Properties

Label 325.6.a.b.1.2
Level $325$
Weight $6$
Character 325.1
Self dual yes
Analytic conductor $52.125$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [325,6,Mod(1,325)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(325, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("325.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 325 = 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 325.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(52.1247414392\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{17}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 13)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-1.56155\) of defining polynomial
Character \(\chi\) \(=\) 325.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+4.56155 q^{2} +1.63068 q^{3} -11.1922 q^{4} +7.43845 q^{6} -126.309 q^{7} -197.024 q^{8} -240.341 q^{9} -14.8296 q^{11} -18.2510 q^{12} +169.000 q^{13} -576.164 q^{14} -540.582 q^{16} +1051.12 q^{17} -1096.33 q^{18} -213.723 q^{19} -205.969 q^{21} -67.6458 q^{22} +4231.16 q^{23} -321.283 q^{24} +770.902 q^{26} -788.176 q^{27} +1413.68 q^{28} -504.955 q^{29} +4783.58 q^{31} +3838.86 q^{32} -24.1823 q^{33} +4794.75 q^{34} +2689.95 q^{36} +4635.74 q^{37} -974.911 q^{38} +275.585 q^{39} +7944.15 q^{41} -939.541 q^{42} +8516.41 q^{43} +165.976 q^{44} +19300.7 q^{46} -24921.2 q^{47} -881.518 q^{48} -853.113 q^{49} +1714.05 q^{51} -1891.49 q^{52} +7808.46 q^{53} -3595.31 q^{54} +24885.8 q^{56} -348.515 q^{57} -2303.38 q^{58} -37337.5 q^{59} -18172.2 q^{61} +21820.5 q^{62} +30357.1 q^{63} +34809.8 q^{64} -110.309 q^{66} +34559.9 q^{67} -11764.4 q^{68} +6899.68 q^{69} +41255.7 q^{71} +47352.8 q^{72} +1056.42 q^{73} +21146.2 q^{74} +2392.04 q^{76} +1873.10 q^{77} +1257.10 q^{78} -47719.3 q^{79} +57117.6 q^{81} +36237.7 q^{82} +74799.0 q^{83} +2305.26 q^{84} +38848.0 q^{86} -823.421 q^{87} +2921.78 q^{88} +9799.26 q^{89} -21346.2 q^{91} -47356.1 q^{92} +7800.50 q^{93} -113679. q^{94} +6259.97 q^{96} +138432. q^{97} -3891.52 q^{98} +3564.15 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 5 q^{2} + 28 q^{3} - 43 q^{4} + 19 q^{6} + 36 q^{7} - 225 q^{8} + 212 q^{9} - 376 q^{11} - 857 q^{12} + 338 q^{13} - 505 q^{14} + 465 q^{16} + 2630 q^{17} - 898 q^{18} - 312 q^{19} + 4074 q^{21} - 226 q^{22}+ \cdots - 159808 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 4.56155 0.806376 0.403188 0.915117i \(-0.367902\pi\)
0.403188 + 0.915117i \(0.367902\pi\)
\(3\) 1.63068 0.104608 0.0523042 0.998631i \(-0.483343\pi\)
0.0523042 + 0.998631i \(0.483343\pi\)
\(4\) −11.1922 −0.349757
\(5\) 0 0
\(6\) 7.43845 0.0843537
\(7\) −126.309 −0.974290 −0.487145 0.873321i \(-0.661962\pi\)
−0.487145 + 0.873321i \(0.661962\pi\)
\(8\) −197.024 −1.08841
\(9\) −240.341 −0.989057
\(10\) 0 0
\(11\) −14.8296 −0.0369527 −0.0184764 0.999829i \(-0.505882\pi\)
−0.0184764 + 0.999829i \(0.505882\pi\)
\(12\) −18.2510 −0.0365875
\(13\) 169.000 0.277350
\(14\) −576.164 −0.785644
\(15\) 0 0
\(16\) −540.582 −0.527912
\(17\) 1051.12 0.882126 0.441063 0.897476i \(-0.354602\pi\)
0.441063 + 0.897476i \(0.354602\pi\)
\(18\) −1096.33 −0.797552
\(19\) −213.723 −0.135821 −0.0679107 0.997691i \(-0.521633\pi\)
−0.0679107 + 0.997691i \(0.521633\pi\)
\(20\) 0 0
\(21\) −205.969 −0.101919
\(22\) −67.6458 −0.0297978
\(23\) 4231.16 1.66778 0.833892 0.551928i \(-0.186108\pi\)
0.833892 + 0.551928i \(0.186108\pi\)
\(24\) −321.283 −0.113857
\(25\) 0 0
\(26\) 770.902 0.223649
\(27\) −788.176 −0.208072
\(28\) 1413.68 0.340765
\(29\) −504.955 −0.111495 −0.0557477 0.998445i \(-0.517754\pi\)
−0.0557477 + 0.998445i \(0.517754\pi\)
\(30\) 0 0
\(31\) 4783.58 0.894022 0.447011 0.894528i \(-0.352488\pi\)
0.447011 + 0.894528i \(0.352488\pi\)
\(32\) 3838.86 0.662716
\(33\) −24.1823 −0.00386557
\(34\) 4794.75 0.711325
\(35\) 0 0
\(36\) 2689.95 0.345930
\(37\) 4635.74 0.556692 0.278346 0.960481i \(-0.410214\pi\)
0.278346 + 0.960481i \(0.410214\pi\)
\(38\) −974.911 −0.109523
\(39\) 275.585 0.0290131
\(40\) 0 0
\(41\) 7944.15 0.738054 0.369027 0.929419i \(-0.379691\pi\)
0.369027 + 0.929419i \(0.379691\pi\)
\(42\) −939.541 −0.0821850
\(43\) 8516.41 0.702401 0.351201 0.936300i \(-0.385774\pi\)
0.351201 + 0.936300i \(0.385774\pi\)
\(44\) 165.976 0.0129245
\(45\) 0 0
\(46\) 19300.7 1.34486
\(47\) −24921.2 −1.64560 −0.822801 0.568330i \(-0.807590\pi\)
−0.822801 + 0.568330i \(0.807590\pi\)
\(48\) −881.518 −0.0552241
\(49\) −853.113 −0.0507594
\(50\) 0 0
\(51\) 1714.05 0.0922777
\(52\) −1891.49 −0.0970052
\(53\) 7808.46 0.381835 0.190917 0.981606i \(-0.438854\pi\)
0.190917 + 0.981606i \(0.438854\pi\)
\(54\) −3595.31 −0.167784
\(55\) 0 0
\(56\) 24885.8 1.06043
\(57\) −348.515 −0.0142081
\(58\) −2303.38 −0.0899073
\(59\) −37337.5 −1.39642 −0.698209 0.715894i \(-0.746020\pi\)
−0.698209 + 0.715894i \(0.746020\pi\)
\(60\) 0 0
\(61\) −18172.2 −0.625292 −0.312646 0.949870i \(-0.601215\pi\)
−0.312646 + 0.949870i \(0.601215\pi\)
\(62\) 21820.5 0.720918
\(63\) 30357.1 0.963628
\(64\) 34809.8 1.06231
\(65\) 0 0
\(66\) −110.309 −0.00311710
\(67\) 34559.9 0.940559 0.470279 0.882518i \(-0.344153\pi\)
0.470279 + 0.882518i \(0.344153\pi\)
\(68\) −11764.4 −0.308530
\(69\) 6899.68 0.174464
\(70\) 0 0
\(71\) 41255.7 0.971265 0.485632 0.874163i \(-0.338589\pi\)
0.485632 + 0.874163i \(0.338589\pi\)
\(72\) 47352.8 1.07650
\(73\) 1056.42 0.0232022 0.0116011 0.999933i \(-0.496307\pi\)
0.0116011 + 0.999933i \(0.496307\pi\)
\(74\) 21146.2 0.448903
\(75\) 0 0
\(76\) 2392.04 0.0475045
\(77\) 1873.10 0.0360027
\(78\) 1257.10 0.0233955
\(79\) −47719.3 −0.860253 −0.430126 0.902769i \(-0.641531\pi\)
−0.430126 + 0.902769i \(0.641531\pi\)
\(80\) 0 0
\(81\) 57117.6 0.967291
\(82\) 36237.7 0.595149
\(83\) 74799.0 1.19179 0.595896 0.803061i \(-0.296797\pi\)
0.595896 + 0.803061i \(0.296797\pi\)
\(84\) 2305.26 0.0356469
\(85\) 0 0
\(86\) 38848.0 0.566400
\(87\) −823.421 −0.0116634
\(88\) 2921.78 0.0402198
\(89\) 9799.26 0.131135 0.0655675 0.997848i \(-0.479114\pi\)
0.0655675 + 0.997848i \(0.479114\pi\)
\(90\) 0 0
\(91\) −21346.2 −0.270219
\(92\) −47356.1 −0.583320
\(93\) 7800.50 0.0935222
\(94\) −113679. −1.32697
\(95\) 0 0
\(96\) 6259.97 0.0693257
\(97\) 138432. 1.49385 0.746927 0.664906i \(-0.231528\pi\)
0.746927 + 0.664906i \(0.231528\pi\)
\(98\) −3891.52 −0.0409312
\(99\) 3564.15 0.0365484
\(100\) 0 0
\(101\) 139151. 1.35733 0.678663 0.734450i \(-0.262560\pi\)
0.678663 + 0.734450i \(0.262560\pi\)
\(102\) 7818.71 0.0744106
\(103\) −98512.2 −0.914950 −0.457475 0.889223i \(-0.651246\pi\)
−0.457475 + 0.889223i \(0.651246\pi\)
\(104\) −33297.0 −0.301871
\(105\) 0 0
\(106\) 35618.7 0.307902
\(107\) 26848.4 0.226704 0.113352 0.993555i \(-0.463841\pi\)
0.113352 + 0.993555i \(0.463841\pi\)
\(108\) 8821.45 0.0727747
\(109\) −63220.9 −0.509676 −0.254838 0.966984i \(-0.582022\pi\)
−0.254838 + 0.966984i \(0.582022\pi\)
\(110\) 0 0
\(111\) 7559.43 0.0582346
\(112\) 68280.2 0.514340
\(113\) −114434. −0.843058 −0.421529 0.906815i \(-0.638506\pi\)
−0.421529 + 0.906815i \(0.638506\pi\)
\(114\) −1589.77 −0.0114570
\(115\) 0 0
\(116\) 5651.57 0.0389964
\(117\) −40617.6 −0.274315
\(118\) −170317. −1.12604
\(119\) −132766. −0.859446
\(120\) 0 0
\(121\) −160831. −0.998634
\(122\) −82893.4 −0.504221
\(123\) 12954.4 0.0772066
\(124\) −53538.9 −0.312691
\(125\) 0 0
\(126\) 138476. 0.777047
\(127\) 248871. 1.36919 0.684596 0.728922i \(-0.259978\pi\)
0.684596 + 0.728922i \(0.259978\pi\)
\(128\) 35943.2 0.193906
\(129\) 13887.6 0.0734770
\(130\) 0 0
\(131\) 102963. 0.524205 0.262102 0.965040i \(-0.415584\pi\)
0.262102 + 0.965040i \(0.415584\pi\)
\(132\) 270.654 0.00135201
\(133\) 26995.1 0.132329
\(134\) 157647. 0.758444
\(135\) 0 0
\(136\) −207096. −0.960117
\(137\) 36037.4 0.164041 0.0820204 0.996631i \(-0.473863\pi\)
0.0820204 + 0.996631i \(0.473863\pi\)
\(138\) 31473.3 0.140684
\(139\) 152655. 0.670151 0.335076 0.942191i \(-0.391238\pi\)
0.335076 + 0.942191i \(0.391238\pi\)
\(140\) 0 0
\(141\) −40638.6 −0.172144
\(142\) 188190. 0.783205
\(143\) −2506.20 −0.0102488
\(144\) 129924. 0.522136
\(145\) 0 0
\(146\) 4818.92 0.0187097
\(147\) −1391.16 −0.00530986
\(148\) −51884.3 −0.194707
\(149\) 72547.1 0.267704 0.133852 0.991001i \(-0.457265\pi\)
0.133852 + 0.991001i \(0.457265\pi\)
\(150\) 0 0
\(151\) 489021. 1.74536 0.872681 0.488291i \(-0.162379\pi\)
0.872681 + 0.488291i \(0.162379\pi\)
\(152\) 42108.6 0.147830
\(153\) −252627. −0.872473
\(154\) 8544.26 0.0290317
\(155\) 0 0
\(156\) −3084.42 −0.0101476
\(157\) −89467.9 −0.289680 −0.144840 0.989455i \(-0.546267\pi\)
−0.144840 + 0.989455i \(0.546267\pi\)
\(158\) −217674. −0.693687
\(159\) 12733.1 0.0399431
\(160\) 0 0
\(161\) −534432. −1.62490
\(162\) 260545. 0.780000
\(163\) 225668. 0.665275 0.332637 0.943055i \(-0.392061\pi\)
0.332637 + 0.943055i \(0.392061\pi\)
\(164\) −88912.8 −0.258140
\(165\) 0 0
\(166\) 341200. 0.961033
\(167\) −209528. −0.581367 −0.290683 0.956819i \(-0.593883\pi\)
−0.290683 + 0.956819i \(0.593883\pi\)
\(168\) 40580.9 0.110930
\(169\) 28561.0 0.0769231
\(170\) 0 0
\(171\) 51366.5 0.134335
\(172\) −95317.6 −0.245670
\(173\) 465184. 1.18171 0.590853 0.806779i \(-0.298791\pi\)
0.590853 + 0.806779i \(0.298791\pi\)
\(174\) −3756.08 −0.00940506
\(175\) 0 0
\(176\) 8016.60 0.0195078
\(177\) −60885.7 −0.146077
\(178\) 44699.9 0.105744
\(179\) −472573. −1.10239 −0.551197 0.834375i \(-0.685829\pi\)
−0.551197 + 0.834375i \(0.685829\pi\)
\(180\) 0 0
\(181\) −74099.4 −0.168120 −0.0840598 0.996461i \(-0.526789\pi\)
−0.0840598 + 0.996461i \(0.526789\pi\)
\(182\) −97371.7 −0.217898
\(183\) −29633.1 −0.0654108
\(184\) −833638. −1.81524
\(185\) 0 0
\(186\) 35582.4 0.0754141
\(187\) −15587.7 −0.0325970
\(188\) 278924. 0.575561
\(189\) 99553.5 0.202722
\(190\) 0 0
\(191\) −224128. −0.444543 −0.222271 0.974985i \(-0.571347\pi\)
−0.222271 + 0.974985i \(0.571347\pi\)
\(192\) 56763.8 0.111127
\(193\) 662265. 1.27979 0.639895 0.768463i \(-0.278978\pi\)
0.639895 + 0.768463i \(0.278978\pi\)
\(194\) 631467. 1.20461
\(195\) 0 0
\(196\) 9548.24 0.0177535
\(197\) −666464. −1.22352 −0.611760 0.791043i \(-0.709538\pi\)
−0.611760 + 0.791043i \(0.709538\pi\)
\(198\) 16258.1 0.0294717
\(199\) 645720. 1.15588 0.577938 0.816081i \(-0.303858\pi\)
0.577938 + 0.816081i \(0.303858\pi\)
\(200\) 0 0
\(201\) 56356.3 0.0983903
\(202\) 634746. 1.09451
\(203\) 63780.1 0.108629
\(204\) −19184.0 −0.0322748
\(205\) 0 0
\(206\) −449369. −0.737794
\(207\) −1.01692e6 −1.64953
\(208\) −91358.4 −0.146417
\(209\) 3169.43 0.00501897
\(210\) 0 0
\(211\) −868021. −1.34222 −0.671110 0.741357i \(-0.734182\pi\)
−0.671110 + 0.741357i \(0.734182\pi\)
\(212\) −87394.1 −0.133550
\(213\) 67274.9 0.101602
\(214\) 122470. 0.182808
\(215\) 0 0
\(216\) 155289. 0.226468
\(217\) −604207. −0.871037
\(218\) −288385. −0.410991
\(219\) 1722.69 0.00242715
\(220\) 0 0
\(221\) 177639. 0.244658
\(222\) 34482.7 0.0469590
\(223\) 58342.9 0.0785644 0.0392822 0.999228i \(-0.487493\pi\)
0.0392822 + 0.999228i \(0.487493\pi\)
\(224\) −484882. −0.645678
\(225\) 0 0
\(226\) −521995. −0.679822
\(227\) −111768. −0.143964 −0.0719820 0.997406i \(-0.522932\pi\)
−0.0719820 + 0.997406i \(0.522932\pi\)
\(228\) 3900.67 0.00496937
\(229\) 1.14984e6 1.44893 0.724467 0.689309i \(-0.242086\pi\)
0.724467 + 0.689309i \(0.242086\pi\)
\(230\) 0 0
\(231\) 3054.44 0.00376618
\(232\) 99488.0 0.121353
\(233\) −630470. −0.760807 −0.380404 0.924821i \(-0.624215\pi\)
−0.380404 + 0.924821i \(0.624215\pi\)
\(234\) −185279. −0.221201
\(235\) 0 0
\(236\) 417891. 0.488408
\(237\) −77815.0 −0.0899897
\(238\) −605618. −0.693037
\(239\) −165628. −0.187559 −0.0937797 0.995593i \(-0.529895\pi\)
−0.0937797 + 0.995593i \(0.529895\pi\)
\(240\) 0 0
\(241\) 690968. 0.766329 0.383165 0.923680i \(-0.374834\pi\)
0.383165 + 0.923680i \(0.374834\pi\)
\(242\) −733639. −0.805275
\(243\) 284667. 0.309259
\(244\) 203387. 0.218700
\(245\) 0 0
\(246\) 59092.1 0.0622575
\(247\) −36119.3 −0.0376701
\(248\) −942478. −0.973065
\(249\) 121974. 0.124671
\(250\) 0 0
\(251\) −386887. −0.387615 −0.193807 0.981040i \(-0.562084\pi\)
−0.193807 + 0.981040i \(0.562084\pi\)
\(252\) −339764. −0.337036
\(253\) −62746.2 −0.0616292
\(254\) 1.13524e6 1.10408
\(255\) 0 0
\(256\) −949957. −0.905950
\(257\) −258260. −0.243907 −0.121953 0.992536i \(-0.538916\pi\)
−0.121953 + 0.992536i \(0.538916\pi\)
\(258\) 63348.8 0.0592501
\(259\) −585535. −0.542379
\(260\) 0 0
\(261\) 121361. 0.110275
\(262\) 469669. 0.422706
\(263\) 1.19053e6 1.06133 0.530665 0.847582i \(-0.321942\pi\)
0.530665 + 0.847582i \(0.321942\pi\)
\(264\) 4764.49 0.00420733
\(265\) 0 0
\(266\) 123140. 0.106707
\(267\) 15979.5 0.0137178
\(268\) −386803. −0.328967
\(269\) 850968. 0.717022 0.358511 0.933525i \(-0.383285\pi\)
0.358511 + 0.933525i \(0.383285\pi\)
\(270\) 0 0
\(271\) −40926.1 −0.0338514 −0.0169257 0.999857i \(-0.505388\pi\)
−0.0169257 + 0.999857i \(0.505388\pi\)
\(272\) −568218. −0.465685
\(273\) −34808.8 −0.0282672
\(274\) 164387. 0.132279
\(275\) 0 0
\(276\) −77222.8 −0.0610201
\(277\) −1.00054e6 −0.783490 −0.391745 0.920074i \(-0.628128\pi\)
−0.391745 + 0.920074i \(0.628128\pi\)
\(278\) 696342. 0.540394
\(279\) −1.14969e6 −0.884239
\(280\) 0 0
\(281\) −1.73596e6 −1.31151 −0.655757 0.754972i \(-0.727650\pi\)
−0.655757 + 0.754972i \(0.727650\pi\)
\(282\) −185375. −0.138813
\(283\) 1.27363e6 0.945319 0.472660 0.881245i \(-0.343294\pi\)
0.472660 + 0.881245i \(0.343294\pi\)
\(284\) −461743. −0.339707
\(285\) 0 0
\(286\) −11432.1 −0.00826443
\(287\) −1.00342e6 −0.719078
\(288\) −922636. −0.655464
\(289\) −315001. −0.221854
\(290\) 0 0
\(291\) 225739. 0.156270
\(292\) −11823.7 −0.00811515
\(293\) 2043.70 0.00139075 0.000695374 1.00000i \(-0.499779\pi\)
0.000695374 1.00000i \(0.499779\pi\)
\(294\) −6345.84 −0.00428174
\(295\) 0 0
\(296\) −913351. −0.605910
\(297\) 11688.3 0.00768883
\(298\) 330927. 0.215870
\(299\) 715066. 0.462560
\(300\) 0 0
\(301\) −1.07570e6 −0.684342
\(302\) 2.23070e6 1.40742
\(303\) 226912. 0.141988
\(304\) 115535. 0.0717018
\(305\) 0 0
\(306\) −1.15237e6 −0.703541
\(307\) 401308. 0.243014 0.121507 0.992591i \(-0.461227\pi\)
0.121507 + 0.992591i \(0.461227\pi\)
\(308\) −20964.2 −0.0125922
\(309\) −160642. −0.0957114
\(310\) 0 0
\(311\) −1.92628e6 −1.12933 −0.564663 0.825322i \(-0.690994\pi\)
−0.564663 + 0.825322i \(0.690994\pi\)
\(312\) −54296.9 −0.0315783
\(313\) −1.64519e6 −0.949196 −0.474598 0.880203i \(-0.657407\pi\)
−0.474598 + 0.880203i \(0.657407\pi\)
\(314\) −408113. −0.233591
\(315\) 0 0
\(316\) 534085. 0.300880
\(317\) 1.99476e6 1.11492 0.557459 0.830205i \(-0.311777\pi\)
0.557459 + 0.830205i \(0.311777\pi\)
\(318\) 58082.8 0.0322092
\(319\) 7488.26 0.00412006
\(320\) 0 0
\(321\) 43781.2 0.0237151
\(322\) −2.43784e6 −1.31028
\(323\) −224649. −0.119812
\(324\) −639273. −0.338317
\(325\) 0 0
\(326\) 1.02940e6 0.536462
\(327\) −103093. −0.0533164
\(328\) −1.56519e6 −0.803306
\(329\) 3.14777e6 1.60329
\(330\) 0 0
\(331\) −675924. −0.339100 −0.169550 0.985522i \(-0.554231\pi\)
−0.169550 + 0.985522i \(0.554231\pi\)
\(332\) −837168. −0.416838
\(333\) −1.11416e6 −0.550600
\(334\) −955772. −0.468800
\(335\) 0 0
\(336\) 111343. 0.0538042
\(337\) 2.13552e6 1.02430 0.512152 0.858895i \(-0.328848\pi\)
0.512152 + 0.858895i \(0.328848\pi\)
\(338\) 130283. 0.0620289
\(339\) −186605. −0.0881909
\(340\) 0 0
\(341\) −70938.3 −0.0330366
\(342\) 234311. 0.108325
\(343\) 2.23063e6 1.02374
\(344\) −1.67793e6 −0.764502
\(345\) 0 0
\(346\) 2.12196e6 0.952899
\(347\) 2.57257e6 1.14695 0.573473 0.819225i \(-0.305596\pi\)
0.573473 + 0.819225i \(0.305596\pi\)
\(348\) 9215.92 0.00407935
\(349\) 2.02363e6 0.889339 0.444670 0.895695i \(-0.353321\pi\)
0.444670 + 0.895695i \(0.353321\pi\)
\(350\) 0 0
\(351\) −133202. −0.0577088
\(352\) −56928.7 −0.0244892
\(353\) −2.04810e6 −0.874810 −0.437405 0.899265i \(-0.644102\pi\)
−0.437405 + 0.899265i \(0.644102\pi\)
\(354\) −277733. −0.117793
\(355\) 0 0
\(356\) −109676. −0.0458654
\(357\) −216499. −0.0899053
\(358\) −2.15567e6 −0.888944
\(359\) −1.59901e6 −0.654808 −0.327404 0.944885i \(-0.606174\pi\)
−0.327404 + 0.944885i \(0.606174\pi\)
\(360\) 0 0
\(361\) −2.43042e6 −0.981553
\(362\) −338008. −0.135568
\(363\) −262265. −0.104466
\(364\) 238911. 0.0945112
\(365\) 0 0
\(366\) −135173. −0.0527457
\(367\) 3.86389e6 1.49747 0.748737 0.662867i \(-0.230661\pi\)
0.748737 + 0.662867i \(0.230661\pi\)
\(368\) −2.28729e6 −0.880444
\(369\) −1.90930e6 −0.729977
\(370\) 0 0
\(371\) −986276. −0.372018
\(372\) −87305.0 −0.0327101
\(373\) 1.56702e6 0.583179 0.291589 0.956544i \(-0.405816\pi\)
0.291589 + 0.956544i \(0.405816\pi\)
\(374\) −71104.0 −0.0262854
\(375\) 0 0
\(376\) 4.91007e6 1.79109
\(377\) −85337.3 −0.0309233
\(378\) 454118. 0.163471
\(379\) 3.19239e6 1.14161 0.570805 0.821086i \(-0.306631\pi\)
0.570805 + 0.821086i \(0.306631\pi\)
\(380\) 0 0
\(381\) 405829. 0.143229
\(382\) −1.02237e6 −0.358469
\(383\) −400432. −0.139486 −0.0697432 0.997565i \(-0.522218\pi\)
−0.0697432 + 0.997565i \(0.522218\pi\)
\(384\) 58611.9 0.0202842
\(385\) 0 0
\(386\) 3.02096e6 1.03199
\(387\) −2.04684e6 −0.694715
\(388\) −1.54937e6 −0.522487
\(389\) 413440. 0.138528 0.0692642 0.997598i \(-0.477935\pi\)
0.0692642 + 0.997598i \(0.477935\pi\)
\(390\) 0 0
\(391\) 4.44746e6 1.47120
\(392\) 168083. 0.0552471
\(393\) 167899. 0.0548362
\(394\) −3.04011e6 −0.986618
\(395\) 0 0
\(396\) −39890.8 −0.0127831
\(397\) 102926. 0.0327753 0.0163877 0.999866i \(-0.494783\pi\)
0.0163877 + 0.999866i \(0.494783\pi\)
\(398\) 2.94548e6 0.932071
\(399\) 44020.5 0.0138428
\(400\) 0 0
\(401\) 2.23365e6 0.693671 0.346836 0.937926i \(-0.387256\pi\)
0.346836 + 0.937926i \(0.387256\pi\)
\(402\) 257072. 0.0793396
\(403\) 808424. 0.247957
\(404\) −1.55741e6 −0.474734
\(405\) 0 0
\(406\) 290937. 0.0875958
\(407\) −68746.0 −0.0205713
\(408\) −337708. −0.100436
\(409\) −4.46150e6 −1.31878 −0.659390 0.751801i \(-0.729185\pi\)
−0.659390 + 0.751801i \(0.729185\pi\)
\(410\) 0 0
\(411\) 58765.6 0.0171600
\(412\) 1.10257e6 0.320010
\(413\) 4.71606e6 1.36052
\(414\) −4.63874e6 −1.33014
\(415\) 0 0
\(416\) 648768. 0.183804
\(417\) 248931. 0.0701034
\(418\) 14457.5 0.00404718
\(419\) 4.22792e6 1.17650 0.588250 0.808679i \(-0.299817\pi\)
0.588250 + 0.808679i \(0.299817\pi\)
\(420\) 0 0
\(421\) 4.11791e6 1.13233 0.566163 0.824293i \(-0.308427\pi\)
0.566163 + 0.824293i \(0.308427\pi\)
\(422\) −3.95952e6 −1.08233
\(423\) 5.98959e6 1.62759
\(424\) −1.53845e6 −0.415594
\(425\) 0 0
\(426\) 306878. 0.0819298
\(427\) 2.29531e6 0.609216
\(428\) −300493. −0.0792912
\(429\) −4086.81 −0.00107212
\(430\) 0 0
\(431\) 1.15324e6 0.299038 0.149519 0.988759i \(-0.452227\pi\)
0.149519 + 0.988759i \(0.452227\pi\)
\(432\) 426074. 0.109844
\(433\) 33734.3 0.00864673 0.00432337 0.999991i \(-0.498624\pi\)
0.00432337 + 0.999991i \(0.498624\pi\)
\(434\) −2.75612e6 −0.702383
\(435\) 0 0
\(436\) 707583. 0.178263
\(437\) −904298. −0.226521
\(438\) 7858.13 0.00195719
\(439\) 7.48363e6 1.85332 0.926661 0.375898i \(-0.122666\pi\)
0.926661 + 0.375898i \(0.122666\pi\)
\(440\) 0 0
\(441\) 205038. 0.0502039
\(442\) 810312. 0.197286
\(443\) 3.28028e6 0.794148 0.397074 0.917786i \(-0.370026\pi\)
0.397074 + 0.917786i \(0.370026\pi\)
\(444\) −84606.9 −0.0203680
\(445\) 0 0
\(446\) 266134. 0.0633525
\(447\) 118301. 0.0280040
\(448\) −4.39678e6 −1.03500
\(449\) 7.95356e6 1.86185 0.930927 0.365205i \(-0.119001\pi\)
0.930927 + 0.365205i \(0.119001\pi\)
\(450\) 0 0
\(451\) −117808. −0.0272731
\(452\) 1.28077e6 0.294866
\(453\) 797439. 0.182579
\(454\) −509837. −0.116089
\(455\) 0 0
\(456\) 68665.8 0.0154642
\(457\) 3.35187e6 0.750753 0.375377 0.926872i \(-0.377513\pi\)
0.375377 + 0.926872i \(0.377513\pi\)
\(458\) 5.24506e6 1.16839
\(459\) −828468. −0.183546
\(460\) 0 0
\(461\) 4.68627e6 1.02701 0.513505 0.858086i \(-0.328347\pi\)
0.513505 + 0.858086i \(0.328347\pi\)
\(462\) 13933.0 0.00303696
\(463\) −6.64697e6 −1.44102 −0.720512 0.693442i \(-0.756093\pi\)
−0.720512 + 0.693442i \(0.756093\pi\)
\(464\) 272969. 0.0588599
\(465\) 0 0
\(466\) −2.87592e6 −0.613497
\(467\) 3.14141e6 0.666549 0.333275 0.942830i \(-0.391846\pi\)
0.333275 + 0.942830i \(0.391846\pi\)
\(468\) 454602. 0.0959437
\(469\) −4.36522e6 −0.916377
\(470\) 0 0
\(471\) −145894. −0.0303029
\(472\) 7.35638e6 1.51988
\(473\) −126295. −0.0259556
\(474\) −354957. −0.0725655
\(475\) 0 0
\(476\) 1.48595e6 0.300598
\(477\) −1.87669e6 −0.377656
\(478\) −755521. −0.151243
\(479\) −6.68286e6 −1.33083 −0.665416 0.746473i \(-0.731746\pi\)
−0.665416 + 0.746473i \(0.731746\pi\)
\(480\) 0 0
\(481\) 783441. 0.154399
\(482\) 3.15189e6 0.617950
\(483\) −871489. −0.169979
\(484\) 1.80006e6 0.349280
\(485\) 0 0
\(486\) 1.29853e6 0.249379
\(487\) 4.06478e6 0.776631 0.388316 0.921526i \(-0.373057\pi\)
0.388316 + 0.921526i \(0.373057\pi\)
\(488\) 3.58035e6 0.680575
\(489\) 367993. 0.0695933
\(490\) 0 0
\(491\) −2.10434e6 −0.393923 −0.196962 0.980411i \(-0.563107\pi\)
−0.196962 + 0.980411i \(0.563107\pi\)
\(492\) −144989. −0.0270036
\(493\) −530768. −0.0983530
\(494\) −164760. −0.0303763
\(495\) 0 0
\(496\) −2.58592e6 −0.471966
\(497\) −5.21095e6 −0.946293
\(498\) 556389. 0.100532
\(499\) 5.96715e6 1.07279 0.536396 0.843966i \(-0.319785\pi\)
0.536396 + 0.843966i \(0.319785\pi\)
\(500\) 0 0
\(501\) −341673. −0.0608158
\(502\) −1.76481e6 −0.312563
\(503\) 1.00144e7 1.76483 0.882417 0.470467i \(-0.155915\pi\)
0.882417 + 0.470467i \(0.155915\pi\)
\(504\) −5.98108e6 −1.04882
\(505\) 0 0
\(506\) −286220. −0.0496963
\(507\) 46573.9 0.00804680
\(508\) −2.78542e6 −0.478885
\(509\) −8.47321e6 −1.44962 −0.724809 0.688950i \(-0.758072\pi\)
−0.724809 + 0.688950i \(0.758072\pi\)
\(510\) 0 0
\(511\) −133435. −0.0226057
\(512\) −5.48346e6 −0.924442
\(513\) 168452. 0.0282606
\(514\) −1.17807e6 −0.196681
\(515\) 0 0
\(516\) −155433. −0.0256991
\(517\) 369571. 0.0608095
\(518\) −2.67095e6 −0.437362
\(519\) 758567. 0.123616
\(520\) 0 0
\(521\) −197614. −0.0318951 −0.0159476 0.999873i \(-0.505076\pi\)
−0.0159476 + 0.999873i \(0.505076\pi\)
\(522\) 553596. 0.0889235
\(523\) −8.27263e6 −1.32248 −0.661240 0.750174i \(-0.729970\pi\)
−0.661240 + 0.750174i \(0.729970\pi\)
\(524\) −1.15238e6 −0.183345
\(525\) 0 0
\(526\) 5.43066e6 0.855831
\(527\) 5.02812e6 0.788640
\(528\) 13072.5 0.00204068
\(529\) 1.14664e7 1.78150
\(530\) 0 0
\(531\) 8.97374e6 1.38114
\(532\) −302136. −0.0462832
\(533\) 1.34256e6 0.204699
\(534\) 72891.3 0.0110617
\(535\) 0 0
\(536\) −6.80913e6 −1.02372
\(537\) −770618. −0.115320
\(538\) 3.88174e6 0.578190
\(539\) 12651.3 0.00187570
\(540\) 0 0
\(541\) 363216. 0.0533546 0.0266773 0.999644i \(-0.491507\pi\)
0.0266773 + 0.999644i \(0.491507\pi\)
\(542\) −186686. −0.0272970
\(543\) −120833. −0.0175867
\(544\) 4.03511e6 0.584599
\(545\) 0 0
\(546\) −158782. −0.0227940
\(547\) 620452. 0.0886624 0.0443312 0.999017i \(-0.485884\pi\)
0.0443312 + 0.999017i \(0.485884\pi\)
\(548\) −403339. −0.0573745
\(549\) 4.36752e6 0.618449
\(550\) 0 0
\(551\) 107921. 0.0151435
\(552\) −1.35940e6 −0.189889
\(553\) 6.02736e6 0.838136
\(554\) −4.56400e6 −0.631788
\(555\) 0 0
\(556\) −1.70855e6 −0.234390
\(557\) −3.89737e6 −0.532272 −0.266136 0.963935i \(-0.585747\pi\)
−0.266136 + 0.963935i \(0.585747\pi\)
\(558\) −5.24437e6 −0.713029
\(559\) 1.43927e6 0.194811
\(560\) 0 0
\(561\) −25418.5 −0.00340992
\(562\) −7.91865e6 −1.05757
\(563\) −510725. −0.0679073 −0.0339536 0.999423i \(-0.510810\pi\)
−0.0339536 + 0.999423i \(0.510810\pi\)
\(564\) 454837. 0.0602085
\(565\) 0 0
\(566\) 5.80975e6 0.762283
\(567\) −7.21445e6 −0.942422
\(568\) −8.12834e6 −1.05714
\(569\) 9.75625e6 1.26329 0.631644 0.775259i \(-0.282381\pi\)
0.631644 + 0.775259i \(0.282381\pi\)
\(570\) 0 0
\(571\) −1.41952e7 −1.82201 −0.911006 0.412393i \(-0.864693\pi\)
−0.911006 + 0.412393i \(0.864693\pi\)
\(572\) 28049.9 0.00358461
\(573\) −365482. −0.0465029
\(574\) −4.57713e6 −0.579847
\(575\) 0 0
\(576\) −8.36622e6 −1.05069
\(577\) 1.16423e6 0.145579 0.0727896 0.997347i \(-0.476810\pi\)
0.0727896 + 0.997347i \(0.476810\pi\)
\(578\) −1.43689e6 −0.178898
\(579\) 1.07994e6 0.133877
\(580\) 0 0
\(581\) −9.44777e6 −1.16115
\(582\) 1.02972e6 0.126012
\(583\) −115796. −0.0141098
\(584\) −208140. −0.0252536
\(585\) 0 0
\(586\) 9322.45 0.00112147
\(587\) −6.58038e6 −0.788234 −0.394117 0.919060i \(-0.628950\pi\)
−0.394117 + 0.919060i \(0.628950\pi\)
\(588\) 15570.2 0.00185716
\(589\) −1.02236e6 −0.121427
\(590\) 0 0
\(591\) −1.08679e6 −0.127991
\(592\) −2.50600e6 −0.293885
\(593\) 1.91423e6 0.223541 0.111771 0.993734i \(-0.464348\pi\)
0.111771 + 0.993734i \(0.464348\pi\)
\(594\) 53316.8 0.00620009
\(595\) 0 0
\(596\) −811964. −0.0936313
\(597\) 1.05296e6 0.120914
\(598\) 3.26181e6 0.372997
\(599\) −2.33678e6 −0.266104 −0.133052 0.991109i \(-0.542478\pi\)
−0.133052 + 0.991109i \(0.542478\pi\)
\(600\) 0 0
\(601\) 1.04273e7 1.17757 0.588786 0.808289i \(-0.299606\pi\)
0.588786 + 0.808289i \(0.299606\pi\)
\(602\) −4.90684e6 −0.551837
\(603\) −8.30617e6 −0.930266
\(604\) −5.47324e6 −0.610453
\(605\) 0 0
\(606\) 1.03507e6 0.114495
\(607\) 120274. 0.0132495 0.00662474 0.999978i \(-0.497891\pi\)
0.00662474 + 0.999978i \(0.497891\pi\)
\(608\) −820455. −0.0900111
\(609\) 104005. 0.0113635
\(610\) 0 0
\(611\) −4.21169e6 −0.456408
\(612\) 2.82747e6 0.305154
\(613\) −1.34576e7 −1.44649 −0.723245 0.690592i \(-0.757350\pi\)
−0.723245 + 0.690592i \(0.757350\pi\)
\(614\) 1.83059e6 0.195961
\(615\) 0 0
\(616\) −369046. −0.0391858
\(617\) 6.84879e6 0.724270 0.362135 0.932126i \(-0.382048\pi\)
0.362135 + 0.932126i \(0.382048\pi\)
\(618\) −732778. −0.0771794
\(619\) −5.40663e6 −0.567153 −0.283577 0.958950i \(-0.591521\pi\)
−0.283577 + 0.958950i \(0.591521\pi\)
\(620\) 0 0
\(621\) −3.33490e6 −0.347019
\(622\) −8.78684e6 −0.910661
\(623\) −1.23773e6 −0.127763
\(624\) −148977. −0.0153164
\(625\) 0 0
\(626\) −7.50463e6 −0.765409
\(627\) 5168.33 0.000525027 0
\(628\) 1.00135e6 0.101318
\(629\) 4.87273e6 0.491072
\(630\) 0 0
\(631\) −9.62552e6 −0.962390 −0.481195 0.876614i \(-0.659797\pi\)
−0.481195 + 0.876614i \(0.659797\pi\)
\(632\) 9.40183e6 0.936310
\(633\) −1.41547e6 −0.140408
\(634\) 9.09920e6 0.899043
\(635\) 0 0
\(636\) −142512. −0.0139704
\(637\) −144176. −0.0140781
\(638\) 34158.1 0.00332232
\(639\) −9.91542e6 −0.960636
\(640\) 0 0
\(641\) −1.58752e7 −1.52607 −0.763037 0.646355i \(-0.776293\pi\)
−0.763037 + 0.646355i \(0.776293\pi\)
\(642\) 199710. 0.0191233
\(643\) −1.57235e7 −1.49976 −0.749880 0.661574i \(-0.769889\pi\)
−0.749880 + 0.661574i \(0.769889\pi\)
\(644\) 5.98149e6 0.568322
\(645\) 0 0
\(646\) −1.02475e6 −0.0966132
\(647\) 1.58173e7 1.48549 0.742747 0.669572i \(-0.233523\pi\)
0.742747 + 0.669572i \(0.233523\pi\)
\(648\) −1.12535e7 −1.05281
\(649\) 553699. 0.0516015
\(650\) 0 0
\(651\) −985270. −0.0911178
\(652\) −2.52573e6 −0.232685
\(653\) −5.31229e6 −0.487527 −0.243763 0.969835i \(-0.578382\pi\)
−0.243763 + 0.969835i \(0.578382\pi\)
\(654\) −470265. −0.0429931
\(655\) 0 0
\(656\) −4.29447e6 −0.389628
\(657\) −253901. −0.0229483
\(658\) 1.43587e7 1.29286
\(659\) 9.90554e6 0.888514 0.444257 0.895899i \(-0.353468\pi\)
0.444257 + 0.895899i \(0.353468\pi\)
\(660\) 0 0
\(661\) −1.29988e7 −1.15717 −0.578587 0.815621i \(-0.696396\pi\)
−0.578587 + 0.815621i \(0.696396\pi\)
\(662\) −3.08326e6 −0.273442
\(663\) 289674. 0.0255932
\(664\) −1.47372e7 −1.29716
\(665\) 0 0
\(666\) −5.08229e6 −0.443991
\(667\) −2.13654e6 −0.185950
\(668\) 2.34508e6 0.203337
\(669\) 95138.8 0.00821850
\(670\) 0 0
\(671\) 269486. 0.0231062
\(672\) −790688. −0.0675433
\(673\) 1.32503e7 1.12769 0.563844 0.825881i \(-0.309322\pi\)
0.563844 + 0.825881i \(0.309322\pi\)
\(674\) 9.74129e6 0.825975
\(675\) 0 0
\(676\) −319661. −0.0269044
\(677\) −2.23310e7 −1.87257 −0.936284 0.351245i \(-0.885758\pi\)
−0.936284 + 0.351245i \(0.885758\pi\)
\(678\) −851208. −0.0711151
\(679\) −1.74852e7 −1.45545
\(680\) 0 0
\(681\) −182259. −0.0150598
\(682\) −323589. −0.0266399
\(683\) 1.40049e7 1.14876 0.574380 0.818588i \(-0.305243\pi\)
0.574380 + 0.818588i \(0.305243\pi\)
\(684\) −574906. −0.0469847
\(685\) 0 0
\(686\) 1.01751e7 0.825523
\(687\) 1.87502e6 0.151571
\(688\) −4.60382e6 −0.370806
\(689\) 1.31963e6 0.105902
\(690\) 0 0
\(691\) −5.24817e6 −0.418132 −0.209066 0.977902i \(-0.567042\pi\)
−0.209066 + 0.977902i \(0.567042\pi\)
\(692\) −5.20645e6 −0.413310
\(693\) −450183. −0.0356087
\(694\) 1.17349e7 0.924870
\(695\) 0 0
\(696\) 162233. 0.0126945
\(697\) 8.35027e6 0.651056
\(698\) 9.23090e6 0.717142
\(699\) −1.02810e6 −0.0795868
\(700\) 0 0
\(701\) −2.13994e7 −1.64477 −0.822386 0.568930i \(-0.807358\pi\)
−0.822386 + 0.568930i \(0.807358\pi\)
\(702\) −607607. −0.0465350
\(703\) −990767. −0.0756107
\(704\) −516214. −0.0392553
\(705\) 0 0
\(706\) −9.34250e6 −0.705426
\(707\) −1.75760e7 −1.32243
\(708\) 681447. 0.0510915
\(709\) 4.35333e6 0.325242 0.162621 0.986689i \(-0.448005\pi\)
0.162621 + 0.986689i \(0.448005\pi\)
\(710\) 0 0
\(711\) 1.14689e7 0.850839
\(712\) −1.93069e6 −0.142729
\(713\) 2.02401e7 1.49104
\(714\) −987571. −0.0724975
\(715\) 0 0
\(716\) 5.28915e6 0.385570
\(717\) −270087. −0.0196203
\(718\) −7.29395e6 −0.528021
\(719\) 2.21389e7 1.59710 0.798552 0.601926i \(-0.205600\pi\)
0.798552 + 0.601926i \(0.205600\pi\)
\(720\) 0 0
\(721\) 1.24430e7 0.891426
\(722\) −1.10865e7 −0.791501
\(723\) 1.12675e6 0.0801645
\(724\) 829338. 0.0588010
\(725\) 0 0
\(726\) −1.19633e6 −0.0842385
\(727\) 4.83218e6 0.339084 0.169542 0.985523i \(-0.445771\pi\)
0.169542 + 0.985523i \(0.445771\pi\)
\(728\) 4.20570e6 0.294110
\(729\) −1.34154e7 −0.934940
\(730\) 0 0
\(731\) 8.95178e6 0.619606
\(732\) 331661. 0.0228779
\(733\) 2.47827e7 1.70368 0.851840 0.523803i \(-0.175487\pi\)
0.851840 + 0.523803i \(0.175487\pi\)
\(734\) 1.76253e7 1.20753
\(735\) 0 0
\(736\) 1.62428e7 1.10527
\(737\) −512509. −0.0347562
\(738\) −8.70939e6 −0.588636
\(739\) 7.09289e6 0.477762 0.238881 0.971049i \(-0.423219\pi\)
0.238881 + 0.971049i \(0.423219\pi\)
\(740\) 0 0
\(741\) −58899.1 −0.00394061
\(742\) −4.49895e6 −0.299986
\(743\) −1.95117e7 −1.29665 −0.648327 0.761362i \(-0.724531\pi\)
−0.648327 + 0.761362i \(0.724531\pi\)
\(744\) −1.53688e6 −0.101791
\(745\) 0 0
\(746\) 7.14803e6 0.470262
\(747\) −1.79773e7 −1.17875
\(748\) 174461. 0.0114010
\(749\) −3.39118e6 −0.220875
\(750\) 0 0
\(751\) 1.66103e7 1.07468 0.537339 0.843366i \(-0.319430\pi\)
0.537339 + 0.843366i \(0.319430\pi\)
\(752\) 1.34720e7 0.868733
\(753\) −630891. −0.0405477
\(754\) −389271. −0.0249358
\(755\) 0 0
\(756\) −1.11423e6 −0.0709037
\(757\) −1.22902e6 −0.0779508 −0.0389754 0.999240i \(-0.512409\pi\)
−0.0389754 + 0.999240i \(0.512409\pi\)
\(758\) 1.45622e7 0.920567
\(759\) −102319. −0.00644693
\(760\) 0 0
\(761\) 1.37482e7 0.860569 0.430284 0.902693i \(-0.358413\pi\)
0.430284 + 0.902693i \(0.358413\pi\)
\(762\) 1.85121e6 0.115496
\(763\) 7.98535e6 0.496572
\(764\) 2.50850e6 0.155482
\(765\) 0 0
\(766\) −1.82659e6 −0.112478
\(767\) −6.31004e6 −0.387297
\(768\) −1.54908e6 −0.0947699
\(769\) −1.01549e7 −0.619240 −0.309620 0.950860i \(-0.600202\pi\)
−0.309620 + 0.950860i \(0.600202\pi\)
\(770\) 0 0
\(771\) −421140. −0.0255147
\(772\) −7.41222e6 −0.447616
\(773\) −1.41511e7 −0.851807 −0.425903 0.904769i \(-0.640044\pi\)
−0.425903 + 0.904769i \(0.640044\pi\)
\(774\) −9.33677e6 −0.560202
\(775\) 0 0
\(776\) −2.72745e7 −1.62593
\(777\) −954821. −0.0567374
\(778\) 1.88593e6 0.111706
\(779\) −1.69785e6 −0.100243
\(780\) 0 0
\(781\) −611803. −0.0358909
\(782\) 2.02873e7 1.18634
\(783\) 397993. 0.0231991
\(784\) 461178. 0.0267965
\(785\) 0 0
\(786\) 765882. 0.0442186
\(787\) 1.03095e6 0.0593338 0.0296669 0.999560i \(-0.490555\pi\)
0.0296669 + 0.999560i \(0.490555\pi\)
\(788\) 7.45923e6 0.427935
\(789\) 1.94137e6 0.111024
\(790\) 0 0
\(791\) 1.44540e7 0.821383
\(792\) −702222. −0.0397797
\(793\) −3.07110e6 −0.173425
\(794\) 469500. 0.0264292
\(795\) 0 0
\(796\) −7.22705e6 −0.404276
\(797\) 1.43337e7 0.799303 0.399651 0.916667i \(-0.369131\pi\)
0.399651 + 0.916667i \(0.369131\pi\)
\(798\) 200802. 0.0111625
\(799\) −2.61952e7 −1.45163
\(800\) 0 0
\(801\) −2.35516e6 −0.129700
\(802\) 1.01889e7 0.559360
\(803\) −15666.3 −0.000857386 0
\(804\) −630753. −0.0344127
\(805\) 0 0
\(806\) 3.68767e6 0.199947
\(807\) 1.38766e6 0.0750065
\(808\) −2.74161e7 −1.47733
\(809\) 1.55020e7 0.832751 0.416376 0.909193i \(-0.363300\pi\)
0.416376 + 0.909193i \(0.363300\pi\)
\(810\) 0 0
\(811\) 2.45861e7 1.31261 0.656307 0.754494i \(-0.272118\pi\)
0.656307 + 0.754494i \(0.272118\pi\)
\(812\) −713842. −0.0379938
\(813\) −66737.5 −0.00354114
\(814\) −313589. −0.0165882
\(815\) 0 0
\(816\) −926583. −0.0487146
\(817\) −1.82016e6 −0.0954011
\(818\) −2.03513e7 −1.06343
\(819\) 5.13036e6 0.267262
\(820\) 0 0
\(821\) −3.33396e6 −0.172624 −0.0863122 0.996268i \(-0.527508\pi\)
−0.0863122 + 0.996268i \(0.527508\pi\)
\(822\) 268062. 0.0138375
\(823\) −3.08787e6 −0.158913 −0.0794564 0.996838i \(-0.525318\pi\)
−0.0794564 + 0.996838i \(0.525318\pi\)
\(824\) 1.94092e7 0.995842
\(825\) 0 0
\(826\) 2.15125e7 1.09709
\(827\) −6.89555e6 −0.350595 −0.175297 0.984516i \(-0.556089\pi\)
−0.175297 + 0.984516i \(0.556089\pi\)
\(828\) 1.13816e7 0.576936
\(829\) −2.00007e7 −1.01078 −0.505391 0.862890i \(-0.668652\pi\)
−0.505391 + 0.862890i \(0.668652\pi\)
\(830\) 0 0
\(831\) −1.63156e6 −0.0819596
\(832\) 5.88286e6 0.294632
\(833\) −896725. −0.0447762
\(834\) 1.13551e6 0.0565297
\(835\) 0 0
\(836\) −35473.0 −0.00175542
\(837\) −3.77030e6 −0.186021
\(838\) 1.92859e7 0.948701
\(839\) 5.23988e6 0.256990 0.128495 0.991710i \(-0.458985\pi\)
0.128495 + 0.991710i \(0.458985\pi\)
\(840\) 0 0
\(841\) −2.02562e7 −0.987569
\(842\) 1.87841e7 0.913081
\(843\) −2.83079e6 −0.137195
\(844\) 9.71509e6 0.469452
\(845\) 0 0
\(846\) 2.73218e7 1.31245
\(847\) 2.03144e7 0.972959
\(848\) −4.22111e6 −0.201575
\(849\) 2.07689e6 0.0988883
\(850\) 0 0
\(851\) 1.96146e7 0.928442
\(852\) −752957. −0.0355362
\(853\) 1.32853e7 0.625170 0.312585 0.949890i \(-0.398805\pi\)
0.312585 + 0.949890i \(0.398805\pi\)
\(854\) 1.04702e7 0.491257
\(855\) 0 0
\(856\) −5.28976e6 −0.246747
\(857\) 8.34473e6 0.388115 0.194057 0.980990i \(-0.437835\pi\)
0.194057 + 0.980990i \(0.437835\pi\)
\(858\) −18642.2 −0.000864528 0
\(859\) −4.07521e7 −1.88437 −0.942187 0.335088i \(-0.891234\pi\)
−0.942187 + 0.335088i \(0.891234\pi\)
\(860\) 0 0
\(861\) −1.63625e6 −0.0752216
\(862\) 5.26056e6 0.241137
\(863\) 1.73853e7 0.794614 0.397307 0.917686i \(-0.369945\pi\)
0.397307 + 0.917686i \(0.369945\pi\)
\(864\) −3.02570e6 −0.137893
\(865\) 0 0
\(866\) 153881. 0.00697252
\(867\) −513667. −0.0232078
\(868\) 6.76243e6 0.304652
\(869\) 707656. 0.0317887
\(870\) 0 0
\(871\) 5.84063e6 0.260864
\(872\) 1.24560e7 0.554738
\(873\) −3.32710e7 −1.47751
\(874\) −4.12500e6 −0.182661
\(875\) 0 0
\(876\) −19280.7 −0.000848912 0
\(877\) −2.58279e6 −0.113394 −0.0566971 0.998391i \(-0.518057\pi\)
−0.0566971 + 0.998391i \(0.518057\pi\)
\(878\) 3.41370e7 1.49447
\(879\) 3332.63 0.000145484 0
\(880\) 0 0
\(881\) −1.66814e7 −0.724090 −0.362045 0.932161i \(-0.617921\pi\)
−0.362045 + 0.932161i \(0.617921\pi\)
\(882\) 935291. 0.0404833
\(883\) −2.36384e7 −1.02027 −0.510137 0.860093i \(-0.670405\pi\)
−0.510137 + 0.860093i \(0.670405\pi\)
\(884\) −1.98818e6 −0.0855708
\(885\) 0 0
\(886\) 1.49632e7 0.640382
\(887\) 5.25660e6 0.224334 0.112167 0.993689i \(-0.464221\pi\)
0.112167 + 0.993689i \(0.464221\pi\)
\(888\) −1.48939e6 −0.0633833
\(889\) −3.14345e7 −1.33399
\(890\) 0 0
\(891\) −847029. −0.0357441
\(892\) −652988. −0.0274785
\(893\) 5.32625e6 0.223508
\(894\) 539638. 0.0225818
\(895\) 0 0
\(896\) −4.53994e6 −0.188921
\(897\) 1.16605e6 0.0483876
\(898\) 3.62806e7 1.50135
\(899\) −2.41549e6 −0.0996795
\(900\) 0 0
\(901\) 8.20763e6 0.336826
\(902\) −537389. −0.0219924
\(903\) −1.75412e6 −0.0715879
\(904\) 2.25461e7 0.917595
\(905\) 0 0
\(906\) 3.63756e6 0.147228
\(907\) −3.22789e7 −1.30287 −0.651435 0.758705i \(-0.725833\pi\)
−0.651435 + 0.758705i \(0.725833\pi\)
\(908\) 1.25094e6 0.0503525
\(909\) −3.34438e7 −1.34247
\(910\) 0 0
\(911\) 4.20975e7 1.68058 0.840292 0.542134i \(-0.182383\pi\)
0.840292 + 0.542134i \(0.182383\pi\)
\(912\) 188401. 0.00750061
\(913\) −1.10924e6 −0.0440400
\(914\) 1.52897e7 0.605389
\(915\) 0 0
\(916\) −1.28693e7 −0.506775
\(917\) −1.30051e7 −0.510728
\(918\) −3.77910e6 −0.148007
\(919\) −2.19460e7 −0.857168 −0.428584 0.903502i \(-0.640987\pi\)
−0.428584 + 0.903502i \(0.640987\pi\)
\(920\) 0 0
\(921\) 654407. 0.0254213
\(922\) 2.13767e7 0.828157
\(923\) 6.97221e6 0.269380
\(924\) −34186.0 −0.00131725
\(925\) 0 0
\(926\) −3.03205e7 −1.16201
\(927\) 2.36765e7 0.904937
\(928\) −1.93845e6 −0.0738899
\(929\) −1.35921e7 −0.516710 −0.258355 0.966050i \(-0.583180\pi\)
−0.258355 + 0.966050i \(0.583180\pi\)
\(930\) 0 0
\(931\) 182330. 0.00689421
\(932\) 7.05637e6 0.266098
\(933\) −3.14116e6 −0.118137
\(934\) 1.43297e7 0.537489
\(935\) 0 0
\(936\) 8.00263e6 0.298568
\(937\) −3.01018e7 −1.12007 −0.560033 0.828470i \(-0.689212\pi\)
−0.560033 + 0.828470i \(0.689212\pi\)
\(938\) −1.99122e7 −0.738944
\(939\) −2.68279e6 −0.0992938
\(940\) 0 0
\(941\) −1.06275e7 −0.391252 −0.195626 0.980679i \(-0.562674\pi\)
−0.195626 + 0.980679i \(0.562674\pi\)
\(942\) −665503. −0.0244356
\(943\) 3.36130e7 1.23091
\(944\) 2.01840e7 0.737187
\(945\) 0 0
\(946\) −576099. −0.0209300
\(947\) 2.41709e7 0.875826 0.437913 0.899017i \(-0.355718\pi\)
0.437913 + 0.899017i \(0.355718\pi\)
\(948\) 870924. 0.0314745
\(949\) 178535. 0.00643514
\(950\) 0 0
\(951\) 3.25282e6 0.116630
\(952\) 2.61580e7 0.935432
\(953\) −4.27043e7 −1.52314 −0.761569 0.648084i \(-0.775570\pi\)
−0.761569 + 0.648084i \(0.775570\pi\)
\(954\) −8.56063e6 −0.304533
\(955\) 0 0
\(956\) 1.85375e6 0.0656003
\(957\) 12211.0 0.000430993 0
\(958\) −3.04842e7 −1.07315
\(959\) −4.55184e6 −0.159823
\(960\) 0 0
\(961\) −5.74655e6 −0.200724
\(962\) 3.57371e6 0.124503
\(963\) −6.45276e6 −0.224223
\(964\) −7.73348e6 −0.268029
\(965\) 0 0
\(966\) −3.97535e6 −0.137067
\(967\) 4.42692e7 1.52242 0.761211 0.648504i \(-0.224605\pi\)
0.761211 + 0.648504i \(0.224605\pi\)
\(968\) 3.16875e7 1.08693
\(969\) −366332. −0.0125333
\(970\) 0 0
\(971\) 3.88962e7 1.32391 0.661956 0.749542i \(-0.269726\pi\)
0.661956 + 0.749542i \(0.269726\pi\)
\(972\) −3.18606e6 −0.108166
\(973\) −1.92816e7 −0.652922
\(974\) 1.85417e7 0.626257
\(975\) 0 0
\(976\) 9.82357e6 0.330099
\(977\) 2.71611e7 0.910354 0.455177 0.890401i \(-0.349576\pi\)
0.455177 + 0.890401i \(0.349576\pi\)
\(978\) 1.67862e6 0.0561184
\(979\) −145319. −0.00484580
\(980\) 0 0
\(981\) 1.51946e7 0.504099
\(982\) −9.59904e6 −0.317650
\(983\) 1.98048e7 0.653714 0.326857 0.945074i \(-0.394011\pi\)
0.326857 + 0.945074i \(0.394011\pi\)
\(984\) −2.55232e6 −0.0840326
\(985\) 0 0
\(986\) −2.42113e6 −0.0793096
\(987\) 5.13301e6 0.167718
\(988\) 404255. 0.0131754
\(989\) 3.60343e7 1.17145
\(990\) 0 0
\(991\) −1.44104e7 −0.466115 −0.233057 0.972463i \(-0.574873\pi\)
−0.233057 + 0.972463i \(0.574873\pi\)
\(992\) 1.83635e7 0.592483
\(993\) −1.10222e6 −0.0354727
\(994\) −2.37700e7 −0.763068
\(995\) 0 0
\(996\) −1.36516e6 −0.0436048
\(997\) −3.16635e7 −1.00884 −0.504418 0.863459i \(-0.668293\pi\)
−0.504418 + 0.863459i \(0.668293\pi\)
\(998\) 2.72195e7 0.865074
\(999\) −3.65378e6 −0.115832
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 325.6.a.b.1.2 2
5.2 odd 4 325.6.b.b.274.4 4
5.3 odd 4 325.6.b.b.274.1 4
5.4 even 2 13.6.a.a.1.1 2
15.14 odd 2 117.6.a.c.1.2 2
20.19 odd 2 208.6.a.h.1.1 2
35.34 odd 2 637.6.a.a.1.1 2
40.19 odd 2 832.6.a.i.1.2 2
40.29 even 2 832.6.a.p.1.1 2
65.34 odd 4 169.6.b.a.168.1 4
65.44 odd 4 169.6.b.a.168.4 4
65.64 even 2 169.6.a.a.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
13.6.a.a.1.1 2 5.4 even 2
117.6.a.c.1.2 2 15.14 odd 2
169.6.a.a.1.2 2 65.64 even 2
169.6.b.a.168.1 4 65.34 odd 4
169.6.b.a.168.4 4 65.44 odd 4
208.6.a.h.1.1 2 20.19 odd 2
325.6.a.b.1.2 2 1.1 even 1 trivial
325.6.b.b.274.1 4 5.3 odd 4
325.6.b.b.274.4 4 5.2 odd 4
637.6.a.a.1.1 2 35.34 odd 2
832.6.a.i.1.2 2 40.19 odd 2
832.6.a.p.1.1 2 40.29 even 2