Properties

Label 170.2.a.f.1.2
Level 170170
Weight 22
Character 170.1
Self dual yes
Analytic conductor 1.3571.357
Analytic rank 00
Dimension 22
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [170,2,Mod(1,170)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(170, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("170.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 170=2517 170 = 2 \cdot 5 \cdot 17
Weight: k k == 2 2
Character orbit: [χ][\chi] == 170.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 1.357456834361.35745683436
Analytic rank: 00
Dimension: 22
Coefficient field: Q(17)\Q(\sqrt{17})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x2x4 x^{2} - x - 4 Copy content Toggle raw display
Coefficient ring: Z[a1,a2,a3]\Z[a_1, a_2, a_3]
Coefficient ring index: 1 1
Twist minimal: yes
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

Embedding invariants

Embedding label 1.2
Root 1.56155-1.56155 of defining polynomial
Character χ\chi == 170.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+1.00000q2+1.56155q3+1.00000q4+1.00000q5+1.56155q63.12311q7+1.00000q80.561553q9+1.00000q104.00000q11+1.56155q12+0.438447q133.12311q14+1.56155q15+1.00000q16+1.00000q170.561553q18+1.56155q19+1.00000q204.87689q214.00000q22+3.12311q23+1.56155q24+1.00000q25+0.438447q265.56155q273.12311q28+6.68466q29+1.56155q302.43845q31+1.00000q326.24621q33+1.00000q343.12311q350.561553q36+1.12311q37+1.56155q38+0.684658q39+1.00000q4012.2462q414.87689q42+7.12311q434.00000q440.561553q45+3.12311q46+2.43845q47+1.56155q48+2.75379q49+1.00000q50+1.56155q51+0.438447q52+3.56155q535.56155q544.00000q553.12311q56+2.43845q57+6.68466q5812.6847q59+1.56155q60+11.5616q612.43845q62+1.75379q63+1.00000q64+0.438447q656.24621q660.876894q67+1.00000q68+4.87689q693.12311q7016.6847q710.561553q72+13.8078q73+1.12311q74+1.56155q75+1.56155q76+12.4924q77+0.684658q78+1.00000q807.00000q8112.2462q82+10.2462q834.87689q84+1.00000q85+7.12311q86+10.4384q874.00000q88+2.68466q890.561553q901.36932q91+3.12311q923.80776q93+2.43845q94+1.56155q95+1.56155q96+10.6847q97+2.75379q98+2.24621q99+O(q100)q+1.00000 q^{2} +1.56155 q^{3} +1.00000 q^{4} +1.00000 q^{5} +1.56155 q^{6} -3.12311 q^{7} +1.00000 q^{8} -0.561553 q^{9} +1.00000 q^{10} -4.00000 q^{11} +1.56155 q^{12} +0.438447 q^{13} -3.12311 q^{14} +1.56155 q^{15} +1.00000 q^{16} +1.00000 q^{17} -0.561553 q^{18} +1.56155 q^{19} +1.00000 q^{20} -4.87689 q^{21} -4.00000 q^{22} +3.12311 q^{23} +1.56155 q^{24} +1.00000 q^{25} +0.438447 q^{26} -5.56155 q^{27} -3.12311 q^{28} +6.68466 q^{29} +1.56155 q^{30} -2.43845 q^{31} +1.00000 q^{32} -6.24621 q^{33} +1.00000 q^{34} -3.12311 q^{35} -0.561553 q^{36} +1.12311 q^{37} +1.56155 q^{38} +0.684658 q^{39} +1.00000 q^{40} -12.2462 q^{41} -4.87689 q^{42} +7.12311 q^{43} -4.00000 q^{44} -0.561553 q^{45} +3.12311 q^{46} +2.43845 q^{47} +1.56155 q^{48} +2.75379 q^{49} +1.00000 q^{50} +1.56155 q^{51} +0.438447 q^{52} +3.56155 q^{53} -5.56155 q^{54} -4.00000 q^{55} -3.12311 q^{56} +2.43845 q^{57} +6.68466 q^{58} -12.6847 q^{59} +1.56155 q^{60} +11.5616 q^{61} -2.43845 q^{62} +1.75379 q^{63} +1.00000 q^{64} +0.438447 q^{65} -6.24621 q^{66} -0.876894 q^{67} +1.00000 q^{68} +4.87689 q^{69} -3.12311 q^{70} -16.6847 q^{71} -0.561553 q^{72} +13.8078 q^{73} +1.12311 q^{74} +1.56155 q^{75} +1.56155 q^{76} +12.4924 q^{77} +0.684658 q^{78} +1.00000 q^{80} -7.00000 q^{81} -12.2462 q^{82} +10.2462 q^{83} -4.87689 q^{84} +1.00000 q^{85} +7.12311 q^{86} +10.4384 q^{87} -4.00000 q^{88} +2.68466 q^{89} -0.561553 q^{90} -1.36932 q^{91} +3.12311 q^{92} -3.80776 q^{93} +2.43845 q^{94} +1.56155 q^{95} +1.56155 q^{96} +10.6847 q^{97} +2.75379 q^{98} +2.24621 q^{99} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q+2q2q3+2q4+2q5q6+2q7+2q8+3q9+2q108q11q12+5q13+2q14q15+2q16+2q17+3q18q19+2q2018q21+12q99+O(q100) 2 q + 2 q^{2} - q^{3} + 2 q^{4} + 2 q^{5} - q^{6} + 2 q^{7} + 2 q^{8} + 3 q^{9} + 2 q^{10} - 8 q^{11} - q^{12} + 5 q^{13} + 2 q^{14} - q^{15} + 2 q^{16} + 2 q^{17} + 3 q^{18} - q^{19} + 2 q^{20} - 18 q^{21}+ \cdots - 12 q^{99}+O(q^{100}) Copy content Toggle raw display

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 1.00000 0.707107
33 1.56155 0.901563 0.450781 0.892634i 0.351145π-0.351145\pi
0.450781 + 0.892634i 0.351145π0.351145\pi
44 1.00000 0.500000
55 1.00000 0.447214
66 1.56155 0.637501
77 −3.12311 −1.18042 −0.590211 0.807249i 0.700956π-0.700956\pi
−0.590211 + 0.807249i 0.700956π0.700956\pi
88 1.00000 0.353553
99 −0.561553 −0.187184
1010 1.00000 0.316228
1111 −4.00000 −1.20605 −0.603023 0.797724i 0.706037π-0.706037\pi
−0.603023 + 0.797724i 0.706037π0.706037\pi
1212 1.56155 0.450781
1313 0.438447 0.121603 0.0608017 0.998150i 0.480634π-0.480634\pi
0.0608017 + 0.998150i 0.480634π0.480634\pi
1414 −3.12311 −0.834685
1515 1.56155 0.403191
1616 1.00000 0.250000
1717 1.00000 0.242536
1818 −0.561553 −0.132359
1919 1.56155 0.358245 0.179122 0.983827i 0.442674π-0.442674\pi
0.179122 + 0.983827i 0.442674π0.442674\pi
2020 1.00000 0.223607
2121 −4.87689 −1.06423
2222 −4.00000 −0.852803
2323 3.12311 0.651213 0.325606 0.945505i 0.394432π-0.394432\pi
0.325606 + 0.945505i 0.394432π0.394432\pi
2424 1.56155 0.318751
2525 1.00000 0.200000
2626 0.438447 0.0859866
2727 −5.56155 −1.07032
2828 −3.12311 −0.590211
2929 6.68466 1.24131 0.620655 0.784084i 0.286867π-0.286867\pi
0.620655 + 0.784084i 0.286867π0.286867\pi
3030 1.56155 0.285099
3131 −2.43845 −0.437958 −0.218979 0.975730i 0.570273π-0.570273\pi
−0.218979 + 0.975730i 0.570273π0.570273\pi
3232 1.00000 0.176777
3333 −6.24621 −1.08733
3434 1.00000 0.171499
3535 −3.12311 −0.527901
3636 −0.561553 −0.0935921
3737 1.12311 0.184637 0.0923187 0.995730i 0.470572π-0.470572\pi
0.0923187 + 0.995730i 0.470572π0.470572\pi
3838 1.56155 0.253317
3939 0.684658 0.109633
4040 1.00000 0.158114
4141 −12.2462 −1.91254 −0.956268 0.292490i 0.905516π-0.905516\pi
−0.956268 + 0.292490i 0.905516π0.905516\pi
4242 −4.87689 −0.752521
4343 7.12311 1.08626 0.543132 0.839648i 0.317238π-0.317238\pi
0.543132 + 0.839648i 0.317238π0.317238\pi
4444 −4.00000 −0.603023
4545 −0.561553 −0.0837114
4646 3.12311 0.460477
4747 2.43845 0.355684 0.177842 0.984059i 0.443088π-0.443088\pi
0.177842 + 0.984059i 0.443088π0.443088\pi
4848 1.56155 0.225391
4949 2.75379 0.393398
5050 1.00000 0.141421
5151 1.56155 0.218661
5252 0.438447 0.0608017
5353 3.56155 0.489217 0.244608 0.969622i 0.421341π-0.421341\pi
0.244608 + 0.969622i 0.421341π0.421341\pi
5454 −5.56155 −0.756831
5555 −4.00000 −0.539360
5656 −3.12311 −0.417343
5757 2.43845 0.322980
5858 6.68466 0.877739
5959 −12.6847 −1.65140 −0.825701 0.564108i 0.809220π-0.809220\pi
−0.825701 + 0.564108i 0.809220π0.809220\pi
6060 1.56155 0.201596
6161 11.5616 1.48031 0.740153 0.672439i 0.234753π-0.234753\pi
0.740153 + 0.672439i 0.234753π0.234753\pi
6262 −2.43845 −0.309683
6363 1.75379 0.220957
6464 1.00000 0.125000
6565 0.438447 0.0543827
6666 −6.24621 −0.768855
6767 −0.876894 −0.107130 −0.0535648 0.998564i 0.517058π-0.517058\pi
−0.0535648 + 0.998564i 0.517058π0.517058\pi
6868 1.00000 0.121268
6969 4.87689 0.587109
7070 −3.12311 −0.373283
7171 −16.6847 −1.98010 −0.990052 0.140700i 0.955065π-0.955065\pi
−0.990052 + 0.140700i 0.955065π0.955065\pi
7272 −0.561553 −0.0661796
7373 13.8078 1.61608 0.808038 0.589130i 0.200529π-0.200529\pi
0.808038 + 0.589130i 0.200529π0.200529\pi
7474 1.12311 0.130558
7575 1.56155 0.180313
7676 1.56155 0.179122
7777 12.4924 1.42364
7878 0.684658 0.0775223
7979 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
8080 1.00000 0.111803
8181 −7.00000 −0.777778
8282 −12.2462 −1.35237
8383 10.2462 1.12467 0.562334 0.826910i 0.309904π-0.309904\pi
0.562334 + 0.826910i 0.309904π0.309904\pi
8484 −4.87689 −0.532113
8585 1.00000 0.108465
8686 7.12311 0.768104
8787 10.4384 1.11912
8888 −4.00000 −0.426401
8989 2.68466 0.284573 0.142287 0.989825i 0.454555π-0.454555\pi
0.142287 + 0.989825i 0.454555π0.454555\pi
9090 −0.561553 −0.0591929
9191 −1.36932 −0.143543
9292 3.12311 0.325606
9393 −3.80776 −0.394847
9494 2.43845 0.251507
9595 1.56155 0.160212
9696 1.56155 0.159375
9797 10.6847 1.08486 0.542431 0.840100i 0.317504π-0.317504\pi
0.542431 + 0.840100i 0.317504π0.317504\pi
9898 2.75379 0.278175
9999 2.24621 0.225753
100100 1.00000 0.100000
101101 18.4924 1.84006 0.920032 0.391842i 0.128162π-0.128162\pi
0.920032 + 0.391842i 0.128162π0.128162\pi
102102 1.56155 0.154617
103103 8.00000 0.788263 0.394132 0.919054i 0.371045π-0.371045\pi
0.394132 + 0.919054i 0.371045π0.371045\pi
104104 0.438447 0.0429933
105105 −4.87689 −0.475936
106106 3.56155 0.345929
107107 −16.4924 −1.59438 −0.797191 0.603727i 0.793682π-0.793682\pi
−0.797191 + 0.603727i 0.793682π0.793682\pi
108108 −5.56155 −0.535161
109109 −4.43845 −0.425126 −0.212563 0.977147i 0.568181π-0.568181\pi
−0.212563 + 0.977147i 0.568181π0.568181\pi
110110 −4.00000 −0.381385
111111 1.75379 0.166462
112112 −3.12311 −0.295106
113113 −17.8078 −1.67521 −0.837607 0.546274i 0.816046π-0.816046\pi
−0.837607 + 0.546274i 0.816046π0.816046\pi
114114 2.43845 0.228382
115115 3.12311 0.291231
116116 6.68466 0.620655
117117 −0.246211 −0.0227622
118118 −12.6847 −1.16772
119119 −3.12311 −0.286295
120120 1.56155 0.142550
121121 5.00000 0.454545
122122 11.5616 1.04673
123123 −19.1231 −1.72427
124124 −2.43845 −0.218979
125125 1.00000 0.0894427
126126 1.75379 0.156240
127127 13.5616 1.20339 0.601697 0.798725i 0.294492π-0.294492\pi
0.601697 + 0.798725i 0.294492π0.294492\pi
128128 1.00000 0.0883883
129129 11.1231 0.979335
130130 0.438447 0.0384544
131131 −7.12311 −0.622349 −0.311174 0.950353i 0.600722π-0.600722\pi
−0.311174 + 0.950353i 0.600722π0.600722\pi
132132 −6.24621 −0.543663
133133 −4.87689 −0.422880
134134 −0.876894 −0.0757521
135135 −5.56155 −0.478662
136136 1.00000 0.0857493
137137 10.0000 0.854358 0.427179 0.904167i 0.359507π-0.359507\pi
0.427179 + 0.904167i 0.359507π0.359507\pi
138138 4.87689 0.415149
139139 −16.4924 −1.39887 −0.699435 0.714697i 0.746565π-0.746565\pi
−0.699435 + 0.714697i 0.746565π0.746565\pi
140140 −3.12311 −0.263951
141141 3.80776 0.320672
142142 −16.6847 −1.40015
143143 −1.75379 −0.146659
144144 −0.561553 −0.0467961
145145 6.68466 0.555131
146146 13.8078 1.14274
147147 4.30019 0.354673
148148 1.12311 0.0923187
149149 −5.12311 −0.419701 −0.209851 0.977733i 0.567298π-0.567298\pi
−0.209851 + 0.977733i 0.567298π0.567298\pi
150150 1.56155 0.127500
151151 9.36932 0.762464 0.381232 0.924479i 0.375500π-0.375500\pi
0.381232 + 0.924479i 0.375500π0.375500\pi
152152 1.56155 0.126659
153153 −0.561553 −0.0453989
154154 12.4924 1.00667
155155 −2.43845 −0.195861
156156 0.684658 0.0548165
157157 −14.4924 −1.15662 −0.578311 0.815817i 0.696288π-0.696288\pi
−0.578311 + 0.815817i 0.696288π0.696288\pi
158158 0 0
159159 5.56155 0.441060
160160 1.00000 0.0790569
161161 −9.75379 −0.768706
162162 −7.00000 −0.549972
163163 −2.24621 −0.175937 −0.0879684 0.996123i 0.528037π-0.528037\pi
−0.0879684 + 0.996123i 0.528037π0.528037\pi
164164 −12.2462 −0.956268
165165 −6.24621 −0.486267
166166 10.2462 0.795260
167167 −3.12311 −0.241673 −0.120837 0.992672i 0.538558π-0.538558\pi
−0.120837 + 0.992672i 0.538558π0.538558\pi
168168 −4.87689 −0.376261
169169 −12.8078 −0.985213
170170 1.00000 0.0766965
171171 −0.876894 −0.0670578
172172 7.12311 0.543132
173173 −18.0000 −1.36851 −0.684257 0.729241i 0.739873π-0.739873\pi
−0.684257 + 0.729241i 0.739873π0.739873\pi
174174 10.4384 0.791337
175175 −3.12311 −0.236085
176176 −4.00000 −0.301511
177177 −19.8078 −1.48884
178178 2.68466 0.201224
179179 −24.4924 −1.83065 −0.915325 0.402716i 0.868066π-0.868066\pi
−0.915325 + 0.402716i 0.868066π0.868066\pi
180180 −0.561553 −0.0418557
181181 −0.246211 −0.0183007 −0.00915037 0.999958i 0.502913π-0.502913\pi
−0.00915037 + 0.999958i 0.502913π0.502913\pi
182182 −1.36932 −0.101501
183183 18.0540 1.33459
184184 3.12311 0.230238
185185 1.12311 0.0825724
186186 −3.80776 −0.279199
187187 −4.00000 −0.292509
188188 2.43845 0.177842
189189 17.3693 1.26343
190190 1.56155 0.113287
191191 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
192192 1.56155 0.112695
193193 −7.75379 −0.558130 −0.279065 0.960272i 0.590024π-0.590024\pi
−0.279065 + 0.960272i 0.590024π0.590024\pi
194194 10.6847 0.767114
195195 0.684658 0.0490294
196196 2.75379 0.196699
197197 −11.3693 −0.810030 −0.405015 0.914310i 0.632734π-0.632734\pi
−0.405015 + 0.914310i 0.632734π0.632734\pi
198198 2.24621 0.159631
199199 10.4384 0.739962 0.369981 0.929039i 0.379364π-0.379364\pi
0.369981 + 0.929039i 0.379364π0.379364\pi
200200 1.00000 0.0707107
201201 −1.36932 −0.0965842
202202 18.4924 1.30112
203203 −20.8769 −1.46527
204204 1.56155 0.109331
205205 −12.2462 −0.855312
206206 8.00000 0.557386
207207 −1.75379 −0.121897
208208 0.438447 0.0304008
209209 −6.24621 −0.432059
210210 −4.87689 −0.336538
211211 21.3693 1.47112 0.735562 0.677457i 0.236918π-0.236918\pi
0.735562 + 0.677457i 0.236918π0.236918\pi
212212 3.56155 0.244608
213213 −26.0540 −1.78519
214214 −16.4924 −1.12740
215215 7.12311 0.485792
216216 −5.56155 −0.378416
217217 7.61553 0.516976
218218 −4.43845 −0.300610
219219 21.5616 1.45699
220220 −4.00000 −0.269680
221221 0.438447 0.0294931
222222 1.75379 0.117707
223223 −8.68466 −0.581568 −0.290784 0.956789i 0.593916π-0.593916\pi
−0.290784 + 0.956789i 0.593916π0.593916\pi
224224 −3.12311 −0.208671
225225 −0.561553 −0.0374369
226226 −17.8078 −1.18455
227227 28.6847 1.90387 0.951934 0.306304i 0.0990923π-0.0990923\pi
0.951934 + 0.306304i 0.0990923π0.0990923\pi
228228 2.43845 0.161490
229229 18.4924 1.22201 0.611007 0.791625i 0.290765π-0.290765\pi
0.611007 + 0.791625i 0.290765π0.290765\pi
230230 3.12311 0.205931
231231 19.5076 1.28350
232232 6.68466 0.438869
233233 18.6847 1.22407 0.612036 0.790830i 0.290351π-0.290351\pi
0.612036 + 0.790830i 0.290351π0.290351\pi
234234 −0.246211 −0.0160953
235235 2.43845 0.159067
236236 −12.6847 −0.825701
237237 0 0
238238 −3.12311 −0.202441
239239 1.36932 0.0885737 0.0442869 0.999019i 0.485898π-0.485898\pi
0.0442869 + 0.999019i 0.485898π0.485898\pi
240240 1.56155 0.100798
241241 −4.24621 −0.273523 −0.136761 0.990604i 0.543669π-0.543669\pi
−0.136761 + 0.990604i 0.543669π0.543669\pi
242242 5.00000 0.321412
243243 5.75379 0.369106
244244 11.5616 0.740153
245245 2.75379 0.175933
246246 −19.1231 −1.21924
247247 0.684658 0.0435638
248248 −2.43845 −0.154842
249249 16.0000 1.01396
250250 1.00000 0.0632456
251251 −4.00000 −0.252478 −0.126239 0.992000i 0.540291π-0.540291\pi
−0.126239 + 0.992000i 0.540291π0.540291\pi
252252 1.75379 0.110478
253253 −12.4924 −0.785392
254254 13.5616 0.850928
255255 1.56155 0.0977882
256256 1.00000 0.0625000
257257 2.00000 0.124757 0.0623783 0.998053i 0.480131π-0.480131\pi
0.0623783 + 0.998053i 0.480131π0.480131\pi
258258 11.1231 0.692494
259259 −3.50758 −0.217950
260260 0.438447 0.0271913
261261 −3.75379 −0.232354
262262 −7.12311 −0.440067
263263 4.19224 0.258504 0.129252 0.991612i 0.458742π-0.458742\pi
0.129252 + 0.991612i 0.458742π0.458742\pi
264264 −6.24621 −0.384428
265265 3.56155 0.218784
266266 −4.87689 −0.299022
267267 4.19224 0.256561
268268 −0.876894 −0.0535648
269269 17.8078 1.08576 0.542879 0.839811i 0.317334π-0.317334\pi
0.542879 + 0.839811i 0.317334π0.317334\pi
270270 −5.56155 −0.338465
271271 16.0000 0.971931 0.485965 0.873978i 0.338468π-0.338468\pi
0.485965 + 0.873978i 0.338468π0.338468\pi
272272 1.00000 0.0606339
273273 −2.13826 −0.129413
274274 10.0000 0.604122
275275 −4.00000 −0.241209
276276 4.87689 0.293555
277277 −32.2462 −1.93749 −0.968744 0.248064i 0.920206π-0.920206\pi
−0.968744 + 0.248064i 0.920206π0.920206\pi
278278 −16.4924 −0.989150
279279 1.36932 0.0819789
280280 −3.12311 −0.186641
281281 12.4384 0.742016 0.371008 0.928630i 0.379012π-0.379012\pi
0.371008 + 0.928630i 0.379012π0.379012\pi
282282 3.80776 0.226749
283283 20.6847 1.22958 0.614788 0.788693i 0.289242π-0.289242\pi
0.614788 + 0.788693i 0.289242π0.289242\pi
284284 −16.6847 −0.990052
285285 2.43845 0.144441
286286 −1.75379 −0.103704
287287 38.2462 2.25760
288288 −0.561553 −0.0330898
289289 1.00000 0.0588235
290290 6.68466 0.392537
291291 16.6847 0.978072
292292 13.8078 0.808038
293293 −12.4384 −0.726662 −0.363331 0.931660i 0.618361π-0.618361\pi
−0.363331 + 0.931660i 0.618361π0.618361\pi
294294 4.30019 0.250792
295295 −12.6847 −0.738529
296296 1.12311 0.0652792
297297 22.2462 1.29086
298298 −5.12311 −0.296774
299299 1.36932 0.0791896
300300 1.56155 0.0901563
301301 −22.2462 −1.28225
302302 9.36932 0.539144
303303 28.8769 1.65893
304304 1.56155 0.0895612
305305 11.5616 0.662013
306306 −0.561553 −0.0321018
307307 −34.2462 −1.95453 −0.977267 0.212011i 0.931999π-0.931999\pi
−0.977267 + 0.212011i 0.931999π0.931999\pi
308308 12.4924 0.711822
309309 12.4924 0.710669
310310 −2.43845 −0.138494
311311 8.00000 0.453638 0.226819 0.973937i 0.427167π-0.427167\pi
0.226819 + 0.973937i 0.427167π0.427167\pi
312312 0.684658 0.0387612
313313 −6.00000 −0.339140 −0.169570 0.985518i 0.554238π-0.554238\pi
−0.169570 + 0.985518i 0.554238π0.554238\pi
314314 −14.4924 −0.817855
315315 1.75379 0.0988148
316316 0 0
317317 −9.61553 −0.540062 −0.270031 0.962852i 0.587034π-0.587034\pi
−0.270031 + 0.962852i 0.587034π0.587034\pi
318318 5.56155 0.311876
319319 −26.7386 −1.49708
320320 1.00000 0.0559017
321321 −25.7538 −1.43744
322322 −9.75379 −0.543557
323323 1.56155 0.0868871
324324 −7.00000 −0.388889
325325 0.438447 0.0243207
326326 −2.24621 −0.124406
327327 −6.93087 −0.383278
328328 −12.2462 −0.676184
329329 −7.61553 −0.419858
330330 −6.24621 −0.343843
331331 −14.0540 −0.772476 −0.386238 0.922399i 0.626226π-0.626226\pi
−0.386238 + 0.922399i 0.626226π0.626226\pi
332332 10.2462 0.562334
333333 −0.630683 −0.0345612
334334 −3.12311 −0.170889
335335 −0.876894 −0.0479099
336336 −4.87689 −0.266056
337337 −22.6847 −1.23571 −0.617856 0.786291i 0.711999π-0.711999\pi
−0.617856 + 0.786291i 0.711999π0.711999\pi
338338 −12.8078 −0.696651
339339 −27.8078 −1.51031
340340 1.00000 0.0542326
341341 9.75379 0.528197
342342 −0.876894 −0.0474170
343343 13.2614 0.716046
344344 7.12311 0.384052
345345 4.87689 0.262563
346346 −18.0000 −0.967686
347347 −6.43845 −0.345634 −0.172817 0.984954i 0.555287π-0.555287\pi
−0.172817 + 0.984954i 0.555287π0.555287\pi
348348 10.4384 0.559560
349349 −6.87689 −0.368112 −0.184056 0.982916i 0.558923π-0.558923\pi
−0.184056 + 0.982916i 0.558923π0.558923\pi
350350 −3.12311 −0.166937
351351 −2.43845 −0.130155
352352 −4.00000 −0.213201
353353 −10.4924 −0.558455 −0.279228 0.960225i 0.590078π-0.590078\pi
−0.279228 + 0.960225i 0.590078π0.590078\pi
354354 −19.8078 −1.05277
355355 −16.6847 −0.885530
356356 2.68466 0.142287
357357 −4.87689 −0.258113
358358 −24.4924 −1.29446
359359 −19.1231 −1.00928 −0.504639 0.863330i 0.668375π-0.668375\pi
−0.504639 + 0.863330i 0.668375π0.668375\pi
360360 −0.561553 −0.0295964
361361 −16.5616 −0.871661
362362 −0.246211 −0.0129406
363363 7.80776 0.409801
364364 −1.36932 −0.0717717
365365 13.8078 0.722731
366366 18.0540 0.943696
367367 7.61553 0.397527 0.198764 0.980047i 0.436307π-0.436307\pi
0.198764 + 0.980047i 0.436307π0.436307\pi
368368 3.12311 0.162803
369369 6.87689 0.357997
370370 1.12311 0.0583875
371371 −11.1231 −0.577483
372372 −3.80776 −0.197423
373373 24.7386 1.28092 0.640459 0.767992i 0.278744π-0.278744\pi
0.640459 + 0.767992i 0.278744π0.278744\pi
374374 −4.00000 −0.206835
375375 1.56155 0.0806382
376376 2.43845 0.125753
377377 2.93087 0.150947
378378 17.3693 0.893381
379379 2.24621 0.115380 0.0576901 0.998335i 0.481626π-0.481626\pi
0.0576901 + 0.998335i 0.481626π0.481626\pi
380380 1.56155 0.0801060
381381 21.1771 1.08493
382382 0 0
383383 3.80776 0.194568 0.0972838 0.995257i 0.468985π-0.468985\pi
0.0972838 + 0.995257i 0.468985π0.468985\pi
384384 1.56155 0.0796877
385385 12.4924 0.636673
386386 −7.75379 −0.394657
387387 −4.00000 −0.203331
388388 10.6847 0.542431
389389 −11.3693 −0.576447 −0.288224 0.957563i 0.593065π-0.593065\pi
−0.288224 + 0.957563i 0.593065π0.593065\pi
390390 0.684658 0.0346690
391391 3.12311 0.157942
392392 2.75379 0.139087
393393 −11.1231 −0.561086
394394 −11.3693 −0.572778
395395 0 0
396396 2.24621 0.112876
397397 −3.36932 −0.169101 −0.0845506 0.996419i 0.526945π-0.526945\pi
−0.0845506 + 0.996419i 0.526945π0.526945\pi
398398 10.4384 0.523232
399399 −7.61553 −0.381253
400400 1.00000 0.0500000
401401 35.3693 1.76626 0.883130 0.469129i 0.155432π-0.155432\pi
0.883130 + 0.469129i 0.155432π0.155432\pi
402402 −1.36932 −0.0682953
403403 −1.06913 −0.0532572
404404 18.4924 0.920032
405405 −7.00000 −0.347833
406406 −20.8769 −1.03610
407407 −4.49242 −0.222681
408408 1.56155 0.0773084
409409 −14.6847 −0.726110 −0.363055 0.931768i 0.618266π-0.618266\pi
−0.363055 + 0.931768i 0.618266π0.618266\pi
410410 −12.2462 −0.604797
411411 15.6155 0.770257
412412 8.00000 0.394132
413413 39.6155 1.94935
414414 −1.75379 −0.0861940
415415 10.2462 0.502967
416416 0.438447 0.0214966
417417 −25.7538 −1.26117
418418 −6.24621 −0.305512
419419 −16.8769 −0.824490 −0.412245 0.911073i 0.635255π-0.635255\pi
−0.412245 + 0.911073i 0.635255π0.635255\pi
420420 −4.87689 −0.237968
421421 −33.6155 −1.63832 −0.819160 0.573565i 0.805560π-0.805560\pi
−0.819160 + 0.573565i 0.805560π0.805560\pi
422422 21.3693 1.04024
423423 −1.36932 −0.0665785
424424 3.56155 0.172964
425425 1.00000 0.0485071
426426 −26.0540 −1.26232
427427 −36.1080 −1.74739
428428 −16.4924 −0.797191
429429 −2.73863 −0.132222
430430 7.12311 0.343507
431431 12.4924 0.601739 0.300869 0.953665i 0.402723π-0.402723\pi
0.300869 + 0.953665i 0.402723π0.402723\pi
432432 −5.56155 −0.267580
433433 30.4924 1.46537 0.732686 0.680567i 0.238266π-0.238266\pi
0.732686 + 0.680567i 0.238266π0.238266\pi
434434 7.61553 0.365557
435435 10.4384 0.500485
436436 −4.43845 −0.212563
437437 4.87689 0.233293
438438 21.5616 1.03025
439439 32.9848 1.57428 0.787140 0.616774i 0.211561π-0.211561\pi
0.787140 + 0.616774i 0.211561π0.211561\pi
440440 −4.00000 −0.190693
441441 −1.54640 −0.0736380
442442 0.438447 0.0208548
443443 28.0000 1.33032 0.665160 0.746701i 0.268363π-0.268363\pi
0.665160 + 0.746701i 0.268363π0.268363\pi
444444 1.75379 0.0832311
445445 2.68466 0.127265
446446 −8.68466 −0.411230
447447 −8.00000 −0.378387
448448 −3.12311 −0.147553
449449 −25.1231 −1.18563 −0.592816 0.805338i 0.701984π-0.701984\pi
−0.592816 + 0.805338i 0.701984π0.701984\pi
450450 −0.561553 −0.0264719
451451 48.9848 2.30661
452452 −17.8078 −0.837607
453453 14.6307 0.687409
454454 28.6847 1.34624
455455 −1.36932 −0.0641946
456456 2.43845 0.114191
457457 0.246211 0.0115173 0.00575864 0.999983i 0.498167π-0.498167\pi
0.00575864 + 0.999983i 0.498167π0.498167\pi
458458 18.4924 0.864094
459459 −5.56155 −0.259591
460460 3.12311 0.145616
461461 −30.4924 −1.42017 −0.710087 0.704114i 0.751344π-0.751344\pi
−0.710087 + 0.704114i 0.751344π0.751344\pi
462462 19.5076 0.907575
463463 14.9309 0.693896 0.346948 0.937884i 0.387218π-0.387218\pi
0.346948 + 0.937884i 0.387218π0.387218\pi
464464 6.68466 0.310327
465465 −3.80776 −0.176581
466466 18.6847 0.865550
467467 0.492423 0.0227866 0.0113933 0.999935i 0.496373π-0.496373\pi
0.0113933 + 0.999935i 0.496373π0.496373\pi
468468 −0.246211 −0.0113811
469469 2.73863 0.126458
470470 2.43845 0.112477
471471 −22.6307 −1.04277
472472 −12.6847 −0.583859
473473 −28.4924 −1.31008
474474 0 0
475475 1.56155 0.0716490
476476 −3.12311 −0.143147
477477 −2.00000 −0.0915737
478478 1.36932 0.0626311
479479 34.4384 1.57353 0.786766 0.617251i 0.211754π-0.211754\pi
0.786766 + 0.617251i 0.211754π0.211754\pi
480480 1.56155 0.0712748
481481 0.492423 0.0224525
482482 −4.24621 −0.193410
483483 −15.2311 −0.693037
484484 5.00000 0.227273
485485 10.6847 0.485165
486486 5.75379 0.260997
487487 −15.6155 −0.707607 −0.353804 0.935320i 0.615112π-0.615112\pi
−0.353804 + 0.935320i 0.615112π0.615112\pi
488488 11.5616 0.523367
489489 −3.50758 −0.158618
490490 2.75379 0.124403
491491 −1.56155 −0.0704719 −0.0352359 0.999379i 0.511218π-0.511218\pi
−0.0352359 + 0.999379i 0.511218π0.511218\pi
492492 −19.1231 −0.862136
493493 6.68466 0.301062
494494 0.684658 0.0308042
495495 2.24621 0.100960
496496 −2.43845 −0.109490
497497 52.1080 2.33736
498498 16.0000 0.716977
499499 −0.876894 −0.0392552 −0.0196276 0.999807i 0.506248π-0.506248\pi
−0.0196276 + 0.999807i 0.506248π0.506248\pi
500500 1.00000 0.0447214
501501 −4.87689 −0.217884
502502 −4.00000 −0.178529
503503 −26.7386 −1.19222 −0.596108 0.802904i 0.703287π-0.703287\pi
−0.596108 + 0.802904i 0.703287π0.703287\pi
504504 1.75379 0.0781200
505505 18.4924 0.822902
506506 −12.4924 −0.555356
507507 −20.0000 −0.888231
508508 13.5616 0.601697
509509 25.1231 1.11356 0.556781 0.830659i 0.312036π-0.312036\pi
0.556781 + 0.830659i 0.312036π0.312036\pi
510510 1.56155 0.0691467
511511 −43.1231 −1.90765
512512 1.00000 0.0441942
513513 −8.68466 −0.383437
514514 2.00000 0.0882162
515515 8.00000 0.352522
516516 11.1231 0.489667
517517 −9.75379 −0.428971
518518 −3.50758 −0.154114
519519 −28.1080 −1.23380
520520 0.438447 0.0192272
521521 2.38447 0.104466 0.0522328 0.998635i 0.483366π-0.483366\pi
0.0522328 + 0.998635i 0.483366π0.483366\pi
522522 −3.75379 −0.164299
523523 −17.8617 −0.781039 −0.390520 0.920595i 0.627705π-0.627705\pi
−0.390520 + 0.920595i 0.627705π0.627705\pi
524524 −7.12311 −0.311174
525525 −4.87689 −0.212845
526526 4.19224 0.182790
527527 −2.43845 −0.106220
528528 −6.24621 −0.271831
529529 −13.2462 −0.575922
530530 3.56155 0.154704
531531 7.12311 0.309116
532532 −4.87689 −0.211440
533533 −5.36932 −0.232571
534534 4.19224 0.181416
535535 −16.4924 −0.713030
536536 −0.876894 −0.0378761
537537 −38.2462 −1.65045
538538 17.8078 0.767747
539539 −11.0152 −0.474456
540540 −5.56155 −0.239331
541541 30.0000 1.28980 0.644900 0.764267i 0.276899π-0.276899\pi
0.644900 + 0.764267i 0.276899π0.276899\pi
542542 16.0000 0.687259
543543 −0.384472 −0.0164993
544544 1.00000 0.0428746
545545 −4.43845 −0.190122
546546 −2.13826 −0.0915091
547547 33.5616 1.43499 0.717494 0.696564i 0.245289π-0.245289\pi
0.717494 + 0.696564i 0.245289π0.245289\pi
548548 10.0000 0.427179
549549 −6.49242 −0.277090
550550 −4.00000 −0.170561
551551 10.4384 0.444693
552552 4.87689 0.207574
553553 0 0
554554 −32.2462 −1.37001
555555 1.75379 0.0744442
556556 −16.4924 −0.699435
557557 32.4384 1.37446 0.687231 0.726439i 0.258826π-0.258826\pi
0.687231 + 0.726439i 0.258826π0.258826\pi
558558 1.36932 0.0579678
559559 3.12311 0.132093
560560 −3.12311 −0.131975
561561 −6.24621 −0.263715
562562 12.4384 0.524684
563563 −29.3693 −1.23777 −0.618885 0.785482i 0.712415π-0.712415\pi
−0.618885 + 0.785482i 0.712415π0.712415\pi
564564 3.80776 0.160336
565565 −17.8078 −0.749178
566566 20.6847 0.869441
567567 21.8617 0.918107
568568 −16.6847 −0.700073
569569 24.9309 1.04516 0.522578 0.852591i 0.324970π-0.324970\pi
0.522578 + 0.852591i 0.324970π0.324970\pi
570570 2.43845 0.102135
571571 16.8769 0.706276 0.353138 0.935571i 0.385115π-0.385115\pi
0.353138 + 0.935571i 0.385115π0.385115\pi
572572 −1.75379 −0.0733296
573573 0 0
574574 38.2462 1.59637
575575 3.12311 0.130243
576576 −0.561553 −0.0233980
577577 19.3693 0.806355 0.403178 0.915122i 0.367906π-0.367906\pi
0.403178 + 0.915122i 0.367906π0.367906\pi
578578 1.00000 0.0415945
579579 −12.1080 −0.503189
580580 6.68466 0.277565
581581 −32.0000 −1.32758
582582 16.6847 0.691601
583583 −14.2462 −0.590018
584584 13.8078 0.571369
585585 −0.246211 −0.0101796
586586 −12.4384 −0.513828
587587 −15.1231 −0.624197 −0.312099 0.950050i 0.601032π-0.601032\pi
−0.312099 + 0.950050i 0.601032π0.601032\pi
588588 4.30019 0.177337
589589 −3.80776 −0.156896
590590 −12.6847 −0.522219
591591 −17.7538 −0.730293
592592 1.12311 0.0461594
593593 8.24621 0.338631 0.169316 0.985562i 0.445844π-0.445844\pi
0.169316 + 0.985562i 0.445844π0.445844\pi
594594 22.2462 0.912773
595595 −3.12311 −0.128035
596596 −5.12311 −0.209851
597597 16.3002 0.667122
598598 1.36932 0.0559955
599599 31.6155 1.29178 0.645888 0.763432i 0.276487π-0.276487\pi
0.645888 + 0.763432i 0.276487π0.276487\pi
600600 1.56155 0.0637501
601601 33.6155 1.37121 0.685603 0.727976i 0.259539π-0.259539\pi
0.685603 + 0.727976i 0.259539π0.259539\pi
602602 −22.2462 −0.906688
603603 0.492423 0.0200530
604604 9.36932 0.381232
605605 5.00000 0.203279
606606 28.8769 1.17304
607607 13.8617 0.562631 0.281315 0.959615i 0.409229π-0.409229\pi
0.281315 + 0.959615i 0.409229π0.409229\pi
608608 1.56155 0.0633293
609609 −32.6004 −1.32103
610610 11.5616 0.468114
611611 1.06913 0.0432524
612612 −0.561553 −0.0226994
613613 4.93087 0.199156 0.0995780 0.995030i 0.468251π-0.468251\pi
0.0995780 + 0.995030i 0.468251π0.468251\pi
614614 −34.2462 −1.38206
615615 −19.1231 −0.771118
616616 12.4924 0.503334
617617 18.6847 0.752216 0.376108 0.926576i 0.377262π-0.377262\pi
0.376108 + 0.926576i 0.377262π0.377262\pi
618618 12.4924 0.502519
619619 0.876894 0.0352454 0.0176227 0.999845i 0.494390π-0.494390\pi
0.0176227 + 0.999845i 0.494390π0.494390\pi
620620 −2.43845 −0.0979304
621621 −17.3693 −0.697007
622622 8.00000 0.320771
623623 −8.38447 −0.335917
624624 0.684658 0.0274083
625625 1.00000 0.0400000
626626 −6.00000 −0.239808
627627 −9.75379 −0.389529
628628 −14.4924 −0.578311
629629 1.12311 0.0447812
630630 1.75379 0.0698726
631631 −40.0000 −1.59237 −0.796187 0.605050i 0.793153π-0.793153\pi
−0.796187 + 0.605050i 0.793153π0.793153\pi
632632 0 0
633633 33.3693 1.32631
634634 −9.61553 −0.381881
635635 13.5616 0.538174
636636 5.56155 0.220530
637637 1.20739 0.0478386
638638 −26.7386 −1.05859
639639 9.36932 0.370644
640640 1.00000 0.0395285
641641 −7.75379 −0.306256 −0.153128 0.988206i 0.548935π-0.548935\pi
−0.153128 + 0.988206i 0.548935π0.548935\pi
642642 −25.7538 −1.01642
643643 7.50758 0.296070 0.148035 0.988982i 0.452705π-0.452705\pi
0.148035 + 0.988982i 0.452705π0.452705\pi
644644 −9.75379 −0.384353
645645 11.1231 0.437972
646646 1.56155 0.0614385
647647 −0.684658 −0.0269167 −0.0134584 0.999909i 0.504284π-0.504284\pi
−0.0134584 + 0.999909i 0.504284π0.504284\pi
648648 −7.00000 −0.274986
649649 50.7386 1.99167
650650 0.438447 0.0171973
651651 11.8920 0.466086
652652 −2.24621 −0.0879684
653653 −5.50758 −0.215528 −0.107764 0.994176i 0.534369π-0.534369\pi
−0.107764 + 0.994176i 0.534369π0.534369\pi
654654 −6.93087 −0.271018
655655 −7.12311 −0.278323
656656 −12.2462 −0.478134
657657 −7.75379 −0.302504
658658 −7.61553 −0.296884
659659 −13.0691 −0.509101 −0.254551 0.967059i 0.581928π-0.581928\pi
−0.254551 + 0.967059i 0.581928π0.581928\pi
660660 −6.24621 −0.243133
661661 −39.8617 −1.55044 −0.775221 0.631690i 0.782362π-0.782362\pi
−0.775221 + 0.631690i 0.782362π0.782362\pi
662662 −14.0540 −0.546223
663663 0.684658 0.0265899
664664 10.2462 0.397630
665665 −4.87689 −0.189118
666666 −0.630683 −0.0244385
667667 20.8769 0.808357
668668 −3.12311 −0.120837
669669 −13.5616 −0.524320
670670 −0.876894 −0.0338774
671671 −46.2462 −1.78532
672672 −4.87689 −0.188130
673673 −41.4233 −1.59675 −0.798375 0.602160i 0.794307π-0.794307\pi
−0.798375 + 0.602160i 0.794307π0.794307\pi
674674 −22.6847 −0.873780
675675 −5.56155 −0.214064
676676 −12.8078 −0.492606
677677 8.73863 0.335853 0.167926 0.985800i 0.446293π-0.446293\pi
0.167926 + 0.985800i 0.446293π0.446293\pi
678678 −27.8078 −1.06795
679679 −33.3693 −1.28060
680680 1.00000 0.0383482
681681 44.7926 1.71646
682682 9.75379 0.373492
683683 12.3002 0.470654 0.235327 0.971916i 0.424384π-0.424384\pi
0.235327 + 0.971916i 0.424384π0.424384\pi
684684 −0.876894 −0.0335289
685685 10.0000 0.382080
686686 13.2614 0.506321
687687 28.8769 1.10172
688688 7.12311 0.271566
689689 1.56155 0.0594904
690690 4.87689 0.185660
691691 26.2462 0.998453 0.499226 0.866472i 0.333618π-0.333618\pi
0.499226 + 0.866472i 0.333618π0.333618\pi
692692 −18.0000 −0.684257
693693 −7.01515 −0.266484
694694 −6.43845 −0.244400
695695 −16.4924 −0.625593
696696 10.4384 0.395668
697697 −12.2462 −0.463858
698698 −6.87689 −0.260294
699699 29.1771 1.10358
700700 −3.12311 −0.118042
701701 −44.3542 −1.67523 −0.837617 0.546258i 0.816052π-0.816052\pi
−0.837617 + 0.546258i 0.816052π0.816052\pi
702702 −2.43845 −0.0920333
703703 1.75379 0.0661454
704704 −4.00000 −0.150756
705705 3.80776 0.143409
706706 −10.4924 −0.394888
707707 −57.7538 −2.17205
708708 −19.8078 −0.744421
709709 −32.5464 −1.22231 −0.611153 0.791513i 0.709294π-0.709294\pi
−0.611153 + 0.791513i 0.709294π0.709294\pi
710710 −16.6847 −0.626164
711711 0 0
712712 2.68466 0.100612
713713 −7.61553 −0.285204
714714 −4.87689 −0.182513
715715 −1.75379 −0.0655880
716716 −24.4924 −0.915325
717717 2.13826 0.0798548
718718 −19.1231 −0.713668
719719 35.8078 1.33540 0.667702 0.744429i 0.267278π-0.267278\pi
0.667702 + 0.744429i 0.267278π0.267278\pi
720720 −0.561553 −0.0209278
721721 −24.9848 −0.930484
722722 −16.5616 −0.616357
723723 −6.63068 −0.246598
724724 −0.246211 −0.00915037
725725 6.68466 0.248262
726726 7.80776 0.289773
727727 42.4384 1.57395 0.786977 0.616982i 0.211645π-0.211645\pi
0.786977 + 0.616982i 0.211645π0.211645\pi
728728 −1.36932 −0.0507503
729729 29.9848 1.11055
730730 13.8078 0.511048
731731 7.12311 0.263458
732732 18.0540 0.667294
733733 10.4924 0.387546 0.193773 0.981046i 0.437927π-0.437927\pi
0.193773 + 0.981046i 0.437927π0.437927\pi
734734 7.61553 0.281094
735735 4.30019 0.158615
736736 3.12311 0.115119
737737 3.50758 0.129203
738738 6.87689 0.253142
739739 25.1771 0.926154 0.463077 0.886318i 0.346745π-0.346745\pi
0.463077 + 0.886318i 0.346745π0.346745\pi
740740 1.12311 0.0412862
741741 1.06913 0.0392755
742742 −11.1231 −0.408342
743743 −12.8769 −0.472407 −0.236204 0.971704i 0.575903π-0.575903\pi
−0.236204 + 0.971704i 0.575903π0.575903\pi
744744 −3.80776 −0.139599
745745 −5.12311 −0.187696
746746 24.7386 0.905746
747747 −5.75379 −0.210520
748748 −4.00000 −0.146254
749749 51.5076 1.88205
750750 1.56155 0.0570198
751751 21.1771 0.772763 0.386381 0.922339i 0.373725π-0.373725\pi
0.386381 + 0.922339i 0.373725π0.373725\pi
752752 2.43845 0.0889210
753753 −6.24621 −0.227625
754754 2.93087 0.106736
755755 9.36932 0.340984
756756 17.3693 0.631716
757757 −38.7926 −1.40994 −0.704971 0.709236i 0.749040π-0.749040\pi
−0.704971 + 0.709236i 0.749040π0.749040\pi
758758 2.24621 0.0815861
759759 −19.5076 −0.708080
760760 1.56155 0.0566435
761761 28.7386 1.04177 0.520887 0.853625i 0.325601π-0.325601\pi
0.520887 + 0.853625i 0.325601π0.325601\pi
762762 21.1771 0.767165
763763 13.8617 0.501829
764764 0 0
765765 −0.561553 −0.0203030
766766 3.80776 0.137580
767767 −5.56155 −0.200816
768768 1.56155 0.0563477
769769 15.5616 0.561164 0.280582 0.959830i 0.409473π-0.409473\pi
0.280582 + 0.959830i 0.409473π0.409473\pi
770770 12.4924 0.450196
771771 3.12311 0.112476
772772 −7.75379 −0.279065
773773 −28.7386 −1.03366 −0.516828 0.856089i 0.672887π-0.672887\pi
−0.516828 + 0.856089i 0.672887π0.672887\pi
774774 −4.00000 −0.143777
775775 −2.43845 −0.0875916
776776 10.6847 0.383557
777777 −5.47727 −0.196496
778778 −11.3693 −0.407610
779779 −19.1231 −0.685156
780780 0.684658 0.0245147
781781 66.7386 2.38810
782782 3.12311 0.111682
783783 −37.1771 −1.32860
784784 2.75379 0.0983496
785785 −14.4924 −0.517257
786786 −11.1231 −0.396748
787787 42.5464 1.51662 0.758308 0.651897i 0.226027π-0.226027\pi
0.758308 + 0.651897i 0.226027π0.226027\pi
788788 −11.3693 −0.405015
789789 6.54640 0.233058
790790 0 0
791791 55.6155 1.97746
792792 2.24621 0.0798156
793793 5.06913 0.180010
794794 −3.36932 −0.119573
795795 5.56155 0.197248
796796 10.4384 0.369981
797797 −14.4924 −0.513348 −0.256674 0.966498i 0.582627π-0.582627\pi
−0.256674 + 0.966498i 0.582627π0.582627\pi
798798 −7.61553 −0.269587
799799 2.43845 0.0862661
800800 1.00000 0.0353553
801801 −1.50758 −0.0532676
802802 35.3693 1.24893
803803 −55.2311 −1.94906
804804 −1.36932 −0.0482921
805805 −9.75379 −0.343776
806806 −1.06913 −0.0376585
807807 27.8078 0.978880
808808 18.4924 0.650561
809809 −46.9848 −1.65190 −0.825950 0.563744i 0.809360π-0.809360\pi
−0.825950 + 0.563744i 0.809360π0.809360\pi
810810 −7.00000 −0.245955
811811 −21.3693 −0.750378 −0.375189 0.926948i 0.622422π-0.622422\pi
−0.375189 + 0.926948i 0.622422π0.622422\pi
812812 −20.8769 −0.732635
813813 24.9848 0.876257
814814 −4.49242 −0.157459
815815 −2.24621 −0.0786813
816816 1.56155 0.0546653
817817 11.1231 0.389148
818818 −14.6847 −0.513437
819819 0.768944 0.0268691
820820 −12.2462 −0.427656
821821 38.3002 1.33669 0.668343 0.743853i 0.267004π-0.267004\pi
0.668343 + 0.743853i 0.267004π0.267004\pi
822822 15.6155 0.544654
823823 25.3693 0.884319 0.442159 0.896936i 0.354213π-0.354213\pi
0.442159 + 0.896936i 0.354213π0.354213\pi
824824 8.00000 0.278693
825825 −6.24621 −0.217465
826826 39.6155 1.37840
827827 −32.4924 −1.12987 −0.564936 0.825135i 0.691099π-0.691099\pi
−0.564936 + 0.825135i 0.691099π0.691099\pi
828828 −1.75379 −0.0609484
829829 15.3693 0.533798 0.266899 0.963724i 0.414001π-0.414001\pi
0.266899 + 0.963724i 0.414001π0.414001\pi
830830 10.2462 0.355651
831831 −50.3542 −1.74677
832832 0.438447 0.0152004
833833 2.75379 0.0954131
834834 −25.7538 −0.891781
835835 −3.12311 −0.108080
836836 −6.24621 −0.216030
837837 13.5616 0.468756
838838 −16.8769 −0.583003
839839 −2.05398 −0.0709111 −0.0354556 0.999371i 0.511288π-0.511288\pi
−0.0354556 + 0.999371i 0.511288π0.511288\pi
840840 −4.87689 −0.168269
841841 15.6847 0.540850
842842 −33.6155 −1.15847
843843 19.4233 0.668974
844844 21.3693 0.735562
845845 −12.8078 −0.440600
846846 −1.36932 −0.0470781
847847 −15.6155 −0.536556
848848 3.56155 0.122304
849849 32.3002 1.10854
850850 1.00000 0.0342997
851851 3.50758 0.120238
852852 −26.0540 −0.892594
853853 31.7538 1.08723 0.543615 0.839335i 0.317055π-0.317055\pi
0.543615 + 0.839335i 0.317055π0.317055\pi
854854 −36.1080 −1.23559
855855 −0.876894 −0.0299892
856856 −16.4924 −0.563699
857857 47.1771 1.61154 0.805769 0.592230i 0.201752π-0.201752\pi
0.805769 + 0.592230i 0.201752π0.201752\pi
858858 −2.73863 −0.0934954
859859 34.5464 1.17871 0.589354 0.807875i 0.299382π-0.299382\pi
0.589354 + 0.807875i 0.299382π0.299382\pi
860860 7.12311 0.242896
861861 59.7235 2.03537
862862 12.4924 0.425494
863863 44.4924 1.51454 0.757270 0.653102i 0.226533π-0.226533\pi
0.757270 + 0.653102i 0.226533π0.226533\pi
864864 −5.56155 −0.189208
865865 −18.0000 −0.612018
866866 30.4924 1.03617
867867 1.56155 0.0530331
868868 7.61553 0.258488
869869 0 0
870870 10.4384 0.353897
871871 −0.384472 −0.0130273
872872 −4.43845 −0.150305
873873 −6.00000 −0.203069
874874 4.87689 0.164963
875875 −3.12311 −0.105580
876876 21.5616 0.728497
877877 −10.3845 −0.350659 −0.175329 0.984510i 0.556099π-0.556099\pi
−0.175329 + 0.984510i 0.556099π0.556099\pi
878878 32.9848 1.11318
879879 −19.4233 −0.655131
880880 −4.00000 −0.134840
881881 20.7386 0.698702 0.349351 0.936992i 0.386402π-0.386402\pi
0.349351 + 0.936992i 0.386402π0.386402\pi
882882 −1.54640 −0.0520699
883883 2.63068 0.0885295 0.0442648 0.999020i 0.485905π-0.485905\pi
0.0442648 + 0.999020i 0.485905π0.485905\pi
884884 0.438447 0.0147466
885885 −19.8078 −0.665831
886886 28.0000 0.940678
887887 −56.6004 −1.90045 −0.950227 0.311558i 0.899149π-0.899149\pi
−0.950227 + 0.311558i 0.899149π0.899149\pi
888888 1.75379 0.0588533
889889 −42.3542 −1.42051
890890 2.68466 0.0899900
891891 28.0000 0.938035
892892 −8.68466 −0.290784
893893 3.80776 0.127422
894894 −8.00000 −0.267560
895895 −24.4924 −0.818691
896896 −3.12311 −0.104336
897897 2.13826 0.0713944
898898 −25.1231 −0.838369
899899 −16.3002 −0.543642
900900 −0.561553 −0.0187184
901901 3.56155 0.118653
902902 48.9848 1.63102
903903 −34.7386 −1.15603
904904 −17.8078 −0.592277
905905 −0.246211 −0.00818434
906906 14.6307 0.486072
907907 14.4384 0.479421 0.239710 0.970844i 0.422948π-0.422948\pi
0.239710 + 0.970844i 0.422948π0.422948\pi
908908 28.6847 0.951934
909909 −10.3845 −0.344431
910910 −1.36932 −0.0453924
911911 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
912912 2.43845 0.0807451
913913 −40.9848 −1.35640
914914 0.246211 0.00814394
915915 18.0540 0.596846
916916 18.4924 0.611007
917917 22.2462 0.734635
918918 −5.56155 −0.183559
919919 −12.8769 −0.424770 −0.212385 0.977186i 0.568123π-0.568123\pi
−0.212385 + 0.977186i 0.568123π0.568123\pi
920920 3.12311 0.102966
921921 −53.4773 −1.76214
922922 −30.4924 −1.00421
923923 −7.31534 −0.240787
924924 19.5076 0.641752
925925 1.12311 0.0369275
926926 14.9309 0.490659
927927 −4.49242 −0.147551
928928 6.68466 0.219435
929929 39.4773 1.29521 0.647604 0.761977i 0.275771π-0.275771\pi
0.647604 + 0.761977i 0.275771π0.275771\pi
930930 −3.80776 −0.124862
931931 4.30019 0.140933
932932 18.6847 0.612036
933933 12.4924 0.408984
934934 0.492423 0.0161126
935935 −4.00000 −0.130814
936936 −0.246211 −0.00804767
937937 30.1080 0.983584 0.491792 0.870713i 0.336342π-0.336342\pi
0.491792 + 0.870713i 0.336342π0.336342\pi
938938 2.73863 0.0894196
939939 −9.36932 −0.305756
940940 2.43845 0.0795334
941941 −31.5616 −1.02888 −0.514439 0.857527i 0.672000π-0.672000\pi
−0.514439 + 0.857527i 0.672000π0.672000\pi
942942 −22.6307 −0.737348
943943 −38.2462 −1.24547
944944 −12.6847 −0.412850
945945 17.3693 0.565024
946946 −28.4924 −0.926369
947947 32.1922 1.04611 0.523054 0.852300i 0.324793π-0.324793\pi
0.523054 + 0.852300i 0.324793π0.324793\pi
948948 0 0
949949 6.05398 0.196520
950950 1.56155 0.0506635
951951 −15.0152 −0.486900
952952 −3.12311 −0.101220
953953 30.8769 1.00020 0.500100 0.865967i 0.333296π-0.333296\pi
0.500100 + 0.865967i 0.333296π0.333296\pi
954954 −2.00000 −0.0647524
955955 0 0
956956 1.36932 0.0442869
957957 −41.7538 −1.34971
958958 34.4384 1.11266
959959 −31.2311 −1.00850
960960 1.56155 0.0503989
961961 −25.0540 −0.808193
962962 0.492423 0.0158763
963963 9.26137 0.298443
964964 −4.24621 −0.136761
965965 −7.75379 −0.249603
966966 −15.2311 −0.490051
967967 52.4924 1.68804 0.844021 0.536310i 0.180182π-0.180182\pi
0.844021 + 0.536310i 0.180182π0.180182\pi
968968 5.00000 0.160706
969969 2.43845 0.0783342
970970 10.6847 0.343064
971971 3.31534 0.106394 0.0531972 0.998584i 0.483059π-0.483059\pi
0.0531972 + 0.998584i 0.483059π0.483059\pi
972972 5.75379 0.184553
973973 51.5076 1.65126
974974 −15.6155 −0.500354
975975 0.684658 0.0219266
976976 11.5616 0.370076
977977 −18.8769 −0.603925 −0.301963 0.953320i 0.597642π-0.597642\pi
−0.301963 + 0.953320i 0.597642π0.597642\pi
978978 −3.50758 −0.112160
979979 −10.7386 −0.343208
980980 2.75379 0.0879666
981981 2.49242 0.0795769
982982 −1.56155 −0.0498312
983983 −28.8769 −0.921030 −0.460515 0.887652i 0.652335π-0.652335\pi
−0.460515 + 0.887652i 0.652335π0.652335\pi
984984 −19.1231 −0.609622
985985 −11.3693 −0.362257
986986 6.68466 0.212883
987987 −11.8920 −0.378528
988988 0.684658 0.0217819
989989 22.2462 0.707388
990990 2.24621 0.0713893
991991 −27.4233 −0.871130 −0.435565 0.900157i 0.643451π-0.643451\pi
−0.435565 + 0.900157i 0.643451π0.643451\pi
992992 −2.43845 −0.0774208
993993 −21.9460 −0.696436
994994 52.1080 1.65276
995995 10.4384 0.330921
996996 16.0000 0.506979
997997 28.2462 0.894566 0.447283 0.894392i 0.352392π-0.352392\pi
0.447283 + 0.894392i 0.352392π0.352392\pi
998998 −0.876894 −0.0277576
999999 −6.24621 −0.197621
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 170.2.a.f.1.2 2
3.2 odd 2 1530.2.a.r.1.1 2
4.3 odd 2 1360.2.a.m.1.1 2
5.2 odd 4 850.2.c.i.749.3 4
5.3 odd 4 850.2.c.i.749.2 4
5.4 even 2 850.2.a.n.1.1 2
7.6 odd 2 8330.2.a.bq.1.1 2
8.3 odd 2 5440.2.a.bd.1.2 2
8.5 even 2 5440.2.a.bj.1.1 2
15.14 odd 2 7650.2.a.de.1.2 2
17.4 even 4 2890.2.b.i.2311.2 4
17.13 even 4 2890.2.b.i.2311.3 4
17.16 even 2 2890.2.a.u.1.1 2
20.19 odd 2 6800.2.a.be.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
170.2.a.f.1.2 2 1.1 even 1 trivial
850.2.a.n.1.1 2 5.4 even 2
850.2.c.i.749.2 4 5.3 odd 4
850.2.c.i.749.3 4 5.2 odd 4
1360.2.a.m.1.1 2 4.3 odd 2
1530.2.a.r.1.1 2 3.2 odd 2
2890.2.a.u.1.1 2 17.16 even 2
2890.2.b.i.2311.2 4 17.4 even 4
2890.2.b.i.2311.3 4 17.13 even 4
5440.2.a.bd.1.2 2 8.3 odd 2
5440.2.a.bj.1.1 2 8.5 even 2
6800.2.a.be.1.2 2 20.19 odd 2
7650.2.a.de.1.2 2 15.14 odd 2
8330.2.a.bq.1.1 2 7.6 odd 2