Properties

Label 850.2.l.e.451.1
Level $850$
Weight $2$
Character 850.451
Analytic conductor $6.787$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [850,2,Mod(151,850)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(850, base_ring=CyclotomicField(8))
 
chi = DirichletCharacter(H, H._module([0, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("850.151");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 850 = 2 \cdot 5^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 850.l (of order \(8\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.78728417181\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(4\) over \(\Q(\zeta_{8})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 28x^{14} + 286x^{12} + 1412x^{10} + 3709x^{8} + 5264x^{6} + 3780x^{4} + 1072x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: no (minimal twist has level 170)
Sato-Tate group: $\mathrm{SU}(2)[C_{8}]$

Embedding invariants

Embedding label 451.1
Root \(-1.09612i\) of defining polynomial
Character \(\chi\) \(=\) 850.451
Dual form 850.2.l.e.801.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.707107 + 0.707107i) q^{2} +(-1.93656 - 0.802151i) q^{3} -1.00000i q^{4} +(1.93656 - 0.802151i) q^{6} +(0.434936 + 1.05003i) q^{7} +(0.707107 + 0.707107i) q^{8} +(0.985516 + 0.985516i) q^{9} +O(q^{10})\) \(q+(-0.707107 + 0.707107i) q^{2} +(-1.93656 - 0.802151i) q^{3} -1.00000i q^{4} +(1.93656 - 0.802151i) q^{6} +(0.434936 + 1.05003i) q^{7} +(0.707107 + 0.707107i) q^{8} +(0.985516 + 0.985516i) q^{9} +(-0.233094 + 0.0965508i) q^{11} +(-0.802151 + 1.93656i) q^{12} -3.10869i q^{13} +(-1.05003 - 0.434936i) q^{14} -1.00000 q^{16} +(3.02187 + 2.80505i) q^{17} -1.39373 q^{18} +(-0.972524 + 0.972524i) q^{19} -2.38233i q^{21} +(0.0965508 - 0.233094i) q^{22} +(0.694615 - 0.287719i) q^{23} +(-0.802151 - 1.93656i) q^{24} +(2.19817 + 2.19817i) q^{26} +(1.28847 + 3.11065i) q^{27} +(1.05003 - 0.434936i) q^{28} +(-0.432553 + 1.04428i) q^{29} +(-0.863307 - 0.357593i) q^{31} +(0.707107 - 0.707107i) q^{32} +0.528851 q^{33} +(-4.12025 + 0.153319i) q^{34} +(0.985516 - 0.985516i) q^{36} +(-4.54149 - 1.88115i) q^{37} -1.37536i q^{38} +(-2.49364 + 6.02017i) q^{39} +(-3.67824 - 8.88006i) q^{41} +(1.68456 + 1.68456i) q^{42} +(-5.13048 - 5.13048i) q^{43} +(0.0965508 + 0.233094i) q^{44} +(-0.287719 + 0.694615i) q^{46} -9.71535i q^{47} +(1.93656 + 0.802151i) q^{48} +(4.03636 - 4.03636i) q^{49} +(-3.60198 - 7.85615i) q^{51} -3.10869 q^{52} +(9.25847 - 9.25847i) q^{53} +(-3.11065 - 1.28847i) q^{54} +(-0.434936 + 1.05003i) q^{56} +(2.66347 - 1.10324i) q^{57} +(-0.432553 - 1.04428i) q^{58} +(1.67839 + 1.67839i) q^{59} +(-2.81251 - 6.79001i) q^{61} +(0.863307 - 0.357593i) q^{62} +(-0.606184 + 1.46346i) q^{63} +1.00000i q^{64} +(-0.373954 + 0.373954i) q^{66} -15.8174 q^{67} +(2.80505 - 3.02187i) q^{68} -1.57596 q^{69} +(2.35153 + 0.974036i) q^{71} +1.39373i q^{72} +(3.80933 - 9.19654i) q^{73} +(4.54149 - 1.88115i) q^{74} +(0.972524 + 0.972524i) q^{76} +(-0.202762 - 0.202762i) q^{77} +(-2.49364 - 6.02017i) q^{78} +(12.9573 - 5.36708i) q^{79} -11.2387i q^{81} +(8.88006 + 3.67824i) q^{82} +(-11.0125 + 11.0125i) q^{83} -2.38233 q^{84} +7.25559 q^{86} +(1.67534 - 1.67534i) q^{87} +(-0.233094 - 0.0965508i) q^{88} -11.9252i q^{89} +(3.26421 - 1.35208i) q^{91} +(-0.287719 - 0.694615i) q^{92} +(1.38501 + 1.38501i) q^{93} +(6.86979 + 6.86979i) q^{94} +(-1.93656 + 0.802151i) q^{96} +(-6.02292 + 14.5406i) q^{97} +5.70827i q^{98} +(-0.324871 - 0.134566i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q+O(q^{10}) \) Copy content Toggle raw display \( 16 q - 8 q^{11} - 8 q^{14} - 16 q^{16} - 8 q^{18} + 8 q^{22} - 8 q^{23} + 24 q^{27} + 8 q^{28} + 8 q^{29} + 32 q^{31} - 16 q^{33} + 16 q^{34} + 8 q^{37} - 32 q^{39} - 32 q^{41} - 32 q^{42} + 16 q^{43} + 8 q^{44} - 24 q^{46} - 8 q^{49} - 8 q^{51} + 8 q^{52} + 40 q^{53} + 16 q^{57} + 8 q^{58} + 16 q^{59} - 24 q^{61} - 32 q^{62} - 56 q^{63} - 8 q^{66} - 16 q^{67} - 16 q^{69} + 8 q^{71} - 16 q^{73} - 8 q^{74} - 24 q^{77} - 32 q^{78} + 40 q^{79} - 16 q^{82} - 32 q^{83} + 16 q^{84} + 32 q^{87} - 8 q^{88} + 24 q^{91} - 24 q^{92} + 32 q^{93} + 40 q^{94} - 24 q^{97} - 56 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/850\mathbb{Z}\right)^\times\).

\(n\) \(477\) \(751\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{8}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.707107 + 0.707107i −0.500000 + 0.500000i
\(3\) −1.93656 0.802151i −1.11808 0.463122i −0.254364 0.967108i \(-0.581866\pi\)
−0.863712 + 0.503986i \(0.831866\pi\)
\(4\) 1.00000i 0.500000i
\(5\) 0 0
\(6\) 1.93656 0.802151i 0.790599 0.327477i
\(7\) 0.434936 + 1.05003i 0.164390 + 0.396874i 0.984512 0.175315i \(-0.0560944\pi\)
−0.820122 + 0.572189i \(0.806094\pi\)
\(8\) 0.707107 + 0.707107i 0.250000 + 0.250000i
\(9\) 0.985516 + 0.985516i 0.328505 + 0.328505i
\(10\) 0 0
\(11\) −0.233094 + 0.0965508i −0.0702806 + 0.0291112i −0.417547 0.908655i \(-0.637110\pi\)
0.347266 + 0.937767i \(0.387110\pi\)
\(12\) −0.802151 + 1.93656i −0.231561 + 0.559038i
\(13\) 3.10869i 0.862194i −0.902305 0.431097i \(-0.858127\pi\)
0.902305 0.431097i \(-0.141873\pi\)
\(14\) −1.05003 0.434936i −0.280632 0.116242i
\(15\) 0 0
\(16\) −1.00000 −0.250000
\(17\) 3.02187 + 2.80505i 0.732912 + 0.680324i
\(18\) −1.39373 −0.328505
\(19\) −0.972524 + 0.972524i −0.223112 + 0.223112i −0.809808 0.586695i \(-0.800429\pi\)
0.586695 + 0.809808i \(0.300429\pi\)
\(20\) 0 0
\(21\) 2.38233i 0.519868i
\(22\) 0.0965508 0.233094i 0.0205847 0.0496959i
\(23\) 0.694615 0.287719i 0.144837 0.0599935i −0.309087 0.951034i \(-0.600024\pi\)
0.453925 + 0.891040i \(0.350024\pi\)
\(24\) −0.802151 1.93656i −0.163738 0.395300i
\(25\) 0 0
\(26\) 2.19817 + 2.19817i 0.431097 + 0.431097i
\(27\) 1.28847 + 3.11065i 0.247966 + 0.598644i
\(28\) 1.05003 0.434936i 0.198437 0.0821952i
\(29\) −0.432553 + 1.04428i −0.0803231 + 0.193917i −0.958939 0.283612i \(-0.908467\pi\)
0.878616 + 0.477529i \(0.158467\pi\)
\(30\) 0 0
\(31\) −0.863307 0.357593i −0.155054 0.0642257i 0.303806 0.952734i \(-0.401742\pi\)
−0.458861 + 0.888508i \(0.651742\pi\)
\(32\) 0.707107 0.707107i 0.125000 0.125000i
\(33\) 0.528851 0.0920611
\(34\) −4.12025 + 0.153319i −0.706618 + 0.0262940i
\(35\) 0 0
\(36\) 0.985516 0.985516i 0.164253 0.164253i
\(37\) −4.54149 1.88115i −0.746617 0.309259i −0.0232565 0.999730i \(-0.507403\pi\)
−0.723360 + 0.690471i \(0.757403\pi\)
\(38\) 1.37536i 0.223112i
\(39\) −2.49364 + 6.02017i −0.399302 + 0.963999i
\(40\) 0 0
\(41\) −3.67824 8.88006i −0.574445 1.38683i −0.897737 0.440533i \(-0.854790\pi\)
0.323292 0.946299i \(-0.395210\pi\)
\(42\) 1.68456 + 1.68456i 0.259934 + 0.259934i
\(43\) −5.13048 5.13048i −0.782391 0.782391i 0.197843 0.980234i \(-0.436606\pi\)
−0.980234 + 0.197843i \(0.936606\pi\)
\(44\) 0.0965508 + 0.233094i 0.0145556 + 0.0351403i
\(45\) 0 0
\(46\) −0.287719 + 0.694615i −0.0424218 + 0.102415i
\(47\) 9.71535i 1.41713i −0.705646 0.708565i \(-0.749343\pi\)
0.705646 0.708565i \(-0.250657\pi\)
\(48\) 1.93656 + 0.802151i 0.279519 + 0.115781i
\(49\) 4.03636 4.03636i 0.576622 0.576622i
\(50\) 0 0
\(51\) −3.60198 7.85615i −0.504378 1.10008i
\(52\) −3.10869 −0.431097
\(53\) 9.25847 9.25847i 1.27175 1.27175i 0.326579 0.945170i \(-0.394104\pi\)
0.945170 0.326579i \(-0.105896\pi\)
\(54\) −3.11065 1.28847i −0.423305 0.175339i
\(55\) 0 0
\(56\) −0.434936 + 1.05003i −0.0581208 + 0.140316i
\(57\) 2.66347 1.10324i 0.352785 0.146128i
\(58\) −0.432553 1.04428i −0.0567970 0.137120i
\(59\) 1.67839 + 1.67839i 0.218508 + 0.218508i 0.807870 0.589361i \(-0.200621\pi\)
−0.589361 + 0.807870i \(0.700621\pi\)
\(60\) 0 0
\(61\) −2.81251 6.79001i −0.360105 0.869371i −0.995284 0.0970059i \(-0.969073\pi\)
0.635178 0.772365i \(-0.280927\pi\)
\(62\) 0.863307 0.357593i 0.109640 0.0454144i
\(63\) −0.606184 + 1.46346i −0.0763720 + 0.184378i
\(64\) 1.00000i 0.125000i
\(65\) 0 0
\(66\) −0.373954 + 0.373954i −0.0460305 + 0.0460305i
\(67\) −15.8174 −1.93240 −0.966201 0.257788i \(-0.917006\pi\)
−0.966201 + 0.257788i \(0.917006\pi\)
\(68\) 2.80505 3.02187i 0.340162 0.366456i
\(69\) −1.57596 −0.189723
\(70\) 0 0
\(71\) 2.35153 + 0.974036i 0.279075 + 0.115597i 0.517831 0.855483i \(-0.326740\pi\)
−0.238756 + 0.971080i \(0.576740\pi\)
\(72\) 1.39373i 0.164253i
\(73\) 3.80933 9.19654i 0.445849 1.07637i −0.528014 0.849236i \(-0.677063\pi\)
0.973863 0.227138i \(-0.0729369\pi\)
\(74\) 4.54149 1.88115i 0.527938 0.218679i
\(75\) 0 0
\(76\) 0.972524 + 0.972524i 0.111556 + 0.111556i
\(77\) −0.202762 0.202762i −0.0231069 0.0231069i
\(78\) −2.49364 6.02017i −0.282349 0.681650i
\(79\) 12.9573 5.36708i 1.45781 0.603844i 0.493766 0.869595i \(-0.335620\pi\)
0.964042 + 0.265751i \(0.0856200\pi\)
\(80\) 0 0
\(81\) 11.2387i 1.24875i
\(82\) 8.88006 + 3.67824i 0.980638 + 0.406194i
\(83\) −11.0125 + 11.0125i −1.20877 + 1.20877i −0.237349 + 0.971424i \(0.576279\pi\)
−0.971424 + 0.237349i \(0.923721\pi\)
\(84\) −2.38233 −0.259934
\(85\) 0 0
\(86\) 7.25559 0.782391
\(87\) 1.67534 1.67534i 0.179615 0.179615i
\(88\) −0.233094 0.0965508i −0.0248479 0.0102924i
\(89\) 11.9252i 1.26407i −0.774941 0.632034i \(-0.782220\pi\)
0.774941 0.632034i \(-0.217780\pi\)
\(90\) 0 0
\(91\) 3.26421 1.35208i 0.342182 0.141737i
\(92\) −0.287719 0.694615i −0.0299968 0.0724186i
\(93\) 1.38501 + 1.38501i 0.143618 + 0.143618i
\(94\) 6.86979 + 6.86979i 0.708565 + 0.708565i
\(95\) 0 0
\(96\) −1.93656 + 0.802151i −0.197650 + 0.0818692i
\(97\) −6.02292 + 14.5406i −0.611535 + 1.47638i 0.249780 + 0.968303i \(0.419642\pi\)
−0.861314 + 0.508073i \(0.830358\pi\)
\(98\) 5.70827i 0.576622i
\(99\) −0.324871 0.134566i −0.0326507 0.0135244i
\(100\) 0 0
\(101\) −1.90803 −0.189857 −0.0949283 0.995484i \(-0.530262\pi\)
−0.0949283 + 0.995484i \(0.530262\pi\)
\(102\) 8.10212 + 3.00816i 0.802230 + 0.297852i
\(103\) −1.64495 −0.162082 −0.0810408 0.996711i \(-0.525824\pi\)
−0.0810408 + 0.996711i \(0.525824\pi\)
\(104\) 2.19817 2.19817i 0.215549 0.215549i
\(105\) 0 0
\(106\) 13.0935i 1.27175i
\(107\) 4.48481 10.8273i 0.433563 1.04671i −0.544566 0.838718i \(-0.683306\pi\)
0.978130 0.207996i \(-0.0666942\pi\)
\(108\) 3.11065 1.28847i 0.299322 0.123983i
\(109\) 0.796977 + 1.92407i 0.0763366 + 0.184293i 0.957441 0.288629i \(-0.0931994\pi\)
−0.881104 + 0.472922i \(0.843199\pi\)
\(110\) 0 0
\(111\) 7.28593 + 7.28593i 0.691550 + 0.691550i
\(112\) −0.434936 1.05003i −0.0410976 0.0992184i
\(113\) 8.16143 3.38057i 0.767763 0.318018i 0.0357968 0.999359i \(-0.488603\pi\)
0.731966 + 0.681341i \(0.238603\pi\)
\(114\) −1.10324 + 2.66347i −0.103328 + 0.249457i
\(115\) 0 0
\(116\) 1.04428 + 0.432553i 0.0969586 + 0.0401616i
\(117\) 3.06366 3.06366i 0.283235 0.283235i
\(118\) −2.37361 −0.218508
\(119\) −1.63106 + 4.39307i −0.149519 + 0.402712i
\(120\) 0 0
\(121\) −7.73316 + 7.73316i −0.703015 + 0.703015i
\(122\) 6.79001 + 2.81251i 0.614738 + 0.254633i
\(123\) 20.1473i 1.81662i
\(124\) −0.357593 + 0.863307i −0.0321128 + 0.0775272i
\(125\) 0 0
\(126\) −0.606184 1.46346i −0.0540032 0.130375i
\(127\) −7.38362 7.38362i −0.655191 0.655191i 0.299048 0.954238i \(-0.403331\pi\)
−0.954238 + 0.299048i \(0.903331\pi\)
\(128\) −0.707107 0.707107i −0.0625000 0.0625000i
\(129\) 5.82008 + 14.0509i 0.512430 + 1.23712i
\(130\) 0 0
\(131\) −3.71255 + 8.96288i −0.324367 + 0.783090i 0.674624 + 0.738162i \(0.264306\pi\)
−0.998990 + 0.0449283i \(0.985694\pi\)
\(132\) 0.528851i 0.0460305i
\(133\) −1.44417 0.598193i −0.125225 0.0518699i
\(134\) 11.1846 11.1846i 0.966201 0.966201i
\(135\) 0 0
\(136\) 0.153319 + 4.12025i 0.0131470 + 0.353309i
\(137\) 4.55218 0.388919 0.194460 0.980911i \(-0.437705\pi\)
0.194460 + 0.980911i \(0.437705\pi\)
\(138\) 1.11437 1.11437i 0.0948617 0.0948617i
\(139\) −11.5541 4.78586i −0.980004 0.405931i −0.165577 0.986197i \(-0.552949\pi\)
−0.814427 + 0.580266i \(0.802949\pi\)
\(140\) 0 0
\(141\) −7.79318 + 18.8144i −0.656304 + 1.58446i
\(142\) −2.35153 + 0.974036i −0.197336 + 0.0817393i
\(143\) 0.300146 + 0.724617i 0.0250995 + 0.0605955i
\(144\) −0.985516 0.985516i −0.0821263 0.0821263i
\(145\) 0 0
\(146\) 3.80933 + 9.19654i 0.315263 + 0.761111i
\(147\) −11.0544 + 4.57890i −0.911754 + 0.377661i
\(148\) −1.88115 + 4.54149i −0.154629 + 0.373308i
\(149\) 22.2607i 1.82367i −0.410556 0.911835i \(-0.634666\pi\)
0.410556 0.911835i \(-0.365334\pi\)
\(150\) 0 0
\(151\) −7.13341 + 7.13341i −0.580509 + 0.580509i −0.935043 0.354534i \(-0.884639\pi\)
0.354534 + 0.935043i \(0.384639\pi\)
\(152\) −1.37536 −0.111556
\(153\) 0.213685 + 5.74252i 0.0172754 + 0.464255i
\(154\) 0.286749 0.0231069
\(155\) 0 0
\(156\) 6.02017 + 2.49364i 0.482000 + 0.199651i
\(157\) 16.5315i 1.31936i −0.751549 0.659678i \(-0.770693\pi\)
0.751549 0.659678i \(-0.229307\pi\)
\(158\) −5.36708 + 12.9573i −0.426982 + 1.03083i
\(159\) −25.3563 + 10.5029i −2.01089 + 0.832937i
\(160\) 0 0
\(161\) 0.604226 + 0.604226i 0.0476197 + 0.0476197i
\(162\) 7.94697 + 7.94697i 0.624373 + 0.624373i
\(163\) −0.715103 1.72641i −0.0560112 0.135223i 0.893397 0.449269i \(-0.148315\pi\)
−0.949408 + 0.314046i \(0.898315\pi\)
\(164\) −8.88006 + 3.67824i −0.693416 + 0.287222i
\(165\) 0 0
\(166\) 15.5740i 1.20877i
\(167\) 21.9273 + 9.08260i 1.69679 + 0.702833i 0.999897 0.0143440i \(-0.00456599\pi\)
0.696891 + 0.717177i \(0.254566\pi\)
\(168\) 1.68456 1.68456i 0.129967 0.129967i
\(169\) 3.33607 0.256621
\(170\) 0 0
\(171\) −1.91688 −0.146587
\(172\) −5.13048 + 5.13048i −0.391195 + 0.391195i
\(173\) 3.84503 + 1.59266i 0.292332 + 0.121088i 0.524030 0.851700i \(-0.324428\pi\)
−0.231698 + 0.972788i \(0.574428\pi\)
\(174\) 2.36928i 0.179615i
\(175\) 0 0
\(176\) 0.233094 0.0965508i 0.0175701 0.00727779i
\(177\) −1.90399 4.59664i −0.143113 0.345505i
\(178\) 8.43238 + 8.43238i 0.632034 + 0.632034i
\(179\) 9.42514 + 9.42514i 0.704468 + 0.704468i 0.965366 0.260898i \(-0.0840186\pi\)
−0.260898 + 0.965366i \(0.584019\pi\)
\(180\) 0 0
\(181\) −7.74313 + 3.20731i −0.575543 + 0.238398i −0.651417 0.758720i \(-0.725825\pi\)
0.0758745 + 0.997117i \(0.475825\pi\)
\(182\) −1.35208 + 3.26421i −0.100223 + 0.241959i
\(183\) 15.4054i 1.13880i
\(184\) 0.694615 + 0.287719i 0.0512077 + 0.0212109i
\(185\) 0 0
\(186\) −1.95869 −0.143618
\(187\) −0.975211 0.362076i −0.0713145 0.0264776i
\(188\) −9.71535 −0.708565
\(189\) −2.70587 + 2.70587i −0.196823 + 0.196823i
\(190\) 0 0
\(191\) 8.37154i 0.605743i 0.953031 + 0.302872i \(0.0979453\pi\)
−0.953031 + 0.302872i \(0.902055\pi\)
\(192\) 0.802151 1.93656i 0.0578903 0.139760i
\(193\) 7.26832 3.01064i 0.523185 0.216710i −0.105430 0.994427i \(-0.533622\pi\)
0.628615 + 0.777716i \(0.283622\pi\)
\(194\) −6.02292 14.5406i −0.432420 1.04395i
\(195\) 0 0
\(196\) −4.03636 4.03636i −0.288311 0.288311i
\(197\) 0.174372 + 0.420971i 0.0124235 + 0.0299929i 0.929970 0.367637i \(-0.119833\pi\)
−0.917546 + 0.397629i \(0.869833\pi\)
\(198\) 0.324871 0.134566i 0.0230875 0.00956318i
\(199\) −3.51474 + 8.48532i −0.249153 + 0.601509i −0.998133 0.0610845i \(-0.980544\pi\)
0.748980 + 0.662593i \(0.230544\pi\)
\(200\) 0 0
\(201\) 30.6314 + 12.6879i 2.16057 + 0.894939i
\(202\) 1.34918 1.34918i 0.0949283 0.0949283i
\(203\) −1.28465 −0.0901650
\(204\) −7.85615 + 3.60198i −0.550041 + 0.252189i
\(205\) 0 0
\(206\) 1.16315 1.16315i 0.0810408 0.0810408i
\(207\) 0.968106 + 0.401002i 0.0672880 + 0.0278716i
\(208\) 3.10869i 0.215549i
\(209\) 0.132792 0.320588i 0.00918541 0.0221755i
\(210\) 0 0
\(211\) −2.91050 7.02656i −0.200367 0.483728i 0.791475 0.611201i \(-0.209313\pi\)
−0.991842 + 0.127473i \(0.959313\pi\)
\(212\) −9.25847 9.25847i −0.635875 0.635875i
\(213\) −3.77257 3.77257i −0.258492 0.258492i
\(214\) 4.48481 + 10.8273i 0.306575 + 0.740139i
\(215\) 0 0
\(216\) −1.28847 + 3.11065i −0.0876694 + 0.211653i
\(217\) 1.06203i 0.0720951i
\(218\) −1.92407 0.796977i −0.130315 0.0539781i
\(219\) −14.7540 + 14.7540i −0.996986 + 0.996986i
\(220\) 0 0
\(221\) 8.72001 9.39405i 0.586571 0.631912i
\(222\) −10.3039 −0.691550
\(223\) −1.91171 + 1.91171i −0.128017 + 0.128017i −0.768212 0.640195i \(-0.778854\pi\)
0.640195 + 0.768212i \(0.278854\pi\)
\(224\) 1.05003 + 0.434936i 0.0701580 + 0.0290604i
\(225\) 0 0
\(226\) −3.38057 + 8.16143i −0.224872 + 0.542890i
\(227\) 8.71853 3.61134i 0.578669 0.239693i −0.0740982 0.997251i \(-0.523608\pi\)
0.652768 + 0.757558i \(0.273608\pi\)
\(228\) −1.10324 2.66347i −0.0730642 0.176392i
\(229\) −6.37289 6.37289i −0.421133 0.421133i 0.464461 0.885594i \(-0.346248\pi\)
−0.885594 + 0.464461i \(0.846248\pi\)
\(230\) 0 0
\(231\) 0.230016 + 0.555309i 0.0151340 + 0.0365366i
\(232\) −1.04428 + 0.432553i −0.0685601 + 0.0283985i
\(233\) −5.08986 + 12.2880i −0.333448 + 0.805015i 0.664866 + 0.746963i \(0.268489\pi\)
−0.998314 + 0.0580517i \(0.981511\pi\)
\(234\) 4.33267i 0.283235i
\(235\) 0 0
\(236\) 1.67839 1.67839i 0.109254 0.109254i
\(237\) −29.3978 −1.90959
\(238\) −1.95304 4.25970i −0.126597 0.276116i
\(239\) −2.66720 −0.172527 −0.0862633 0.996272i \(-0.527493\pi\)
−0.0862633 + 0.996272i \(0.527493\pi\)
\(240\) 0 0
\(241\) −0.493333 0.204345i −0.0317784 0.0131630i 0.366738 0.930324i \(-0.380475\pi\)
−0.398516 + 0.917161i \(0.630475\pi\)
\(242\) 10.9363i 0.703015i
\(243\) −5.14973 + 12.4325i −0.330355 + 0.797548i
\(244\) −6.79001 + 2.81251i −0.434686 + 0.180053i
\(245\) 0 0
\(246\) −14.2463 14.2463i −0.908311 0.908311i
\(247\) 3.02327 + 3.02327i 0.192366 + 0.192366i
\(248\) −0.357593 0.863307i −0.0227072 0.0548200i
\(249\) 30.1600 12.4927i 1.91131 0.791691i
\(250\) 0 0
\(251\) 13.3789i 0.844468i −0.906487 0.422234i \(-0.861246\pi\)
0.906487 0.422234i \(-0.138754\pi\)
\(252\) 1.46346 + 0.606184i 0.0921892 + 0.0381860i
\(253\) −0.134131 + 0.134131i −0.00843276 + 0.00843276i
\(254\) 10.4420 0.655191
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 13.6909 13.6909i 0.854013 0.854013i −0.136612 0.990625i \(-0.543621\pi\)
0.990625 + 0.136612i \(0.0436213\pi\)
\(258\) −14.0509 5.82008i −0.874773 0.362343i
\(259\) 5.58688i 0.347152i
\(260\) 0 0
\(261\) −1.45544 + 0.602863i −0.0900894 + 0.0373163i
\(262\) −3.71255 8.96288i −0.229362 0.553728i
\(263\) −8.55368 8.55368i −0.527442 0.527442i 0.392367 0.919809i \(-0.371656\pi\)
−0.919809 + 0.392367i \(0.871656\pi\)
\(264\) 0.373954 + 0.373954i 0.0230153 + 0.0230153i
\(265\) 0 0
\(266\) 1.44417 0.598193i 0.0885474 0.0366776i
\(267\) −9.56581 + 23.0939i −0.585418 + 1.41332i
\(268\) 15.8174i 0.966201i
\(269\) 18.4733 + 7.65189i 1.12634 + 0.466544i 0.866534 0.499118i \(-0.166343\pi\)
0.259802 + 0.965662i \(0.416343\pi\)
\(270\) 0 0
\(271\) −3.67946 −0.223511 −0.111756 0.993736i \(-0.535647\pi\)
−0.111756 + 0.993736i \(0.535647\pi\)
\(272\) −3.02187 2.80505i −0.183228 0.170081i
\(273\) −7.40593 −0.448227
\(274\) −3.21888 + 3.21888i −0.194460 + 0.194460i
\(275\) 0 0
\(276\) 1.57596i 0.0948617i
\(277\) −5.03180 + 12.1478i −0.302331 + 0.729892i 0.697579 + 0.716508i \(0.254261\pi\)
−0.999910 + 0.0133845i \(0.995739\pi\)
\(278\) 11.5541 4.78586i 0.692967 0.287037i
\(279\) −0.498389 1.20322i −0.0298377 0.0720347i
\(280\) 0 0
\(281\) 6.24669 + 6.24669i 0.372646 + 0.372646i 0.868440 0.495794i \(-0.165123\pi\)
−0.495794 + 0.868440i \(0.665123\pi\)
\(282\) −7.79318 18.8144i −0.464077 1.12038i
\(283\) −5.15384 + 2.13479i −0.306364 + 0.126900i −0.530569 0.847642i \(-0.678022\pi\)
0.224205 + 0.974542i \(0.428022\pi\)
\(284\) 0.974036 2.35153i 0.0577984 0.139538i
\(285\) 0 0
\(286\) −0.724617 0.300146i −0.0428475 0.0177480i
\(287\) 7.72452 7.72452i 0.455964 0.455964i
\(288\) 1.39373 0.0821263
\(289\) 1.26343 + 16.9530i 0.0743192 + 0.997235i
\(290\) 0 0
\(291\) 23.3275 23.3275i 1.36748 1.36748i
\(292\) −9.19654 3.80933i −0.538187 0.222924i
\(293\) 23.5631i 1.37657i 0.725439 + 0.688286i \(0.241637\pi\)
−0.725439 + 0.688286i \(0.758363\pi\)
\(294\) 4.57890 11.0544i 0.267047 0.644708i
\(295\) 0 0
\(296\) −1.88115 4.54149i −0.109339 0.263969i
\(297\) −0.600671 0.600671i −0.0348545 0.0348545i
\(298\) 15.7407 + 15.7407i 0.911835 + 0.911835i
\(299\) −0.894428 2.15934i −0.0517261 0.124878i
\(300\) 0 0
\(301\) 3.15572 7.61859i 0.181893 0.439128i
\(302\) 10.0882i 0.580509i
\(303\) 3.69503 + 1.53053i 0.212274 + 0.0879268i
\(304\) 0.972524 0.972524i 0.0557781 0.0557781i
\(305\) 0 0
\(306\) −4.21167 3.90948i −0.240765 0.223490i
\(307\) 13.7608 0.785371 0.392686 0.919673i \(-0.371546\pi\)
0.392686 + 0.919673i \(0.371546\pi\)
\(308\) −0.202762 + 0.202762i −0.0115535 + 0.0115535i
\(309\) 3.18555 + 1.31950i 0.181220 + 0.0750636i
\(310\) 0 0
\(311\) −7.91601 + 19.1109i −0.448876 + 1.08368i 0.523868 + 0.851799i \(0.324488\pi\)
−0.972744 + 0.231882i \(0.925512\pi\)
\(312\) −6.02017 + 2.49364i −0.340825 + 0.141174i
\(313\) −9.54896 23.0532i −0.539739 1.30305i −0.924905 0.380198i \(-0.875856\pi\)
0.385166 0.922847i \(-0.374144\pi\)
\(314\) 11.6895 + 11.6895i 0.659678 + 0.659678i
\(315\) 0 0
\(316\) −5.36708 12.9573i −0.301922 0.728904i
\(317\) 8.04517 3.33242i 0.451862 0.187167i −0.145133 0.989412i \(-0.546361\pi\)
0.596995 + 0.802245i \(0.296361\pi\)
\(318\) 10.5029 25.3563i 0.588975 1.42191i
\(319\) 0.285178i 0.0159669i
\(320\) 0 0
\(321\) −17.3703 + 17.3703i −0.969513 + 0.969513i
\(322\) −0.854505 −0.0476197
\(323\) −5.66682 + 0.210868i −0.315310 + 0.0117330i
\(324\) −11.2387 −0.624373
\(325\) 0 0
\(326\) 1.72641 + 0.715103i 0.0956171 + 0.0396059i
\(327\) 4.36539i 0.241407i
\(328\) 3.67824 8.88006i 0.203097 0.490319i
\(329\) 10.2014 4.22556i 0.562422 0.232963i
\(330\) 0 0
\(331\) −14.5302 14.5302i −0.798649 0.798649i 0.184233 0.982883i \(-0.441020\pi\)
−0.982883 + 0.184233i \(0.941020\pi\)
\(332\) 11.0125 + 11.0125i 0.604387 + 0.604387i
\(333\) −2.62181 6.32962i −0.143674 0.346861i
\(334\) −21.9273 + 9.08260i −1.19981 + 0.496978i
\(335\) 0 0
\(336\) 2.38233i 0.129967i
\(337\) 28.2402 + 11.6975i 1.53834 + 0.637202i 0.981161 0.193191i \(-0.0618836\pi\)
0.557179 + 0.830392i \(0.311884\pi\)
\(338\) −2.35896 + 2.35896i −0.128310 + 0.128310i
\(339\) −18.5169 −1.00570
\(340\) 0 0
\(341\) 0.235758 0.0127670
\(342\) 1.35544 1.35544i 0.0732936 0.0732936i
\(343\) 13.3441 + 5.52729i 0.720511 + 0.298446i
\(344\) 7.25559i 0.391195i
\(345\) 0 0
\(346\) −3.84503 + 1.59266i −0.206710 + 0.0856221i
\(347\) 6.49858 + 15.6890i 0.348862 + 0.842228i 0.996755 + 0.0804961i \(0.0256504\pi\)
−0.647893 + 0.761731i \(0.724350\pi\)
\(348\) −1.67534 1.67534i −0.0898074 0.0898074i
\(349\) −15.8641 15.8641i −0.849188 0.849188i 0.140844 0.990032i \(-0.455018\pi\)
−0.990032 + 0.140844i \(0.955018\pi\)
\(350\) 0 0
\(351\) 9.67002 4.00545i 0.516148 0.213795i
\(352\) −0.0965508 + 0.233094i −0.00514618 + 0.0124240i
\(353\) 22.5509i 1.20026i −0.799902 0.600131i \(-0.795115\pi\)
0.799902 0.600131i \(-0.204885\pi\)
\(354\) 4.59664 + 1.90399i 0.244309 + 0.101196i
\(355\) 0 0
\(356\) −11.9252 −0.632034
\(357\) 6.68256 7.19911i 0.353679 0.381017i
\(358\) −13.3292 −0.704468
\(359\) −7.45653 + 7.45653i −0.393540 + 0.393540i −0.875947 0.482407i \(-0.839763\pi\)
0.482407 + 0.875947i \(0.339763\pi\)
\(360\) 0 0
\(361\) 17.1084i 0.900442i
\(362\) 3.20731 7.74313i 0.168573 0.406970i
\(363\) 21.1789 8.77260i 1.11161 0.460442i
\(364\) −1.35208 3.26421i −0.0708683 0.171091i
\(365\) 0 0
\(366\) −10.8932 10.8932i −0.569398 0.569398i
\(367\) 11.9104 + 28.7544i 0.621720 + 1.50097i 0.849682 + 0.527296i \(0.176794\pi\)
−0.227962 + 0.973670i \(0.573206\pi\)
\(368\) −0.694615 + 0.287719i −0.0362093 + 0.0149984i
\(369\) 5.12647 12.3764i 0.266874 0.644290i
\(370\) 0 0
\(371\) 13.7485 + 5.69482i 0.713787 + 0.295660i
\(372\) 1.38501 1.38501i 0.0718092 0.0718092i
\(373\) 21.7151 1.12437 0.562183 0.827013i \(-0.309962\pi\)
0.562183 + 0.827013i \(0.309962\pi\)
\(374\) 0.945605 0.433552i 0.0488961 0.0224184i
\(375\) 0 0
\(376\) 6.86979 6.86979i 0.354282 0.354282i
\(377\) 3.24633 + 1.34467i 0.167194 + 0.0692542i
\(378\) 3.82667i 0.196823i
\(379\) 9.02028 21.7769i 0.463341 1.11860i −0.503677 0.863892i \(-0.668020\pi\)
0.967017 0.254711i \(-0.0819803\pi\)
\(380\) 0 0
\(381\) 8.37608 + 20.2217i 0.429120 + 1.03599i
\(382\) −5.91957 5.91957i −0.302872 0.302872i
\(383\) −22.8956 22.8956i −1.16991 1.16991i −0.982230 0.187683i \(-0.939902\pi\)
−0.187683 0.982230i \(-0.560098\pi\)
\(384\) 0.802151 + 1.93656i 0.0409346 + 0.0988249i
\(385\) 0 0
\(386\) −3.01064 + 7.26832i −0.153237 + 0.369948i
\(387\) 10.1123i 0.514039i
\(388\) 14.5406 + 6.02292i 0.738188 + 0.305767i
\(389\) 5.57424 5.57424i 0.282625 0.282625i −0.551530 0.834155i \(-0.685956\pi\)
0.834155 + 0.551530i \(0.185956\pi\)
\(390\) 0 0
\(391\) 2.90610 + 1.07898i 0.146968 + 0.0545662i
\(392\) 5.70827 0.288311
\(393\) 14.3792 14.3792i 0.725333 0.725333i
\(394\) −0.420971 0.174372i −0.0212082 0.00878472i
\(395\) 0 0
\(396\) −0.134566 + 0.324871i −0.00676219 + 0.0163254i
\(397\) −33.1614 + 13.7359i −1.66432 + 0.689386i −0.998395 0.0566296i \(-0.981965\pi\)
−0.665929 + 0.746015i \(0.731965\pi\)
\(398\) −3.51474 8.48532i −0.176178 0.425331i
\(399\) 2.31688 + 2.31688i 0.115989 + 0.115989i
\(400\) 0 0
\(401\) −10.1715 24.5561i −0.507940 1.22627i −0.945067 0.326875i \(-0.894004\pi\)
0.437128 0.899399i \(-0.355996\pi\)
\(402\) −30.6314 + 12.6879i −1.52776 + 0.632817i
\(403\) −1.11165 + 2.68375i −0.0553750 + 0.133687i
\(404\) 1.90803i 0.0949283i
\(405\) 0 0
\(406\) 0.908387 0.908387i 0.0450825 0.0450825i
\(407\) 1.24022 0.0614756
\(408\) 3.00816 8.10212i 0.148926 0.401115i
\(409\) 10.6807 0.528128 0.264064 0.964505i \(-0.414937\pi\)
0.264064 + 0.964505i \(0.414937\pi\)
\(410\) 0 0
\(411\) −8.81560 3.65154i −0.434841 0.180117i
\(412\) 1.64495i 0.0810408i
\(413\) −1.03237 + 2.49236i −0.0507995 + 0.122641i
\(414\) −0.968106 + 0.401002i −0.0475798 + 0.0197082i
\(415\) 0 0
\(416\) −2.19817 2.19817i −0.107774 0.107774i
\(417\) 18.5362 + 18.5362i 0.907723 + 0.907723i
\(418\) 0.132792 + 0.320588i 0.00649506 + 0.0156805i
\(419\) 26.3201 10.9021i 1.28582 0.532604i 0.368083 0.929793i \(-0.380014\pi\)
0.917737 + 0.397189i \(0.130014\pi\)
\(420\) 0 0
\(421\) 9.11011i 0.444000i 0.975047 + 0.222000i \(0.0712584\pi\)
−0.975047 + 0.222000i \(0.928742\pi\)
\(422\) 7.02656 + 2.91050i 0.342048 + 0.141681i
\(423\) 9.57464 9.57464i 0.465535 0.465535i
\(424\) 13.0935 0.635875
\(425\) 0 0
\(426\) 5.33522 0.258492
\(427\) 5.90644 5.90644i 0.285833 0.285833i
\(428\) −10.8273 4.48481i −0.523357 0.216782i
\(429\) 1.64403i 0.0793746i
\(430\) 0 0
\(431\) 35.6926 14.7843i 1.71925 0.712137i 0.719405 0.694591i \(-0.244415\pi\)
0.999846 0.0175458i \(-0.00558529\pi\)
\(432\) −1.28847 3.11065i −0.0619916 0.149661i
\(433\) −4.09685 4.09685i −0.196882 0.196882i 0.601780 0.798662i \(-0.294458\pi\)
−0.798662 + 0.601780i \(0.794458\pi\)
\(434\) 0.750967 + 0.750967i 0.0360476 + 0.0360476i
\(435\) 0 0
\(436\) 1.92407 0.796977i 0.0921464 0.0381683i
\(437\) −0.395716 + 0.955343i −0.0189297 + 0.0457003i
\(438\) 20.8654i 0.996986i
\(439\) −29.9651 12.4119i −1.43015 0.592390i −0.472765 0.881188i \(-0.656744\pi\)
−0.957390 + 0.288799i \(0.906744\pi\)
\(440\) 0 0
\(441\) 7.95579 0.378847
\(442\) 0.476621 + 12.8086i 0.0226705 + 0.609242i
\(443\) 10.1719 0.483280 0.241640 0.970366i \(-0.422315\pi\)
0.241640 + 0.970366i \(0.422315\pi\)
\(444\) 7.28593 7.28593i 0.345775 0.345775i
\(445\) 0 0
\(446\) 2.70356i 0.128017i
\(447\) −17.8565 + 43.1094i −0.844582 + 2.03900i
\(448\) −1.05003 + 0.434936i −0.0496092 + 0.0205488i
\(449\) 1.99926 + 4.82665i 0.0943510 + 0.227783i 0.964008 0.265873i \(-0.0856601\pi\)
−0.869657 + 0.493656i \(0.835660\pi\)
\(450\) 0 0
\(451\) 1.71475 + 1.71475i 0.0807446 + 0.0807446i
\(452\) −3.38057 8.16143i −0.159009 0.383881i
\(453\) 19.5364 8.09224i 0.917899 0.380206i
\(454\) −3.61134 + 8.71853i −0.169488 + 0.409181i
\(455\) 0 0
\(456\) 2.66347 + 1.10324i 0.124728 + 0.0516642i
\(457\) 0.312397 0.312397i 0.0146133 0.0146133i −0.699762 0.714376i \(-0.746711\pi\)
0.714376 + 0.699762i \(0.246711\pi\)
\(458\) 9.01263 0.421133
\(459\) −4.83191 + 13.0142i −0.225534 + 0.607451i
\(460\) 0 0
\(461\) 2.56589 2.56589i 0.119505 0.119505i −0.644825 0.764330i \(-0.723070\pi\)
0.764330 + 0.644825i \(0.223070\pi\)
\(462\) −0.555309 0.230016i −0.0258353 0.0107013i
\(463\) 12.2323i 0.568483i −0.958753 0.284241i \(-0.908258\pi\)
0.958753 0.284241i \(-0.0917417\pi\)
\(464\) 0.432553 1.04428i 0.0200808 0.0484793i
\(465\) 0 0
\(466\) −5.08986 12.2880i −0.235783 0.569231i
\(467\) −22.0816 22.0816i −1.02182 1.02182i −0.999757 0.0220584i \(-0.992978\pi\)
−0.0220584 0.999757i \(-0.507022\pi\)
\(468\) −3.06366 3.06366i −0.141618 0.141618i
\(469\) −6.87956 16.6087i −0.317669 0.766920i
\(470\) 0 0
\(471\) −13.2607 + 32.0143i −0.611023 + 1.47514i
\(472\) 2.37361i 0.109254i
\(473\) 1.69124 + 0.700534i 0.0777632 + 0.0322106i
\(474\) 20.7874 20.7874i 0.954797 0.954797i
\(475\) 0 0
\(476\) 4.39307 + 1.63106i 0.201356 + 0.0747595i
\(477\) 18.2487 0.835553
\(478\) 1.88599 1.88599i 0.0862633 0.0862633i
\(479\) −3.32393 1.37682i −0.151874 0.0629084i 0.305451 0.952208i \(-0.401193\pi\)
−0.457326 + 0.889299i \(0.651193\pi\)
\(480\) 0 0
\(481\) −5.84790 + 14.1181i −0.266641 + 0.643729i
\(482\) 0.493333 0.204345i 0.0224707 0.00930766i
\(483\) −0.685443 1.65480i −0.0311887 0.0752962i
\(484\) 7.73316 + 7.73316i 0.351507 + 0.351507i
\(485\) 0 0
\(486\) −5.14973 12.4325i −0.233596 0.563952i
\(487\) −19.9459 + 8.26188i −0.903837 + 0.374381i −0.785694 0.618615i \(-0.787694\pi\)
−0.118143 + 0.992997i \(0.537694\pi\)
\(488\) 2.81251 6.79001i 0.127316 0.307369i
\(489\) 3.91693i 0.177130i
\(490\) 0 0
\(491\) 26.3349 26.3349i 1.18848 1.18848i 0.210992 0.977488i \(-0.432331\pi\)
0.977488 0.210992i \(-0.0676693\pi\)
\(492\) 20.1473 0.908311
\(493\) −4.23636 + 1.94234i −0.190796 + 0.0874785i
\(494\) −4.27555 −0.192366
\(495\) 0 0
\(496\) 0.863307 + 0.357593i 0.0387636 + 0.0160564i
\(497\) 2.89282i 0.129761i
\(498\) −12.4927 + 30.1600i −0.559810 + 1.35150i
\(499\) 14.3055 5.92555i 0.640404 0.265264i −0.0387621 0.999248i \(-0.512341\pi\)
0.679166 + 0.733984i \(0.262341\pi\)
\(500\) 0 0
\(501\) −35.1781 35.1781i −1.57164 1.57164i
\(502\) 9.46030 + 9.46030i 0.422234 + 0.422234i
\(503\) −0.469717 1.13400i −0.0209436 0.0505624i 0.913062 0.407821i \(-0.133711\pi\)
−0.934005 + 0.357259i \(0.883711\pi\)
\(504\) −1.46346 + 0.606184i −0.0651876 + 0.0270016i
\(505\) 0 0
\(506\) 0.189690i 0.00843276i
\(507\) −6.46052 2.67603i −0.286922 0.118847i
\(508\) −7.38362 + 7.38362i −0.327595 + 0.327595i
\(509\) −25.8063 −1.14384 −0.571922 0.820308i \(-0.693802\pi\)
−0.571922 + 0.820308i \(0.693802\pi\)
\(510\) 0 0
\(511\) 11.3135 0.500478
\(512\) −0.707107 + 0.707107i −0.0312500 + 0.0312500i
\(513\) −4.27825 1.77211i −0.188889 0.0782405i
\(514\) 19.3618i 0.854013i
\(515\) 0 0
\(516\) 14.0509 5.82008i 0.618558 0.256215i
\(517\) 0.938025 + 2.26459i 0.0412543 + 0.0995967i
\(518\) 3.95052 + 3.95052i 0.173576 + 0.173576i
\(519\) −6.16859 6.16859i −0.270771 0.270771i
\(520\) 0 0
\(521\) −26.9444 + 11.1607i −1.18046 + 0.488961i −0.884636 0.466283i \(-0.845593\pi\)
−0.295820 + 0.955244i \(0.595593\pi\)
\(522\) 0.602863 1.45544i 0.0263866 0.0637028i
\(523\) 33.4958i 1.46467i −0.680946 0.732334i \(-0.738431\pi\)
0.680946 0.732334i \(-0.261569\pi\)
\(524\) 8.96288 + 3.71255i 0.391545 + 0.162183i
\(525\) 0 0
\(526\) 12.0967 0.527442
\(527\) −1.60574 3.50222i −0.0699470 0.152559i
\(528\) −0.528851 −0.0230153
\(529\) −15.8637 + 15.8637i −0.689728 + 0.689728i
\(530\) 0 0
\(531\) 3.30817i 0.143562i
\(532\) −0.598193 + 1.44417i −0.0259349 + 0.0626125i
\(533\) −27.6053 + 11.4345i −1.19572 + 0.495283i
\(534\) −9.56581 23.0939i −0.413953 0.999371i
\(535\) 0 0
\(536\) −11.1846 11.1846i −0.483101 0.483101i
\(537\) −10.6920 25.8128i −0.461394 1.11390i
\(538\) −18.4733 + 7.65189i −0.796440 + 0.329896i
\(539\) −0.551138 + 1.33057i −0.0237392 + 0.0573115i
\(540\) 0 0
\(541\) 38.3693 + 15.8931i 1.64962 + 0.683297i 0.997216 0.0745705i \(-0.0237586\pi\)
0.652409 + 0.757867i \(0.273759\pi\)
\(542\) 2.60177 2.60177i 0.111756 0.111756i
\(543\) 17.5678 0.753908
\(544\) 4.12025 0.153319i 0.176654 0.00657350i
\(545\) 0 0
\(546\) 5.23678 5.23678i 0.224114 0.224114i
\(547\) −11.2756 4.67049i −0.482109 0.199696i 0.128374 0.991726i \(-0.459024\pi\)
−0.610482 + 0.792030i \(0.709024\pi\)
\(548\) 4.55218i 0.194460i
\(549\) 3.91988 9.46344i 0.167297 0.403890i
\(550\) 0 0
\(551\) −0.594915 1.43625i −0.0253442 0.0611864i
\(552\) −1.11437 1.11437i −0.0474308 0.0474308i
\(553\) 11.2712 + 11.2712i 0.479299 + 0.479299i
\(554\) −5.03180 12.1478i −0.213780 0.516112i
\(555\) 0 0
\(556\) −4.78586 + 11.5541i −0.202965 + 0.490002i
\(557\) 11.7983i 0.499909i −0.968258 0.249954i \(-0.919584\pi\)
0.968258 0.249954i \(-0.0804156\pi\)
\(558\) 1.20322 + 0.498389i 0.0509362 + 0.0210985i
\(559\) −15.9491 + 15.9491i −0.674573 + 0.674573i
\(560\) 0 0
\(561\) 1.59812 + 1.48345i 0.0674726 + 0.0626313i
\(562\) −8.83415 −0.372646
\(563\) −24.1004 + 24.1004i −1.01571 + 1.01571i −0.0158341 + 0.999875i \(0.505040\pi\)
−0.999875 + 0.0158341i \(0.994960\pi\)
\(564\) 18.8144 + 7.79318i 0.792230 + 0.328152i
\(565\) 0 0
\(566\) 2.13479 5.15384i 0.0897319 0.216632i
\(567\) 11.8010 4.88812i 0.495594 0.205282i
\(568\) 0.974036 + 2.35153i 0.0408697 + 0.0986681i
\(569\) 20.1508 + 20.1508i 0.844766 + 0.844766i 0.989474 0.144708i \(-0.0462244\pi\)
−0.144708 + 0.989474i \(0.546224\pi\)
\(570\) 0 0
\(571\) −11.0538 26.6863i −0.462589 1.11679i −0.967331 0.253518i \(-0.918412\pi\)
0.504742 0.863270i \(-0.331588\pi\)
\(572\) 0.724617 0.300146i 0.0302978 0.0125497i
\(573\) 6.71524 16.2120i 0.280533 0.677267i
\(574\) 10.9241i 0.455964i
\(575\) 0 0
\(576\) −0.985516 + 0.985516i −0.0410632 + 0.0410632i
\(577\) 3.90595 0.162607 0.0813033 0.996689i \(-0.474092\pi\)
0.0813033 + 0.996689i \(0.474092\pi\)
\(578\) −12.8809 11.0942i −0.535777 0.461458i
\(579\) −16.4906 −0.685324
\(580\) 0 0
\(581\) −16.3531 6.77368i −0.678441 0.281020i
\(582\) 32.9901i 1.36748i
\(583\) −1.26418 + 3.05201i −0.0523572 + 0.126401i
\(584\) 9.19654 3.80933i 0.380556 0.157631i
\(585\) 0 0
\(586\) −16.6616 16.6616i −0.688286 0.688286i
\(587\) −28.0684 28.0684i −1.15851 1.15851i −0.984797 0.173712i \(-0.944424\pi\)
−0.173712 0.984797i \(-0.555576\pi\)
\(588\) 4.57890 + 11.0544i 0.188830 + 0.455877i
\(589\) 1.18736 0.491819i 0.0489241 0.0202650i
\(590\) 0 0
\(591\) 0.955110i 0.0392880i
\(592\) 4.54149 + 1.88115i 0.186654 + 0.0773147i
\(593\) −24.5468 + 24.5468i −1.00802 + 1.00802i −0.00804758 + 0.999968i \(0.502562\pi\)
−0.999968 + 0.00804758i \(0.997438\pi\)
\(594\) 0.849477 0.0348545
\(595\) 0 0
\(596\) −22.2607 −0.911835
\(597\) 13.6130 13.6130i 0.557144 0.557144i
\(598\) 2.15934 + 0.894428i 0.0883020 + 0.0365759i
\(599\) 2.16423i 0.0884281i 0.999022 + 0.0442140i \(0.0140784\pi\)
−0.999022 + 0.0442140i \(0.985922\pi\)
\(600\) 0 0
\(601\) 19.5522 8.09879i 0.797551 0.330356i 0.0535758 0.998564i \(-0.482938\pi\)
0.743975 + 0.668207i \(0.232938\pi\)
\(602\) 3.15572 + 7.61859i 0.128618 + 0.310510i
\(603\) −15.5883 15.5883i −0.634805 0.634805i
\(604\) 7.13341 + 7.13341i 0.290254 + 0.290254i
\(605\) 0 0
\(606\) −3.69503 + 1.53053i −0.150100 + 0.0621736i
\(607\) 6.25210 15.0939i 0.253765 0.612642i −0.744737 0.667358i \(-0.767425\pi\)
0.998502 + 0.0547155i \(0.0174252\pi\)
\(608\) 1.37536i 0.0557781i
\(609\) 2.48782 + 1.03049i 0.100811 + 0.0417574i
\(610\) 0 0
\(611\) −30.2020 −1.22184
\(612\) 5.74252 0.213685i 0.232128 0.00863771i
\(613\) 19.6808 0.794900 0.397450 0.917624i \(-0.369895\pi\)
0.397450 + 0.917624i \(0.369895\pi\)
\(614\) −9.73037 + 9.73037i −0.392686 + 0.392686i
\(615\) 0 0
\(616\) 0.286749i 0.0115535i
\(617\) −15.1106 + 36.4803i −0.608331 + 1.46864i 0.256483 + 0.966549i \(0.417436\pi\)
−0.864814 + 0.502092i \(0.832564\pi\)
\(618\) −3.18555 + 1.31950i −0.128142 + 0.0530780i
\(619\) 15.9641 + 38.5407i 0.641650 + 1.54908i 0.824453 + 0.565930i \(0.191483\pi\)
−0.182803 + 0.983150i \(0.558517\pi\)
\(620\) 0 0
\(621\) 1.78998 + 1.78998i 0.0718295 + 0.0718295i
\(622\) −7.91601 19.1109i −0.317403 0.766278i
\(623\) 12.5218 5.18670i 0.501675 0.207801i
\(624\) 2.49364 6.02017i 0.0998254 0.241000i
\(625\) 0 0
\(626\) 23.0532 + 9.54896i 0.921392 + 0.381653i
\(627\) −0.514320 + 0.514320i −0.0205400 + 0.0205400i
\(628\) −16.5315 −0.659678
\(629\) −8.44710 18.4237i −0.336808 0.734601i
\(630\) 0 0
\(631\) 27.0298 27.0298i 1.07604 1.07604i 0.0791769 0.996861i \(-0.474771\pi\)
0.996861 0.0791769i \(-0.0252292\pi\)
\(632\) 12.9573 + 5.36708i 0.515413 + 0.213491i
\(633\) 15.9421i 0.633640i
\(634\) −3.33242 + 8.04517i −0.132347 + 0.319515i
\(635\) 0 0
\(636\) 10.5029 + 25.3563i 0.416469 + 1.00544i
\(637\) −12.5478 12.5478i −0.497160 0.497160i
\(638\) 0.201651 + 0.201651i 0.00798346 + 0.00798346i
\(639\) 1.35754 + 3.27740i 0.0537036 + 0.129652i
\(640\) 0 0
\(641\) 3.93638 9.50327i 0.155478 0.375356i −0.826877 0.562382i \(-0.809885\pi\)
0.982355 + 0.187026i \(0.0598849\pi\)
\(642\) 24.5653i 0.969513i
\(643\) 1.11434 + 0.461573i 0.0439451 + 0.0182027i 0.404548 0.914517i \(-0.367429\pi\)
−0.360603 + 0.932720i \(0.617429\pi\)
\(644\) 0.604226 0.604226i 0.0238099 0.0238099i
\(645\) 0 0
\(646\) 3.85794 4.15615i 0.151789 0.163522i
\(647\) 40.9502 1.60992 0.804958 0.593331i \(-0.202188\pi\)
0.804958 + 0.593331i \(0.202188\pi\)
\(648\) 7.94697 7.94697i 0.312186 0.312186i
\(649\) −0.553274 0.229174i −0.0217179 0.00899585i
\(650\) 0 0
\(651\) −0.851907 + 2.05669i −0.0333889 + 0.0806079i
\(652\) −1.72641 + 0.715103i −0.0676115 + 0.0280056i
\(653\) 5.10972 + 12.3360i 0.199959 + 0.482743i 0.991771 0.128021i \(-0.0408624\pi\)
−0.791813 + 0.610764i \(0.790862\pi\)
\(654\) 3.08680 + 3.08680i 0.120703 + 0.120703i
\(655\) 0 0
\(656\) 3.67824 + 8.88006i 0.143611 + 0.346708i
\(657\) 12.8175 5.30918i 0.500058 0.207131i
\(658\) −4.22556 + 10.2014i −0.164729 + 0.397692i
\(659\) 25.9742i 1.01181i 0.862589 + 0.505905i \(0.168841\pi\)
−0.862589 + 0.505905i \(0.831159\pi\)
\(660\) 0 0
\(661\) −18.2918 + 18.2918i −0.711470 + 0.711470i −0.966843 0.255372i \(-0.917802\pi\)
0.255372 + 0.966843i \(0.417802\pi\)
\(662\) 20.5487 0.798649
\(663\) −24.4223 + 11.1974i −0.948484 + 0.434872i
\(664\) −15.5740 −0.604387
\(665\) 0 0
\(666\) 6.32962 + 2.62181i 0.245268 + 0.101593i
\(667\) 0.849823i 0.0329053i
\(668\) 9.08260 21.9273i 0.351416 0.848394i
\(669\) 5.23562 2.16866i 0.202421 0.0838454i
\(670\) 0 0
\(671\) 1.31116 + 1.31116i 0.0506168 + 0.0506168i
\(672\) −1.68456 1.68456i −0.0649835 0.0649835i
\(673\) −1.77044 4.27421i −0.0682453 0.164759i 0.886077 0.463538i \(-0.153420\pi\)
−0.954322 + 0.298780i \(0.903420\pi\)
\(674\) −28.2402 + 11.6975i −1.08777 + 0.450570i
\(675\) 0 0
\(676\) 3.33607i 0.128310i
\(677\) −23.6515 9.79677i −0.909001 0.376521i −0.121327 0.992613i \(-0.538715\pi\)
−0.787674 + 0.616092i \(0.788715\pi\)
\(678\) 13.0934 13.0934i 0.502849 0.502849i
\(679\) −17.8877 −0.686465
\(680\) 0 0
\(681\) −19.7808 −0.758004
\(682\) −0.166706 + 0.166706i −0.00638350 + 0.00638350i
\(683\) 19.9779 + 8.27510i 0.764431 + 0.316638i 0.730614 0.682790i \(-0.239234\pi\)
0.0338169 + 0.999428i \(0.489234\pi\)
\(684\) 1.91688i 0.0732936i
\(685\) 0 0
\(686\) −13.3441 + 5.52729i −0.509478 + 0.211033i
\(687\) 7.22949 + 17.4535i 0.275822 + 0.665894i
\(688\) 5.13048 + 5.13048i 0.195598 + 0.195598i
\(689\) −28.7817 28.7817i −1.09650 1.09650i
\(690\) 0 0
\(691\) −25.4956 + 10.5606i −0.969899 + 0.401745i −0.810674 0.585497i \(-0.800899\pi\)
−0.159224 + 0.987242i \(0.550899\pi\)
\(692\) 1.59266 3.84503i 0.0605439 0.146166i
\(693\) 0.399651i 0.0151815i
\(694\) −15.6890 6.49858i −0.595545 0.246683i
\(695\) 0 0
\(696\) 2.36928 0.0898074
\(697\) 13.7938 37.1520i 0.522478 1.40723i
\(698\) 22.4353 0.849188
\(699\) 19.7137 19.7137i 0.745641 0.745641i
\(700\) 0 0
\(701\) 11.3549i 0.428868i −0.976739 0.214434i \(-0.931209\pi\)
0.976739 0.214434i \(-0.0687906\pi\)
\(702\) −4.00545 + 9.67002i −0.151176 + 0.364971i
\(703\) 6.24617 2.58725i 0.235579 0.0975800i
\(704\) −0.0965508 0.233094i −0.00363890 0.00878507i
\(705\) 0 0
\(706\) 15.9459 + 15.9459i 0.600131 + 0.600131i
\(707\) −0.829874 2.00349i −0.0312106 0.0753491i
\(708\) −4.59664 + 1.90399i −0.172752 + 0.0715564i
\(709\) −3.45727 + 8.34658i −0.129840 + 0.313462i −0.975408 0.220405i \(-0.929262\pi\)
0.845568 + 0.533868i \(0.179262\pi\)
\(710\) 0 0
\(711\) 18.0589 + 7.48026i 0.677263 + 0.280532i
\(712\) 8.43238 8.43238i 0.316017 0.316017i
\(713\) −0.702552 −0.0263108
\(714\) 0.365257 + 9.81582i 0.0136694 + 0.367348i
\(715\) 0 0
\(716\) 9.42514 9.42514i 0.352234 0.352234i
\(717\) 5.16520 + 2.13950i 0.192898 + 0.0799010i
\(718\) 10.5451i 0.393540i
\(719\) −1.58656 + 3.83030i −0.0591688 + 0.142846i −0.950699 0.310115i \(-0.899632\pi\)
0.891530 + 0.452961i \(0.149632\pi\)
\(720\) 0 0
\(721\) −0.715448 1.72724i −0.0266447 0.0643259i
\(722\) −12.0975 12.0975i −0.450221 0.450221i
\(723\) 0.791455 + 0.791455i 0.0294345 + 0.0294345i
\(724\) 3.20731 + 7.74313i 0.119199 + 0.287771i
\(725\) 0 0
\(726\) −8.77260 + 21.1789i −0.325582 + 0.786024i
\(727\) 5.28370i 0.195961i 0.995188 + 0.0979807i \(0.0312383\pi\)
−0.995188 + 0.0979807i \(0.968762\pi\)
\(728\) 3.26421 + 1.35208i 0.120980 + 0.0501114i
\(729\) −3.89533 + 3.89533i −0.144271 + 0.144271i
\(730\) 0 0
\(731\) −1.11242 29.8949i −0.0411443 1.10570i
\(732\) 15.4054 0.569398
\(733\) −15.0917 + 15.0917i −0.557424 + 0.557424i −0.928573 0.371149i \(-0.878964\pi\)
0.371149 + 0.928573i \(0.378964\pi\)
\(734\) −28.7544 11.9104i −1.06134 0.439623i
\(735\) 0 0
\(736\) 0.287719 0.694615i 0.0106055 0.0256038i
\(737\) 3.68695 1.52718i 0.135810 0.0562545i
\(738\) 5.12647 + 12.3764i 0.188708 + 0.455582i
\(739\) 10.3591 + 10.3591i 0.381065 + 0.381065i 0.871486 0.490420i \(-0.163157\pi\)
−0.490420 + 0.871486i \(0.663157\pi\)
\(740\) 0 0
\(741\) −3.42964 8.27989i −0.125991 0.304169i
\(742\) −13.7485 + 5.69482i −0.504724 + 0.209063i
\(743\) −13.9748 + 33.7382i −0.512687 + 1.23774i 0.429627 + 0.903006i \(0.358645\pi\)
−0.942314 + 0.334730i \(0.891355\pi\)
\(744\) 1.95869i 0.0718092i
\(745\) 0 0
\(746\) −15.3549 + 15.3549i −0.562183 + 0.562183i
\(747\) −21.7059 −0.794177
\(748\) −0.362076 + 0.975211i −0.0132388 + 0.0356572i
\(749\) 13.3196 0.486687
\(750\) 0 0
\(751\) 17.6508 + 7.31120i 0.644087 + 0.266790i 0.680725 0.732539i \(-0.261665\pi\)
−0.0366379 + 0.999329i \(0.511665\pi\)
\(752\) 9.71535i 0.354282i
\(753\) −10.7319 + 25.9091i −0.391092 + 0.944180i
\(754\) −3.24633 + 1.34467i −0.118224 + 0.0489701i
\(755\) 0 0
\(756\) 2.70587 + 2.70587i 0.0984114 + 0.0984114i
\(757\) 14.2078 + 14.2078i 0.516390 + 0.516390i 0.916477 0.400087i \(-0.131020\pi\)
−0.400087 + 0.916477i \(0.631020\pi\)
\(758\) 9.02028 + 21.7769i 0.327631 + 0.790972i
\(759\) 0.367347 0.152160i 0.0133339 0.00552307i
\(760\) 0 0
\(761\) 12.0122i 0.435441i 0.976011 + 0.217721i \(0.0698622\pi\)
−0.976011 + 0.217721i \(0.930138\pi\)
\(762\) −20.2217 8.37608i −0.732553 0.303433i
\(763\) −1.67370 + 1.67370i −0.0605920 + 0.0605920i
\(764\) 8.37154 0.302872
\(765\) 0 0
\(766\) 32.3793 1.16991
\(767\) 5.21760 5.21760i 0.188396 0.188396i
\(768\) −1.93656 0.802151i −0.0698798 0.0289451i
\(769\) 28.5106i 1.02812i −0.857755 0.514059i \(-0.828141\pi\)
0.857755 0.514059i \(-0.171859\pi\)
\(770\) 0 0
\(771\) −37.4954 + 15.5311i −1.35036 + 0.559339i
\(772\) −3.01064 7.26832i −0.108355 0.261593i
\(773\) 16.8373 + 16.8373i 0.605596 + 0.605596i 0.941792 0.336196i \(-0.109141\pi\)
−0.336196 + 0.941792i \(0.609141\pi\)
\(774\) 7.15050 + 7.15050i 0.257020 + 0.257020i
\(775\) 0 0
\(776\) −14.5406 + 6.02292i −0.521977 + 0.216210i
\(777\) −4.48152 + 10.8194i −0.160774 + 0.388142i
\(778\) 7.88317i 0.282625i
\(779\) 12.2132 + 5.05889i 0.437585 + 0.181254i
\(780\) 0 0
\(781\) −0.642173 −0.0229787
\(782\) −2.81788 + 1.29197i −0.100767 + 0.0462008i
\(783\) −3.80571 −0.136005
\(784\) −4.03636 + 4.03636i −0.144156 + 0.144156i
\(785\) 0 0
\(786\) 20.3352i 0.725333i
\(787\) −9.12132 + 22.0208i −0.325140 + 0.784958i 0.673799 + 0.738914i \(0.264661\pi\)
−0.998939 + 0.0460433i \(0.985339\pi\)
\(788\) 0.420971 0.174372i 0.0149965 0.00621174i
\(789\) 9.70341 + 23.4261i 0.345450 + 0.833991i
\(790\) 0 0
\(791\) 7.09940 + 7.09940i 0.252426 + 0.252426i
\(792\) −0.134566 0.324871i −0.00478159 0.0115438i
\(793\) −21.1080 + 8.74322i −0.749567 + 0.310481i
\(794\) 13.7359 33.1614i 0.487469 1.17685i
\(795\) 0 0
\(796\) 8.48532 + 3.51474i 0.300754 + 0.124577i
\(797\) −28.2603 + 28.2603i −1.00103 + 1.00103i −0.00103330 + 0.999999i \(0.500329\pi\)
−0.999999 + 0.00103330i \(0.999671\pi\)
\(798\) −3.27656 −0.115989
\(799\) 27.2520 29.3586i 0.964107 1.03863i
\(800\) 0 0
\(801\) 11.7525 11.7525i 0.415253 0.415253i
\(802\) 24.5561 + 10.1715i 0.867107 + 0.359168i
\(803\) 2.51146i 0.0886274i
\(804\) 12.6879 30.6314i 0.447469 1.08029i
\(805\) 0 0
\(806\) −1.11165 2.68375i −0.0391560 0.0945311i
\(807\) −29.6368 29.6368i −1.04326 1.04326i
\(808\) −1.34918 1.34918i −0.0474641 0.0474641i
\(809\) 17.1684 + 41.4483i 0.603610 + 1.45724i 0.869840 + 0.493334i \(0.164222\pi\)
−0.266230 + 0.963910i \(0.585778\pi\)
\(810\) 0 0
\(811\) −11.6694 + 28.1724i −0.409768 + 0.989266i 0.575431 + 0.817850i \(0.304834\pi\)
−0.985199 + 0.171416i \(0.945166\pi\)
\(812\) 1.28465i 0.0450825i
\(813\) 7.12551 + 2.95148i 0.249902 + 0.103513i
\(814\) −0.876970 + 0.876970i −0.0307378 + 0.0307378i
\(815\) 0 0
\(816\) 3.60198 + 7.85615i 0.126095 + 0.275020i
\(817\) 9.97903 0.349122
\(818\) −7.55242 + 7.55242i −0.264064 + 0.264064i
\(819\) 4.54943 + 1.88444i 0.158970 + 0.0658475i
\(820\) 0 0
\(821\) −18.7827 + 45.3455i −0.655522 + 1.58257i 0.149126 + 0.988818i \(0.452354\pi\)
−0.804648 + 0.593752i \(0.797646\pi\)
\(822\) 8.81560 3.65154i 0.307479 0.127362i
\(823\) 1.69527 + 4.09274i 0.0590933 + 0.142664i 0.950668 0.310209i \(-0.100399\pi\)
−0.891575 + 0.452873i \(0.850399\pi\)
\(824\) −1.16315 1.16315i −0.0405204 0.0405204i
\(825\) 0 0
\(826\) −1.03237 2.49236i −0.0359207 0.0867201i
\(827\) −5.92635 + 2.45477i −0.206079 + 0.0853609i −0.483336 0.875435i \(-0.660575\pi\)
0.277256 + 0.960796i \(0.410575\pi\)
\(828\) 0.401002 0.968106i 0.0139358 0.0336440i
\(829\) 24.9754i 0.867432i 0.901050 + 0.433716i \(0.142798\pi\)
−0.901050 + 0.433716i \(0.857202\pi\)
\(830\) 0 0
\(831\) 19.4888 19.4888i 0.676059 0.676059i
\(832\) 3.10869 0.107774
\(833\) 23.5195 0.875186i 0.814903 0.0303234i
\(834\) −26.2142 −0.907723
\(835\) 0 0
\(836\) −0.320588 0.132792i −0.0110878 0.00459270i
\(837\) 3.14619i 0.108748i
\(838\) −10.9021 + 26.3201i −0.376608 + 0.909212i
\(839\) 5.83303 2.41612i 0.201379 0.0834138i −0.279715 0.960083i \(-0.590240\pi\)
0.481093 + 0.876669i \(0.340240\pi\)
\(840\) 0 0
\(841\) 19.6027 + 19.6027i 0.675955 + 0.675955i
\(842\) −6.44182 6.44182i −0.222000 0.222000i
\(843\) −7.08633 17.1079i −0.244066 0.589227i
\(844\) −7.02656 + 2.91050i −0.241864 + 0.100183i
\(845\) 0 0
\(846\) 13.5406i 0.465535i
\(847\) −11.4835 4.75661i −0.394577 0.163439i
\(848\) −9.25847 + 9.25847i −0.317937 + 0.317937i
\(849\) 11.6932 0.401309
\(850\) 0 0
\(851\) −3.69583 −0.126691
\(852\) −3.77257 + 3.77257i −0.129246 + 0.129246i
\(853\) −5.80811 2.40580i −0.198866 0.0823730i 0.281028 0.959700i \(-0.409325\pi\)
−0.479894 + 0.877327i \(0.659325\pi\)
\(854\) 8.35297i 0.285833i
\(855\) 0 0
\(856\) 10.8273 4.48481i 0.370069 0.153288i
\(857\) 17.4626 + 42.1583i 0.596510 + 1.44010i 0.877116 + 0.480278i \(0.159464\pi\)
−0.280607 + 0.959823i \(0.590536\pi\)
\(858\) 1.16251 + 1.16251i 0.0396873 + 0.0396873i
\(859\) −20.4579 20.4579i −0.698015 0.698015i 0.265967 0.963982i \(-0.414309\pi\)
−0.963982 + 0.265967i \(0.914309\pi\)
\(860\) 0 0
\(861\) −21.1553 + 8.76280i −0.720970 + 0.298635i
\(862\) −14.7843 + 35.6926i −0.503557 + 1.21569i
\(863\) 7.31084i 0.248864i 0.992228 + 0.124432i \(0.0397109\pi\)
−0.992228 + 0.124432i \(0.960289\pi\)
\(864\) 3.11065 + 1.28847i 0.105826 + 0.0438347i
\(865\) 0 0
\(866\) 5.79382 0.196882
\(867\) 11.1522 33.8440i 0.378747 1.14940i
\(868\) −1.06203 −0.0360476
\(869\) −2.50207 + 2.50207i −0.0848770 + 0.0848770i
\(870\) 0 0
\(871\) 49.1713i 1.66611i
\(872\) −0.796977 + 1.92407i −0.0269890 + 0.0651573i
\(873\) −20.2657 + 8.39432i −0.685890 + 0.284105i
\(874\) −0.395716 0.955343i −0.0133853 0.0323150i
\(875\) 0 0
\(876\) 14.7540 + 14.7540i 0.498493 + 0.498493i
\(877\) −13.4790 32.5412i −0.455153 1.09884i −0.970337 0.241757i \(-0.922276\pi\)
0.515184 0.857080i \(-0.327724\pi\)
\(878\) 29.9651 12.4119i 1.01127 0.418883i
\(879\) 18.9012 45.6315i 0.637521 1.53911i
\(880\) 0 0
\(881\) −11.8515 4.90905i −0.399287 0.165390i 0.173998 0.984746i \(-0.444331\pi\)
−0.573285 + 0.819356i \(0.694331\pi\)
\(882\) −5.62559 + 5.62559i −0.189423 + 0.189423i
\(883\) −25.2939 −0.851208 −0.425604 0.904910i \(-0.639938\pi\)
−0.425604 + 0.904910i \(0.639938\pi\)
\(884\) −9.39405 8.72001i −0.315956 0.293286i
\(885\) 0 0
\(886\) −7.19260 + 7.19260i −0.241640 + 0.241640i
\(887\) 21.6520 + 8.96853i 0.727001 + 0.301134i 0.715319 0.698798i \(-0.246281\pi\)
0.0116823 + 0.999932i \(0.496281\pi\)
\(888\) 10.3039i 0.345775i
\(889\) 4.54161 10.9644i 0.152321 0.367735i
\(890\) 0 0
\(891\) 1.08511 + 2.61968i 0.0363524 + 0.0877625i
\(892\) 1.91171 + 1.91171i 0.0640086 + 0.0640086i
\(893\) 9.44842 + 9.44842i 0.316179 + 0.316179i
\(894\) −17.8565 43.1094i −0.597210 1.44179i
\(895\) 0 0
\(896\) 0.434936 1.05003i 0.0145302 0.0350790i
\(897\) 4.89917i 0.163578i
\(898\) −4.82665 1.99926i −0.161067 0.0667162i
\(899\) 0.746852 0.746852i 0.0249089 0.0249089i
\(900\) 0 0
\(901\) 53.9484 2.00748i 1.79728 0.0668787i
\(902\) −2.42503 −0.0807446
\(903\) −12.2225 + 12.2225i −0.406740 + 0.406740i
\(904\) 8.16143 + 3.38057i 0.271445 + 0.112436i
\(905\) 0 0
\(906\) −8.09224 + 19.5364i −0.268847 + 0.649053i
\(907\) 46.1626 19.1212i 1.53280 0.634908i 0.552697 0.833382i \(-0.313599\pi\)
0.980106 + 0.198474i \(0.0635986\pi\)
\(908\) −3.61134 8.71853i −0.119846 0.289335i
\(909\) −1.88040 1.88040i −0.0623689 0.0623689i
\(910\) 0 0
\(911\) 14.9768 + 36.1572i 0.496204 + 1.19794i 0.951513 + 0.307609i \(0.0995289\pi\)
−0.455309 + 0.890334i \(0.650471\pi\)
\(912\) −2.66347 + 1.10324i −0.0881962 + 0.0365321i
\(913\) 1.50368 3.63020i 0.0497645 0.120142i
\(914\) 0.441796i 0.0146133i
\(915\) 0 0
\(916\) −6.37289 + 6.37289i −0.210566 + 0.210566i
\(917\) −11.0260 −0.364111
\(918\) −5.78575 12.6191i −0.190958 0.416492i
\(919\) 34.5751 1.14053 0.570263 0.821462i \(-0.306841\pi\)
0.570263 + 0.821462i \(0.306841\pi\)
\(920\) 0 0
\(921\) −26.6487 11.0383i −0.878105 0.363723i
\(922\) 3.62872i 0.119505i
\(923\) 3.02797 7.31017i 0.0996670 0.240617i
\(924\) 0.555309 0.230016i 0.0182683 0.00756698i
\(925\) 0 0
\(926\) 8.64954 + 8.64954i 0.284241 + 0.284241i
\(927\) −1.62112 1.62112i −0.0532447 0.0532447i
\(928\) 0.432553 + 1.04428i 0.0141993 + 0.0342800i
\(929\) −17.4963 + 7.24720i −0.574035 + 0.237773i −0.650765 0.759279i \(-0.725552\pi\)
0.0767308 + 0.997052i \(0.475552\pi\)
\(930\) 0 0
\(931\) 7.85091i 0.257303i
\(932\) 12.2880 + 5.08986i 0.402507 + 0.166724i
\(933\) 30.6597 30.6597i 1.00375 1.00375i
\(934\) 31.2281 1.02182
\(935\) 0 0
\(936\) 4.33267 0.141618
\(937\) 10.1161 10.1161i 0.330478 0.330478i −0.522290 0.852768i \(-0.674922\pi\)
0.852768 + 0.522290i \(0.174922\pi\)
\(938\) 16.6087 + 6.87956i 0.542294 + 0.224626i
\(939\) 52.3038i 1.70687i
\(940\) 0 0
\(941\) 13.0487 5.40494i 0.425375 0.176196i −0.159717 0.987163i \(-0.551058\pi\)
0.585092 + 0.810967i \(0.301058\pi\)
\(942\) −13.2607 32.0143i −0.432058 1.04308i
\(943\) −5.10992 5.10992i −0.166402 0.166402i
\(944\) −1.67839 1.67839i −0.0546270 0.0546270i
\(945\) 0 0
\(946\) −1.69124 + 0.700534i −0.0549869 + 0.0227763i
\(947\) 11.2228 27.0944i 0.364694 0.880448i −0.629907 0.776671i \(-0.716907\pi\)
0.994601 0.103778i \(-0.0330930\pi\)
\(948\) 29.3978i 0.954797i
\(949\) −28.5892 11.8420i −0.928044 0.384408i
\(950\) 0 0
\(951\) −18.2531 −0.591897
\(952\) −4.25970 + 1.95304i −0.138058 + 0.0632983i
\(953\) 11.5308 0.373521 0.186760 0.982406i \(-0.440201\pi\)
0.186760 + 0.982406i \(0.440201\pi\)
\(954\) −12.9038 + 12.9038i −0.417776 + 0.417776i
\(955\) 0 0
\(956\) 2.66720i 0.0862633i
\(957\) −0.228756 + 0.552266i −0.00739464 + 0.0178522i
\(958\) 3.32393 1.37682i 0.107391 0.0444829i
\(959\) 1.97991 + 4.77993i 0.0639346 + 0.154352i
\(960\) 0 0
\(961\) −21.3029 21.3029i −0.687190 0.687190i
\(962\) −5.84790 14.1181i −0.188544 0.455185i
\(963\) 15.0903 6.25062i 0.486279 0.201423i
\(964\) −0.204345 + 0.493333i −0.00658151 + 0.0158892i
\(965\) 0 0
\(966\) 1.65480 + 0.685443i 0.0532425 + 0.0220538i
\(967\) −30.1392 + 30.1392i −0.969211 + 0.969211i −0.999540 0.0303294i \(-0.990344\pi\)
0.0303294 + 0.999540i \(0.490344\pi\)
\(968\) −10.9363 −0.351507
\(969\) 11.1433 + 4.13729i 0.357975 + 0.132909i
\(970\) 0 0
\(971\) 11.6594 11.6594i 0.374167 0.374167i −0.494825 0.868993i \(-0.664768\pi\)
0.868993 + 0.494825i \(0.164768\pi\)
\(972\) 12.4325 + 5.14973i 0.398774 + 0.165178i
\(973\) 14.2137i 0.455669i
\(974\) 8.26188 19.9459i 0.264728 0.639109i
\(975\) 0 0
\(976\) 2.81251 + 6.79001i 0.0900264 + 0.217343i
\(977\) −13.4637 13.4637i −0.430741 0.430741i 0.458139 0.888880i \(-0.348516\pi\)
−0.888880 + 0.458139i \(0.848516\pi\)
\(978\) −2.76969 2.76969i −0.0885648 0.0885648i
\(979\) 1.15139 + 2.77969i 0.0367985 + 0.0888394i
\(980\) 0 0
\(981\) −1.11077 + 2.68164i −0.0354642 + 0.0856181i
\(982\) 37.2432i 1.18848i
\(983\) −2.07283 0.858595i −0.0661131 0.0273849i 0.349382 0.936980i \(-0.386392\pi\)
−0.415495 + 0.909595i \(0.636392\pi\)
\(984\) −14.2463 + 14.2463i −0.454155 + 0.454155i
\(985\) 0 0
\(986\) 1.62212 4.36900i 0.0516589 0.139137i
\(987\) −23.1452 −0.736721
\(988\) 3.02327 3.02327i 0.0961831 0.0961831i
\(989\) −5.03984 2.08757i −0.160258 0.0663809i
\(990\) 0 0
\(991\) 6.12684 14.7915i 0.194625 0.469867i −0.796197 0.605038i \(-0.793158\pi\)
0.990822 + 0.135170i \(0.0431581\pi\)
\(992\) −0.863307 + 0.357593i −0.0274100 + 0.0113536i
\(993\) 16.4832 + 39.7940i 0.523079 + 1.26282i
\(994\) −2.04553 2.04553i −0.0648804 0.0648804i
\(995\) 0 0
\(996\) −12.4927 30.1600i −0.395846 0.955656i
\(997\) 22.0338 9.12670i 0.697818 0.289046i −0.00543534 0.999985i \(-0.501730\pi\)
0.703253 + 0.710940i \(0.251730\pi\)
\(998\) −5.92555 + 14.3055i −0.187570 + 0.452834i
\(999\) 16.5508i 0.523643i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 850.2.l.e.451.1 16
5.2 odd 4 850.2.o.g.349.1 16
5.3 odd 4 850.2.o.j.349.4 16
5.4 even 2 170.2.k.b.111.4 16
17.2 even 8 inner 850.2.l.e.801.1 16
85.2 odd 8 850.2.o.j.699.4 16
85.19 even 8 170.2.k.b.121.4 yes 16
85.24 odd 16 2890.2.b.r.2311.4 16
85.44 odd 16 2890.2.b.r.2311.13 16
85.53 odd 8 850.2.o.g.699.1 16
85.74 odd 16 2890.2.a.bj.1.6 8
85.79 odd 16 2890.2.a.bi.1.3 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
170.2.k.b.111.4 16 5.4 even 2
170.2.k.b.121.4 yes 16 85.19 even 8
850.2.l.e.451.1 16 1.1 even 1 trivial
850.2.l.e.801.1 16 17.2 even 8 inner
850.2.o.g.349.1 16 5.2 odd 4
850.2.o.g.699.1 16 85.53 odd 8
850.2.o.j.349.4 16 5.3 odd 4
850.2.o.j.699.4 16 85.2 odd 8
2890.2.a.bi.1.3 8 85.79 odd 16
2890.2.a.bj.1.6 8 85.74 odd 16
2890.2.b.r.2311.4 16 85.24 odd 16
2890.2.b.r.2311.13 16 85.44 odd 16