Properties

Label 170.2.a.f.1.2
Level $170$
Weight $2$
Character 170.1
Self dual yes
Analytic conductor $1.357$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [170,2,Mod(1,170)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(170, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("170.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 170 = 2 \cdot 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 170.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(1.35745683436\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{17}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-1.56155\) of defining polynomial
Character \(\chi\) \(=\) 170.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} +1.56155 q^{3} +1.00000 q^{4} +1.00000 q^{5} +1.56155 q^{6} -3.12311 q^{7} +1.00000 q^{8} -0.561553 q^{9} +O(q^{10})\) \(q+1.00000 q^{2} +1.56155 q^{3} +1.00000 q^{4} +1.00000 q^{5} +1.56155 q^{6} -3.12311 q^{7} +1.00000 q^{8} -0.561553 q^{9} +1.00000 q^{10} -4.00000 q^{11} +1.56155 q^{12} +0.438447 q^{13} -3.12311 q^{14} +1.56155 q^{15} +1.00000 q^{16} +1.00000 q^{17} -0.561553 q^{18} +1.56155 q^{19} +1.00000 q^{20} -4.87689 q^{21} -4.00000 q^{22} +3.12311 q^{23} +1.56155 q^{24} +1.00000 q^{25} +0.438447 q^{26} -5.56155 q^{27} -3.12311 q^{28} +6.68466 q^{29} +1.56155 q^{30} -2.43845 q^{31} +1.00000 q^{32} -6.24621 q^{33} +1.00000 q^{34} -3.12311 q^{35} -0.561553 q^{36} +1.12311 q^{37} +1.56155 q^{38} +0.684658 q^{39} +1.00000 q^{40} -12.2462 q^{41} -4.87689 q^{42} +7.12311 q^{43} -4.00000 q^{44} -0.561553 q^{45} +3.12311 q^{46} +2.43845 q^{47} +1.56155 q^{48} +2.75379 q^{49} +1.00000 q^{50} +1.56155 q^{51} +0.438447 q^{52} +3.56155 q^{53} -5.56155 q^{54} -4.00000 q^{55} -3.12311 q^{56} +2.43845 q^{57} +6.68466 q^{58} -12.6847 q^{59} +1.56155 q^{60} +11.5616 q^{61} -2.43845 q^{62} +1.75379 q^{63} +1.00000 q^{64} +0.438447 q^{65} -6.24621 q^{66} -0.876894 q^{67} +1.00000 q^{68} +4.87689 q^{69} -3.12311 q^{70} -16.6847 q^{71} -0.561553 q^{72} +13.8078 q^{73} +1.12311 q^{74} +1.56155 q^{75} +1.56155 q^{76} +12.4924 q^{77} +0.684658 q^{78} +1.00000 q^{80} -7.00000 q^{81} -12.2462 q^{82} +10.2462 q^{83} -4.87689 q^{84} +1.00000 q^{85} +7.12311 q^{86} +10.4384 q^{87} -4.00000 q^{88} +2.68466 q^{89} -0.561553 q^{90} -1.36932 q^{91} +3.12311 q^{92} -3.80776 q^{93} +2.43845 q^{94} +1.56155 q^{95} +1.56155 q^{96} +10.6847 q^{97} +2.75379 q^{98} +2.24621 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{2} - q^{3} + 2 q^{4} + 2 q^{5} - q^{6} + 2 q^{7} + 2 q^{8} + 3 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + 2 q^{2} - q^{3} + 2 q^{4} + 2 q^{5} - q^{6} + 2 q^{7} + 2 q^{8} + 3 q^{9} + 2 q^{10} - 8 q^{11} - q^{12} + 5 q^{13} + 2 q^{14} - q^{15} + 2 q^{16} + 2 q^{17} + 3 q^{18} - q^{19} + 2 q^{20} - 18 q^{21} - 8 q^{22} - 2 q^{23} - q^{24} + 2 q^{25} + 5 q^{26} - 7 q^{27} + 2 q^{28} + q^{29} - q^{30} - 9 q^{31} + 2 q^{32} + 4 q^{33} + 2 q^{34} + 2 q^{35} + 3 q^{36} - 6 q^{37} - q^{38} - 11 q^{39} + 2 q^{40} - 8 q^{41} - 18 q^{42} + 6 q^{43} - 8 q^{44} + 3 q^{45} - 2 q^{46} + 9 q^{47} - q^{48} + 22 q^{49} + 2 q^{50} - q^{51} + 5 q^{52} + 3 q^{53} - 7 q^{54} - 8 q^{55} + 2 q^{56} + 9 q^{57} + q^{58} - 13 q^{59} - q^{60} + 19 q^{61} - 9 q^{62} + 20 q^{63} + 2 q^{64} + 5 q^{65} + 4 q^{66} - 10 q^{67} + 2 q^{68} + 18 q^{69} + 2 q^{70} - 21 q^{71} + 3 q^{72} + 7 q^{73} - 6 q^{74} - q^{75} - q^{76} - 8 q^{77} - 11 q^{78} + 2 q^{80} - 14 q^{81} - 8 q^{82} + 4 q^{83} - 18 q^{84} + 2 q^{85} + 6 q^{86} + 25 q^{87} - 8 q^{88} - 7 q^{89} + 3 q^{90} + 22 q^{91} - 2 q^{92} + 13 q^{93} + 9 q^{94} - q^{95} - q^{96} + 9 q^{97} + 22 q^{98} - 12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) 1.56155 0.901563 0.450781 0.892634i \(-0.351145\pi\)
0.450781 + 0.892634i \(0.351145\pi\)
\(4\) 1.00000 0.500000
\(5\) 1.00000 0.447214
\(6\) 1.56155 0.637501
\(7\) −3.12311 −1.18042 −0.590211 0.807249i \(-0.700956\pi\)
−0.590211 + 0.807249i \(0.700956\pi\)
\(8\) 1.00000 0.353553
\(9\) −0.561553 −0.187184
\(10\) 1.00000 0.316228
\(11\) −4.00000 −1.20605 −0.603023 0.797724i \(-0.706037\pi\)
−0.603023 + 0.797724i \(0.706037\pi\)
\(12\) 1.56155 0.450781
\(13\) 0.438447 0.121603 0.0608017 0.998150i \(-0.480634\pi\)
0.0608017 + 0.998150i \(0.480634\pi\)
\(14\) −3.12311 −0.834685
\(15\) 1.56155 0.403191
\(16\) 1.00000 0.250000
\(17\) 1.00000 0.242536
\(18\) −0.561553 −0.132359
\(19\) 1.56155 0.358245 0.179122 0.983827i \(-0.442674\pi\)
0.179122 + 0.983827i \(0.442674\pi\)
\(20\) 1.00000 0.223607
\(21\) −4.87689 −1.06423
\(22\) −4.00000 −0.852803
\(23\) 3.12311 0.651213 0.325606 0.945505i \(-0.394432\pi\)
0.325606 + 0.945505i \(0.394432\pi\)
\(24\) 1.56155 0.318751
\(25\) 1.00000 0.200000
\(26\) 0.438447 0.0859866
\(27\) −5.56155 −1.07032
\(28\) −3.12311 −0.590211
\(29\) 6.68466 1.24131 0.620655 0.784084i \(-0.286867\pi\)
0.620655 + 0.784084i \(0.286867\pi\)
\(30\) 1.56155 0.285099
\(31\) −2.43845 −0.437958 −0.218979 0.975730i \(-0.570273\pi\)
−0.218979 + 0.975730i \(0.570273\pi\)
\(32\) 1.00000 0.176777
\(33\) −6.24621 −1.08733
\(34\) 1.00000 0.171499
\(35\) −3.12311 −0.527901
\(36\) −0.561553 −0.0935921
\(37\) 1.12311 0.184637 0.0923187 0.995730i \(-0.470572\pi\)
0.0923187 + 0.995730i \(0.470572\pi\)
\(38\) 1.56155 0.253317
\(39\) 0.684658 0.109633
\(40\) 1.00000 0.158114
\(41\) −12.2462 −1.91254 −0.956268 0.292490i \(-0.905516\pi\)
−0.956268 + 0.292490i \(0.905516\pi\)
\(42\) −4.87689 −0.752521
\(43\) 7.12311 1.08626 0.543132 0.839648i \(-0.317238\pi\)
0.543132 + 0.839648i \(0.317238\pi\)
\(44\) −4.00000 −0.603023
\(45\) −0.561553 −0.0837114
\(46\) 3.12311 0.460477
\(47\) 2.43845 0.355684 0.177842 0.984059i \(-0.443088\pi\)
0.177842 + 0.984059i \(0.443088\pi\)
\(48\) 1.56155 0.225391
\(49\) 2.75379 0.393398
\(50\) 1.00000 0.141421
\(51\) 1.56155 0.218661
\(52\) 0.438447 0.0608017
\(53\) 3.56155 0.489217 0.244608 0.969622i \(-0.421341\pi\)
0.244608 + 0.969622i \(0.421341\pi\)
\(54\) −5.56155 −0.756831
\(55\) −4.00000 −0.539360
\(56\) −3.12311 −0.417343
\(57\) 2.43845 0.322980
\(58\) 6.68466 0.877739
\(59\) −12.6847 −1.65140 −0.825701 0.564108i \(-0.809220\pi\)
−0.825701 + 0.564108i \(0.809220\pi\)
\(60\) 1.56155 0.201596
\(61\) 11.5616 1.48031 0.740153 0.672439i \(-0.234753\pi\)
0.740153 + 0.672439i \(0.234753\pi\)
\(62\) −2.43845 −0.309683
\(63\) 1.75379 0.220957
\(64\) 1.00000 0.125000
\(65\) 0.438447 0.0543827
\(66\) −6.24621 −0.768855
\(67\) −0.876894 −0.107130 −0.0535648 0.998564i \(-0.517058\pi\)
−0.0535648 + 0.998564i \(0.517058\pi\)
\(68\) 1.00000 0.121268
\(69\) 4.87689 0.587109
\(70\) −3.12311 −0.373283
\(71\) −16.6847 −1.98010 −0.990052 0.140700i \(-0.955065\pi\)
−0.990052 + 0.140700i \(0.955065\pi\)
\(72\) −0.561553 −0.0661796
\(73\) 13.8078 1.61608 0.808038 0.589130i \(-0.200529\pi\)
0.808038 + 0.589130i \(0.200529\pi\)
\(74\) 1.12311 0.130558
\(75\) 1.56155 0.180313
\(76\) 1.56155 0.179122
\(77\) 12.4924 1.42364
\(78\) 0.684658 0.0775223
\(79\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(80\) 1.00000 0.111803
\(81\) −7.00000 −0.777778
\(82\) −12.2462 −1.35237
\(83\) 10.2462 1.12467 0.562334 0.826910i \(-0.309904\pi\)
0.562334 + 0.826910i \(0.309904\pi\)
\(84\) −4.87689 −0.532113
\(85\) 1.00000 0.108465
\(86\) 7.12311 0.768104
\(87\) 10.4384 1.11912
\(88\) −4.00000 −0.426401
\(89\) 2.68466 0.284573 0.142287 0.989825i \(-0.454555\pi\)
0.142287 + 0.989825i \(0.454555\pi\)
\(90\) −0.561553 −0.0591929
\(91\) −1.36932 −0.143543
\(92\) 3.12311 0.325606
\(93\) −3.80776 −0.394847
\(94\) 2.43845 0.251507
\(95\) 1.56155 0.160212
\(96\) 1.56155 0.159375
\(97\) 10.6847 1.08486 0.542431 0.840100i \(-0.317504\pi\)
0.542431 + 0.840100i \(0.317504\pi\)
\(98\) 2.75379 0.278175
\(99\) 2.24621 0.225753
\(100\) 1.00000 0.100000
\(101\) 18.4924 1.84006 0.920032 0.391842i \(-0.128162\pi\)
0.920032 + 0.391842i \(0.128162\pi\)
\(102\) 1.56155 0.154617
\(103\) 8.00000 0.788263 0.394132 0.919054i \(-0.371045\pi\)
0.394132 + 0.919054i \(0.371045\pi\)
\(104\) 0.438447 0.0429933
\(105\) −4.87689 −0.475936
\(106\) 3.56155 0.345929
\(107\) −16.4924 −1.59438 −0.797191 0.603727i \(-0.793682\pi\)
−0.797191 + 0.603727i \(0.793682\pi\)
\(108\) −5.56155 −0.535161
\(109\) −4.43845 −0.425126 −0.212563 0.977147i \(-0.568181\pi\)
−0.212563 + 0.977147i \(0.568181\pi\)
\(110\) −4.00000 −0.381385
\(111\) 1.75379 0.166462
\(112\) −3.12311 −0.295106
\(113\) −17.8078 −1.67521 −0.837607 0.546274i \(-0.816046\pi\)
−0.837607 + 0.546274i \(0.816046\pi\)
\(114\) 2.43845 0.228382
\(115\) 3.12311 0.291231
\(116\) 6.68466 0.620655
\(117\) −0.246211 −0.0227622
\(118\) −12.6847 −1.16772
\(119\) −3.12311 −0.286295
\(120\) 1.56155 0.142550
\(121\) 5.00000 0.454545
\(122\) 11.5616 1.04673
\(123\) −19.1231 −1.72427
\(124\) −2.43845 −0.218979
\(125\) 1.00000 0.0894427
\(126\) 1.75379 0.156240
\(127\) 13.5616 1.20339 0.601697 0.798725i \(-0.294492\pi\)
0.601697 + 0.798725i \(0.294492\pi\)
\(128\) 1.00000 0.0883883
\(129\) 11.1231 0.979335
\(130\) 0.438447 0.0384544
\(131\) −7.12311 −0.622349 −0.311174 0.950353i \(-0.600722\pi\)
−0.311174 + 0.950353i \(0.600722\pi\)
\(132\) −6.24621 −0.543663
\(133\) −4.87689 −0.422880
\(134\) −0.876894 −0.0757521
\(135\) −5.56155 −0.478662
\(136\) 1.00000 0.0857493
\(137\) 10.0000 0.854358 0.427179 0.904167i \(-0.359507\pi\)
0.427179 + 0.904167i \(0.359507\pi\)
\(138\) 4.87689 0.415149
\(139\) −16.4924 −1.39887 −0.699435 0.714697i \(-0.746565\pi\)
−0.699435 + 0.714697i \(0.746565\pi\)
\(140\) −3.12311 −0.263951
\(141\) 3.80776 0.320672
\(142\) −16.6847 −1.40015
\(143\) −1.75379 −0.146659
\(144\) −0.561553 −0.0467961
\(145\) 6.68466 0.555131
\(146\) 13.8078 1.14274
\(147\) 4.30019 0.354673
\(148\) 1.12311 0.0923187
\(149\) −5.12311 −0.419701 −0.209851 0.977733i \(-0.567298\pi\)
−0.209851 + 0.977733i \(0.567298\pi\)
\(150\) 1.56155 0.127500
\(151\) 9.36932 0.762464 0.381232 0.924479i \(-0.375500\pi\)
0.381232 + 0.924479i \(0.375500\pi\)
\(152\) 1.56155 0.126659
\(153\) −0.561553 −0.0453989
\(154\) 12.4924 1.00667
\(155\) −2.43845 −0.195861
\(156\) 0.684658 0.0548165
\(157\) −14.4924 −1.15662 −0.578311 0.815817i \(-0.696288\pi\)
−0.578311 + 0.815817i \(0.696288\pi\)
\(158\) 0 0
\(159\) 5.56155 0.441060
\(160\) 1.00000 0.0790569
\(161\) −9.75379 −0.768706
\(162\) −7.00000 −0.549972
\(163\) −2.24621 −0.175937 −0.0879684 0.996123i \(-0.528037\pi\)
−0.0879684 + 0.996123i \(0.528037\pi\)
\(164\) −12.2462 −0.956268
\(165\) −6.24621 −0.486267
\(166\) 10.2462 0.795260
\(167\) −3.12311 −0.241673 −0.120837 0.992672i \(-0.538558\pi\)
−0.120837 + 0.992672i \(0.538558\pi\)
\(168\) −4.87689 −0.376261
\(169\) −12.8078 −0.985213
\(170\) 1.00000 0.0766965
\(171\) −0.876894 −0.0670578
\(172\) 7.12311 0.543132
\(173\) −18.0000 −1.36851 −0.684257 0.729241i \(-0.739873\pi\)
−0.684257 + 0.729241i \(0.739873\pi\)
\(174\) 10.4384 0.791337
\(175\) −3.12311 −0.236085
\(176\) −4.00000 −0.301511
\(177\) −19.8078 −1.48884
\(178\) 2.68466 0.201224
\(179\) −24.4924 −1.83065 −0.915325 0.402716i \(-0.868066\pi\)
−0.915325 + 0.402716i \(0.868066\pi\)
\(180\) −0.561553 −0.0418557
\(181\) −0.246211 −0.0183007 −0.00915037 0.999958i \(-0.502913\pi\)
−0.00915037 + 0.999958i \(0.502913\pi\)
\(182\) −1.36932 −0.101501
\(183\) 18.0540 1.33459
\(184\) 3.12311 0.230238
\(185\) 1.12311 0.0825724
\(186\) −3.80776 −0.279199
\(187\) −4.00000 −0.292509
\(188\) 2.43845 0.177842
\(189\) 17.3693 1.26343
\(190\) 1.56155 0.113287
\(191\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(192\) 1.56155 0.112695
\(193\) −7.75379 −0.558130 −0.279065 0.960272i \(-0.590024\pi\)
−0.279065 + 0.960272i \(0.590024\pi\)
\(194\) 10.6847 0.767114
\(195\) 0.684658 0.0490294
\(196\) 2.75379 0.196699
\(197\) −11.3693 −0.810030 −0.405015 0.914310i \(-0.632734\pi\)
−0.405015 + 0.914310i \(0.632734\pi\)
\(198\) 2.24621 0.159631
\(199\) 10.4384 0.739962 0.369981 0.929039i \(-0.379364\pi\)
0.369981 + 0.929039i \(0.379364\pi\)
\(200\) 1.00000 0.0707107
\(201\) −1.36932 −0.0965842
\(202\) 18.4924 1.30112
\(203\) −20.8769 −1.46527
\(204\) 1.56155 0.109331
\(205\) −12.2462 −0.855312
\(206\) 8.00000 0.557386
\(207\) −1.75379 −0.121897
\(208\) 0.438447 0.0304008
\(209\) −6.24621 −0.432059
\(210\) −4.87689 −0.336538
\(211\) 21.3693 1.47112 0.735562 0.677457i \(-0.236918\pi\)
0.735562 + 0.677457i \(0.236918\pi\)
\(212\) 3.56155 0.244608
\(213\) −26.0540 −1.78519
\(214\) −16.4924 −1.12740
\(215\) 7.12311 0.485792
\(216\) −5.56155 −0.378416
\(217\) 7.61553 0.516976
\(218\) −4.43845 −0.300610
\(219\) 21.5616 1.45699
\(220\) −4.00000 −0.269680
\(221\) 0.438447 0.0294931
\(222\) 1.75379 0.117707
\(223\) −8.68466 −0.581568 −0.290784 0.956789i \(-0.593916\pi\)
−0.290784 + 0.956789i \(0.593916\pi\)
\(224\) −3.12311 −0.208671
\(225\) −0.561553 −0.0374369
\(226\) −17.8078 −1.18455
\(227\) 28.6847 1.90387 0.951934 0.306304i \(-0.0990923\pi\)
0.951934 + 0.306304i \(0.0990923\pi\)
\(228\) 2.43845 0.161490
\(229\) 18.4924 1.22201 0.611007 0.791625i \(-0.290765\pi\)
0.611007 + 0.791625i \(0.290765\pi\)
\(230\) 3.12311 0.205931
\(231\) 19.5076 1.28350
\(232\) 6.68466 0.438869
\(233\) 18.6847 1.22407 0.612036 0.790830i \(-0.290351\pi\)
0.612036 + 0.790830i \(0.290351\pi\)
\(234\) −0.246211 −0.0160953
\(235\) 2.43845 0.159067
\(236\) −12.6847 −0.825701
\(237\) 0 0
\(238\) −3.12311 −0.202441
\(239\) 1.36932 0.0885737 0.0442869 0.999019i \(-0.485898\pi\)
0.0442869 + 0.999019i \(0.485898\pi\)
\(240\) 1.56155 0.100798
\(241\) −4.24621 −0.273523 −0.136761 0.990604i \(-0.543669\pi\)
−0.136761 + 0.990604i \(0.543669\pi\)
\(242\) 5.00000 0.321412
\(243\) 5.75379 0.369106
\(244\) 11.5616 0.740153
\(245\) 2.75379 0.175933
\(246\) −19.1231 −1.21924
\(247\) 0.684658 0.0435638
\(248\) −2.43845 −0.154842
\(249\) 16.0000 1.01396
\(250\) 1.00000 0.0632456
\(251\) −4.00000 −0.252478 −0.126239 0.992000i \(-0.540291\pi\)
−0.126239 + 0.992000i \(0.540291\pi\)
\(252\) 1.75379 0.110478
\(253\) −12.4924 −0.785392
\(254\) 13.5616 0.850928
\(255\) 1.56155 0.0977882
\(256\) 1.00000 0.0625000
\(257\) 2.00000 0.124757 0.0623783 0.998053i \(-0.480131\pi\)
0.0623783 + 0.998053i \(0.480131\pi\)
\(258\) 11.1231 0.692494
\(259\) −3.50758 −0.217950
\(260\) 0.438447 0.0271913
\(261\) −3.75379 −0.232354
\(262\) −7.12311 −0.440067
\(263\) 4.19224 0.258504 0.129252 0.991612i \(-0.458742\pi\)
0.129252 + 0.991612i \(0.458742\pi\)
\(264\) −6.24621 −0.384428
\(265\) 3.56155 0.218784
\(266\) −4.87689 −0.299022
\(267\) 4.19224 0.256561
\(268\) −0.876894 −0.0535648
\(269\) 17.8078 1.08576 0.542879 0.839811i \(-0.317334\pi\)
0.542879 + 0.839811i \(0.317334\pi\)
\(270\) −5.56155 −0.338465
\(271\) 16.0000 0.971931 0.485965 0.873978i \(-0.338468\pi\)
0.485965 + 0.873978i \(0.338468\pi\)
\(272\) 1.00000 0.0606339
\(273\) −2.13826 −0.129413
\(274\) 10.0000 0.604122
\(275\) −4.00000 −0.241209
\(276\) 4.87689 0.293555
\(277\) −32.2462 −1.93749 −0.968744 0.248064i \(-0.920206\pi\)
−0.968744 + 0.248064i \(0.920206\pi\)
\(278\) −16.4924 −0.989150
\(279\) 1.36932 0.0819789
\(280\) −3.12311 −0.186641
\(281\) 12.4384 0.742016 0.371008 0.928630i \(-0.379012\pi\)
0.371008 + 0.928630i \(0.379012\pi\)
\(282\) 3.80776 0.226749
\(283\) 20.6847 1.22958 0.614788 0.788693i \(-0.289242\pi\)
0.614788 + 0.788693i \(0.289242\pi\)
\(284\) −16.6847 −0.990052
\(285\) 2.43845 0.144441
\(286\) −1.75379 −0.103704
\(287\) 38.2462 2.25760
\(288\) −0.561553 −0.0330898
\(289\) 1.00000 0.0588235
\(290\) 6.68466 0.392537
\(291\) 16.6847 0.978072
\(292\) 13.8078 0.808038
\(293\) −12.4384 −0.726662 −0.363331 0.931660i \(-0.618361\pi\)
−0.363331 + 0.931660i \(0.618361\pi\)
\(294\) 4.30019 0.250792
\(295\) −12.6847 −0.738529
\(296\) 1.12311 0.0652792
\(297\) 22.2462 1.29086
\(298\) −5.12311 −0.296774
\(299\) 1.36932 0.0791896
\(300\) 1.56155 0.0901563
\(301\) −22.2462 −1.28225
\(302\) 9.36932 0.539144
\(303\) 28.8769 1.65893
\(304\) 1.56155 0.0895612
\(305\) 11.5616 0.662013
\(306\) −0.561553 −0.0321018
\(307\) −34.2462 −1.95453 −0.977267 0.212011i \(-0.931999\pi\)
−0.977267 + 0.212011i \(0.931999\pi\)
\(308\) 12.4924 0.711822
\(309\) 12.4924 0.710669
\(310\) −2.43845 −0.138494
\(311\) 8.00000 0.453638 0.226819 0.973937i \(-0.427167\pi\)
0.226819 + 0.973937i \(0.427167\pi\)
\(312\) 0.684658 0.0387612
\(313\) −6.00000 −0.339140 −0.169570 0.985518i \(-0.554238\pi\)
−0.169570 + 0.985518i \(0.554238\pi\)
\(314\) −14.4924 −0.817855
\(315\) 1.75379 0.0988148
\(316\) 0 0
\(317\) −9.61553 −0.540062 −0.270031 0.962852i \(-0.587034\pi\)
−0.270031 + 0.962852i \(0.587034\pi\)
\(318\) 5.56155 0.311876
\(319\) −26.7386 −1.49708
\(320\) 1.00000 0.0559017
\(321\) −25.7538 −1.43744
\(322\) −9.75379 −0.543557
\(323\) 1.56155 0.0868871
\(324\) −7.00000 −0.388889
\(325\) 0.438447 0.0243207
\(326\) −2.24621 −0.124406
\(327\) −6.93087 −0.383278
\(328\) −12.2462 −0.676184
\(329\) −7.61553 −0.419858
\(330\) −6.24621 −0.343843
\(331\) −14.0540 −0.772476 −0.386238 0.922399i \(-0.626226\pi\)
−0.386238 + 0.922399i \(0.626226\pi\)
\(332\) 10.2462 0.562334
\(333\) −0.630683 −0.0345612
\(334\) −3.12311 −0.170889
\(335\) −0.876894 −0.0479099
\(336\) −4.87689 −0.266056
\(337\) −22.6847 −1.23571 −0.617856 0.786291i \(-0.711999\pi\)
−0.617856 + 0.786291i \(0.711999\pi\)
\(338\) −12.8078 −0.696651
\(339\) −27.8078 −1.51031
\(340\) 1.00000 0.0542326
\(341\) 9.75379 0.528197
\(342\) −0.876894 −0.0474170
\(343\) 13.2614 0.716046
\(344\) 7.12311 0.384052
\(345\) 4.87689 0.262563
\(346\) −18.0000 −0.967686
\(347\) −6.43845 −0.345634 −0.172817 0.984954i \(-0.555287\pi\)
−0.172817 + 0.984954i \(0.555287\pi\)
\(348\) 10.4384 0.559560
\(349\) −6.87689 −0.368112 −0.184056 0.982916i \(-0.558923\pi\)
−0.184056 + 0.982916i \(0.558923\pi\)
\(350\) −3.12311 −0.166937
\(351\) −2.43845 −0.130155
\(352\) −4.00000 −0.213201
\(353\) −10.4924 −0.558455 −0.279228 0.960225i \(-0.590078\pi\)
−0.279228 + 0.960225i \(0.590078\pi\)
\(354\) −19.8078 −1.05277
\(355\) −16.6847 −0.885530
\(356\) 2.68466 0.142287
\(357\) −4.87689 −0.258113
\(358\) −24.4924 −1.29446
\(359\) −19.1231 −1.00928 −0.504639 0.863330i \(-0.668375\pi\)
−0.504639 + 0.863330i \(0.668375\pi\)
\(360\) −0.561553 −0.0295964
\(361\) −16.5616 −0.871661
\(362\) −0.246211 −0.0129406
\(363\) 7.80776 0.409801
\(364\) −1.36932 −0.0717717
\(365\) 13.8078 0.722731
\(366\) 18.0540 0.943696
\(367\) 7.61553 0.397527 0.198764 0.980047i \(-0.436307\pi\)
0.198764 + 0.980047i \(0.436307\pi\)
\(368\) 3.12311 0.162803
\(369\) 6.87689 0.357997
\(370\) 1.12311 0.0583875
\(371\) −11.1231 −0.577483
\(372\) −3.80776 −0.197423
\(373\) 24.7386 1.28092 0.640459 0.767992i \(-0.278744\pi\)
0.640459 + 0.767992i \(0.278744\pi\)
\(374\) −4.00000 −0.206835
\(375\) 1.56155 0.0806382
\(376\) 2.43845 0.125753
\(377\) 2.93087 0.150947
\(378\) 17.3693 0.893381
\(379\) 2.24621 0.115380 0.0576901 0.998335i \(-0.481626\pi\)
0.0576901 + 0.998335i \(0.481626\pi\)
\(380\) 1.56155 0.0801060
\(381\) 21.1771 1.08493
\(382\) 0 0
\(383\) 3.80776 0.194568 0.0972838 0.995257i \(-0.468985\pi\)
0.0972838 + 0.995257i \(0.468985\pi\)
\(384\) 1.56155 0.0796877
\(385\) 12.4924 0.636673
\(386\) −7.75379 −0.394657
\(387\) −4.00000 −0.203331
\(388\) 10.6847 0.542431
\(389\) −11.3693 −0.576447 −0.288224 0.957563i \(-0.593065\pi\)
−0.288224 + 0.957563i \(0.593065\pi\)
\(390\) 0.684658 0.0346690
\(391\) 3.12311 0.157942
\(392\) 2.75379 0.139087
\(393\) −11.1231 −0.561086
\(394\) −11.3693 −0.572778
\(395\) 0 0
\(396\) 2.24621 0.112876
\(397\) −3.36932 −0.169101 −0.0845506 0.996419i \(-0.526945\pi\)
−0.0845506 + 0.996419i \(0.526945\pi\)
\(398\) 10.4384 0.523232
\(399\) −7.61553 −0.381253
\(400\) 1.00000 0.0500000
\(401\) 35.3693 1.76626 0.883130 0.469129i \(-0.155432\pi\)
0.883130 + 0.469129i \(0.155432\pi\)
\(402\) −1.36932 −0.0682953
\(403\) −1.06913 −0.0532572
\(404\) 18.4924 0.920032
\(405\) −7.00000 −0.347833
\(406\) −20.8769 −1.03610
\(407\) −4.49242 −0.222681
\(408\) 1.56155 0.0773084
\(409\) −14.6847 −0.726110 −0.363055 0.931768i \(-0.618266\pi\)
−0.363055 + 0.931768i \(0.618266\pi\)
\(410\) −12.2462 −0.604797
\(411\) 15.6155 0.770257
\(412\) 8.00000 0.394132
\(413\) 39.6155 1.94935
\(414\) −1.75379 −0.0861940
\(415\) 10.2462 0.502967
\(416\) 0.438447 0.0214966
\(417\) −25.7538 −1.26117
\(418\) −6.24621 −0.305512
\(419\) −16.8769 −0.824490 −0.412245 0.911073i \(-0.635255\pi\)
−0.412245 + 0.911073i \(0.635255\pi\)
\(420\) −4.87689 −0.237968
\(421\) −33.6155 −1.63832 −0.819160 0.573565i \(-0.805560\pi\)
−0.819160 + 0.573565i \(0.805560\pi\)
\(422\) 21.3693 1.04024
\(423\) −1.36932 −0.0665785
\(424\) 3.56155 0.172964
\(425\) 1.00000 0.0485071
\(426\) −26.0540 −1.26232
\(427\) −36.1080 −1.74739
\(428\) −16.4924 −0.797191
\(429\) −2.73863 −0.132222
\(430\) 7.12311 0.343507
\(431\) 12.4924 0.601739 0.300869 0.953665i \(-0.402723\pi\)
0.300869 + 0.953665i \(0.402723\pi\)
\(432\) −5.56155 −0.267580
\(433\) 30.4924 1.46537 0.732686 0.680567i \(-0.238266\pi\)
0.732686 + 0.680567i \(0.238266\pi\)
\(434\) 7.61553 0.365557
\(435\) 10.4384 0.500485
\(436\) −4.43845 −0.212563
\(437\) 4.87689 0.233293
\(438\) 21.5616 1.03025
\(439\) 32.9848 1.57428 0.787140 0.616774i \(-0.211561\pi\)
0.787140 + 0.616774i \(0.211561\pi\)
\(440\) −4.00000 −0.190693
\(441\) −1.54640 −0.0736380
\(442\) 0.438447 0.0208548
\(443\) 28.0000 1.33032 0.665160 0.746701i \(-0.268363\pi\)
0.665160 + 0.746701i \(0.268363\pi\)
\(444\) 1.75379 0.0832311
\(445\) 2.68466 0.127265
\(446\) −8.68466 −0.411230
\(447\) −8.00000 −0.378387
\(448\) −3.12311 −0.147553
\(449\) −25.1231 −1.18563 −0.592816 0.805338i \(-0.701984\pi\)
−0.592816 + 0.805338i \(0.701984\pi\)
\(450\) −0.561553 −0.0264719
\(451\) 48.9848 2.30661
\(452\) −17.8078 −0.837607
\(453\) 14.6307 0.687409
\(454\) 28.6847 1.34624
\(455\) −1.36932 −0.0641946
\(456\) 2.43845 0.114191
\(457\) 0.246211 0.0115173 0.00575864 0.999983i \(-0.498167\pi\)
0.00575864 + 0.999983i \(0.498167\pi\)
\(458\) 18.4924 0.864094
\(459\) −5.56155 −0.259591
\(460\) 3.12311 0.145616
\(461\) −30.4924 −1.42017 −0.710087 0.704114i \(-0.751344\pi\)
−0.710087 + 0.704114i \(0.751344\pi\)
\(462\) 19.5076 0.907575
\(463\) 14.9309 0.693896 0.346948 0.937884i \(-0.387218\pi\)
0.346948 + 0.937884i \(0.387218\pi\)
\(464\) 6.68466 0.310327
\(465\) −3.80776 −0.176581
\(466\) 18.6847 0.865550
\(467\) 0.492423 0.0227866 0.0113933 0.999935i \(-0.496373\pi\)
0.0113933 + 0.999935i \(0.496373\pi\)
\(468\) −0.246211 −0.0113811
\(469\) 2.73863 0.126458
\(470\) 2.43845 0.112477
\(471\) −22.6307 −1.04277
\(472\) −12.6847 −0.583859
\(473\) −28.4924 −1.31008
\(474\) 0 0
\(475\) 1.56155 0.0716490
\(476\) −3.12311 −0.143147
\(477\) −2.00000 −0.0915737
\(478\) 1.36932 0.0626311
\(479\) 34.4384 1.57353 0.786766 0.617251i \(-0.211754\pi\)
0.786766 + 0.617251i \(0.211754\pi\)
\(480\) 1.56155 0.0712748
\(481\) 0.492423 0.0224525
\(482\) −4.24621 −0.193410
\(483\) −15.2311 −0.693037
\(484\) 5.00000 0.227273
\(485\) 10.6847 0.485165
\(486\) 5.75379 0.260997
\(487\) −15.6155 −0.707607 −0.353804 0.935320i \(-0.615112\pi\)
−0.353804 + 0.935320i \(0.615112\pi\)
\(488\) 11.5616 0.523367
\(489\) −3.50758 −0.158618
\(490\) 2.75379 0.124403
\(491\) −1.56155 −0.0704719 −0.0352359 0.999379i \(-0.511218\pi\)
−0.0352359 + 0.999379i \(0.511218\pi\)
\(492\) −19.1231 −0.862136
\(493\) 6.68466 0.301062
\(494\) 0.684658 0.0308042
\(495\) 2.24621 0.100960
\(496\) −2.43845 −0.109490
\(497\) 52.1080 2.33736
\(498\) 16.0000 0.716977
\(499\) −0.876894 −0.0392552 −0.0196276 0.999807i \(-0.506248\pi\)
−0.0196276 + 0.999807i \(0.506248\pi\)
\(500\) 1.00000 0.0447214
\(501\) −4.87689 −0.217884
\(502\) −4.00000 −0.178529
\(503\) −26.7386 −1.19222 −0.596108 0.802904i \(-0.703287\pi\)
−0.596108 + 0.802904i \(0.703287\pi\)
\(504\) 1.75379 0.0781200
\(505\) 18.4924 0.822902
\(506\) −12.4924 −0.555356
\(507\) −20.0000 −0.888231
\(508\) 13.5616 0.601697
\(509\) 25.1231 1.11356 0.556781 0.830659i \(-0.312036\pi\)
0.556781 + 0.830659i \(0.312036\pi\)
\(510\) 1.56155 0.0691467
\(511\) −43.1231 −1.90765
\(512\) 1.00000 0.0441942
\(513\) −8.68466 −0.383437
\(514\) 2.00000 0.0882162
\(515\) 8.00000 0.352522
\(516\) 11.1231 0.489667
\(517\) −9.75379 −0.428971
\(518\) −3.50758 −0.154114
\(519\) −28.1080 −1.23380
\(520\) 0.438447 0.0192272
\(521\) 2.38447 0.104466 0.0522328 0.998635i \(-0.483366\pi\)
0.0522328 + 0.998635i \(0.483366\pi\)
\(522\) −3.75379 −0.164299
\(523\) −17.8617 −0.781039 −0.390520 0.920595i \(-0.627705\pi\)
−0.390520 + 0.920595i \(0.627705\pi\)
\(524\) −7.12311 −0.311174
\(525\) −4.87689 −0.212845
\(526\) 4.19224 0.182790
\(527\) −2.43845 −0.106220
\(528\) −6.24621 −0.271831
\(529\) −13.2462 −0.575922
\(530\) 3.56155 0.154704
\(531\) 7.12311 0.309116
\(532\) −4.87689 −0.211440
\(533\) −5.36932 −0.232571
\(534\) 4.19224 0.181416
\(535\) −16.4924 −0.713030
\(536\) −0.876894 −0.0378761
\(537\) −38.2462 −1.65045
\(538\) 17.8078 0.767747
\(539\) −11.0152 −0.474456
\(540\) −5.56155 −0.239331
\(541\) 30.0000 1.28980 0.644900 0.764267i \(-0.276899\pi\)
0.644900 + 0.764267i \(0.276899\pi\)
\(542\) 16.0000 0.687259
\(543\) −0.384472 −0.0164993
\(544\) 1.00000 0.0428746
\(545\) −4.43845 −0.190122
\(546\) −2.13826 −0.0915091
\(547\) 33.5616 1.43499 0.717494 0.696564i \(-0.245289\pi\)
0.717494 + 0.696564i \(0.245289\pi\)
\(548\) 10.0000 0.427179
\(549\) −6.49242 −0.277090
\(550\) −4.00000 −0.170561
\(551\) 10.4384 0.444693
\(552\) 4.87689 0.207574
\(553\) 0 0
\(554\) −32.2462 −1.37001
\(555\) 1.75379 0.0744442
\(556\) −16.4924 −0.699435
\(557\) 32.4384 1.37446 0.687231 0.726439i \(-0.258826\pi\)
0.687231 + 0.726439i \(0.258826\pi\)
\(558\) 1.36932 0.0579678
\(559\) 3.12311 0.132093
\(560\) −3.12311 −0.131975
\(561\) −6.24621 −0.263715
\(562\) 12.4384 0.524684
\(563\) −29.3693 −1.23777 −0.618885 0.785482i \(-0.712415\pi\)
−0.618885 + 0.785482i \(0.712415\pi\)
\(564\) 3.80776 0.160336
\(565\) −17.8078 −0.749178
\(566\) 20.6847 0.869441
\(567\) 21.8617 0.918107
\(568\) −16.6847 −0.700073
\(569\) 24.9309 1.04516 0.522578 0.852591i \(-0.324970\pi\)
0.522578 + 0.852591i \(0.324970\pi\)
\(570\) 2.43845 0.102135
\(571\) 16.8769 0.706276 0.353138 0.935571i \(-0.385115\pi\)
0.353138 + 0.935571i \(0.385115\pi\)
\(572\) −1.75379 −0.0733296
\(573\) 0 0
\(574\) 38.2462 1.59637
\(575\) 3.12311 0.130243
\(576\) −0.561553 −0.0233980
\(577\) 19.3693 0.806355 0.403178 0.915122i \(-0.367906\pi\)
0.403178 + 0.915122i \(0.367906\pi\)
\(578\) 1.00000 0.0415945
\(579\) −12.1080 −0.503189
\(580\) 6.68466 0.277565
\(581\) −32.0000 −1.32758
\(582\) 16.6847 0.691601
\(583\) −14.2462 −0.590018
\(584\) 13.8078 0.571369
\(585\) −0.246211 −0.0101796
\(586\) −12.4384 −0.513828
\(587\) −15.1231 −0.624197 −0.312099 0.950050i \(-0.601032\pi\)
−0.312099 + 0.950050i \(0.601032\pi\)
\(588\) 4.30019 0.177337
\(589\) −3.80776 −0.156896
\(590\) −12.6847 −0.522219
\(591\) −17.7538 −0.730293
\(592\) 1.12311 0.0461594
\(593\) 8.24621 0.338631 0.169316 0.985562i \(-0.445844\pi\)
0.169316 + 0.985562i \(0.445844\pi\)
\(594\) 22.2462 0.912773
\(595\) −3.12311 −0.128035
\(596\) −5.12311 −0.209851
\(597\) 16.3002 0.667122
\(598\) 1.36932 0.0559955
\(599\) 31.6155 1.29178 0.645888 0.763432i \(-0.276487\pi\)
0.645888 + 0.763432i \(0.276487\pi\)
\(600\) 1.56155 0.0637501
\(601\) 33.6155 1.37121 0.685603 0.727976i \(-0.259539\pi\)
0.685603 + 0.727976i \(0.259539\pi\)
\(602\) −22.2462 −0.906688
\(603\) 0.492423 0.0200530
\(604\) 9.36932 0.381232
\(605\) 5.00000 0.203279
\(606\) 28.8769 1.17304
\(607\) 13.8617 0.562631 0.281315 0.959615i \(-0.409229\pi\)
0.281315 + 0.959615i \(0.409229\pi\)
\(608\) 1.56155 0.0633293
\(609\) −32.6004 −1.32103
\(610\) 11.5616 0.468114
\(611\) 1.06913 0.0432524
\(612\) −0.561553 −0.0226994
\(613\) 4.93087 0.199156 0.0995780 0.995030i \(-0.468251\pi\)
0.0995780 + 0.995030i \(0.468251\pi\)
\(614\) −34.2462 −1.38206
\(615\) −19.1231 −0.771118
\(616\) 12.4924 0.503334
\(617\) 18.6847 0.752216 0.376108 0.926576i \(-0.377262\pi\)
0.376108 + 0.926576i \(0.377262\pi\)
\(618\) 12.4924 0.502519
\(619\) 0.876894 0.0352454 0.0176227 0.999845i \(-0.494390\pi\)
0.0176227 + 0.999845i \(0.494390\pi\)
\(620\) −2.43845 −0.0979304
\(621\) −17.3693 −0.697007
\(622\) 8.00000 0.320771
\(623\) −8.38447 −0.335917
\(624\) 0.684658 0.0274083
\(625\) 1.00000 0.0400000
\(626\) −6.00000 −0.239808
\(627\) −9.75379 −0.389529
\(628\) −14.4924 −0.578311
\(629\) 1.12311 0.0447812
\(630\) 1.75379 0.0698726
\(631\) −40.0000 −1.59237 −0.796187 0.605050i \(-0.793153\pi\)
−0.796187 + 0.605050i \(0.793153\pi\)
\(632\) 0 0
\(633\) 33.3693 1.32631
\(634\) −9.61553 −0.381881
\(635\) 13.5616 0.538174
\(636\) 5.56155 0.220530
\(637\) 1.20739 0.0478386
\(638\) −26.7386 −1.05859
\(639\) 9.36932 0.370644
\(640\) 1.00000 0.0395285
\(641\) −7.75379 −0.306256 −0.153128 0.988206i \(-0.548935\pi\)
−0.153128 + 0.988206i \(0.548935\pi\)
\(642\) −25.7538 −1.01642
\(643\) 7.50758 0.296070 0.148035 0.988982i \(-0.452705\pi\)
0.148035 + 0.988982i \(0.452705\pi\)
\(644\) −9.75379 −0.384353
\(645\) 11.1231 0.437972
\(646\) 1.56155 0.0614385
\(647\) −0.684658 −0.0269167 −0.0134584 0.999909i \(-0.504284\pi\)
−0.0134584 + 0.999909i \(0.504284\pi\)
\(648\) −7.00000 −0.274986
\(649\) 50.7386 1.99167
\(650\) 0.438447 0.0171973
\(651\) 11.8920 0.466086
\(652\) −2.24621 −0.0879684
\(653\) −5.50758 −0.215528 −0.107764 0.994176i \(-0.534369\pi\)
−0.107764 + 0.994176i \(0.534369\pi\)
\(654\) −6.93087 −0.271018
\(655\) −7.12311 −0.278323
\(656\) −12.2462 −0.478134
\(657\) −7.75379 −0.302504
\(658\) −7.61553 −0.296884
\(659\) −13.0691 −0.509101 −0.254551 0.967059i \(-0.581928\pi\)
−0.254551 + 0.967059i \(0.581928\pi\)
\(660\) −6.24621 −0.243133
\(661\) −39.8617 −1.55044 −0.775221 0.631690i \(-0.782362\pi\)
−0.775221 + 0.631690i \(0.782362\pi\)
\(662\) −14.0540 −0.546223
\(663\) 0.684658 0.0265899
\(664\) 10.2462 0.397630
\(665\) −4.87689 −0.189118
\(666\) −0.630683 −0.0244385
\(667\) 20.8769 0.808357
\(668\) −3.12311 −0.120837
\(669\) −13.5616 −0.524320
\(670\) −0.876894 −0.0338774
\(671\) −46.2462 −1.78532
\(672\) −4.87689 −0.188130
\(673\) −41.4233 −1.59675 −0.798375 0.602160i \(-0.794307\pi\)
−0.798375 + 0.602160i \(0.794307\pi\)
\(674\) −22.6847 −0.873780
\(675\) −5.56155 −0.214064
\(676\) −12.8078 −0.492606
\(677\) 8.73863 0.335853 0.167926 0.985800i \(-0.446293\pi\)
0.167926 + 0.985800i \(0.446293\pi\)
\(678\) −27.8078 −1.06795
\(679\) −33.3693 −1.28060
\(680\) 1.00000 0.0383482
\(681\) 44.7926 1.71646
\(682\) 9.75379 0.373492
\(683\) 12.3002 0.470654 0.235327 0.971916i \(-0.424384\pi\)
0.235327 + 0.971916i \(0.424384\pi\)
\(684\) −0.876894 −0.0335289
\(685\) 10.0000 0.382080
\(686\) 13.2614 0.506321
\(687\) 28.8769 1.10172
\(688\) 7.12311 0.271566
\(689\) 1.56155 0.0594904
\(690\) 4.87689 0.185660
\(691\) 26.2462 0.998453 0.499226 0.866472i \(-0.333618\pi\)
0.499226 + 0.866472i \(0.333618\pi\)
\(692\) −18.0000 −0.684257
\(693\) −7.01515 −0.266484
\(694\) −6.43845 −0.244400
\(695\) −16.4924 −0.625593
\(696\) 10.4384 0.395668
\(697\) −12.2462 −0.463858
\(698\) −6.87689 −0.260294
\(699\) 29.1771 1.10358
\(700\) −3.12311 −0.118042
\(701\) −44.3542 −1.67523 −0.837617 0.546258i \(-0.816052\pi\)
−0.837617 + 0.546258i \(0.816052\pi\)
\(702\) −2.43845 −0.0920333
\(703\) 1.75379 0.0661454
\(704\) −4.00000 −0.150756
\(705\) 3.80776 0.143409
\(706\) −10.4924 −0.394888
\(707\) −57.7538 −2.17205
\(708\) −19.8078 −0.744421
\(709\) −32.5464 −1.22231 −0.611153 0.791513i \(-0.709294\pi\)
−0.611153 + 0.791513i \(0.709294\pi\)
\(710\) −16.6847 −0.626164
\(711\) 0 0
\(712\) 2.68466 0.100612
\(713\) −7.61553 −0.285204
\(714\) −4.87689 −0.182513
\(715\) −1.75379 −0.0655880
\(716\) −24.4924 −0.915325
\(717\) 2.13826 0.0798548
\(718\) −19.1231 −0.713668
\(719\) 35.8078 1.33540 0.667702 0.744429i \(-0.267278\pi\)
0.667702 + 0.744429i \(0.267278\pi\)
\(720\) −0.561553 −0.0209278
\(721\) −24.9848 −0.930484
\(722\) −16.5616 −0.616357
\(723\) −6.63068 −0.246598
\(724\) −0.246211 −0.00915037
\(725\) 6.68466 0.248262
\(726\) 7.80776 0.289773
\(727\) 42.4384 1.57395 0.786977 0.616982i \(-0.211645\pi\)
0.786977 + 0.616982i \(0.211645\pi\)
\(728\) −1.36932 −0.0507503
\(729\) 29.9848 1.11055
\(730\) 13.8078 0.511048
\(731\) 7.12311 0.263458
\(732\) 18.0540 0.667294
\(733\) 10.4924 0.387546 0.193773 0.981046i \(-0.437927\pi\)
0.193773 + 0.981046i \(0.437927\pi\)
\(734\) 7.61553 0.281094
\(735\) 4.30019 0.158615
\(736\) 3.12311 0.115119
\(737\) 3.50758 0.129203
\(738\) 6.87689 0.253142
\(739\) 25.1771 0.926154 0.463077 0.886318i \(-0.346745\pi\)
0.463077 + 0.886318i \(0.346745\pi\)
\(740\) 1.12311 0.0412862
\(741\) 1.06913 0.0392755
\(742\) −11.1231 −0.408342
\(743\) −12.8769 −0.472407 −0.236204 0.971704i \(-0.575903\pi\)
−0.236204 + 0.971704i \(0.575903\pi\)
\(744\) −3.80776 −0.139599
\(745\) −5.12311 −0.187696
\(746\) 24.7386 0.905746
\(747\) −5.75379 −0.210520
\(748\) −4.00000 −0.146254
\(749\) 51.5076 1.88205
\(750\) 1.56155 0.0570198
\(751\) 21.1771 0.772763 0.386381 0.922339i \(-0.373725\pi\)
0.386381 + 0.922339i \(0.373725\pi\)
\(752\) 2.43845 0.0889210
\(753\) −6.24621 −0.227625
\(754\) 2.93087 0.106736
\(755\) 9.36932 0.340984
\(756\) 17.3693 0.631716
\(757\) −38.7926 −1.40994 −0.704971 0.709236i \(-0.749040\pi\)
−0.704971 + 0.709236i \(0.749040\pi\)
\(758\) 2.24621 0.0815861
\(759\) −19.5076 −0.708080
\(760\) 1.56155 0.0566435
\(761\) 28.7386 1.04177 0.520887 0.853625i \(-0.325601\pi\)
0.520887 + 0.853625i \(0.325601\pi\)
\(762\) 21.1771 0.767165
\(763\) 13.8617 0.501829
\(764\) 0 0
\(765\) −0.561553 −0.0203030
\(766\) 3.80776 0.137580
\(767\) −5.56155 −0.200816
\(768\) 1.56155 0.0563477
\(769\) 15.5616 0.561164 0.280582 0.959830i \(-0.409473\pi\)
0.280582 + 0.959830i \(0.409473\pi\)
\(770\) 12.4924 0.450196
\(771\) 3.12311 0.112476
\(772\) −7.75379 −0.279065
\(773\) −28.7386 −1.03366 −0.516828 0.856089i \(-0.672887\pi\)
−0.516828 + 0.856089i \(0.672887\pi\)
\(774\) −4.00000 −0.143777
\(775\) −2.43845 −0.0875916
\(776\) 10.6847 0.383557
\(777\) −5.47727 −0.196496
\(778\) −11.3693 −0.407610
\(779\) −19.1231 −0.685156
\(780\) 0.684658 0.0245147
\(781\) 66.7386 2.38810
\(782\) 3.12311 0.111682
\(783\) −37.1771 −1.32860
\(784\) 2.75379 0.0983496
\(785\) −14.4924 −0.517257
\(786\) −11.1231 −0.396748
\(787\) 42.5464 1.51662 0.758308 0.651897i \(-0.226027\pi\)
0.758308 + 0.651897i \(0.226027\pi\)
\(788\) −11.3693 −0.405015
\(789\) 6.54640 0.233058
\(790\) 0 0
\(791\) 55.6155 1.97746
\(792\) 2.24621 0.0798156
\(793\) 5.06913 0.180010
\(794\) −3.36932 −0.119573
\(795\) 5.56155 0.197248
\(796\) 10.4384 0.369981
\(797\) −14.4924 −0.513348 −0.256674 0.966498i \(-0.582627\pi\)
−0.256674 + 0.966498i \(0.582627\pi\)
\(798\) −7.61553 −0.269587
\(799\) 2.43845 0.0862661
\(800\) 1.00000 0.0353553
\(801\) −1.50758 −0.0532676
\(802\) 35.3693 1.24893
\(803\) −55.2311 −1.94906
\(804\) −1.36932 −0.0482921
\(805\) −9.75379 −0.343776
\(806\) −1.06913 −0.0376585
\(807\) 27.8078 0.978880
\(808\) 18.4924 0.650561
\(809\) −46.9848 −1.65190 −0.825950 0.563744i \(-0.809360\pi\)
−0.825950 + 0.563744i \(0.809360\pi\)
\(810\) −7.00000 −0.245955
\(811\) −21.3693 −0.750378 −0.375189 0.926948i \(-0.622422\pi\)
−0.375189 + 0.926948i \(0.622422\pi\)
\(812\) −20.8769 −0.732635
\(813\) 24.9848 0.876257
\(814\) −4.49242 −0.157459
\(815\) −2.24621 −0.0786813
\(816\) 1.56155 0.0546653
\(817\) 11.1231 0.389148
\(818\) −14.6847 −0.513437
\(819\) 0.768944 0.0268691
\(820\) −12.2462 −0.427656
\(821\) 38.3002 1.33669 0.668343 0.743853i \(-0.267004\pi\)
0.668343 + 0.743853i \(0.267004\pi\)
\(822\) 15.6155 0.544654
\(823\) 25.3693 0.884319 0.442159 0.896936i \(-0.354213\pi\)
0.442159 + 0.896936i \(0.354213\pi\)
\(824\) 8.00000 0.278693
\(825\) −6.24621 −0.217465
\(826\) 39.6155 1.37840
\(827\) −32.4924 −1.12987 −0.564936 0.825135i \(-0.691099\pi\)
−0.564936 + 0.825135i \(0.691099\pi\)
\(828\) −1.75379 −0.0609484
\(829\) 15.3693 0.533798 0.266899 0.963724i \(-0.414001\pi\)
0.266899 + 0.963724i \(0.414001\pi\)
\(830\) 10.2462 0.355651
\(831\) −50.3542 −1.74677
\(832\) 0.438447 0.0152004
\(833\) 2.75379 0.0954131
\(834\) −25.7538 −0.891781
\(835\) −3.12311 −0.108080
\(836\) −6.24621 −0.216030
\(837\) 13.5616 0.468756
\(838\) −16.8769 −0.583003
\(839\) −2.05398 −0.0709111 −0.0354556 0.999371i \(-0.511288\pi\)
−0.0354556 + 0.999371i \(0.511288\pi\)
\(840\) −4.87689 −0.168269
\(841\) 15.6847 0.540850
\(842\) −33.6155 −1.15847
\(843\) 19.4233 0.668974
\(844\) 21.3693 0.735562
\(845\) −12.8078 −0.440600
\(846\) −1.36932 −0.0470781
\(847\) −15.6155 −0.536556
\(848\) 3.56155 0.122304
\(849\) 32.3002 1.10854
\(850\) 1.00000 0.0342997
\(851\) 3.50758 0.120238
\(852\) −26.0540 −0.892594
\(853\) 31.7538 1.08723 0.543615 0.839335i \(-0.317055\pi\)
0.543615 + 0.839335i \(0.317055\pi\)
\(854\) −36.1080 −1.23559
\(855\) −0.876894 −0.0299892
\(856\) −16.4924 −0.563699
\(857\) 47.1771 1.61154 0.805769 0.592230i \(-0.201752\pi\)
0.805769 + 0.592230i \(0.201752\pi\)
\(858\) −2.73863 −0.0934954
\(859\) 34.5464 1.17871 0.589354 0.807875i \(-0.299382\pi\)
0.589354 + 0.807875i \(0.299382\pi\)
\(860\) 7.12311 0.242896
\(861\) 59.7235 2.03537
\(862\) 12.4924 0.425494
\(863\) 44.4924 1.51454 0.757270 0.653102i \(-0.226533\pi\)
0.757270 + 0.653102i \(0.226533\pi\)
\(864\) −5.56155 −0.189208
\(865\) −18.0000 −0.612018
\(866\) 30.4924 1.03617
\(867\) 1.56155 0.0530331
\(868\) 7.61553 0.258488
\(869\) 0 0
\(870\) 10.4384 0.353897
\(871\) −0.384472 −0.0130273
\(872\) −4.43845 −0.150305
\(873\) −6.00000 −0.203069
\(874\) 4.87689 0.164963
\(875\) −3.12311 −0.105580
\(876\) 21.5616 0.728497
\(877\) −10.3845 −0.350659 −0.175329 0.984510i \(-0.556099\pi\)
−0.175329 + 0.984510i \(0.556099\pi\)
\(878\) 32.9848 1.11318
\(879\) −19.4233 −0.655131
\(880\) −4.00000 −0.134840
\(881\) 20.7386 0.698702 0.349351 0.936992i \(-0.386402\pi\)
0.349351 + 0.936992i \(0.386402\pi\)
\(882\) −1.54640 −0.0520699
\(883\) 2.63068 0.0885295 0.0442648 0.999020i \(-0.485905\pi\)
0.0442648 + 0.999020i \(0.485905\pi\)
\(884\) 0.438447 0.0147466
\(885\) −19.8078 −0.665831
\(886\) 28.0000 0.940678
\(887\) −56.6004 −1.90045 −0.950227 0.311558i \(-0.899149\pi\)
−0.950227 + 0.311558i \(0.899149\pi\)
\(888\) 1.75379 0.0588533
\(889\) −42.3542 −1.42051
\(890\) 2.68466 0.0899900
\(891\) 28.0000 0.938035
\(892\) −8.68466 −0.290784
\(893\) 3.80776 0.127422
\(894\) −8.00000 −0.267560
\(895\) −24.4924 −0.818691
\(896\) −3.12311 −0.104336
\(897\) 2.13826 0.0713944
\(898\) −25.1231 −0.838369
\(899\) −16.3002 −0.543642
\(900\) −0.561553 −0.0187184
\(901\) 3.56155 0.118653
\(902\) 48.9848 1.63102
\(903\) −34.7386 −1.15603
\(904\) −17.8078 −0.592277
\(905\) −0.246211 −0.00818434
\(906\) 14.6307 0.486072
\(907\) 14.4384 0.479421 0.239710 0.970844i \(-0.422948\pi\)
0.239710 + 0.970844i \(0.422948\pi\)
\(908\) 28.6847 0.951934
\(909\) −10.3845 −0.344431
\(910\) −1.36932 −0.0453924
\(911\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(912\) 2.43845 0.0807451
\(913\) −40.9848 −1.35640
\(914\) 0.246211 0.00814394
\(915\) 18.0540 0.596846
\(916\) 18.4924 0.611007
\(917\) 22.2462 0.734635
\(918\) −5.56155 −0.183559
\(919\) −12.8769 −0.424770 −0.212385 0.977186i \(-0.568123\pi\)
−0.212385 + 0.977186i \(0.568123\pi\)
\(920\) 3.12311 0.102966
\(921\) −53.4773 −1.76214
\(922\) −30.4924 −1.00421
\(923\) −7.31534 −0.240787
\(924\) 19.5076 0.641752
\(925\) 1.12311 0.0369275
\(926\) 14.9309 0.490659
\(927\) −4.49242 −0.147551
\(928\) 6.68466 0.219435
\(929\) 39.4773 1.29521 0.647604 0.761977i \(-0.275771\pi\)
0.647604 + 0.761977i \(0.275771\pi\)
\(930\) −3.80776 −0.124862
\(931\) 4.30019 0.140933
\(932\) 18.6847 0.612036
\(933\) 12.4924 0.408984
\(934\) 0.492423 0.0161126
\(935\) −4.00000 −0.130814
\(936\) −0.246211 −0.00804767
\(937\) 30.1080 0.983584 0.491792 0.870713i \(-0.336342\pi\)
0.491792 + 0.870713i \(0.336342\pi\)
\(938\) 2.73863 0.0894196
\(939\) −9.36932 −0.305756
\(940\) 2.43845 0.0795334
\(941\) −31.5616 −1.02888 −0.514439 0.857527i \(-0.672000\pi\)
−0.514439 + 0.857527i \(0.672000\pi\)
\(942\) −22.6307 −0.737348
\(943\) −38.2462 −1.24547
\(944\) −12.6847 −0.412850
\(945\) 17.3693 0.565024
\(946\) −28.4924 −0.926369
\(947\) 32.1922 1.04611 0.523054 0.852300i \(-0.324793\pi\)
0.523054 + 0.852300i \(0.324793\pi\)
\(948\) 0 0
\(949\) 6.05398 0.196520
\(950\) 1.56155 0.0506635
\(951\) −15.0152 −0.486900
\(952\) −3.12311 −0.101220
\(953\) 30.8769 1.00020 0.500100 0.865967i \(-0.333296\pi\)
0.500100 + 0.865967i \(0.333296\pi\)
\(954\) −2.00000 −0.0647524
\(955\) 0 0
\(956\) 1.36932 0.0442869
\(957\) −41.7538 −1.34971
\(958\) 34.4384 1.11266
\(959\) −31.2311 −1.00850
\(960\) 1.56155 0.0503989
\(961\) −25.0540 −0.808193
\(962\) 0.492423 0.0158763
\(963\) 9.26137 0.298443
\(964\) −4.24621 −0.136761
\(965\) −7.75379 −0.249603
\(966\) −15.2311 −0.490051
\(967\) 52.4924 1.68804 0.844021 0.536310i \(-0.180182\pi\)
0.844021 + 0.536310i \(0.180182\pi\)
\(968\) 5.00000 0.160706
\(969\) 2.43845 0.0783342
\(970\) 10.6847 0.343064
\(971\) 3.31534 0.106394 0.0531972 0.998584i \(-0.483059\pi\)
0.0531972 + 0.998584i \(0.483059\pi\)
\(972\) 5.75379 0.184553
\(973\) 51.5076 1.65126
\(974\) −15.6155 −0.500354
\(975\) 0.684658 0.0219266
\(976\) 11.5616 0.370076
\(977\) −18.8769 −0.603925 −0.301963 0.953320i \(-0.597642\pi\)
−0.301963 + 0.953320i \(0.597642\pi\)
\(978\) −3.50758 −0.112160
\(979\) −10.7386 −0.343208
\(980\) 2.75379 0.0879666
\(981\) 2.49242 0.0795769
\(982\) −1.56155 −0.0498312
\(983\) −28.8769 −0.921030 −0.460515 0.887652i \(-0.652335\pi\)
−0.460515 + 0.887652i \(0.652335\pi\)
\(984\) −19.1231 −0.609622
\(985\) −11.3693 −0.362257
\(986\) 6.68466 0.212883
\(987\) −11.8920 −0.378528
\(988\) 0.684658 0.0217819
\(989\) 22.2462 0.707388
\(990\) 2.24621 0.0713893
\(991\) −27.4233 −0.871130 −0.435565 0.900157i \(-0.643451\pi\)
−0.435565 + 0.900157i \(0.643451\pi\)
\(992\) −2.43845 −0.0774208
\(993\) −21.9460 −0.696436
\(994\) 52.1080 1.65276
\(995\) 10.4384 0.330921
\(996\) 16.0000 0.506979
\(997\) 28.2462 0.894566 0.447283 0.894392i \(-0.352392\pi\)
0.447283 + 0.894392i \(0.352392\pi\)
\(998\) −0.876894 −0.0277576
\(999\) −6.24621 −0.197621
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 170.2.a.f.1.2 2
3.2 odd 2 1530.2.a.r.1.1 2
4.3 odd 2 1360.2.a.m.1.1 2
5.2 odd 4 850.2.c.i.749.3 4
5.3 odd 4 850.2.c.i.749.2 4
5.4 even 2 850.2.a.n.1.1 2
7.6 odd 2 8330.2.a.bq.1.1 2
8.3 odd 2 5440.2.a.bd.1.2 2
8.5 even 2 5440.2.a.bj.1.1 2
15.14 odd 2 7650.2.a.de.1.2 2
17.4 even 4 2890.2.b.i.2311.2 4
17.13 even 4 2890.2.b.i.2311.3 4
17.16 even 2 2890.2.a.u.1.1 2
20.19 odd 2 6800.2.a.be.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
170.2.a.f.1.2 2 1.1 even 1 trivial
850.2.a.n.1.1 2 5.4 even 2
850.2.c.i.749.2 4 5.3 odd 4
850.2.c.i.749.3 4 5.2 odd 4
1360.2.a.m.1.1 2 4.3 odd 2
1530.2.a.r.1.1 2 3.2 odd 2
2890.2.a.u.1.1 2 17.16 even 2
2890.2.b.i.2311.2 4 17.4 even 4
2890.2.b.i.2311.3 4 17.13 even 4
5440.2.a.bd.1.2 2 8.3 odd 2
5440.2.a.bj.1.1 2 8.5 even 2
6800.2.a.be.1.2 2 20.19 odd 2
7650.2.a.de.1.2 2 15.14 odd 2
8330.2.a.bq.1.1 2 7.6 odd 2