)
\(678\) 0 0
\(679\) 1.74852e7 1.45545
\(680\) 0 0
\(681\) −182259. −0.0150598
\(682\) 0 0
\(683\) −1.40049e7 −1.14876 −0.574380 0.818588i \(-0.694757\pi\)
−0.574380 + 0.818588i \(0.694757\pi\)
\(684\) 0 0
\(685\) −3.72851e6 −0.303605
\(686\) 0 0
\(687\) 1.87502e6 0.151571
\(688\) 0 0
\(689\) 1.31963e6 0.105902
\(690\) 0 0
\(691\) −5.24817e6 −0.418132 −0.209066 0.977902i \(-0.567042\pi\)
−0.209066 + 0.977902i \(0.567042\pi\)
\(692\) 0 0
\(693\) −450183. −0.0356087
\(694\) 0 0
\(695\) 1.57940e7 1.24031
\(696\) 0 0
\(697\) −8.35027e6 −0.651056
\(698\) 0 0
\(699\) −1.02810e6 −0.0795868
\(700\) 0 0
\(701\) 2.13994e7 1.64477 0.822386 0.568930i \(-0.192642\pi\)
0.822386 + 0.568930i \(0.192642\pi\)
\(702\) 0 0
\(703\) −990767. −0.0756107
\(704\) 0 0
\(705\) 4.20456e6 0.318601
\(706\) 0 0
\(707\) 1.75760e7 1.32243
\(708\) 0 0
\(709\) −4.35333e6 −0.325242 −0.162621 0.986689i \(-0.551995\pi\)
−0.162621 + 0.986689i \(0.551995\pi\)
\(710\) 0 0
\(711\) −1.14689e7 −0.850839
\(712\) 0 0
\(713\) −2.02401e7 −1.49104
\(714\) 0 0
\(715\) −259296. −0.0189684
\(716\) 0 0
\(717\) −270087. −0.0196203
\(718\) 0 0
\(719\) −2.21389e7 −1.59710 −0.798552 0.601926i \(-0.794400\pi\)
−0.798552 + 0.601926i \(0.794400\pi\)
\(720\) 0 0
\(721\) 1.24430e7 0.891426
\(722\) 0 0
\(723\) −1.12675e6 −0.0801645
\(724\) 0 0
\(725\) 3.82726e6 0.270422
\(726\) 0 0
\(727\) 4.83218e6 0.339084 0.169542 0.985523i \(-0.445771\pi\)
0.169542 + 0.985523i \(0.445771\pi\)
\(728\) 0 0
\(729\) −1.34154e7 −0.934940
\(730\) 0 0
\(731\) 8.95178e6 0.619606
\(732\) 0 0
\(733\) 2.47827e7 1.70368 0.851840 0.523803i \(-0.175487\pi\)
0.851840 + 0.523803i \(0.175487\pi\)
\(734\) 0 0
\(735\) 143932. 0.00982741
\(736\) 0 0
\(737\) 512509. 0.0347562
\(738\) 0 0
\(739\) 7.09289e6 0.477762 0.238881 0.971049i \(-0.423219\pi\)
0.238881 + 0.971049i \(0.423219\pi\)
\(740\) 0 0
\(741\) 58899.1 0.00394061
\(742\) 0 0
\(743\) −1.95117e7 −1.29665 −0.648327 0.761362i \(-0.724531\pi\)
−0.648327 + 0.761362i \(0.724531\pi\)
\(744\) 0 0
\(745\) −7.50588e6 −0.495462
\(746\) 0 0
\(747\) 1.79773e7 1.17875
\(748\) 0 0
\(749\) 3.39118e6 0.220875
\(750\) 0 0
\(751\) −1.66103e7 −1.07468 −0.537339 0.843366i \(-0.680570\pi\)
−0.537339 + 0.843366i \(0.680570\pi\)
\(752\) 0 0
\(753\) 630891. 0.0405477
\(754\) 0 0
\(755\) −5.05952e7 −3.23029
\(756\) 0 0
\(757\) −1.22902e6 −0.0779508 −0.0389754 0.999240i \(-0.512409\pi\)
−0.0389754 + 0.999240i \(0.512409\pi\)
\(758\) 0 0
\(759\) 102319. 0.00644693
\(760\) 0 0
\(761\) 1.37482e7 0.860569 0.430284 0.902693i \(-0.358413\pi\)
0.430284 + 0.902693i \(0.358413\pi\)
\(762\) 0 0
\(763\) −7.98535e6 −0.496572
\(764\) 0 0
\(765\) 2.61374e7 1.61476
\(766\) 0 0
\(767\) −6.31004e6 −0.387297
\(768\) 0 0
\(769\) −1.01549e7 −0.619240 −0.309620 0.950860i \(-0.600202\pi\)
−0.309620 + 0.950860i \(0.600202\pi\)
\(770\) 0 0
\(771\) −421140. −0.0255147
\(772\) 0 0
\(773\) −1.41511e7 −0.851807 −0.425903 0.904769i \(-0.640044\pi\)
−0.425903 + 0.904769i \(0.640044\pi\)
\(774\) 0 0
\(775\) −3.62567e7 −2.16837
\(776\) 0 0
\(777\) 954821. 0.0567374
\(778\) 0 0
\(779\) −1.69785e6 −0.100243
\(780\) 0 0
\(781\) 611803. 0.0358909
\(782\) 0 0
\(783\) 397993. 0.0231991
\(784\) 0 0
\(785\) −9.25654e6 −0.536136
\(786\) 0 0
\(787\) −1.03095e6 −0.0593338 −0.0296669 0.999560i \(-0.509445\pi\)
−0.0296669 + 0.999560i \(0.509445\pi\)
\(788\) 0 0
\(789\) −1.94137e6 −0.111024
\(790\) 0 0
\(791\) −1.44540e7 −0.821383
\(792\) 0 0
\(793\) 3.07110e6 0.173425
\(794\) 0 0
\(795\) −1.31740e6 −0.0739262
\(796\) 0 0
\(797\) 1.43337e7 0.799303 0.399651 0.916667i \(-0.369131\pi\)
0.399651 + 0.916667i \(0.369131\pi\)
\(798\) 0 0
\(799\) 2.61952e7 1.45163
\(800\) 0 0
\(801\) −2.35516e6 −0.129700
\(802\) 0 0
\(803\) 15666.3 0.000857386 0
\(804\) 0 0
\(805\) −5.52935e7 −3.00735
\(806\) 0 0
\(807\) 1.38766e6 0.0750065
\(808\) 0 0
\(809\) 1.55020e7 0.832751 0.416376 0.909193i \(-0.363300\pi\)
0.416376 + 0.909193i \(0.363300\pi\)
\(810\) 0 0
\(811\) 2.45861e7 1.31261 0.656307 0.754494i \(-0.272118\pi\)
0.656307 + 0.754494i \(0.272118\pi\)
\(812\) 0 0
\(813\) −66737.5 −0.00354114
\(814\) 0 0
\(815\) −2.33481e7 −1.23128
\(816\) 0 0
\(817\) 1.82016e6 0.0954011
\(818\) 0 0
\(819\) 5.13036e6 0.267262
\(820\) 0 0
\(821\) 3.33396e6 0.172624 0.0863122 0.996268i \(-0.472492\pi\)
0.0863122 + 0.996268i \(0.472492\pi\)
\(822\) 0 0
\(823\) −3.08787e6 −0.158913 −0.0794564 0.996838i \(-0.525318\pi\)
−0.0794564 + 0.996838i \(0.525318\pi\)
\(824\) 0 0
\(825\) 183288. 0.00937559
\(826\) 0 0
\(827\) 6.89555e6 0.350595 0.175297 0.984516i \(-0.443911\pi\)
0.175297 + 0.984516i \(0.443911\pi\)
\(828\) 0 0
\(829\) 2.00007e7 1.01078 0.505391 0.862890i \(-0.331348\pi\)
0.505391 + 0.862890i \(0.331348\pi\)
\(830\) 0 0
\(831\) 1.63156e6 0.0819596
\(832\) 0 0
\(833\) 896725. 0.0447762
\(834\) 0 0
\(835\) −2.16782e7 −1.07599
\(836\) 0 0
\(837\) −3.77030e6 −0.186021
\(838\) 0 0
\(839\) −5.23988e6 −0.256990 −0.128495 0.991710i \(-0.541015\pi\)
−0.128495 + 0.991710i \(0.541015\pi\)
\(840\) 0 0
\(841\) −2.02562e7 −0.987569
\(842\) 0 0
\(843\) 2.83079e6 0.137195
\(844\) 0 0
\(845\) 2.95498e6 0.142368
\(846\) 0 0
\(847\) 2.03144e7 0.972959
\(848\) 0 0
\(849\) 2.07689e6 0.0988883
\(850\) 0 0
\(851\) 1.96146e7 0.928442
\(852\) 0 0
\(853\) 1.32853e7 0.625170 0.312585 0.949890i \(-0.398805\pi\)
0.312585 + 0.949890i \(0.398805\pi\)
\(854\) 0 0
\(855\) 5.31449e6 0.248626
\(856\) 0 0
\(857\) −8.34473e6 −0.388115 −0.194057 0.980990i \(-0.562165\pi\)
−0.194057 + 0.980990i \(0.562165\pi\)
\(858\) 0 0
\(859\) −4.07521e7 −1.88437 −0.942187 0.335088i \(-0.891234\pi\)
−0.942187 + 0.335088i \(0.891234\pi\)
\(860\) 0 0
\(861\) 1.63625e6 0.0752216
\(862\) 0 0
\(863\) 1.73853e7 0.794614 0.397307 0.917686i \(-0.369945\pi\)
0.397307 + 0.917686i \(0.369945\pi\)
\(864\) 0 0
\(865\) 4.81289e7 2.18708
\(866\) 0 0
\(867\) 513667. 0.0232078
\(868\) 0 0
\(869\) −707656. −0.0317887
\(870\) 0 0
\(871\) −5.84063e6 −0.260864
\(872\) 0 0
\(873\) 3.32710e7 1.47751
\(874\) 0 0
\(875\) −5.82109e7 −2.57030
\(876\) 0 0
\(877\) −2.58279e6 −0.113394 −0.0566971 0.998391i \(-0.518057\pi\)
−0.0566971 + 0.998391i \(0.518057\pi\)
\(878\) 0 0
\(879\) −3332.63 −0.000145484 0
\(880\) 0 0
\(881\) −1.66814e7 −0.724090 −0.362045 0.932161i \(-0.617921\pi\)
−0.362045 + 0.932161i \(0.617921\pi\)
\(882\) 0 0
\(883\) 2.36384e7 1.02027 0.510137 0.860093i \(-0.329595\pi\)
0.510137 + 0.860093i \(0.329595\pi\)
\(884\) 0 0
\(885\) 6.29936e6 0.270358
\(886\) 0 0
\(887\) 5.25660e6 0.224334 0.112167 0.993689i \(-0.464221\pi\)
0.112167 + 0.993689i \(0.464221\pi\)
\(888\) 0 0
\(889\) −3.14345e7 −1.33399
\(890\) 0 0
\(891\) −847029. −0.0357441
\(892\) 0 0
\(893\) 5.32625e6 0.223508
\(894\) 0 0
\(895\) −4.88935e7 −2.04030
\(896\) 0 0
\(897\) −1.16605e6 −0.0483876
\(898\) 0 0
\(899\) −2.41549e6 −0.0996795
\(900\) 0 0
\(901\) −8.20763e6 −0.336826
\(902\) 0 0
\(903\) −1.75412e6 −0.0715879
\(904\) 0 0
\(905\) 7.66648e6 0.311153
\(906\) 0 0
\(907\) 3.22789e7 1.30287 0.651435 0.758705i \(-0.274167\pi\)
0.651435 + 0.758705i \(0.274167\pi\)
\(908\) 0 0
\(909\) 3.34438e7 1.34247
\(910\) 0 0
\(911\) −4.20975e7 −1.68058 −0.840292 0.542134i \(-0.817617\pi\)
−0.840292 + 0.542134i \(0.817617\pi\)
\(912\) 0 0
\(913\) 1.10924e6 0.0440400
\(914\) 0 0
\(915\) −3.06590e6 −0.121061
\(916\) 0 0
\(917\) −1.30051e7 −0.510728
\(918\) 0 0
\(919\) 2.19460e7 0.857168 0.428584 0.903502i \(-0.359013\pi\)
0.428584 + 0.903502i \(0.359013\pi\)
\(920\) 0 0
\(921\) 654407. 0.0254213
\(922\) 0 0
\(923\) −6.97221e6 −0.269380
\(924\) 0 0
\(925\) 3.51362e7 1.35021
\(926\) 0 0
\(927\) 2.36765e7 0.904937
\(928\) 0 0
\(929\) −1.35921e7 −0.516710 −0.258355 0.966050i \(-0.583180\pi\)
−0.258355 + 0.966050i \(0.583180\pi\)
\(930\) 0 0
\(931\) 182330. 0.00689421
\(932\) 0 0
\(933\) −3.14116e6 −0.118137
\(934\) 0 0
\(935\) 1.61273e6 0.0603300
\(936\) 0 0
\(937\) 3.01018e7 1.12007 0.560033 0.828470i \(-0.310788\pi\)
0.560033 + 0.828470i \(0.310788\pi\)
\(938\) 0 0
\(939\) −2.68279e6 −0.0992938
\(940\) 0 0
\(941\) 1.06275e7 0.391252 0.195626 0.980679i \(-0.437326\pi\)
0.195626 + 0.980679i \(0.437326\pi\)
\(942\) 0 0
\(943\) 3.36130e7 1.23091
\(944\) 0 0
\(945\) −1.03000e7 −0.375196
\(946\) 0 0
\(947\) −2.41709e7 −0.875826 −0.437913 0.899017i \(-0.644282\pi\)
−0.437913 + 0.899017i \(0.644282\pi\)
\(948\) 0 0
\(949\) −178535. −0.00643514
\(950\) 0 0
\(951\) −3.25282e6 −0.116630
\(952\) 0 0
\(953\) 4.27043e7 1.52314 0.761569 0.648084i \(-0.224430\pi\)
0.761569 + 0.648084i \(0.224430\pi\)
\(954\) 0 0
\(955\) 2.31888e7 0.822754
\(956\) 0 0
\(957\) 12211.0 0.000430993 0
\(958\) 0 0
\(959\) 4.55184e6 0.159823
\(960\) 0 0
\(961\) −5.74655e6 −0.200724
\(962\) 0 0
\(963\) 6.45276e6 0.224223
\(964\) 0 0
\(965\) −6.85193e7 −2.36862
\(966\) 0 0
\(967\) 4.42692e7 1.52242 0.761211 0.648504i \(-0.224605\pi\)
0.761211 + 0.648504i \(0.224605\pi\)
\(968\) 0 0
\(969\) −366332. −0.0125333
\(970\) 0 0
\(971\) 3.88962e7 1.32391 0.661956 0.749542i \(-0.269726\pi\)
0.661956 + 0.749542i \(0.269726\pi\)
\(972\) 0 0
\(973\) −1.92816e7 −0.652922
\(974\) 0 0
\(975\) −2.08877e6 −0.0703688
\(976\) 0 0
\(977\) −2.71611e7 −0.910354 −0.455177 0.890401i \(-0.650424\pi\)
−0.455177 + 0.890401i \(0.650424\pi\)
\(978\) 0 0
\(979\) −145319. −0.00484580
\(980\) 0 0
\(981\) −1.51946e7 −0.504099
\(982\) 0 0
\(983\) 1.98048e7 0.653714 0.326857 0.945074i \(-0.394011\pi\)
0.326857 + 0.945074i \(0.394011\pi\)
\(984\) 0 0
\(985\) −6.89538e7 −2.26448
\(986\) 0 0
\(987\) −5.13301e6 −0.167718
\(988\) 0 0
\(989\) −3.60343e7 −1.17145
\(990\) 0 0
\(991\) 1.44104e7 0.466115 0.233057 0.972463i \(-0.425127\pi\)
0.233057 + 0.972463i \(0.425127\pi\)
\(992\) 0 0
\(993\) 1.10222e6 0.0354727
\(994\) 0 0
\(995\) −6.68075e7 −2.13928
\(996\) 0 0
\(997\) −3.16635e7 −1.00884 −0.504418 0.863459i \(-0.668293\pi\)
−0.504418 + 0.863459i \(0.668293\pi\)
\(998\) 0 0
\(999\) 3.65378e6 0.115832
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 832.6.a.i.1.2 2
4.3 odd 2 832.6.a.p.1.1 2
8.3 odd 2 13.6.a.a.1.1 2
8.5 even 2 208.6.a.h.1.1 2
24.11 even 2 117.6.a.c.1.2 2
40.3 even 4 325.6.b.b.274.4 4
40.19 odd 2 325.6.a.b.1.2 2
40.27 even 4 325.6.b.b.274.1 4
56.27 even 2 637.6.a.a.1.1 2
104.51 odd 2 169.6.a.a.1.2 2
104.83 even 4 169.6.b.a.168.4 4
104.99 even 4 169.6.b.a.168.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
13.6.a.a.1.1 2 8.3 odd 2
117.6.a.c.1.2 2 24.11 even 2
169.6.a.a.1.2 2 104.51 odd 2
169.6.b.a.168.1 4 104.99 even 4
169.6.b.a.168.4 4 104.83 even 4
208.6.a.h.1.1 2 8.5 even 2
325.6.a.b.1.2 2 40.19 odd 2
325.6.b.b.274.1 4 40.27 even 4
325.6.b.b.274.4 4 40.3 even 4
637.6.a.a.1.1 2 56.27 even 2
832.6.a.i.1.2 2 1.1 even 1 trivial
832.6.a.p.1.1 2 4.3 odd 2