Properties

Label 170.2.k.b.111.4
Level $170$
Weight $2$
Character 170.111
Analytic conductor $1.357$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [170,2,Mod(111,170)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(170, base_ring=CyclotomicField(8))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("170.111");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 170 = 2 \cdot 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 170.k (of order \(8\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.35745683436\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(4\) over \(\Q(\zeta_{8})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 28x^{14} + 286x^{12} + 1412x^{10} + 3709x^{8} + 5264x^{6} + 3780x^{4} + 1072x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{8}]$

Embedding invariants

Embedding label 111.4
Root \(1.09612i\) of defining polynomial
Character \(\chi\) \(=\) 170.111
Dual form 170.2.k.b.121.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.707107 - 0.707107i) q^{2} +(1.93656 + 0.802151i) q^{3} -1.00000i q^{4} +(-0.382683 + 0.923880i) q^{5} +(1.93656 - 0.802151i) q^{6} +(-0.434936 - 1.05003i) q^{7} +(-0.707107 - 0.707107i) q^{8} +(0.985516 + 0.985516i) q^{9} +O(q^{10})\) \(q+(0.707107 - 0.707107i) q^{2} +(1.93656 + 0.802151i) q^{3} -1.00000i q^{4} +(-0.382683 + 0.923880i) q^{5} +(1.93656 - 0.802151i) q^{6} +(-0.434936 - 1.05003i) q^{7} +(-0.707107 - 0.707107i) q^{8} +(0.985516 + 0.985516i) q^{9} +(0.382683 + 0.923880i) q^{10} +(-0.233094 + 0.0965508i) q^{11} +(0.802151 - 1.93656i) q^{12} +3.10869i q^{13} +(-1.05003 - 0.434936i) q^{14} +(-1.48218 + 1.48218i) q^{15} -1.00000 q^{16} +(-3.02187 - 2.80505i) q^{17} +1.39373 q^{18} +(-0.972524 + 0.972524i) q^{19} +(0.923880 + 0.382683i) q^{20} -2.38233i q^{21} +(-0.0965508 + 0.233094i) q^{22} +(-0.694615 + 0.287719i) q^{23} +(-0.802151 - 1.93656i) q^{24} +(-0.707107 - 0.707107i) q^{25} +(2.19817 + 2.19817i) q^{26} +(-1.28847 - 3.11065i) q^{27} +(-1.05003 + 0.434936i) q^{28} +(-0.432553 + 1.04428i) q^{29} +2.09612i q^{30} +(-0.863307 - 0.357593i) q^{31} +(-0.707107 + 0.707107i) q^{32} -0.528851 q^{33} +(-4.12025 + 0.153319i) q^{34} +1.13654 q^{35} +(0.985516 - 0.985516i) q^{36} +(4.54149 + 1.88115i) q^{37} +1.37536i q^{38} +(-2.49364 + 6.02017i) q^{39} +(0.923880 - 0.382683i) q^{40} +(-3.67824 - 8.88006i) q^{41} +(-1.68456 - 1.68456i) q^{42} +(5.13048 + 5.13048i) q^{43} +(0.0965508 + 0.233094i) q^{44} +(-1.28764 + 0.533357i) q^{45} +(-0.287719 + 0.694615i) q^{46} +9.71535i q^{47} +(-1.93656 - 0.802151i) q^{48} +(4.03636 - 4.03636i) q^{49} -1.00000 q^{50} +(-3.60198 - 7.85615i) q^{51} +3.10869 q^{52} +(-9.25847 + 9.25847i) q^{53} +(-3.11065 - 1.28847i) q^{54} -0.252299i q^{55} +(-0.434936 + 1.05003i) q^{56} +(-2.66347 + 1.10324i) q^{57} +(0.432553 + 1.04428i) q^{58} +(1.67839 + 1.67839i) q^{59} +(1.48218 + 1.48218i) q^{60} +(-2.81251 - 6.79001i) q^{61} +(-0.863307 + 0.357593i) q^{62} +(0.606184 - 1.46346i) q^{63} +1.00000i q^{64} +(-2.87205 - 1.18964i) q^{65} +(-0.373954 + 0.373954i) q^{66} +15.8174 q^{67} +(-2.80505 + 3.02187i) q^{68} -1.57596 q^{69} +(0.803658 - 0.803658i) q^{70} +(2.35153 + 0.974036i) q^{71} -1.39373i q^{72} +(-3.80933 + 9.19654i) q^{73} +(4.54149 - 1.88115i) q^{74} +(-0.802151 - 1.93656i) q^{75} +(0.972524 + 0.972524i) q^{76} +(0.202762 + 0.202762i) q^{77} +(2.49364 + 6.02017i) q^{78} +(12.9573 - 5.36708i) q^{79} +(0.382683 - 0.923880i) q^{80} -11.2387i q^{81} +(-8.88006 - 3.67824i) q^{82} +(11.0125 - 11.0125i) q^{83} -2.38233 q^{84} +(3.74795 - 1.71840i) q^{85} +7.25559 q^{86} +(-1.67534 + 1.67534i) q^{87} +(0.233094 + 0.0965508i) q^{88} -11.9252i q^{89} +(-0.533357 + 1.28764i) q^{90} +(3.26421 - 1.35208i) q^{91} +(0.287719 + 0.694615i) q^{92} +(-1.38501 - 1.38501i) q^{93} +(6.86979 + 6.86979i) q^{94} +(-0.526326 - 1.27066i) q^{95} +(-1.93656 + 0.802151i) q^{96} +(6.02292 - 14.5406i) q^{97} -5.70827i q^{98} +(-0.324871 - 0.134566i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q+O(q^{10}) \) Copy content Toggle raw display \( 16 q - 8 q^{11} - 8 q^{14} + 8 q^{15} - 16 q^{16} + 8 q^{18} - 8 q^{22} + 8 q^{23} - 24 q^{27} - 8 q^{28} + 8 q^{29} + 32 q^{31} + 16 q^{33} + 16 q^{34} + 16 q^{35} - 8 q^{37} - 32 q^{39} - 32 q^{41} + 32 q^{42} - 16 q^{43} + 8 q^{44} - 16 q^{45} - 24 q^{46} - 8 q^{49} - 16 q^{50} - 8 q^{51} - 8 q^{52} - 40 q^{53} - 16 q^{57} - 8 q^{58} + 16 q^{59} - 8 q^{60} - 24 q^{61} + 32 q^{62} + 56 q^{63} - 8 q^{65} - 8 q^{66} + 16 q^{67} - 16 q^{69} + 8 q^{70} + 8 q^{71} + 16 q^{73} - 8 q^{74} + 24 q^{77} + 32 q^{78} + 40 q^{79} + 16 q^{82} + 32 q^{83} + 16 q^{84} + 16 q^{85} - 32 q^{87} + 8 q^{88} + 24 q^{91} + 24 q^{92} - 32 q^{93} + 40 q^{94} + 16 q^{95} + 24 q^{97} - 56 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/170\mathbb{Z}\right)^\times\).

\(n\) \(71\) \(137\)
\(\chi(n)\) \(e\left(\frac{1}{8}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.707107 0.707107i 0.500000 0.500000i
\(3\) 1.93656 + 0.802151i 1.11808 + 0.463122i 0.863712 0.503986i \(-0.168134\pi\)
0.254364 + 0.967108i \(0.418134\pi\)
\(4\) 1.00000i 0.500000i
\(5\) −0.382683 + 0.923880i −0.171141 + 0.413171i
\(6\) 1.93656 0.802151i 0.790599 0.327477i
\(7\) −0.434936 1.05003i −0.164390 0.396874i 0.820122 0.572189i \(-0.193906\pi\)
−0.984512 + 0.175315i \(0.943906\pi\)
\(8\) −0.707107 0.707107i −0.250000 0.250000i
\(9\) 0.985516 + 0.985516i 0.328505 + 0.328505i
\(10\) 0.382683 + 0.923880i 0.121015 + 0.292156i
\(11\) −0.233094 + 0.0965508i −0.0702806 + 0.0291112i −0.417547 0.908655i \(-0.637110\pi\)
0.347266 + 0.937767i \(0.387110\pi\)
\(12\) 0.802151 1.93656i 0.231561 0.559038i
\(13\) 3.10869i 0.862194i 0.902305 + 0.431097i \(0.141873\pi\)
−0.902305 + 0.431097i \(0.858127\pi\)
\(14\) −1.05003 0.434936i −0.280632 0.116242i
\(15\) −1.48218 + 1.48218i −0.382698 + 0.382698i
\(16\) −1.00000 −0.250000
\(17\) −3.02187 2.80505i −0.732912 0.680324i
\(18\) 1.39373 0.328505
\(19\) −0.972524 + 0.972524i −0.223112 + 0.223112i −0.809808 0.586695i \(-0.800429\pi\)
0.586695 + 0.809808i \(0.300429\pi\)
\(20\) 0.923880 + 0.382683i 0.206586 + 0.0855706i
\(21\) 2.38233i 0.519868i
\(22\) −0.0965508 + 0.233094i −0.0205847 + 0.0496959i
\(23\) −0.694615 + 0.287719i −0.144837 + 0.0599935i −0.453925 0.891040i \(-0.649976\pi\)
0.309087 + 0.951034i \(0.399976\pi\)
\(24\) −0.802151 1.93656i −0.163738 0.395300i
\(25\) −0.707107 0.707107i −0.141421 0.141421i
\(26\) 2.19817 + 2.19817i 0.431097 + 0.431097i
\(27\) −1.28847 3.11065i −0.247966 0.598644i
\(28\) −1.05003 + 0.434936i −0.198437 + 0.0821952i
\(29\) −0.432553 + 1.04428i −0.0803231 + 0.193917i −0.958939 0.283612i \(-0.908467\pi\)
0.878616 + 0.477529i \(0.158467\pi\)
\(30\) 2.09612i 0.382698i
\(31\) −0.863307 0.357593i −0.155054 0.0642257i 0.303806 0.952734i \(-0.401742\pi\)
−0.458861 + 0.888508i \(0.651742\pi\)
\(32\) −0.707107 + 0.707107i −0.125000 + 0.125000i
\(33\) −0.528851 −0.0920611
\(34\) −4.12025 + 0.153319i −0.706618 + 0.0262940i
\(35\) 1.13654 0.192111
\(36\) 0.985516 0.985516i 0.164253 0.164253i
\(37\) 4.54149 + 1.88115i 0.746617 + 0.309259i 0.723360 0.690471i \(-0.242597\pi\)
0.0232565 + 0.999730i \(0.492597\pi\)
\(38\) 1.37536i 0.223112i
\(39\) −2.49364 + 6.02017i −0.399302 + 0.963999i
\(40\) 0.923880 0.382683i 0.146078 0.0605076i
\(41\) −3.67824 8.88006i −0.574445 1.38683i −0.897737 0.440533i \(-0.854790\pi\)
0.323292 0.946299i \(-0.395210\pi\)
\(42\) −1.68456 1.68456i −0.259934 0.259934i
\(43\) 5.13048 + 5.13048i 0.782391 + 0.782391i 0.980234 0.197843i \(-0.0633936\pi\)
−0.197843 + 0.980234i \(0.563394\pi\)
\(44\) 0.0965508 + 0.233094i 0.0145556 + 0.0351403i
\(45\) −1.28764 + 0.533357i −0.191950 + 0.0795082i
\(46\) −0.287719 + 0.694615i −0.0424218 + 0.102415i
\(47\) 9.71535i 1.41713i 0.705646 + 0.708565i \(0.250657\pi\)
−0.705646 + 0.708565i \(0.749343\pi\)
\(48\) −1.93656 0.802151i −0.279519 0.115781i
\(49\) 4.03636 4.03636i 0.576622 0.576622i
\(50\) −1.00000 −0.141421
\(51\) −3.60198 7.85615i −0.504378 1.10008i
\(52\) 3.10869 0.431097
\(53\) −9.25847 + 9.25847i −1.27175 + 1.27175i −0.326579 + 0.945170i \(0.605896\pi\)
−0.945170 + 0.326579i \(0.894104\pi\)
\(54\) −3.11065 1.28847i −0.423305 0.175339i
\(55\) 0.252299i 0.0340201i
\(56\) −0.434936 + 1.05003i −0.0581208 + 0.140316i
\(57\) −2.66347 + 1.10324i −0.352785 + 0.146128i
\(58\) 0.432553 + 1.04428i 0.0567970 + 0.137120i
\(59\) 1.67839 + 1.67839i 0.218508 + 0.218508i 0.807870 0.589361i \(-0.200621\pi\)
−0.589361 + 0.807870i \(0.700621\pi\)
\(60\) 1.48218 + 1.48218i 0.191349 + 0.191349i
\(61\) −2.81251 6.79001i −0.360105 0.869371i −0.995284 0.0970059i \(-0.969073\pi\)
0.635178 0.772365i \(-0.280927\pi\)
\(62\) −0.863307 + 0.357593i −0.109640 + 0.0454144i
\(63\) 0.606184 1.46346i 0.0763720 0.184378i
\(64\) 1.00000i 0.125000i
\(65\) −2.87205 1.18964i −0.356234 0.147557i
\(66\) −0.373954 + 0.373954i −0.0460305 + 0.0460305i
\(67\) 15.8174 1.93240 0.966201 0.257788i \(-0.0829936\pi\)
0.966201 + 0.257788i \(0.0829936\pi\)
\(68\) −2.80505 + 3.02187i −0.340162 + 0.366456i
\(69\) −1.57596 −0.189723
\(70\) 0.803658 0.803658i 0.0960555 0.0960555i
\(71\) 2.35153 + 0.974036i 0.279075 + 0.115597i 0.517831 0.855483i \(-0.326740\pi\)
−0.238756 + 0.971080i \(0.576740\pi\)
\(72\) 1.39373i 0.164253i
\(73\) −3.80933 + 9.19654i −0.445849 + 1.07637i 0.528014 + 0.849236i \(0.322937\pi\)
−0.973863 + 0.227138i \(0.927063\pi\)
\(74\) 4.54149 1.88115i 0.527938 0.218679i
\(75\) −0.802151 1.93656i −0.0926245 0.223615i
\(76\) 0.972524 + 0.972524i 0.111556 + 0.111556i
\(77\) 0.202762 + 0.202762i 0.0231069 + 0.0231069i
\(78\) 2.49364 + 6.02017i 0.282349 + 0.681650i
\(79\) 12.9573 5.36708i 1.45781 0.603844i 0.493766 0.869595i \(-0.335620\pi\)
0.964042 + 0.265751i \(0.0856200\pi\)
\(80\) 0.382683 0.923880i 0.0427853 0.103293i
\(81\) 11.2387i 1.24875i
\(82\) −8.88006 3.67824i −0.980638 0.406194i
\(83\) 11.0125 11.0125i 1.20877 1.20877i 0.237349 0.971424i \(-0.423721\pi\)
0.971424 0.237349i \(-0.0762786\pi\)
\(84\) −2.38233 −0.259934
\(85\) 3.74795 1.71840i 0.406522 0.186387i
\(86\) 7.25559 0.782391
\(87\) −1.67534 + 1.67534i −0.179615 + 0.179615i
\(88\) 0.233094 + 0.0965508i 0.0248479 + 0.0102924i
\(89\) 11.9252i 1.26407i −0.774941 0.632034i \(-0.782220\pi\)
0.774941 0.632034i \(-0.217780\pi\)
\(90\) −0.533357 + 1.28764i −0.0562208 + 0.135729i
\(91\) 3.26421 1.35208i 0.342182 0.141737i
\(92\) 0.287719 + 0.694615i 0.0299968 + 0.0724186i
\(93\) −1.38501 1.38501i −0.143618 0.143618i
\(94\) 6.86979 + 6.86979i 0.708565 + 0.708565i
\(95\) −0.526326 1.27066i −0.0539999 0.130367i
\(96\) −1.93656 + 0.802151i −0.197650 + 0.0818692i
\(97\) 6.02292 14.5406i 0.611535 1.47638i −0.249780 0.968303i \(-0.580358\pi\)
0.861314 0.508073i \(-0.169642\pi\)
\(98\) 5.70827i 0.576622i
\(99\) −0.324871 0.134566i −0.0326507 0.0135244i
\(100\) −0.707107 + 0.707107i −0.0707107 + 0.0707107i
\(101\) −1.90803 −0.189857 −0.0949283 0.995484i \(-0.530262\pi\)
−0.0949283 + 0.995484i \(0.530262\pi\)
\(102\) −8.10212 3.00816i −0.802230 0.297852i
\(103\) 1.64495 0.162082 0.0810408 0.996711i \(-0.474176\pi\)
0.0810408 + 0.996711i \(0.474176\pi\)
\(104\) 2.19817 2.19817i 0.215549 0.215549i
\(105\) 2.20099 + 0.911680i 0.214795 + 0.0889709i
\(106\) 13.0935i 1.27175i
\(107\) −4.48481 + 10.8273i −0.433563 + 1.04671i 0.544566 + 0.838718i \(0.316694\pi\)
−0.978130 + 0.207996i \(0.933306\pi\)
\(108\) −3.11065 + 1.28847i −0.299322 + 0.123983i
\(109\) 0.796977 + 1.92407i 0.0763366 + 0.184293i 0.957441 0.288629i \(-0.0931994\pi\)
−0.881104 + 0.472922i \(0.843199\pi\)
\(110\) −0.178403 0.178403i −0.0170100 0.0170100i
\(111\) 7.28593 + 7.28593i 0.691550 + 0.691550i
\(112\) 0.434936 + 1.05003i 0.0410976 + 0.0992184i
\(113\) −8.16143 + 3.38057i −0.767763 + 0.318018i −0.731966 0.681341i \(-0.761397\pi\)
−0.0357968 + 0.999359i \(0.511397\pi\)
\(114\) −1.10324 + 2.66347i −0.103328 + 0.249457i
\(115\) 0.751846i 0.0701100i
\(116\) 1.04428 + 0.432553i 0.0969586 + 0.0401616i
\(117\) −3.06366 + 3.06366i −0.283235 + 0.283235i
\(118\) 2.37361 0.218508
\(119\) −1.63106 + 4.39307i −0.149519 + 0.402712i
\(120\) 2.09612 0.191349
\(121\) −7.73316 + 7.73316i −0.703015 + 0.703015i
\(122\) −6.79001 2.81251i −0.614738 0.254633i
\(123\) 20.1473i 1.81662i
\(124\) −0.357593 + 0.863307i −0.0321128 + 0.0775272i
\(125\) 0.923880 0.382683i 0.0826343 0.0342282i
\(126\) −0.606184 1.46346i −0.0540032 0.130375i
\(127\) 7.38362 + 7.38362i 0.655191 + 0.655191i 0.954238 0.299048i \(-0.0966689\pi\)
−0.299048 + 0.954238i \(0.596669\pi\)
\(128\) 0.707107 + 0.707107i 0.0625000 + 0.0625000i
\(129\) 5.82008 + 14.0509i 0.512430 + 1.23712i
\(130\) −2.87205 + 1.18964i −0.251896 + 0.104339i
\(131\) −3.71255 + 8.96288i −0.324367 + 0.783090i 0.674624 + 0.738162i \(0.264306\pi\)
−0.998990 + 0.0449283i \(0.985694\pi\)
\(132\) 0.528851i 0.0460305i
\(133\) 1.44417 + 0.598193i 0.125225 + 0.0518699i
\(134\) 11.1846 11.1846i 0.966201 0.966201i
\(135\) 3.36694 0.289780
\(136\) 0.153319 + 4.12025i 0.0131470 + 0.353309i
\(137\) −4.55218 −0.388919 −0.194460 0.980911i \(-0.562295\pi\)
−0.194460 + 0.980911i \(0.562295\pi\)
\(138\) −1.11437 + 1.11437i −0.0948617 + 0.0948617i
\(139\) −11.5541 4.78586i −0.980004 0.405931i −0.165577 0.986197i \(-0.552949\pi\)
−0.814427 + 0.580266i \(0.802949\pi\)
\(140\) 1.13654i 0.0960555i
\(141\) −7.79318 + 18.8144i −0.656304 + 1.58446i
\(142\) 2.35153 0.974036i 0.197336 0.0817393i
\(143\) −0.300146 0.724617i −0.0250995 0.0605955i
\(144\) −0.985516 0.985516i −0.0821263 0.0821263i
\(145\) −0.799254 0.799254i −0.0663745 0.0663745i
\(146\) 3.80933 + 9.19654i 0.315263 + 0.761111i
\(147\) 11.0544 4.57890i 0.911754 0.377661i
\(148\) 1.88115 4.54149i 0.154629 0.373308i
\(149\) 22.2607i 1.82367i −0.410556 0.911835i \(-0.634666\pi\)
0.410556 0.911835i \(-0.365334\pi\)
\(150\) −1.93656 0.802151i −0.158120 0.0654954i
\(151\) −7.13341 + 7.13341i −0.580509 + 0.580509i −0.935043 0.354534i \(-0.884639\pi\)
0.354534 + 0.935043i \(0.384639\pi\)
\(152\) 1.37536 0.111556
\(153\) −0.213685 5.74252i −0.0172754 0.464255i
\(154\) 0.286749 0.0231069
\(155\) 0.660746 0.660746i 0.0530724 0.0530724i
\(156\) 6.02017 + 2.49364i 0.482000 + 0.199651i
\(157\) 16.5315i 1.31936i 0.751549 + 0.659678i \(0.229307\pi\)
−0.751549 + 0.659678i \(0.770693\pi\)
\(158\) 5.36708 12.9573i 0.426982 1.03083i
\(159\) −25.3563 + 10.5029i −2.01089 + 0.832937i
\(160\) −0.382683 0.923880i −0.0302538 0.0730391i
\(161\) 0.604226 + 0.604226i 0.0476197 + 0.0476197i
\(162\) −7.94697 7.94697i −0.624373 0.624373i
\(163\) 0.715103 + 1.72641i 0.0560112 + 0.135223i 0.949408 0.314046i \(-0.101685\pi\)
−0.893397 + 0.449269i \(0.851685\pi\)
\(164\) −8.88006 + 3.67824i −0.693416 + 0.287222i
\(165\) 0.202382 0.488594i 0.0157554 0.0380370i
\(166\) 15.5740i 1.20877i
\(167\) −21.9273 9.08260i −1.69679 0.702833i −0.696891 0.717177i \(-0.745434\pi\)
−0.999897 + 0.0143440i \(0.995434\pi\)
\(168\) −1.68456 + 1.68456i −0.129967 + 0.129967i
\(169\) 3.33607 0.256621
\(170\) 1.43510 3.86529i 0.110068 0.296454i
\(171\) −1.91688 −0.146587
\(172\) 5.13048 5.13048i 0.391195 0.391195i
\(173\) −3.84503 1.59266i −0.292332 0.121088i 0.231698 0.972788i \(-0.425572\pi\)
−0.524030 + 0.851700i \(0.675572\pi\)
\(174\) 2.36928i 0.179615i
\(175\) −0.434936 + 1.05003i −0.0328781 + 0.0793748i
\(176\) 0.233094 0.0965508i 0.0175701 0.00727779i
\(177\) 1.90399 + 4.59664i 0.143113 + 0.345505i
\(178\) −8.43238 8.43238i −0.632034 0.632034i
\(179\) 9.42514 + 9.42514i 0.704468 + 0.704468i 0.965366 0.260898i \(-0.0840186\pi\)
−0.260898 + 0.965366i \(0.584019\pi\)
\(180\) 0.533357 + 1.28764i 0.0397541 + 0.0959749i
\(181\) −7.74313 + 3.20731i −0.575543 + 0.238398i −0.651417 0.758720i \(-0.725825\pi\)
0.0758745 + 0.997117i \(0.475825\pi\)
\(182\) 1.35208 3.26421i 0.100223 0.241959i
\(183\) 15.4054i 1.13880i
\(184\) 0.694615 + 0.287719i 0.0512077 + 0.0212109i
\(185\) −3.47591 + 3.47591i −0.255554 + 0.255554i
\(186\) −1.95869 −0.143618
\(187\) 0.975211 + 0.362076i 0.0713145 + 0.0264776i
\(188\) 9.71535 0.708565
\(189\) −2.70587 + 2.70587i −0.196823 + 0.196823i
\(190\) −1.27066 0.526326i −0.0921837 0.0381837i
\(191\) 8.37154i 0.605743i 0.953031 + 0.302872i \(0.0979453\pi\)
−0.953031 + 0.302872i \(0.902055\pi\)
\(192\) −0.802151 + 1.93656i −0.0578903 + 0.139760i
\(193\) −7.26832 + 3.01064i −0.523185 + 0.216710i −0.628615 0.777716i \(-0.716378\pi\)
0.105430 + 0.994427i \(0.466378\pi\)
\(194\) −6.02292 14.5406i −0.432420 1.04395i
\(195\) −4.60764 4.60764i −0.329960 0.329960i
\(196\) −4.03636 4.03636i −0.288311 0.288311i
\(197\) −0.174372 0.420971i −0.0124235 0.0299929i 0.917546 0.397629i \(-0.130167\pi\)
−0.929970 + 0.367637i \(0.880167\pi\)
\(198\) −0.324871 + 0.134566i −0.0230875 + 0.00956318i
\(199\) −3.51474 + 8.48532i −0.249153 + 0.601509i −0.998133 0.0610845i \(-0.980544\pi\)
0.748980 + 0.662593i \(0.230544\pi\)
\(200\) 1.00000i 0.0707107i
\(201\) 30.6314 + 12.6879i 2.16057 + 0.894939i
\(202\) −1.34918 + 1.34918i −0.0949283 + 0.0949283i
\(203\) 1.28465 0.0901650
\(204\) −7.85615 + 3.60198i −0.550041 + 0.252189i
\(205\) 9.61170 0.671311
\(206\) 1.16315 1.16315i 0.0810408 0.0810408i
\(207\) −0.968106 0.401002i −0.0672880 0.0278716i
\(208\) 3.10869i 0.215549i
\(209\) 0.132792 0.320588i 0.00918541 0.0221755i
\(210\) 2.20099 0.911680i 0.151883 0.0629119i
\(211\) −2.91050 7.02656i −0.200367 0.483728i 0.791475 0.611201i \(-0.209313\pi\)
−0.991842 + 0.127473i \(0.959313\pi\)
\(212\) 9.25847 + 9.25847i 0.635875 + 0.635875i
\(213\) 3.77257 + 3.77257i 0.258492 + 0.258492i
\(214\) 4.48481 + 10.8273i 0.306575 + 0.740139i
\(215\) −6.70329 + 2.77660i −0.457161 + 0.189362i
\(216\) −1.28847 + 3.11065i −0.0876694 + 0.211653i
\(217\) 1.06203i 0.0720951i
\(218\) 1.92407 + 0.796977i 0.130315 + 0.0539781i
\(219\) −14.7540 + 14.7540i −0.996986 + 0.996986i
\(220\) −0.252299 −0.0170100
\(221\) 8.72001 9.39405i 0.586571 0.631912i
\(222\) 10.3039 0.691550
\(223\) 1.91171 1.91171i 0.128017 0.128017i −0.640195 0.768212i \(-0.721146\pi\)
0.768212 + 0.640195i \(0.221146\pi\)
\(224\) 1.05003 + 0.434936i 0.0701580 + 0.0290604i
\(225\) 1.39373i 0.0929153i
\(226\) −3.38057 + 8.16143i −0.224872 + 0.542890i
\(227\) −8.71853 + 3.61134i −0.578669 + 0.239693i −0.652768 0.757558i \(-0.726392\pi\)
0.0740982 + 0.997251i \(0.476392\pi\)
\(228\) 1.10324 + 2.66347i 0.0730642 + 0.176392i
\(229\) −6.37289 6.37289i −0.421133 0.421133i 0.464461 0.885594i \(-0.346248\pi\)
−0.885594 + 0.464461i \(0.846248\pi\)
\(230\) −0.531635 0.531635i −0.0350550 0.0350550i
\(231\) 0.230016 + 0.555309i 0.0151340 + 0.0365366i
\(232\) 1.04428 0.432553i 0.0685601 0.0283985i
\(233\) 5.08986 12.2880i 0.333448 0.805015i −0.664866 0.746963i \(-0.731511\pi\)
0.998314 0.0580517i \(-0.0184888\pi\)
\(234\) 4.33267i 0.283235i
\(235\) −8.97582 3.71790i −0.585518 0.242529i
\(236\) 1.67839 1.67839i 0.109254 0.109254i
\(237\) 29.3978 1.90959
\(238\) 1.95304 + 4.25970i 0.126597 + 0.276116i
\(239\) −2.66720 −0.172527 −0.0862633 0.996272i \(-0.527493\pi\)
−0.0862633 + 0.996272i \(0.527493\pi\)
\(240\) 1.48218 1.48218i 0.0956745 0.0956745i
\(241\) −0.493333 0.204345i −0.0317784 0.0131630i 0.366738 0.930324i \(-0.380475\pi\)
−0.398516 + 0.917161i \(0.630475\pi\)
\(242\) 10.9363i 0.703015i
\(243\) 5.14973 12.4325i 0.330355 0.797548i
\(244\) −6.79001 + 2.81251i −0.434686 + 0.180053i
\(245\) 2.18446 + 5.27375i 0.139560 + 0.336928i
\(246\) −14.2463 14.2463i −0.908311 0.908311i
\(247\) −3.02327 3.02327i −0.192366 0.192366i
\(248\) 0.357593 + 0.863307i 0.0227072 + 0.0548200i
\(249\) 30.1600 12.4927i 1.91131 0.791691i
\(250\) 0.382683 0.923880i 0.0242030 0.0584313i
\(251\) 13.3789i 0.844468i −0.906487 0.422234i \(-0.861246\pi\)
0.906487 0.422234i \(-0.138754\pi\)
\(252\) −1.46346 0.606184i −0.0921892 0.0381860i
\(253\) 0.134131 0.134131i 0.00843276 0.00843276i
\(254\) 10.4420 0.655191
\(255\) 8.63656 0.321375i 0.540842 0.0201253i
\(256\) 1.00000 0.0625000
\(257\) −13.6909 + 13.6909i −0.854013 + 0.854013i −0.990625 0.136612i \(-0.956379\pi\)
0.136612 + 0.990625i \(0.456379\pi\)
\(258\) 14.0509 + 5.82008i 0.874773 + 0.362343i
\(259\) 5.58688i 0.347152i
\(260\) −1.18964 + 2.87205i −0.0737785 + 0.178117i
\(261\) −1.45544 + 0.602863i −0.0900894 + 0.0373163i
\(262\) 3.71255 + 8.96288i 0.229362 + 0.553728i
\(263\) 8.55368 + 8.55368i 0.527442 + 0.527442i 0.919809 0.392367i \(-0.128344\pi\)
−0.392367 + 0.919809i \(0.628344\pi\)
\(264\) 0.373954 + 0.373954i 0.0230153 + 0.0230153i
\(265\) −5.01065 12.0968i −0.307802 0.743099i
\(266\) 1.44417 0.598193i 0.0885474 0.0366776i
\(267\) 9.56581 23.0939i 0.585418 1.41332i
\(268\) 15.8174i 0.966201i
\(269\) 18.4733 + 7.65189i 1.12634 + 0.466544i 0.866534 0.499118i \(-0.166343\pi\)
0.259802 + 0.965662i \(0.416343\pi\)
\(270\) 2.38079 2.38079i 0.144890 0.144890i
\(271\) −3.67946 −0.223511 −0.111756 0.993736i \(-0.535647\pi\)
−0.111756 + 0.993736i \(0.535647\pi\)
\(272\) 3.02187 + 2.80505i 0.183228 + 0.170081i
\(273\) 7.40593 0.448227
\(274\) −3.21888 + 3.21888i −0.194460 + 0.194460i
\(275\) 0.233094 + 0.0965508i 0.0140561 + 0.00582223i
\(276\) 1.57596i 0.0948617i
\(277\) 5.03180 12.1478i 0.302331 0.729892i −0.697579 0.716508i \(-0.745739\pi\)
0.999910 0.0133845i \(-0.00426055\pi\)
\(278\) −11.5541 + 4.78586i −0.692967 + 0.287037i
\(279\) −0.498389 1.20322i −0.0298377 0.0720347i
\(280\) −0.803658 0.803658i −0.0480277 0.0480277i
\(281\) 6.24669 + 6.24669i 0.372646 + 0.372646i 0.868440 0.495794i \(-0.165123\pi\)
−0.495794 + 0.868440i \(0.665123\pi\)
\(282\) 7.79318 + 18.8144i 0.464077 + 1.12038i
\(283\) 5.15384 2.13479i 0.306364 0.126900i −0.224205 0.974542i \(-0.571978\pi\)
0.530569 + 0.847642i \(0.321978\pi\)
\(284\) 0.974036 2.35153i 0.0577984 0.139538i
\(285\) 2.88292i 0.170769i
\(286\) −0.724617 0.300146i −0.0428475 0.0177480i
\(287\) −7.72452 + 7.72452i −0.455964 + 0.455964i
\(288\) −1.39373 −0.0821263
\(289\) 1.26343 + 16.9530i 0.0743192 + 0.997235i
\(290\) −1.13032 −0.0663745
\(291\) 23.3275 23.3275i 1.36748 1.36748i
\(292\) 9.19654 + 3.80933i 0.538187 + 0.222924i
\(293\) 23.5631i 1.37657i −0.725439 0.688286i \(-0.758363\pi\)
0.725439 0.688286i \(-0.241637\pi\)
\(294\) 4.57890 11.0544i 0.267047 0.644708i
\(295\) −2.19293 + 0.908340i −0.127677 + 0.0528856i
\(296\) −1.88115 4.54149i −0.109339 0.263969i
\(297\) 0.600671 + 0.600671i 0.0348545 + 0.0348545i
\(298\) −15.7407 15.7407i −0.911835 0.911835i
\(299\) −0.894428 2.15934i −0.0517261 0.124878i
\(300\) −1.93656 + 0.802151i −0.111808 + 0.0463122i
\(301\) 3.15572 7.61859i 0.181893 0.439128i
\(302\) 10.0882i 0.580509i
\(303\) −3.69503 1.53053i −0.212274 0.0879268i
\(304\) 0.972524 0.972524i 0.0557781 0.0557781i
\(305\) 7.34945 0.420828
\(306\) −4.21167 3.90948i −0.240765 0.223490i
\(307\) −13.7608 −0.785371 −0.392686 0.919673i \(-0.628454\pi\)
−0.392686 + 0.919673i \(0.628454\pi\)
\(308\) 0.202762 0.202762i 0.0115535 0.0115535i
\(309\) 3.18555 + 1.31950i 0.181220 + 0.0750636i
\(310\) 0.934437i 0.0530724i
\(311\) −7.91601 + 19.1109i −0.448876 + 1.08368i 0.523868 + 0.851799i \(0.324488\pi\)
−0.972744 + 0.231882i \(0.925512\pi\)
\(312\) 6.02017 2.49364i 0.340825 0.141174i
\(313\) 9.54896 + 23.0532i 0.539739 + 1.30305i 0.924905 + 0.380198i \(0.124144\pi\)
−0.385166 + 0.922847i \(0.625856\pi\)
\(314\) 11.6895 + 11.6895i 0.659678 + 0.659678i
\(315\) 1.12008 + 1.12008i 0.0631095 + 0.0631095i
\(316\) −5.36708 12.9573i −0.301922 0.728904i
\(317\) −8.04517 + 3.33242i −0.451862 + 0.187167i −0.596995 0.802245i \(-0.703639\pi\)
0.145133 + 0.989412i \(0.453639\pi\)
\(318\) −10.5029 + 25.3563i −0.588975 + 1.42191i
\(319\) 0.285178i 0.0159669i
\(320\) −0.923880 0.382683i −0.0516464 0.0213927i
\(321\) −17.3703 + 17.3703i −0.969513 + 0.969513i
\(322\) 0.854505 0.0476197
\(323\) 5.66682 0.210868i 0.315310 0.0117330i
\(324\) −11.2387 −0.624373
\(325\) 2.19817 2.19817i 0.121933 0.121933i
\(326\) 1.72641 + 0.715103i 0.0956171 + 0.0396059i
\(327\) 4.36539i 0.241407i
\(328\) −3.67824 + 8.88006i −0.203097 + 0.490319i
\(329\) 10.2014 4.22556i 0.562422 0.232963i
\(330\) −0.202382 0.488594i −0.0111408 0.0268962i
\(331\) −14.5302 14.5302i −0.798649 0.798649i 0.184233 0.982883i \(-0.441020\pi\)
−0.982883 + 0.184233i \(0.941020\pi\)
\(332\) −11.0125 11.0125i −0.604387 0.604387i
\(333\) 2.62181 + 6.32962i 0.143674 + 0.346861i
\(334\) −21.9273 + 9.08260i −1.19981 + 0.496978i
\(335\) −6.05306 + 14.6134i −0.330714 + 0.798414i
\(336\) 2.38233i 0.129967i
\(337\) −28.2402 11.6975i −1.53834 0.637202i −0.557179 0.830392i \(-0.688116\pi\)
−0.981161 + 0.193191i \(0.938116\pi\)
\(338\) 2.35896 2.35896i 0.128310 0.128310i
\(339\) −18.5169 −1.00570
\(340\) −1.71840 3.74795i −0.0931934 0.203261i
\(341\) 0.235758 0.0127670
\(342\) −1.35544 + 1.35544i −0.0732936 + 0.0732936i
\(343\) −13.3441 5.52729i −0.720511 0.298446i
\(344\) 7.25559i 0.391195i
\(345\) 0.603094 1.45600i 0.0324695 0.0783883i
\(346\) −3.84503 + 1.59266i −0.206710 + 0.0856221i
\(347\) −6.49858 15.6890i −0.348862 0.842228i −0.996755 0.0804961i \(-0.974350\pi\)
0.647893 0.761731i \(-0.275650\pi\)
\(348\) 1.67534 + 1.67534i 0.0898074 + 0.0898074i
\(349\) −15.8641 15.8641i −0.849188 0.849188i 0.140844 0.990032i \(-0.455018\pi\)
−0.990032 + 0.140844i \(0.955018\pi\)
\(350\) 0.434936 + 1.05003i 0.0232483 + 0.0561264i
\(351\) 9.67002 4.00545i 0.516148 0.213795i
\(352\) 0.0965508 0.233094i 0.00514618 0.0124240i
\(353\) 22.5509i 1.20026i 0.799902 + 0.600131i \(0.204885\pi\)
−0.799902 + 0.600131i \(0.795115\pi\)
\(354\) 4.59664 + 1.90399i 0.244309 + 0.101196i
\(355\) −1.79978 + 1.79978i −0.0955226 + 0.0955226i
\(356\) −11.9252 −0.632034
\(357\) −6.68256 + 7.19911i −0.353679 + 0.381017i
\(358\) 13.3292 0.704468
\(359\) −7.45653 + 7.45653i −0.393540 + 0.393540i −0.875947 0.482407i \(-0.839763\pi\)
0.482407 + 0.875947i \(0.339763\pi\)
\(360\) 1.28764 + 0.533357i 0.0678645 + 0.0281104i
\(361\) 17.1084i 0.900442i
\(362\) −3.20731 + 7.74313i −0.168573 + 0.406970i
\(363\) −21.1789 + 8.77260i −1.11161 + 0.460442i
\(364\) −1.35208 3.26421i −0.0708683 0.171091i
\(365\) −7.03873 7.03873i −0.368424 0.368424i
\(366\) −10.8932 10.8932i −0.569398 0.569398i
\(367\) −11.9104 28.7544i −0.621720 1.50097i −0.849682 0.527296i \(-0.823206\pi\)
0.227962 0.973670i \(-0.426794\pi\)
\(368\) 0.694615 0.287719i 0.0362093 0.0149984i
\(369\) 5.12647 12.3764i 0.266874 0.644290i
\(370\) 4.91568i 0.255554i
\(371\) 13.7485 + 5.69482i 0.713787 + 0.295660i
\(372\) −1.38501 + 1.38501i −0.0718092 + 0.0718092i
\(373\) −21.7151 −1.12437 −0.562183 0.827013i \(-0.690038\pi\)
−0.562183 + 0.827013i \(0.690038\pi\)
\(374\) 0.945605 0.433552i 0.0488961 0.0224184i
\(375\) 2.09612 0.108243
\(376\) 6.86979 6.86979i 0.354282 0.354282i
\(377\) −3.24633 1.34467i −0.167194 0.0692542i
\(378\) 3.82667i 0.196823i
\(379\) 9.02028 21.7769i 0.463341 1.11860i −0.503677 0.863892i \(-0.668020\pi\)
0.967017 0.254711i \(-0.0819803\pi\)
\(380\) −1.27066 + 0.526326i −0.0651837 + 0.0270000i
\(381\) 8.37608 + 20.2217i 0.429120 + 1.03599i
\(382\) 5.91957 + 5.91957i 0.302872 + 0.302872i
\(383\) 22.8956 + 22.8956i 1.16991 + 1.16991i 0.982230 + 0.187683i \(0.0600976\pi\)
0.187683 + 0.982230i \(0.439902\pi\)
\(384\) 0.802151 + 1.93656i 0.0409346 + 0.0988249i
\(385\) −0.264922 + 0.109734i −0.0135017 + 0.00559257i
\(386\) −3.01064 + 7.26832i −0.153237 + 0.369948i
\(387\) 10.1123i 0.514039i
\(388\) −14.5406 6.02292i −0.738188 0.305767i
\(389\) 5.57424 5.57424i 0.282625 0.282625i −0.551530 0.834155i \(-0.685956\pi\)
0.834155 + 0.551530i \(0.185956\pi\)
\(390\) −6.51619 −0.329960
\(391\) 2.90610 + 1.07898i 0.146968 + 0.0545662i
\(392\) −5.70827 −0.288311
\(393\) −14.3792 + 14.3792i −0.725333 + 0.725333i
\(394\) −0.420971 0.174372i −0.0212082 0.00878472i
\(395\) 14.0249i 0.705667i
\(396\) −0.134566 + 0.324871i −0.00676219 + 0.0163254i
\(397\) 33.1614 13.7359i 1.66432 0.689386i 0.665929 0.746015i \(-0.268035\pi\)
0.998395 + 0.0566296i \(0.0180354\pi\)
\(398\) 3.51474 + 8.48532i 0.176178 + 0.425331i
\(399\) 2.31688 + 2.31688i 0.115989 + 0.115989i
\(400\) 0.707107 + 0.707107i 0.0353553 + 0.0353553i
\(401\) −10.1715 24.5561i −0.507940 1.22627i −0.945067 0.326875i \(-0.894004\pi\)
0.437128 0.899399i \(-0.355996\pi\)
\(402\) 30.6314 12.6879i 1.52776 0.632817i
\(403\) 1.11165 2.68375i 0.0553750 0.133687i
\(404\) 1.90803i 0.0949283i
\(405\) 10.3832 + 4.30087i 0.515946 + 0.213712i
\(406\) 0.908387 0.908387i 0.0450825 0.0450825i
\(407\) −1.24022 −0.0614756
\(408\) −3.00816 + 8.10212i −0.148926 + 0.401115i
\(409\) 10.6807 0.528128 0.264064 0.964505i \(-0.414937\pi\)
0.264064 + 0.964505i \(0.414937\pi\)
\(410\) 6.79650 6.79650i 0.335655 0.335655i
\(411\) −8.81560 3.65154i −0.434841 0.180117i
\(412\) 1.64495i 0.0810408i
\(413\) 1.03237 2.49236i 0.0507995 0.122641i
\(414\) −0.968106 + 0.401002i −0.0475798 + 0.0197082i
\(415\) 5.95990 + 14.3885i 0.292560 + 0.706302i
\(416\) −2.19817 2.19817i −0.107774 0.107774i
\(417\) −18.5362 18.5362i −0.907723 0.907723i
\(418\) −0.132792 0.320588i −0.00649506 0.0156805i
\(419\) 26.3201 10.9021i 1.28582 0.532604i 0.368083 0.929793i \(-0.380014\pi\)
0.917737 + 0.397189i \(0.130014\pi\)
\(420\) 0.911680 2.20099i 0.0444854 0.107397i
\(421\) 9.11011i 0.444000i 0.975047 + 0.222000i \(0.0712584\pi\)
−0.975047 + 0.222000i \(0.928742\pi\)
\(422\) −7.02656 2.91050i −0.342048 0.141681i
\(423\) −9.57464 + 9.57464i −0.465535 + 0.465535i
\(424\) 13.0935 0.635875
\(425\) 0.153319 + 4.12025i 0.00743706 + 0.199862i
\(426\) 5.33522 0.258492
\(427\) −5.90644 + 5.90644i −0.285833 + 0.285833i
\(428\) 10.8273 + 4.48481i 0.523357 + 0.216782i
\(429\) 1.64403i 0.0793746i
\(430\) −2.77660 + 6.70329i −0.133899 + 0.323262i
\(431\) 35.6926 14.7843i 1.71925 0.712137i 0.719405 0.694591i \(-0.244415\pi\)
0.999846 0.0175458i \(-0.00558529\pi\)
\(432\) 1.28847 + 3.11065i 0.0619916 + 0.149661i
\(433\) 4.09685 + 4.09685i 0.196882 + 0.196882i 0.798662 0.601780i \(-0.205542\pi\)
−0.601780 + 0.798662i \(0.705542\pi\)
\(434\) 0.750967 + 0.750967i 0.0360476 + 0.0360476i
\(435\) −0.906685 2.18893i −0.0434722 0.104951i
\(436\) 1.92407 0.796977i 0.0921464 0.0381683i
\(437\) 0.395716 0.955343i 0.0189297 0.0457003i
\(438\) 20.8654i 0.996986i
\(439\) −29.9651 12.4119i −1.43015 0.592390i −0.472765 0.881188i \(-0.656744\pi\)
−0.957390 + 0.288799i \(0.906744\pi\)
\(440\) −0.178403 + 0.178403i −0.00850501 + 0.00850501i
\(441\) 7.95579 0.378847
\(442\) −0.476621 12.8086i −0.0226705 0.609242i
\(443\) −10.1719 −0.483280 −0.241640 0.970366i \(-0.577685\pi\)
−0.241640 + 0.970366i \(0.577685\pi\)
\(444\) 7.28593 7.28593i 0.345775 0.345775i
\(445\) 11.0174 + 4.56357i 0.522277 + 0.216334i
\(446\) 2.70356i 0.128017i
\(447\) 17.8565 43.1094i 0.844582 2.03900i
\(448\) 1.05003 0.434936i 0.0496092 0.0205488i
\(449\) 1.99926 + 4.82665i 0.0943510 + 0.227783i 0.964008 0.265873i \(-0.0856601\pi\)
−0.869657 + 0.493656i \(0.835660\pi\)
\(450\) −0.985516 0.985516i −0.0464577 0.0464577i
\(451\) 1.71475 + 1.71475i 0.0807446 + 0.0807446i
\(452\) 3.38057 + 8.16143i 0.159009 + 0.383881i
\(453\) −19.5364 + 8.09224i −0.917899 + 0.380206i
\(454\) −3.61134 + 8.71853i −0.169488 + 0.409181i
\(455\) 3.53316i 0.165637i
\(456\) 2.66347 + 1.10324i 0.124728 + 0.0516642i
\(457\) −0.312397 + 0.312397i −0.0146133 + 0.0146133i −0.714376 0.699762i \(-0.753289\pi\)
0.699762 + 0.714376i \(0.253289\pi\)
\(458\) −9.01263 −0.421133
\(459\) −4.83191 + 13.0142i −0.225534 + 0.607451i
\(460\) −0.751846 −0.0350550
\(461\) 2.56589 2.56589i 0.119505 0.119505i −0.644825 0.764330i \(-0.723070\pi\)
0.764330 + 0.644825i \(0.223070\pi\)
\(462\) 0.555309 + 0.230016i 0.0258353 + 0.0107013i
\(463\) 12.2323i 0.568483i 0.958753 + 0.284241i \(0.0917417\pi\)
−0.958753 + 0.284241i \(0.908258\pi\)
\(464\) 0.432553 1.04428i 0.0200808 0.0484793i
\(465\) 1.80960 0.749560i 0.0839180 0.0347600i
\(466\) −5.08986 12.2880i −0.235783 0.569231i
\(467\) 22.0816 + 22.0816i 1.02182 + 1.02182i 0.999757 + 0.0220584i \(0.00702196\pi\)
0.0220584 + 0.999757i \(0.492978\pi\)
\(468\) 3.06366 + 3.06366i 0.141618 + 0.141618i
\(469\) −6.87956 16.6087i −0.317669 0.766920i
\(470\) −8.97582 + 3.71790i −0.414024 + 0.171494i
\(471\) −13.2607 + 32.0143i −0.611023 + 1.47514i
\(472\) 2.37361i 0.109254i
\(473\) −1.69124 0.700534i −0.0777632 0.0322106i
\(474\) 20.7874 20.7874i 0.954797 0.954797i
\(475\) 1.37536 0.0631057
\(476\) 4.39307 + 1.63106i 0.201356 + 0.0747595i
\(477\) −18.2487 −0.835553
\(478\) −1.88599 + 1.88599i −0.0862633 + 0.0862633i
\(479\) −3.32393 1.37682i −0.151874 0.0629084i 0.305451 0.952208i \(-0.401193\pi\)
−0.457326 + 0.889299i \(0.651193\pi\)
\(480\) 2.09612i 0.0956745i
\(481\) −5.84790 + 14.1181i −0.266641 + 0.643729i
\(482\) −0.493333 + 0.204345i −0.0224707 + 0.00930766i
\(483\) 0.685443 + 1.65480i 0.0311887 + 0.0752962i
\(484\) 7.73316 + 7.73316i 0.351507 + 0.351507i
\(485\) 11.1289 + 11.1289i 0.505337 + 0.505337i
\(486\) −5.14973 12.4325i −0.233596 0.563952i
\(487\) 19.9459 8.26188i 0.903837 0.374381i 0.118143 0.992997i \(-0.462306\pi\)
0.785694 + 0.618615i \(0.212306\pi\)
\(488\) −2.81251 + 6.79001i −0.127316 + 0.307369i
\(489\) 3.91693i 0.177130i
\(490\) 5.27375 + 2.18446i 0.238244 + 0.0986838i
\(491\) 26.3349 26.3349i 1.18848 1.18848i 0.210992 0.977488i \(-0.432331\pi\)
0.977488 0.210992i \(-0.0676693\pi\)
\(492\) −20.1473 −0.908311
\(493\) 4.23636 1.94234i 0.190796 0.0874785i
\(494\) −4.27555 −0.192366
\(495\) 0.248645 0.248645i 0.0111758 0.0111758i
\(496\) 0.863307 + 0.357593i 0.0387636 + 0.0160564i
\(497\) 2.89282i 0.129761i
\(498\) 12.4927 30.1600i 0.559810 1.35150i
\(499\) 14.3055 5.92555i 0.640404 0.265264i −0.0387621 0.999248i \(-0.512341\pi\)
0.679166 + 0.733984i \(0.262341\pi\)
\(500\) −0.382683 0.923880i −0.0171141 0.0413171i
\(501\) −35.1781 35.1781i −1.57164 1.57164i
\(502\) −9.46030 9.46030i −0.422234 0.422234i
\(503\) 0.469717 + 1.13400i 0.0209436 + 0.0505624i 0.934005 0.357259i \(-0.116289\pi\)
−0.913062 + 0.407821i \(0.866289\pi\)
\(504\) −1.46346 + 0.606184i −0.0651876 + 0.0270016i
\(505\) 0.730173 1.76279i 0.0324923 0.0784433i
\(506\) 0.189690i 0.00843276i
\(507\) 6.46052 + 2.67603i 0.286922 + 0.118847i
\(508\) 7.38362 7.38362i 0.327595 0.327595i
\(509\) −25.8063 −1.14384 −0.571922 0.820308i \(-0.693802\pi\)
−0.571922 + 0.820308i \(0.693802\pi\)
\(510\) 5.87972 6.33422i 0.260358 0.280484i
\(511\) 11.3135 0.500478
\(512\) 0.707107 0.707107i 0.0312500 0.0312500i
\(513\) 4.27825 + 1.77211i 0.188889 + 0.0782405i
\(514\) 19.3618i 0.854013i
\(515\) −0.629495 + 1.51973i −0.0277388 + 0.0669675i
\(516\) 14.0509 5.82008i 0.618558 0.256215i
\(517\) −0.938025 2.26459i −0.0412543 0.0995967i
\(518\) −3.95052 3.95052i −0.173576 0.173576i
\(519\) −6.16859 6.16859i −0.270771 0.270771i
\(520\) 1.18964 + 2.87205i 0.0521693 + 0.125948i
\(521\) −26.9444 + 11.1607i −1.18046 + 0.488961i −0.884636 0.466283i \(-0.845593\pi\)
−0.295820 + 0.955244i \(0.595593\pi\)
\(522\) −0.602863 + 1.45544i −0.0263866 + 0.0637028i
\(523\) 33.4958i 1.46467i 0.680946 + 0.732334i \(0.261569\pi\)
−0.680946 + 0.732334i \(0.738431\pi\)
\(524\) 8.96288 + 3.71255i 0.391545 + 0.162183i
\(525\) −1.68456 + 1.68456i −0.0735204 + 0.0735204i
\(526\) 12.0967 0.527442
\(527\) 1.60574 + 3.50222i 0.0699470 + 0.152559i
\(528\) 0.528851 0.0230153
\(529\) −15.8637 + 15.8637i −0.689728 + 0.689728i
\(530\) −12.0968 5.01065i −0.525450 0.217649i
\(531\) 3.30817i 0.143562i
\(532\) 0.598193 1.44417i 0.0259349 0.0626125i
\(533\) 27.6053 11.4345i 1.19572 0.495283i
\(534\) −9.56581 23.0939i −0.413953 0.999371i
\(535\) −8.28685 8.28685i −0.358272 0.358272i
\(536\) −11.1846 11.1846i −0.483101 0.483101i
\(537\) 10.6920 + 25.8128i 0.461394 + 1.11390i
\(538\) 18.4733 7.65189i 0.796440 0.329896i
\(539\) −0.551138 + 1.33057i −0.0237392 + 0.0573115i
\(540\) 3.36694i 0.144890i
\(541\) 38.3693 + 15.8931i 1.64962 + 0.683297i 0.997216 0.0745705i \(-0.0237586\pi\)
0.652409 + 0.757867i \(0.273759\pi\)
\(542\) −2.60177 + 2.60177i −0.111756 + 0.111756i
\(543\) −17.5678 −0.753908
\(544\) 4.12025 0.153319i 0.176654 0.00657350i
\(545\) −2.08260 −0.0892088
\(546\) 5.23678 5.23678i 0.224114 0.224114i
\(547\) 11.2756 + 4.67049i 0.482109 + 0.199696i 0.610482 0.792030i \(-0.290976\pi\)
−0.128374 + 0.991726i \(0.540976\pi\)
\(548\) 4.55218i 0.194460i
\(549\) 3.91988 9.46344i 0.167297 0.403890i
\(550\) 0.233094 0.0965508i 0.00993918 0.00411694i
\(551\) −0.594915 1.43625i −0.0253442 0.0611864i
\(552\) 1.11437 + 1.11437i 0.0474308 + 0.0474308i
\(553\) −11.2712 11.2712i −0.479299 0.479299i
\(554\) −5.03180 12.1478i −0.213780 0.516112i
\(555\) −9.51953 + 3.94312i −0.404081 + 0.167376i
\(556\) −4.78586 + 11.5541i −0.202965 + 0.490002i
\(557\) 11.7983i 0.499909i 0.968258 + 0.249954i \(0.0804156\pi\)
−0.968258 + 0.249954i \(0.919584\pi\)
\(558\) −1.20322 0.498389i −0.0509362 0.0210985i
\(559\) −15.9491 + 15.9491i −0.674573 + 0.674573i
\(560\) −1.13654 −0.0480277
\(561\) 1.59812 + 1.48345i 0.0674726 + 0.0626313i
\(562\) 8.83415 0.372646
\(563\) 24.1004 24.1004i 1.01571 1.01571i 0.0158341 0.999875i \(-0.494960\pi\)
0.999875 0.0158341i \(-0.00504037\pi\)
\(564\) 18.8144 + 7.79318i 0.792230 + 0.328152i
\(565\) 8.83387i 0.371644i
\(566\) 2.13479 5.15384i 0.0897319 0.216632i
\(567\) −11.8010 + 4.88812i −0.495594 + 0.205282i
\(568\) −0.974036 2.35153i −0.0408697 0.0986681i
\(569\) 20.1508 + 20.1508i 0.844766 + 0.844766i 0.989474 0.144708i \(-0.0462244\pi\)
−0.144708 + 0.989474i \(0.546224\pi\)
\(570\) −2.03853 2.03853i −0.0853846 0.0853846i
\(571\) −11.0538 26.6863i −0.462589 1.11679i −0.967331 0.253518i \(-0.918412\pi\)
0.504742 0.863270i \(-0.331588\pi\)
\(572\) −0.724617 + 0.300146i −0.0302978 + 0.0125497i
\(573\) −6.71524 + 16.2120i −0.280533 + 0.677267i
\(574\) 10.9241i 0.455964i
\(575\) 0.694615 + 0.287719i 0.0289674 + 0.0119987i
\(576\) −0.985516 + 0.985516i −0.0410632 + 0.0410632i
\(577\) −3.90595 −0.162607 −0.0813033 0.996689i \(-0.525908\pi\)
−0.0813033 + 0.996689i \(0.525908\pi\)
\(578\) 12.8809 + 11.0942i 0.535777 + 0.461458i
\(579\) −16.4906 −0.685324
\(580\) −0.799254 + 0.799254i −0.0331872 + 0.0331872i
\(581\) −16.3531 6.77368i −0.678441 0.281020i
\(582\) 32.9901i 1.36748i
\(583\) 1.26418 3.05201i 0.0523572 0.126401i
\(584\) 9.19654 3.80933i 0.380556 0.157631i
\(585\) −1.65804 4.00287i −0.0685516 0.165498i
\(586\) −16.6616 16.6616i −0.688286 0.688286i
\(587\) 28.0684 + 28.0684i 1.15851 + 1.15851i 0.984797 + 0.173712i \(0.0555761\pi\)
0.173712 + 0.984797i \(0.444424\pi\)
\(588\) −4.57890 11.0544i −0.188830 0.455877i
\(589\) 1.18736 0.491819i 0.0489241 0.0202650i
\(590\) −0.908340 + 2.19293i −0.0373957 + 0.0902813i
\(591\) 0.955110i 0.0392880i
\(592\) −4.54149 1.88115i −0.186654 0.0773147i
\(593\) 24.5468 24.5468i 1.00802 1.00802i 0.00804758 0.999968i \(-0.497438\pi\)
0.999968 0.00804758i \(-0.00256165\pi\)
\(594\) 0.849477 0.0348545
\(595\) −3.43449 3.18806i −0.140800 0.130698i
\(596\) −22.2607 −0.911835
\(597\) −13.6130 + 13.6130i −0.557144 + 0.557144i
\(598\) −2.15934 0.894428i −0.0883020 0.0365759i
\(599\) 2.16423i 0.0884281i 0.999022 + 0.0442140i \(0.0140784\pi\)
−0.999022 + 0.0442140i \(0.985922\pi\)
\(600\) −0.802151 + 1.93656i −0.0327477 + 0.0790599i
\(601\) 19.5522 8.09879i 0.797551 0.330356i 0.0535758 0.998564i \(-0.482938\pi\)
0.743975 + 0.668207i \(0.232938\pi\)
\(602\) −3.15572 7.61859i −0.128618 0.310510i
\(603\) 15.5883 + 15.5883i 0.634805 + 0.634805i
\(604\) 7.13341 + 7.13341i 0.290254 + 0.290254i
\(605\) −4.18516 10.1039i −0.170151 0.410781i
\(606\) −3.69503 + 1.53053i −0.150100 + 0.0621736i
\(607\) −6.25210 + 15.0939i −0.253765 + 0.612642i −0.998502 0.0547155i \(-0.982575\pi\)
0.744737 + 0.667358i \(0.232575\pi\)
\(608\) 1.37536i 0.0557781i
\(609\) 2.48782 + 1.03049i 0.100811 + 0.0417574i
\(610\) 5.19685 5.19685i 0.210414 0.210414i
\(611\) −30.2020 −1.22184
\(612\) −5.74252 + 0.213685i −0.232128 + 0.00863771i
\(613\) −19.6808 −0.794900 −0.397450 0.917624i \(-0.630105\pi\)
−0.397450 + 0.917624i \(0.630105\pi\)
\(614\) −9.73037 + 9.73037i −0.392686 + 0.392686i
\(615\) 18.6137 + 7.71004i 0.750576 + 0.310899i
\(616\) 0.286749i 0.0115535i
\(617\) 15.1106 36.4803i 0.608331 1.46864i −0.256483 0.966549i \(-0.582564\pi\)
0.864814 0.502092i \(-0.167436\pi\)
\(618\) 3.18555 1.31950i 0.128142 0.0530780i
\(619\) 15.9641 + 38.5407i 0.641650 + 1.54908i 0.824453 + 0.565930i \(0.191483\pi\)
−0.182803 + 0.983150i \(0.558517\pi\)
\(620\) −0.660746 0.660746i −0.0265362 0.0265362i
\(621\) 1.78998 + 1.78998i 0.0718295 + 0.0718295i
\(622\) 7.91601 + 19.1109i 0.317403 + 0.766278i
\(623\) −12.5218 + 5.18670i −0.501675 + 0.207801i
\(624\) 2.49364 6.02017i 0.0998254 0.241000i
\(625\) 1.00000i 0.0400000i
\(626\) 23.0532 + 9.54896i 0.921392 + 0.381653i
\(627\) 0.514320 0.514320i 0.0205400 0.0205400i
\(628\) 16.5315 0.659678
\(629\) −8.44710 18.4237i −0.336808 0.734601i
\(630\) 1.58403 0.0631095
\(631\) 27.0298 27.0298i 1.07604 1.07604i 0.0791769 0.996861i \(-0.474771\pi\)
0.996861 0.0791769i \(-0.0252292\pi\)
\(632\) −12.9573 5.36708i −0.515413 0.213491i
\(633\) 15.9421i 0.633640i
\(634\) −3.33242 + 8.04517i −0.132347 + 0.319515i
\(635\) −9.64717 + 3.99599i −0.382836 + 0.158576i
\(636\) 10.5029 + 25.3563i 0.416469 + 1.00544i
\(637\) 12.5478 + 12.5478i 0.497160 + 0.497160i
\(638\) −0.201651 0.201651i −0.00798346 0.00798346i
\(639\) 1.35754 + 3.27740i 0.0537036 + 0.129652i
\(640\) −0.923880 + 0.382683i −0.0365195 + 0.0151269i
\(641\) 3.93638 9.50327i 0.155478 0.375356i −0.826877 0.562382i \(-0.809885\pi\)
0.982355 + 0.187026i \(0.0598849\pi\)
\(642\) 24.5653i 0.969513i
\(643\) −1.11434 0.461573i −0.0439451 0.0182027i 0.360603 0.932720i \(-0.382571\pi\)
−0.404548 + 0.914517i \(0.632571\pi\)
\(644\) 0.604226 0.604226i 0.0238099 0.0238099i
\(645\) −15.2086 −0.598839
\(646\) 3.85794 4.15615i 0.151789 0.163522i
\(647\) −40.9502 −1.60992 −0.804958 0.593331i \(-0.797812\pi\)
−0.804958 + 0.593331i \(0.797812\pi\)
\(648\) −7.94697 + 7.94697i −0.312186 + 0.312186i
\(649\) −0.553274 0.229174i −0.0217179 0.00899585i
\(650\) 3.10869i 0.121933i
\(651\) −0.851907 + 2.05669i −0.0333889 + 0.0806079i
\(652\) 1.72641 0.715103i 0.0676115 0.0280056i
\(653\) −5.10972 12.3360i −0.199959 0.482743i 0.791813 0.610764i \(-0.209138\pi\)
−0.991771 + 0.128021i \(0.959138\pi\)
\(654\) 3.08680 + 3.08680i 0.120703 + 0.120703i
\(655\) −6.85989 6.85989i −0.268038 0.268038i
\(656\) 3.67824 + 8.88006i 0.143611 + 0.346708i
\(657\) −12.8175 + 5.30918i −0.500058 + 0.207131i
\(658\) 4.22556 10.2014i 0.164729 0.397692i
\(659\) 25.9742i 1.01181i 0.862589 + 0.505905i \(0.168841\pi\)
−0.862589 + 0.505905i \(0.831159\pi\)
\(660\) −0.488594 0.202382i −0.0190185 0.00787772i
\(661\) −18.2918 + 18.2918i −0.711470 + 0.711470i −0.966843 0.255372i \(-0.917802\pi\)
0.255372 + 0.966843i \(0.417802\pi\)
\(662\) −20.5487 −0.798649
\(663\) 24.4223 11.1974i 0.948484 0.434872i
\(664\) −15.5740 −0.604387
\(665\) −1.10532 + 1.10532i −0.0428623 + 0.0428623i
\(666\) 6.32962 + 2.62181i 0.245268 + 0.101593i
\(667\) 0.849823i 0.0329053i
\(668\) −9.08260 + 21.9273i −0.351416 + 0.848394i
\(669\) 5.23562 2.16866i 0.202421 0.0838454i
\(670\) 6.05306 + 14.6134i 0.233850 + 0.564564i
\(671\) 1.31116 + 1.31116i 0.0506168 + 0.0506168i
\(672\) 1.68456 + 1.68456i 0.0649835 + 0.0649835i
\(673\) 1.77044 + 4.27421i 0.0682453 + 0.164759i 0.954322 0.298780i \(-0.0965796\pi\)
−0.886077 + 0.463538i \(0.846580\pi\)
\(674\) −28.2402 + 11.6975i −1.08777 + 0.450570i
\(675\) −1.28847 + 3.11065i −0.0495933 + 0.119729i
\(676\) 3.33607i 0.128310i
\(677\) 23.6515 + 9.79677i 0.909001 + 0.376521i 0.787674 0.616092i \(-0.211285\pi\)
0.121327 + 0.992613i \(0.461285\pi\)
\(678\) −13.0934 + 13.0934i −0.502849 + 0.502849i
\(679\) −17.8877 −0.686465
\(680\) −3.86529 1.43510i −0.148227 0.0550338i
\(681\) −19.7808 −0.758004
\(682\) 0.166706 0.166706i 0.00638350 0.00638350i
\(683\) −19.9779 8.27510i −0.764431 0.316638i −0.0338169 0.999428i \(-0.510766\pi\)
−0.730614 + 0.682790i \(0.760766\pi\)
\(684\) 1.91688i 0.0732936i
\(685\) 1.74205 4.20567i 0.0665601 0.160690i
\(686\) −13.3441 + 5.52729i −0.509478 + 0.211033i
\(687\) −7.22949 17.4535i −0.275822 0.665894i
\(688\) −5.13048 5.13048i −0.195598 0.195598i
\(689\) −28.7817 28.7817i −1.09650 1.09650i
\(690\) −0.603094 1.45600i −0.0229594 0.0554289i
\(691\) −25.4956 + 10.5606i −0.969899 + 0.401745i −0.810674 0.585497i \(-0.800899\pi\)
−0.159224 + 0.987242i \(0.550899\pi\)
\(692\) −1.59266 + 3.84503i −0.0605439 + 0.146166i
\(693\) 0.399651i 0.0151815i
\(694\) −15.6890 6.49858i −0.595545 0.246683i
\(695\) 8.84311 8.84311i 0.335438 0.335438i
\(696\) 2.36928 0.0898074
\(697\) −13.7938 + 37.1520i −0.522478 + 1.40723i
\(698\) −22.4353 −0.849188
\(699\) 19.7137 19.7137i 0.745641 0.745641i
\(700\) 1.05003 + 0.434936i 0.0396874 + 0.0164390i
\(701\) 11.3549i 0.428868i −0.976739 0.214434i \(-0.931209\pi\)
0.976739 0.214434i \(-0.0687906\pi\)
\(702\) 4.00545 9.67002i 0.151176 0.364971i
\(703\) −6.24617 + 2.58725i −0.235579 + 0.0975800i
\(704\) −0.0965508 0.233094i −0.00363890 0.00878507i
\(705\) −14.3999 14.3999i −0.542333 0.542333i
\(706\) 15.9459 + 15.9459i 0.600131 + 0.600131i
\(707\) 0.829874 + 2.00349i 0.0312106 + 0.0753491i
\(708\) 4.59664 1.90399i 0.172752 0.0715564i
\(709\) −3.45727 + 8.34658i −0.129840 + 0.313462i −0.975408 0.220405i \(-0.929262\pi\)
0.845568 + 0.533868i \(0.179262\pi\)
\(710\) 2.54528i 0.0955226i
\(711\) 18.0589 + 7.48026i 0.677263 + 0.280532i
\(712\) −8.43238 + 8.43238i −0.316017 + 0.316017i
\(713\) 0.702552 0.0263108
\(714\) 0.365257 + 9.81582i 0.0136694 + 0.367348i
\(715\) 0.784320 0.0293319
\(716\) 9.42514 9.42514i 0.352234 0.352234i
\(717\) −5.16520 2.13950i −0.192898 0.0799010i
\(718\) 10.5451i 0.393540i
\(719\) −1.58656 + 3.83030i −0.0591688 + 0.142846i −0.950699 0.310115i \(-0.899632\pi\)
0.891530 + 0.452961i \(0.149632\pi\)
\(720\) 1.28764 0.533357i 0.0479875 0.0198771i
\(721\) −0.715448 1.72724i −0.0266447 0.0643259i
\(722\) 12.0975 + 12.0975i 0.450221 + 0.450221i
\(723\) −0.791455 0.791455i −0.0294345 0.0294345i
\(724\) 3.20731 + 7.74313i 0.119199 + 0.287771i
\(725\) 1.04428 0.432553i 0.0387834 0.0160646i
\(726\) −8.77260 + 21.1789i −0.325582 + 0.786024i
\(727\) 5.28370i 0.195961i −0.995188 0.0979807i \(-0.968762\pi\)
0.995188 0.0979807i \(-0.0312383\pi\)
\(728\) −3.26421 1.35208i −0.120980 0.0501114i
\(729\) −3.89533 + 3.89533i −0.144271 + 0.144271i
\(730\) −9.95427 −0.368424
\(731\) −1.11242 29.8949i −0.0411443 1.10570i
\(732\) −15.4054 −0.569398
\(733\) 15.0917 15.0917i 0.557424 0.557424i −0.371149 0.928573i \(-0.621036\pi\)
0.928573 + 0.371149i \(0.121036\pi\)
\(734\) −28.7544 11.9104i −1.06134 0.439623i
\(735\) 11.9652i 0.441344i
\(736\) 0.287719 0.694615i 0.0106055 0.0256038i
\(737\) −3.68695 + 1.52718i −0.135810 + 0.0562545i
\(738\) −5.12647 12.3764i −0.188708 0.455582i
\(739\) 10.3591 + 10.3591i 0.381065 + 0.381065i 0.871486 0.490420i \(-0.163157\pi\)
−0.490420 + 0.871486i \(0.663157\pi\)
\(740\) 3.47591 + 3.47591i 0.127777 + 0.127777i
\(741\) −3.42964 8.27989i −0.125991 0.304169i
\(742\) 13.7485 5.69482i 0.504724 0.209063i
\(743\) 13.9748 33.7382i 0.512687 1.23774i −0.429627 0.903006i \(-0.641355\pi\)
0.942314 0.334730i \(-0.108645\pi\)
\(744\) 1.95869i 0.0718092i
\(745\) 20.5662 + 8.51881i 0.753489 + 0.312105i
\(746\) −15.3549 + 15.3549i −0.562183 + 0.562183i
\(747\) 21.7059 0.794177
\(748\) 0.362076 0.975211i 0.0132388 0.0356572i
\(749\) 13.3196 0.486687
\(750\) 1.48218 1.48218i 0.0541217 0.0541217i
\(751\) 17.6508 + 7.31120i 0.644087 + 0.266790i 0.680725 0.732539i \(-0.261665\pi\)
−0.0366379 + 0.999329i \(0.511665\pi\)
\(752\) 9.71535i 0.354282i
\(753\) 10.7319 25.9091i 0.391092 0.944180i
\(754\) −3.24633 + 1.34467i −0.118224 + 0.0489701i
\(755\) −3.86057 9.32025i −0.140501 0.339199i
\(756\) 2.70587 + 2.70587i 0.0984114 + 0.0984114i
\(757\) −14.2078 14.2078i −0.516390 0.516390i 0.400087 0.916477i \(-0.368980\pi\)
−0.916477 + 0.400087i \(0.868980\pi\)
\(758\) −9.02028 21.7769i −0.327631 0.790972i
\(759\) 0.367347 0.152160i 0.0133339 0.00552307i
\(760\) −0.526326 + 1.27066i −0.0190919 + 0.0460918i
\(761\) 12.0122i 0.435441i 0.976011 + 0.217721i \(0.0698622\pi\)
−0.976011 + 0.217721i \(0.930138\pi\)
\(762\) 20.2217 + 8.37608i 0.732553 + 0.303433i
\(763\) 1.67370 1.67370i 0.0605920 0.0605920i
\(764\) 8.37154 0.302872
\(765\) 5.38717 + 2.00015i 0.194774 + 0.0723155i
\(766\) 32.3793 1.16991
\(767\) −5.21760 + 5.21760i −0.188396 + 0.188396i
\(768\) 1.93656 + 0.802151i 0.0698798 + 0.0289451i
\(769\) 28.5106i 1.02812i −0.857755 0.514059i \(-0.828141\pi\)
0.857755 0.514059i \(-0.171859\pi\)
\(770\) −0.109734 + 0.264922i −0.00395455 + 0.00954712i
\(771\) −37.4954 + 15.5311i −1.35036 + 0.559339i
\(772\) 3.01064 + 7.26832i 0.108355 + 0.261593i
\(773\) −16.8373 16.8373i −0.605596 0.605596i 0.336196 0.941792i \(-0.390859\pi\)
−0.941792 + 0.336196i \(0.890859\pi\)
\(774\) 7.15050 + 7.15050i 0.257020 + 0.257020i
\(775\) 0.357593 + 0.863307i 0.0128451 + 0.0310109i
\(776\) −14.5406 + 6.02292i −0.521977 + 0.216210i
\(777\) 4.48152 10.8194i 0.160774 0.388142i
\(778\) 7.88317i 0.282625i
\(779\) 12.2132 + 5.05889i 0.437585 + 0.181254i
\(780\) −4.60764 + 4.60764i −0.164980 + 0.164980i
\(781\) −0.642173 −0.0229787
\(782\) 2.81788 1.29197i 0.100767 0.0462008i
\(783\) 3.80571 0.136005
\(784\) −4.03636 + 4.03636i −0.144156 + 0.144156i
\(785\) −15.2731 6.32632i −0.545120 0.225796i
\(786\) 20.3352i 0.725333i
\(787\) 9.12132 22.0208i 0.325140 0.784958i −0.673799 0.738914i \(-0.735339\pi\)
0.998939 0.0460433i \(-0.0146612\pi\)
\(788\) −0.420971 + 0.174372i −0.0149965 + 0.00621174i
\(789\) 9.70341 + 23.4261i 0.345450 + 0.833991i
\(790\) 9.91707 + 9.91707i 0.352834 + 0.352834i
\(791\) 7.09940 + 7.09940i 0.252426 + 0.252426i
\(792\) 0.134566 + 0.324871i 0.00478159 + 0.0115438i
\(793\) 21.1080 8.74322i 0.749567 0.310481i
\(794\) 13.7359 33.1614i 0.487469 1.17685i
\(795\) 27.4455i 0.973391i
\(796\) 8.48532 + 3.51474i 0.300754 + 0.124577i
\(797\) 28.2603 28.2603i 1.00103 1.00103i 0.00103330 0.999999i \(-0.499671\pi\)
0.999999 0.00103330i \(-0.000328910\pi\)
\(798\) 3.27656 0.115989
\(799\) 27.2520 29.3586i 0.964107 1.03863i
\(800\) 1.00000 0.0353553
\(801\) 11.7525 11.7525i 0.415253 0.415253i
\(802\) −24.5561 10.1715i −0.867107 0.359168i
\(803\) 2.51146i 0.0886274i
\(804\) 12.6879 30.6314i 0.447469 1.08029i
\(805\) −0.789460 + 0.327005i −0.0278248 + 0.0115254i
\(806\) −1.11165 2.68375i −0.0391560 0.0945311i
\(807\) 29.6368 + 29.6368i 1.04326 + 1.04326i
\(808\) 1.34918 + 1.34918i 0.0474641 + 0.0474641i
\(809\) 17.1684 + 41.4483i 0.603610 + 1.45724i 0.869840 + 0.493334i \(0.164222\pi\)
−0.266230 + 0.963910i \(0.585778\pi\)
\(810\) 10.3832 4.30087i 0.364829 0.151117i
\(811\) −11.6694 + 28.1724i −0.409768 + 0.989266i 0.575431 + 0.817850i \(0.304834\pi\)
−0.985199 + 0.171416i \(0.945166\pi\)
\(812\) 1.28465i 0.0450825i
\(813\) −7.12551 2.95148i −0.249902 0.103513i
\(814\) −0.876970 + 0.876970i −0.0307378 + 0.0307378i
\(815\) −1.86865 −0.0654561
\(816\) 3.60198 + 7.85615i 0.126095 + 0.275020i
\(817\) −9.97903 −0.349122
\(818\) 7.55242 7.55242i 0.264064 0.264064i
\(819\) 4.54943 + 1.88444i 0.158970 + 0.0658475i
\(820\) 9.61170i 0.335655i
\(821\) −18.7827 + 45.3455i −0.655522 + 1.58257i 0.149126 + 0.988818i \(0.452354\pi\)
−0.804648 + 0.593752i \(0.797646\pi\)
\(822\) −8.81560 + 3.65154i −0.307479 + 0.127362i
\(823\) −1.69527 4.09274i −0.0590933 0.142664i 0.891575 0.452873i \(-0.149601\pi\)
−0.950668 + 0.310209i \(0.899601\pi\)
\(824\) −1.16315 1.16315i −0.0405204 0.0405204i
\(825\) 0.373954 + 0.373954i 0.0130194 + 0.0130194i
\(826\) −1.03237 2.49236i −0.0359207 0.0867201i
\(827\) 5.92635 2.45477i 0.206079 0.0853609i −0.277256 0.960796i \(-0.589425\pi\)
0.483336 + 0.875435i \(0.339425\pi\)
\(828\) −0.401002 + 0.968106i −0.0139358 + 0.0336440i
\(829\) 24.9754i 0.867432i 0.901050 + 0.433716i \(0.142798\pi\)
−0.901050 + 0.433716i \(0.857202\pi\)
\(830\) 14.3885 + 5.95990i 0.499431 + 0.206871i
\(831\) 19.4888 19.4888i 0.676059 0.676059i
\(832\) −3.10869 −0.107774
\(833\) −23.5195 + 0.875186i −0.814903 + 0.0303234i
\(834\) −26.2142 −0.907723
\(835\) 16.7825 16.7825i 0.580781 0.580781i
\(836\) −0.320588 0.132792i −0.0110878 0.00459270i
\(837\) 3.14619i 0.108748i
\(838\) 10.9021 26.3201i 0.376608 0.909212i
\(839\) 5.83303 2.41612i 0.201379 0.0834138i −0.279715 0.960083i \(-0.590240\pi\)
0.481093 + 0.876669i \(0.340240\pi\)
\(840\) −0.911680 2.20099i −0.0314559 0.0759414i
\(841\) 19.6027 + 19.6027i 0.675955 + 0.675955i
\(842\) 6.44182 + 6.44182i 0.222000 + 0.222000i
\(843\) 7.08633 + 17.1079i 0.244066 + 0.589227i
\(844\) −7.02656 + 2.91050i −0.241864 + 0.100183i
\(845\) −1.27666 + 3.08213i −0.0439184 + 0.106028i
\(846\) 13.5406i 0.465535i
\(847\) 11.4835 + 4.75661i 0.394577 + 0.163439i
\(848\) 9.25847 9.25847i 0.317937 0.317937i
\(849\) 11.6932 0.401309
\(850\) 3.02187 + 2.80505i 0.103649 + 0.0962123i
\(851\) −3.69583 −0.126691
\(852\) 3.77257 3.77257i 0.129246 0.129246i
\(853\) 5.80811 + 2.40580i 0.198866 + 0.0823730i 0.479894 0.877327i \(-0.340675\pi\)
−0.281028 + 0.959700i \(0.590675\pi\)
\(854\) 8.35297i 0.285833i
\(855\) 0.733557 1.77096i 0.0250871 0.0605657i
\(856\) 10.8273 4.48481i 0.370069 0.153288i
\(857\) −17.4626 42.1583i −0.596510 1.44010i −0.877116 0.480278i \(-0.840536\pi\)
0.280607 0.959823i \(-0.409464\pi\)
\(858\) −1.16251 1.16251i −0.0396873 0.0396873i
\(859\) −20.4579 20.4579i −0.698015 0.698015i 0.265967 0.963982i \(-0.414309\pi\)
−0.963982 + 0.265967i \(0.914309\pi\)
\(860\) 2.77660 + 6.70329i 0.0946811 + 0.228580i
\(861\) −21.1553 + 8.76280i −0.720970 + 0.298635i
\(862\) 14.7843 35.6926i 0.503557 1.21569i
\(863\) 7.31084i 0.248864i −0.992228 0.124432i \(-0.960289\pi\)
0.992228 0.124432i \(-0.0397109\pi\)
\(864\) 3.11065 + 1.28847i 0.105826 + 0.0438347i
\(865\) 2.94286 2.94286i 0.100060 0.100060i
\(866\) 5.79382 0.196882
\(867\) −11.1522 + 33.8440i −0.378747 + 1.14940i
\(868\) 1.06203 0.0360476
\(869\) −2.50207 + 2.50207i −0.0848770 + 0.0848770i
\(870\) −2.18893 0.906685i −0.0742117 0.0307395i
\(871\) 49.1713i 1.66611i
\(872\) 0.796977 1.92407i 0.0269890 0.0651573i
\(873\) 20.2657 8.39432i 0.685890 0.284105i
\(874\) −0.395716 0.955343i −0.0133853 0.0323150i
\(875\) −0.803658 0.803658i −0.0271686 0.0271686i
\(876\) 14.7540 + 14.7540i 0.498493 + 0.498493i
\(877\) 13.4790 + 32.5412i 0.455153 + 1.09884i 0.970337 + 0.241757i \(0.0777237\pi\)
−0.515184 + 0.857080i \(0.672276\pi\)
\(878\) −29.9651 + 12.4119i −1.01127 + 0.418883i
\(879\) 18.9012 45.6315i 0.637521 1.53911i
\(880\) 0.252299i 0.00850501i
\(881\) −11.8515 4.90905i −0.399287 0.165390i 0.173998 0.984746i \(-0.444331\pi\)
−0.573285 + 0.819356i \(0.694331\pi\)
\(882\) 5.62559 5.62559i 0.189423 0.189423i
\(883\) 25.2939 0.851208 0.425604 0.904910i \(-0.360062\pi\)
0.425604 + 0.904910i \(0.360062\pi\)
\(884\) −9.39405 8.72001i −0.315956 0.293286i
\(885\) −4.97537 −0.167245
\(886\) −7.19260 + 7.19260i −0.241640 + 0.241640i
\(887\) −21.6520 8.96853i −0.727001 0.301134i −0.0116823 0.999932i \(-0.503719\pi\)
−0.715319 + 0.698798i \(0.753719\pi\)
\(888\) 10.3039i 0.345775i
\(889\) 4.54161 10.9644i 0.152321 0.367735i
\(890\) 11.0174 4.56357i 0.369305 0.152971i
\(891\) 1.08511 + 2.61968i 0.0363524 + 0.0877625i
\(892\) −1.91171 1.91171i −0.0640086 0.0640086i
\(893\) −9.44842 9.44842i −0.316179 0.316179i
\(894\) −17.8565 43.1094i −0.597210 1.44179i
\(895\) −12.3145 + 5.10085i −0.411630 + 0.170503i
\(896\) 0.434936 1.05003i 0.0145302 0.0350790i
\(897\) 4.89917i 0.163578i
\(898\) 4.82665 + 1.99926i 0.161067 + 0.0667162i
\(899\) 0.746852 0.746852i 0.0249089 0.0249089i
\(900\) −1.39373 −0.0464577
\(901\) 53.9484 2.00748i 1.79728 0.0668787i
\(902\) 2.42503 0.0807446
\(903\) 12.2225 12.2225i 0.406740 0.406740i
\(904\) 8.16143 + 3.38057i 0.271445 + 0.112436i
\(905\) 8.38111i 0.278597i
\(906\) −8.09224 + 19.5364i −0.268847 + 0.649053i
\(907\) −46.1626 + 19.1212i −1.53280 + 0.634908i −0.980106 0.198474i \(-0.936401\pi\)
−0.552697 + 0.833382i \(0.686401\pi\)
\(908\) 3.61134 + 8.71853i 0.119846 + 0.289335i
\(909\) −1.88040 1.88040i −0.0623689 0.0623689i
\(910\) 2.49832 + 2.49832i 0.0828185 + 0.0828185i
\(911\) 14.9768 + 36.1572i 0.496204 + 1.19794i 0.951513 + 0.307609i \(0.0995289\pi\)
−0.455309 + 0.890334i \(0.650471\pi\)
\(912\) 2.66347 1.10324i 0.0881962 0.0365321i
\(913\) −1.50368 + 3.63020i −0.0497645 + 0.120142i
\(914\) 0.441796i 0.0146133i
\(915\) 14.2327 + 5.89537i 0.470518 + 0.194895i
\(916\) −6.37289 + 6.37289i −0.210566 + 0.210566i
\(917\) 11.0260 0.364111
\(918\) 5.78575 + 12.6191i 0.190958 + 0.416492i
\(919\) 34.5751 1.14053 0.570263 0.821462i \(-0.306841\pi\)
0.570263 + 0.821462i \(0.306841\pi\)
\(920\) −0.531635 + 0.531635i −0.0175275 + 0.0175275i
\(921\) −26.6487 11.0383i −0.878105 0.363723i
\(922\) 3.62872i 0.119505i
\(923\) −3.02797 + 7.31017i −0.0996670 + 0.240617i
\(924\) 0.555309 0.230016i 0.0182683 0.00756698i
\(925\) −1.88115 4.54149i −0.0618518 0.149323i
\(926\) 8.64954 + 8.64954i 0.284241 + 0.284241i
\(927\) 1.62112 + 1.62112i 0.0532447 + 0.0532447i
\(928\) −0.432553 1.04428i −0.0141993 0.0342800i
\(929\) −17.4963 + 7.24720i −0.574035 + 0.237773i −0.650765 0.759279i \(-0.725552\pi\)
0.0767308 + 0.997052i \(0.475552\pi\)
\(930\) 0.749560 1.80960i 0.0245790 0.0593390i
\(931\) 7.85091i 0.257303i
\(932\) −12.2880 5.08986i −0.402507 0.166724i
\(933\) −30.6597 + 30.6597i −1.00375 + 1.00375i
\(934\) 31.2281 1.02182
\(935\) −0.707712 + 0.762417i −0.0231447 + 0.0249337i
\(936\) 4.33267 0.141618
\(937\) −10.1161 + 10.1161i −0.330478 + 0.330478i −0.852768 0.522290i \(-0.825078\pi\)
0.522290 + 0.852768i \(0.325078\pi\)
\(938\) −16.6087 6.87956i −0.542294 0.224626i
\(939\) 52.3038i 1.70687i
\(940\) −3.71790 + 8.97582i −0.121265 + 0.292759i
\(941\) 13.0487 5.40494i 0.425375 0.176196i −0.159717 0.987163i \(-0.551058\pi\)
0.585092 + 0.810967i \(0.301058\pi\)
\(942\) 13.2607 + 32.0143i 0.432058 + 1.04308i
\(943\) 5.10992 + 5.10992i 0.166402 + 0.166402i
\(944\) −1.67839 1.67839i −0.0546270 0.0546270i
\(945\) −1.46440 3.53538i −0.0476371 0.115006i
\(946\) −1.69124 + 0.700534i −0.0549869 + 0.0227763i
\(947\) −11.2228 + 27.0944i −0.364694 + 0.880448i 0.629907 + 0.776671i \(0.283093\pi\)
−0.994601 + 0.103778i \(0.966907\pi\)
\(948\) 29.3978i 0.954797i
\(949\) −28.5892 11.8420i −0.928044 0.384408i
\(950\) 0.972524 0.972524i 0.0315529 0.0315529i
\(951\) −18.2531 −0.591897
\(952\) 4.25970 1.95304i 0.138058 0.0632983i
\(953\) −11.5308 −0.373521 −0.186760 0.982406i \(-0.559799\pi\)
−0.186760 + 0.982406i \(0.559799\pi\)
\(954\) −12.9038 + 12.9038i −0.417776 + 0.417776i
\(955\) −7.73429 3.20365i −0.250276 0.103668i
\(956\) 2.66720i 0.0862633i
\(957\) 0.228756 0.552266i 0.00739464 0.0178522i
\(958\) −3.32393 + 1.37682i −0.107391 + 0.0444829i
\(959\) 1.97991 + 4.77993i 0.0639346 + 0.154352i
\(960\) −1.48218 1.48218i −0.0478372 0.0478372i
\(961\) −21.3029 21.3029i −0.687190 0.687190i
\(962\) 5.84790 + 14.1181i 0.188544 + 0.455185i
\(963\) −15.0903 + 6.25062i −0.486279 + 0.201423i
\(964\) −0.204345 + 0.493333i −0.00658151 + 0.0158892i
\(965\) 7.86718i 0.253253i
\(966\) 1.65480 + 0.685443i 0.0532425 + 0.0220538i
\(967\) 30.1392 30.1392i 0.969211 0.969211i −0.0303294 0.999540i \(-0.509656\pi\)
0.999540 + 0.0303294i \(0.00965562\pi\)
\(968\) 10.9363 0.351507
\(969\) 11.1433 + 4.13729i 0.357975 + 0.132909i
\(970\) 15.7386 0.505337
\(971\) 11.6594 11.6594i 0.374167 0.374167i −0.494825 0.868993i \(-0.664768\pi\)
0.868993 + 0.494825i \(0.164768\pi\)
\(972\) −12.4325 5.14973i −0.398774 0.165178i
\(973\) 14.2137i 0.455669i
\(974\) 8.26188 19.9459i 0.264728 0.639109i
\(975\) 6.02017 2.49364i 0.192800 0.0798603i
\(976\) 2.81251 + 6.79001i 0.0900264 + 0.217343i
\(977\) 13.4637 + 13.4637i 0.430741 + 0.430741i 0.888880 0.458139i \(-0.151484\pi\)
−0.458139 + 0.888880i \(0.651484\pi\)
\(978\) 2.76969 + 2.76969i 0.0885648 + 0.0885648i
\(979\) 1.15139 + 2.77969i 0.0367985 + 0.0888394i
\(980\) 5.27375 2.18446i 0.168464 0.0697800i
\(981\) −1.11077 + 2.68164i −0.0354642 + 0.0856181i
\(982\) 37.2432i 1.18848i
\(983\) 2.07283 + 0.858595i 0.0661131 + 0.0273849i 0.415495 0.909595i \(-0.363608\pi\)
−0.349382 + 0.936980i \(0.613608\pi\)
\(984\) −14.2463 + 14.2463i −0.454155 + 0.454155i
\(985\) 0.455655 0.0145184
\(986\) 1.62212 4.36900i 0.0516589 0.139137i
\(987\) 23.1452 0.736721
\(988\) −3.02327 + 3.02327i −0.0961831 + 0.0961831i
\(989\) −5.03984 2.08757i −0.160258 0.0663809i
\(990\) 0.351637i 0.0111758i
\(991\) 6.12684 14.7915i 0.194625 0.469867i −0.796197 0.605038i \(-0.793158\pi\)
0.990822 + 0.135170i \(0.0431581\pi\)
\(992\) 0.863307 0.357593i 0.0274100 0.0113536i
\(993\) −16.4832 39.7940i −0.523079 1.26282i
\(994\) −2.04553 2.04553i −0.0648804 0.0648804i
\(995\) −6.49439 6.49439i −0.205886 0.205886i
\(996\) −12.4927 30.1600i −0.395846 0.955656i
\(997\) −22.0338 + 9.12670i −0.697818 + 0.289046i −0.703253 0.710940i \(-0.748270\pi\)
0.00543534 + 0.999985i \(0.498270\pi\)
\(998\) 5.92555 14.3055i 0.187570 0.452834i
\(999\) 16.5508i 0.523643i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 170.2.k.b.111.4 16
5.2 odd 4 850.2.o.j.349.4 16
5.3 odd 4 850.2.o.g.349.1 16
5.4 even 2 850.2.l.e.451.1 16
17.2 even 8 inner 170.2.k.b.121.4 yes 16
17.6 odd 16 2890.2.a.bj.1.6 8
17.7 odd 16 2890.2.b.r.2311.4 16
17.10 odd 16 2890.2.b.r.2311.13 16
17.11 odd 16 2890.2.a.bi.1.3 8
85.2 odd 8 850.2.o.g.699.1 16
85.19 even 8 850.2.l.e.801.1 16
85.53 odd 8 850.2.o.j.699.4 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
170.2.k.b.111.4 16 1.1 even 1 trivial
170.2.k.b.121.4 yes 16 17.2 even 8 inner
850.2.l.e.451.1 16 5.4 even 2
850.2.l.e.801.1 16 85.19 even 8
850.2.o.g.349.1 16 5.3 odd 4
850.2.o.g.699.1 16 85.2 odd 8
850.2.o.j.349.4 16 5.2 odd 4
850.2.o.j.699.4 16 85.53 odd 8
2890.2.a.bi.1.3 8 17.11 odd 16
2890.2.a.bj.1.6 8 17.6 odd 16
2890.2.b.r.2311.4 16 17.7 odd 16
2890.2.b.r.2311.13 16 17.10 odd 16