Properties

Label 171.4.y.a.53.15
Level $171$
Weight $4$
Character 171.53
Analytic conductor $10.089$
Analytic rank $0$
Dimension $120$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [171,4,Mod(53,171)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(171, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([9, 11]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("171.53");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 171 = 3^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 171.y (of order \(18\), degree \(6\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.0893266110\)
Analytic rank: \(0\)
Dimension: \(120\)
Relative dimension: \(20\) over \(\Q(\zeta_{18})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 53.15
Character \(\chi\) \(=\) 171.53
Dual form 171.4.y.a.71.15

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(3.13604 + 1.14142i) q^{2} +(2.40352 + 2.01679i) q^{4} +(0.417489 + 0.497545i) q^{5} +(11.8643 - 20.5495i) q^{7} +(-8.11369 - 14.0533i) q^{8} +O(q^{10})\) \(q+(3.13604 + 1.14142i) q^{2} +(2.40352 + 2.01679i) q^{4} +(0.417489 + 0.497545i) q^{5} +(11.8643 - 20.5495i) q^{7} +(-8.11369 - 14.0533i) q^{8} +(0.741353 + 2.03685i) q^{10} +(38.3912 - 22.1652i) q^{11} +(90.6542 + 15.9848i) q^{13} +(60.6625 - 50.9019i) q^{14} +(-13.7627 - 78.0521i) q^{16} +(-31.8539 + 87.5179i) q^{17} +(-65.5942 + 50.5608i) q^{19} +2.03785i q^{20} +(145.696 - 25.6902i) q^{22} +(-35.0078 + 41.7207i) q^{23} +(21.6328 - 122.686i) q^{25} +(266.049 + 153.604i) q^{26} +(69.9602 - 25.4634i) q^{28} +(116.177 - 42.2851i) q^{29} +(-216.979 - 125.273i) q^{31} +(23.3874 - 132.637i) q^{32} +(-199.790 + 238.101i) q^{34} +(15.1775 - 2.67621i) q^{35} -307.282i q^{37} +(-263.417 + 83.6897i) q^{38} +(3.60477 - 9.90403i) q^{40} +(37.2798 + 211.424i) q^{41} +(-120.808 + 101.370i) q^{43} +(136.977 + 24.1527i) q^{44} +(-157.407 + 90.8789i) q^{46} +(189.763 + 521.370i) q^{47} +(-110.022 - 190.564i) q^{49} +(207.877 - 360.054i) q^{50} +(185.651 + 221.251i) q^{52} +(143.128 + 120.098i) q^{53} +(27.0561 + 9.84762i) q^{55} -385.052 q^{56} +412.602 q^{58} +(-667.917 - 243.102i) q^{59} +(-1.84636 - 1.54928i) q^{61} +(-537.465 - 640.525i) q^{62} +(-92.2863 + 159.845i) q^{64} +(29.8940 + 51.7780i) q^{65} +(253.079 + 695.329i) q^{67} +(-253.067 + 146.108i) q^{68} +(50.6519 + 8.93131i) q^{70} +(-171.607 + 143.996i) q^{71} +(4.49838 + 25.5116i) q^{73} +(350.739 - 963.648i) q^{74} +(-259.628 - 10.7661i) q^{76} -1051.90i q^{77} +(436.541 - 76.9740i) q^{79} +(33.0886 - 39.4335i) q^{80} +(-124.414 + 705.586i) q^{82} +(-245.815 - 141.921i) q^{83} +(-56.8428 + 20.6891i) q^{85} +(-494.565 + 180.007i) q^{86} +(-622.989 - 359.683i) q^{88} +(-280.955 + 1593.38i) q^{89} +(1404.03 - 1673.25i) q^{91} +(-168.284 + 29.6731i) q^{92} +1851.64i q^{94} +(-52.5412 - 11.5275i) q^{95} +(-208.736 + 573.498i) q^{97} +(-127.519 - 723.198i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 120 q - 36 q^{4}+O(q^{10}) \) Copy content Toggle raw display \( 120 q - 36 q^{4} - 180 q^{10} - 156 q^{13} + 180 q^{16} + 924 q^{19} + 432 q^{22} - 360 q^{25} - 624 q^{28} + 324 q^{34} + 1440 q^{40} + 1524 q^{43} + 3888 q^{46} - 3228 q^{49} - 6000 q^{52} - 4464 q^{55} + 5616 q^{58} - 5736 q^{61} - 4524 q^{64} + 372 q^{67} + 7848 q^{70} - 276 q^{73} + 4320 q^{76} + 10536 q^{79} + 3960 q^{82} - 11592 q^{85} - 11664 q^{88} - 120 q^{91} + 5904 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/171\mathbb{Z}\right)^\times\).

\(n\) \(20\) \(154\)
\(\chi(n)\) \(-1\) \(e\left(\frac{11}{18}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 3.13604 + 1.14142i 1.10876 + 0.403554i 0.830537 0.556963i \(-0.188034\pi\)
0.278219 + 0.960518i \(0.410256\pi\)
\(3\) 0 0
\(4\) 2.40352 + 2.01679i 0.300440 + 0.252099i
\(5\) 0.417489 + 0.497545i 0.0373414 + 0.0445017i 0.784392 0.620266i \(-0.212975\pi\)
−0.747051 + 0.664767i \(0.768531\pi\)
\(6\) 0 0
\(7\) 11.8643 20.5495i 0.640611 1.10957i −0.344686 0.938718i \(-0.612015\pi\)
0.985297 0.170852i \(-0.0546521\pi\)
\(8\) −8.11369 14.0533i −0.358578 0.621075i
\(9\) 0 0
\(10\) 0.741353 + 2.03685i 0.0234436 + 0.0644109i
\(11\) 38.3912 22.1652i 1.05231 0.607551i 0.129014 0.991643i \(-0.458819\pi\)
0.923295 + 0.384092i \(0.125485\pi\)
\(12\) 0 0
\(13\) 90.6542 + 15.9848i 1.93407 + 0.341029i 0.999876 0.0157304i \(-0.00500736\pi\)
0.934196 + 0.356760i \(0.116118\pi\)
\(14\) 60.6625 50.9019i 1.15805 0.971722i
\(15\) 0 0
\(16\) −13.7627 78.0521i −0.215042 1.21956i
\(17\) −31.8539 + 87.5179i −0.454454 + 1.24860i 0.475106 + 0.879929i \(0.342410\pi\)
−0.929559 + 0.368672i \(0.879812\pi\)
\(18\) 0 0
\(19\) −65.5942 + 50.5608i −0.792019 + 0.610497i
\(20\) 2.03785i 0.0227839i
\(21\) 0 0
\(22\) 145.696 25.6902i 1.41193 0.248962i
\(23\) −35.0078 + 41.7207i −0.317376 + 0.378234i −0.901021 0.433775i \(-0.857181\pi\)
0.583646 + 0.812009i \(0.301626\pi\)
\(24\) 0 0
\(25\) 21.6328 122.686i 0.173062 0.981484i
\(26\) 266.049 + 153.604i 2.00679 + 1.15862i
\(27\) 0 0
\(28\) 69.9602 25.4634i 0.472187 0.171862i
\(29\) 116.177 42.2851i 0.743918 0.270764i 0.0578737 0.998324i \(-0.481568\pi\)
0.686044 + 0.727560i \(0.259346\pi\)
\(30\) 0 0
\(31\) −216.979 125.273i −1.25712 0.725796i −0.284602 0.958646i \(-0.591862\pi\)
−0.972513 + 0.232850i \(0.925195\pi\)
\(32\) 23.3874 132.637i 0.129199 0.732721i
\(33\) 0 0
\(34\) −199.790 + 238.101i −1.00776 + 1.20100i
\(35\) 15.1775 2.67621i 0.0732991 0.0129246i
\(36\) 0 0
\(37\) 307.282i 1.36532i −0.730736 0.682660i \(-0.760823\pi\)
0.730736 0.682660i \(-0.239177\pi\)
\(38\) −263.417 + 83.6897i −1.12452 + 0.357270i
\(39\) 0 0
\(40\) 3.60477 9.90403i 0.0142491 0.0391491i
\(41\) 37.2798 + 211.424i 0.142003 + 0.805339i 0.969725 + 0.244200i \(0.0785254\pi\)
−0.827722 + 0.561139i \(0.810363\pi\)
\(42\) 0 0
\(43\) −120.808 + 101.370i −0.428444 + 0.359507i −0.831364 0.555728i \(-0.812440\pi\)
0.402921 + 0.915235i \(0.367995\pi\)
\(44\) 136.977 + 24.1527i 0.469319 + 0.0827536i
\(45\) 0 0
\(46\) −157.407 + 90.8789i −0.504530 + 0.291291i
\(47\) 189.763 + 521.370i 0.588932 + 1.61808i 0.772460 + 0.635063i \(0.219026\pi\)
−0.183528 + 0.983014i \(0.558752\pi\)
\(48\) 0 0
\(49\) −110.022 190.564i −0.320764 0.555580i
\(50\) 207.877 360.054i 0.587966 1.01839i
\(51\) 0 0
\(52\) 185.651 + 221.251i 0.495100 + 0.590037i
\(53\) 143.128 + 120.098i 0.370945 + 0.311260i 0.809135 0.587622i \(-0.199936\pi\)
−0.438190 + 0.898882i \(0.644380\pi\)
\(54\) 0 0
\(55\) 27.0561 + 9.84762i 0.0663317 + 0.0241428i
\(56\) −385.052 −0.918835
\(57\) 0 0
\(58\) 412.602 0.934092
\(59\) −667.917 243.102i −1.47382 0.536427i −0.524686 0.851296i \(-0.675817\pi\)
−0.949135 + 0.314869i \(0.898039\pi\)
\(60\) 0 0
\(61\) −1.84636 1.54928i −0.00387544 0.00325188i 0.640848 0.767668i \(-0.278583\pi\)
−0.644723 + 0.764416i \(0.723027\pi\)
\(62\) −537.465 640.525i −1.10094 1.31205i
\(63\) 0 0
\(64\) −92.2863 + 159.845i −0.180247 + 0.312196i
\(65\) 29.8940 + 51.7780i 0.0570446 + 0.0988041i
\(66\) 0 0
\(67\) 253.079 + 695.329i 0.461471 + 1.26788i 0.924380 + 0.381474i \(0.124583\pi\)
−0.462909 + 0.886406i \(0.653194\pi\)
\(68\) −253.067 + 146.108i −0.451308 + 0.260563i
\(69\) 0 0
\(70\) 50.6519 + 8.93131i 0.0864867 + 0.0152499i
\(71\) −171.607 + 143.996i −0.286846 + 0.240692i −0.774844 0.632152i \(-0.782172\pi\)
0.487998 + 0.872845i \(0.337727\pi\)
\(72\) 0 0
\(73\) 4.49838 + 25.5116i 0.00721226 + 0.0409028i 0.988202 0.153159i \(-0.0489448\pi\)
−0.980989 + 0.194062i \(0.937834\pi\)
\(74\) 350.739 963.648i 0.550981 1.51381i
\(75\) 0 0
\(76\) −259.628 10.7661i −0.391860 0.0162495i
\(77\) 1051.90i 1.55681i
\(78\) 0 0
\(79\) 436.541 76.9740i 0.621705 0.109623i 0.146082 0.989272i \(-0.453334\pi\)
0.475623 + 0.879649i \(0.342223\pi\)
\(80\) 33.0886 39.4335i 0.0462428 0.0551100i
\(81\) 0 0
\(82\) −124.414 + 705.586i −0.167551 + 0.950230i
\(83\) −245.815 141.921i −0.325080 0.187685i 0.328574 0.944478i \(-0.393432\pi\)
−0.653655 + 0.756793i \(0.726765\pi\)
\(84\) 0 0
\(85\) −56.8428 + 20.6891i −0.0725348 + 0.0264005i
\(86\) −494.565 + 180.007i −0.620120 + 0.225705i
\(87\) 0 0
\(88\) −622.989 359.683i −0.754669 0.435708i
\(89\) −280.955 + 1593.38i −0.334620 + 1.89773i 0.0963274 + 0.995350i \(0.469290\pi\)
−0.430948 + 0.902377i \(0.641821\pi\)
\(90\) 0 0
\(91\) 1404.03 1673.25i 1.61738 1.92752i
\(92\) −168.284 + 29.6731i −0.190705 + 0.0336264i
\(93\) 0 0
\(94\) 1851.64i 2.03172i
\(95\) −52.5412 11.5275i −0.0567433 0.0124494i
\(96\) 0 0
\(97\) −208.736 + 573.498i −0.218494 + 0.600308i −0.999713 0.0239489i \(-0.992376\pi\)
0.781219 + 0.624257i \(0.214598\pi\)
\(98\) −127.519 723.198i −0.131443 0.745449i
\(99\) 0 0
\(100\) 299.426 251.249i 0.299426 0.251249i
\(101\) 1033.44 + 182.223i 1.01813 + 0.179524i 0.657713 0.753268i \(-0.271524\pi\)
0.360415 + 0.932792i \(0.382635\pi\)
\(102\) 0 0
\(103\) −474.718 + 274.079i −0.454130 + 0.262192i −0.709573 0.704632i \(-0.751112\pi\)
0.255443 + 0.966824i \(0.417779\pi\)
\(104\) −510.900 1403.69i −0.481711 1.32349i
\(105\) 0 0
\(106\) 311.770 + 540.002i 0.285677 + 0.494808i
\(107\) −629.877 + 1090.98i −0.569089 + 0.985691i 0.427567 + 0.903984i \(0.359371\pi\)
−0.996656 + 0.0817077i \(0.973963\pi\)
\(108\) 0 0
\(109\) −157.577 187.793i −0.138469 0.165021i 0.692353 0.721559i \(-0.256574\pi\)
−0.830823 + 0.556537i \(0.812130\pi\)
\(110\) 73.6087 + 61.7650i 0.0638028 + 0.0535369i
\(111\) 0 0
\(112\) −1767.22 643.215i −1.49095 0.542662i
\(113\) 56.0092 0.0466274 0.0233137 0.999728i \(-0.492578\pi\)
0.0233137 + 0.999728i \(0.492578\pi\)
\(114\) 0 0
\(115\) −35.3733 −0.0286833
\(116\) 364.516 + 132.673i 0.291762 + 0.106193i
\(117\) 0 0
\(118\) −1817.13 1524.75i −1.41763 1.18953i
\(119\) 1420.53 + 1692.92i 1.09428 + 1.30412i
\(120\) 0 0
\(121\) 317.092 549.219i 0.238236 0.412636i
\(122\) −4.02187 6.96608i −0.00298461 0.00516950i
\(123\) 0 0
\(124\) −268.864 738.698i −0.194715 0.534976i
\(125\) 140.383 81.0503i 0.100450 0.0579949i
\(126\) 0 0
\(127\) −432.119 76.1943i −0.301924 0.0532374i 0.0206338 0.999787i \(-0.493432\pi\)
−0.322558 + 0.946550i \(0.604543\pi\)
\(128\) −1297.25 + 1088.52i −0.895794 + 0.751660i
\(129\) 0 0
\(130\) 34.6481 + 196.499i 0.0233757 + 0.132570i
\(131\) 724.082 1989.40i 0.482926 1.32683i −0.424047 0.905640i \(-0.639391\pi\)
0.906973 0.421188i \(-0.138387\pi\)
\(132\) 0 0
\(133\) 260.772 + 1947.80i 0.170014 + 1.26989i
\(134\) 2469.45i 1.59200i
\(135\) 0 0
\(136\) 1488.37 262.440i 0.938431 0.165471i
\(137\) −1065.61 + 1269.95i −0.664536 + 0.791963i −0.988029 0.154267i \(-0.950698\pi\)
0.323493 + 0.946230i \(0.395143\pi\)
\(138\) 0 0
\(139\) −297.353 + 1686.38i −0.181447 + 1.02904i 0.748988 + 0.662584i \(0.230540\pi\)
−0.930435 + 0.366456i \(0.880571\pi\)
\(140\) 41.8769 + 24.1776i 0.0252803 + 0.0145956i
\(141\) 0 0
\(142\) −702.527 + 255.699i −0.415174 + 0.151111i
\(143\) 3834.63 1395.69i 2.24243 0.816179i
\(144\) 0 0
\(145\) 69.5416 + 40.1499i 0.0398284 + 0.0229949i
\(146\) −15.0124 + 85.1397i −0.00850985 + 0.0482617i
\(147\) 0 0
\(148\) 619.725 738.559i 0.344196 0.410197i
\(149\) 1134.92 200.118i 0.624003 0.110029i 0.147299 0.989092i \(-0.452942\pi\)
0.476705 + 0.879063i \(0.341831\pi\)
\(150\) 0 0
\(151\) 2672.16i 1.44011i −0.693915 0.720057i \(-0.744115\pi\)
0.693915 0.720057i \(-0.255885\pi\)
\(152\) 1242.76 + 511.582i 0.663164 + 0.272992i
\(153\) 0 0
\(154\) 1200.66 3298.78i 0.628259 1.72613i
\(155\) −28.2576 160.257i −0.0146433 0.0830460i
\(156\) 0 0
\(157\) 1816.99 1524.64i 0.923640 0.775026i −0.0510243 0.998697i \(-0.516249\pi\)
0.974665 + 0.223671i \(0.0718041\pi\)
\(158\) 1456.87 + 256.885i 0.733559 + 0.129346i
\(159\) 0 0
\(160\) 75.7567 43.7381i 0.0374318 0.0216113i
\(161\) 441.999 + 1214.38i 0.216363 + 0.594451i
\(162\) 0 0
\(163\) −481.206 833.473i −0.231233 0.400507i 0.726938 0.686703i \(-0.240943\pi\)
−0.958171 + 0.286196i \(0.907609\pi\)
\(164\) −336.796 + 583.348i −0.160362 + 0.277755i
\(165\) 0 0
\(166\) −608.892 725.649i −0.284694 0.339285i
\(167\) −468.946 393.493i −0.217294 0.182332i 0.527643 0.849466i \(-0.323076\pi\)
−0.744937 + 0.667135i \(0.767520\pi\)
\(168\) 0 0
\(169\) 5898.16 + 2146.75i 2.68464 + 0.977130i
\(170\) −201.876 −0.0910775
\(171\) 0 0
\(172\) −494.808 −0.219353
\(173\) −1269.87 462.196i −0.558073 0.203122i 0.0475570 0.998869i \(-0.484856\pi\)
−0.605630 + 0.795747i \(0.707079\pi\)
\(174\) 0 0
\(175\) −2264.47 1900.12i −0.978160 0.820774i
\(176\) −2258.41 2691.47i −0.967238 1.15271i
\(177\) 0 0
\(178\) −2699.81 + 4676.20i −1.13685 + 1.96908i
\(179\) −923.274 1599.16i −0.385524 0.667747i 0.606318 0.795222i \(-0.292646\pi\)
−0.991842 + 0.127476i \(0.959313\pi\)
\(180\) 0 0
\(181\) −539.217 1481.49i −0.221435 0.608386i 0.778377 0.627797i \(-0.216043\pi\)
−0.999812 + 0.0194107i \(0.993821\pi\)
\(182\) 6312.97 3644.79i 2.57114 1.48445i
\(183\) 0 0
\(184\) 870.357 + 153.467i 0.348715 + 0.0614879i
\(185\) 152.887 128.287i 0.0607591 0.0509830i
\(186\) 0 0
\(187\) 716.940 + 4065.97i 0.280363 + 1.59002i
\(188\) −595.396 + 1635.84i −0.230977 + 0.634605i
\(189\) 0 0
\(190\) −151.613 96.1223i −0.0578904 0.0367023i
\(191\) 2045.89i 0.775056i −0.921858 0.387528i \(-0.873329\pi\)
0.921858 0.387528i \(-0.126671\pi\)
\(192\) 0 0
\(193\) 3789.04 668.110i 1.41317 0.249179i 0.585625 0.810582i \(-0.300849\pi\)
0.827543 + 0.561403i \(0.189738\pi\)
\(194\) −1309.21 + 1560.25i −0.484514 + 0.577422i
\(195\) 0 0
\(196\) 119.888 679.917i 0.0436909 0.247783i
\(197\) 1734.02 + 1001.14i 0.627126 + 0.362072i 0.779638 0.626230i \(-0.215403\pi\)
−0.152512 + 0.988302i \(0.548736\pi\)
\(198\) 0 0
\(199\) 280.155 101.968i 0.0997975 0.0363233i −0.291639 0.956529i \(-0.594201\pi\)
0.391436 + 0.920205i \(0.371978\pi\)
\(200\) −1899.66 + 691.420i −0.671631 + 0.244454i
\(201\) 0 0
\(202\) 3032.91 + 1751.05i 1.05641 + 0.609918i
\(203\) 509.422 2889.08i 0.176130 0.998884i
\(204\) 0 0
\(205\) −89.6290 + 106.816i −0.0305364 + 0.0363918i
\(206\) −1801.57 + 317.666i −0.609328 + 0.107441i
\(207\) 0 0
\(208\) 7295.75i 2.43206i
\(209\) −1397.55 + 3395.00i −0.462540 + 1.12362i
\(210\) 0 0
\(211\) 203.278 558.502i 0.0663234 0.182222i −0.902103 0.431520i \(-0.857978\pi\)
0.968427 + 0.249298i \(0.0801997\pi\)
\(212\) 101.797 + 577.318i 0.0329784 + 0.187030i
\(213\) 0 0
\(214\) −3220.59 + 2702.39i −1.02876 + 0.863233i
\(215\) −100.872 17.7865i −0.0319974 0.00564200i
\(216\) 0 0
\(217\) −5148.60 + 2972.54i −1.61064 + 0.929905i
\(218\) −279.816 768.789i −0.0869337 0.238848i
\(219\) 0 0
\(220\) 45.1693 + 78.2356i 0.0138423 + 0.0239756i
\(221\) −4286.65 + 7424.69i −1.30476 + 2.25990i
\(222\) 0 0
\(223\) 1351.53 + 1610.69i 0.405852 + 0.483676i 0.929795 0.368077i \(-0.119984\pi\)
−0.523943 + 0.851754i \(0.675539\pi\)
\(224\) −2448.15 2054.24i −0.730240 0.612744i
\(225\) 0 0
\(226\) 175.647 + 63.9302i 0.0516985 + 0.0188167i
\(227\) 508.586 0.148705 0.0743526 0.997232i \(-0.476311\pi\)
0.0743526 + 0.997232i \(0.476311\pi\)
\(228\) 0 0
\(229\) 591.325 0.170637 0.0853185 0.996354i \(-0.472809\pi\)
0.0853185 + 0.996354i \(0.472809\pi\)
\(230\) −110.932 40.3760i −0.0318028 0.0115753i
\(231\) 0 0
\(232\) −1536.87 1289.59i −0.434917 0.364939i
\(233\) −4012.45 4781.85i −1.12817 1.34450i −0.931375 0.364061i \(-0.881390\pi\)
−0.196798 0.980444i \(-0.563054\pi\)
\(234\) 0 0
\(235\) −180.181 + 312.082i −0.0500157 + 0.0866298i
\(236\) −1115.07 1931.35i −0.307562 0.532714i
\(237\) 0 0
\(238\) 2522.49 + 6930.49i 0.687012 + 1.88755i
\(239\) 2114.13 1220.59i 0.572183 0.330350i −0.185838 0.982580i \(-0.559500\pi\)
0.758021 + 0.652230i \(0.226167\pi\)
\(240\) 0 0
\(241\) −3975.65 701.015i −1.06263 0.187371i −0.385108 0.922872i \(-0.625836\pi\)
−0.677524 + 0.735501i \(0.736947\pi\)
\(242\) 1621.30 1360.43i 0.430666 0.361372i
\(243\) 0 0
\(244\) −1.31319 7.44746i −0.000344542 0.00195399i
\(245\) 48.8810 134.299i 0.0127465 0.0350207i
\(246\) 0 0
\(247\) −6754.60 + 3535.04i −1.74002 + 0.910644i
\(248\) 4065.70i 1.04102i
\(249\) 0 0
\(250\) 532.760 93.9399i 0.134779 0.0237651i
\(251\) −433.228 + 516.301i −0.108945 + 0.129835i −0.817761 0.575558i \(-0.804785\pi\)
0.708816 + 0.705393i \(0.249229\pi\)
\(252\) 0 0
\(253\) −419.247 + 2377.67i −0.104181 + 0.590840i
\(254\) −1268.17 732.179i −0.313276 0.180870i
\(255\) 0 0
\(256\) −3923.15 + 1427.91i −0.957800 + 0.348611i
\(257\) 1973.05 718.132i 0.478893 0.174303i −0.0912835 0.995825i \(-0.529097\pi\)
0.570177 + 0.821522i \(0.306875\pi\)
\(258\) 0 0
\(259\) −6314.50 3645.68i −1.51492 0.874639i
\(260\) −32.5746 + 184.740i −0.00776996 + 0.0440656i
\(261\) 0 0
\(262\) 4541.49 5412.34i 1.07089 1.27624i
\(263\) −4670.11 + 823.466i −1.09495 + 0.193069i −0.691817 0.722073i \(-0.743189\pi\)
−0.403131 + 0.915142i \(0.632078\pi\)
\(264\) 0 0
\(265\) 121.352i 0.0281306i
\(266\) −1405.47 + 6406.02i −0.323966 + 1.47661i
\(267\) 0 0
\(268\) −794.055 + 2181.65i −0.180987 + 0.497259i
\(269\) −715.612 4058.43i −0.162199 0.919878i −0.951905 0.306392i \(-0.900878\pi\)
0.789706 0.613485i \(-0.210233\pi\)
\(270\) 0 0
\(271\) 1145.12 960.869i 0.256683 0.215382i −0.505361 0.862908i \(-0.668641\pi\)
0.762044 + 0.647526i \(0.224196\pi\)
\(272\) 7269.36 + 1281.78i 1.62048 + 0.285734i
\(273\) 0 0
\(274\) −4791.35 + 2766.29i −1.05641 + 0.609918i
\(275\) −1888.84 5189.54i −0.414187 1.13797i
\(276\) 0 0
\(277\) −636.840 1103.04i −0.138137 0.239261i 0.788654 0.614837i \(-0.210778\pi\)
−0.926792 + 0.375576i \(0.877445\pi\)
\(278\) −2857.38 + 4949.13i −0.616454 + 1.06773i
\(279\) 0 0
\(280\) −160.755 191.581i −0.0343106 0.0408898i
\(281\) −4513.62 3787.38i −0.958221 0.804043i 0.0224418 0.999748i \(-0.492856\pi\)
−0.980663 + 0.195705i \(0.937300\pi\)
\(282\) 0 0
\(283\) −1804.14 656.654i −0.378958 0.137930i 0.145516 0.989356i \(-0.453516\pi\)
−0.524474 + 0.851426i \(0.675738\pi\)
\(284\) −702.871 −0.146858
\(285\) 0 0
\(286\) 13618.6 2.81569
\(287\) 4786.96 + 1742.31i 0.984549 + 0.358346i
\(288\) 0 0
\(289\) −2881.14 2417.56i −0.586432 0.492075i
\(290\) 172.257 + 205.288i 0.0348803 + 0.0415687i
\(291\) 0 0
\(292\) −40.6396 + 70.3899i −0.00814470 + 0.0141070i
\(293\) 1324.77 + 2294.56i 0.264142 + 0.457508i 0.967339 0.253488i \(-0.0815778\pi\)
−0.703196 + 0.710996i \(0.748244\pi\)
\(294\) 0 0
\(295\) −157.894 433.811i −0.0311626 0.0856185i
\(296\) −4318.33 + 2493.19i −0.847966 + 0.489573i
\(297\) 0 0
\(298\) 3787.58 + 667.852i 0.736270 + 0.129824i
\(299\) −3840.50 + 3222.57i −0.742816 + 0.623297i
\(300\) 0 0
\(301\) 649.806 + 3685.23i 0.124433 + 0.705692i
\(302\) 3050.07 8379.99i 0.581165 1.59674i
\(303\) 0 0
\(304\) 4849.13 + 4423.92i 0.914858 + 0.834635i
\(305\) 1.56545i 0.000293894i
\(306\) 0 0
\(307\) 771.811 136.091i 0.143484 0.0253001i −0.101445 0.994841i \(-0.532347\pi\)
0.244929 + 0.969541i \(0.421235\pi\)
\(308\) 2121.46 2528.26i 0.392472 0.467730i
\(309\) 0 0
\(310\) 94.3041 534.825i 0.0172778 0.0979872i
\(311\) −2502.13 1444.60i −0.456214 0.263395i 0.254237 0.967142i \(-0.418176\pi\)
−0.710451 + 0.703747i \(0.751509\pi\)
\(312\) 0 0
\(313\) 3345.74 1217.75i 0.604193 0.219908i −0.0217672 0.999763i \(-0.506929\pi\)
0.625961 + 0.779855i \(0.284707\pi\)
\(314\) 7438.40 2707.36i 1.33686 0.486576i
\(315\) 0 0
\(316\) 1204.48 + 695.405i 0.214421 + 0.123796i
\(317\) −883.690 + 5011.66i −0.156571 + 0.887958i 0.800765 + 0.598979i \(0.204427\pi\)
−0.957336 + 0.288979i \(0.906684\pi\)
\(318\) 0 0
\(319\) 3522.94 4198.48i 0.618328 0.736895i
\(320\) −118.058 + 20.8169i −0.0206239 + 0.00363656i
\(321\) 0 0
\(322\) 4312.85i 0.746416i
\(323\) −2335.54 7351.23i −0.402331 1.26636i
\(324\) 0 0
\(325\) 3922.20 10776.2i 0.669429 1.83924i
\(326\) −557.733 3163.06i −0.0947546 0.537380i
\(327\) 0 0
\(328\) 2668.73 2239.33i 0.449256 0.376971i
\(329\) 12965.3 + 2286.13i 2.17265 + 0.383096i
\(330\) 0 0
\(331\) −5276.43 + 3046.35i −0.876189 + 0.505868i −0.869400 0.494109i \(-0.835494\pi\)
−0.00678929 + 0.999977i \(0.502161\pi\)
\(332\) −304.595 836.868i −0.0503519 0.138341i
\(333\) 0 0
\(334\) −1021.49 1769.27i −0.167346 0.289852i
\(335\) −240.299 + 416.211i −0.0391909 + 0.0678807i
\(336\) 0 0
\(337\) −324.599 386.843i −0.0524690 0.0625301i 0.739172 0.673517i \(-0.235217\pi\)
−0.791641 + 0.610987i \(0.790773\pi\)
\(338\) 16046.5 + 13464.6i 2.58229 + 2.16680i
\(339\) 0 0
\(340\) −178.348 64.9135i −0.0284479 0.0103542i
\(341\) −11106.8 −1.76383
\(342\) 0 0
\(343\) 2917.56 0.459281
\(344\) 2404.79 + 875.270i 0.376911 + 0.137184i
\(345\) 0 0
\(346\) −3454.80 2898.92i −0.536796 0.450425i
\(347\) −3825.15 4558.64i −0.591772 0.705246i 0.384174 0.923261i \(-0.374486\pi\)
−0.975946 + 0.218015i \(0.930042\pi\)
\(348\) 0 0
\(349\) −4620.49 + 8002.92i −0.708679 + 1.22747i 0.256669 + 0.966499i \(0.417375\pi\)
−0.965347 + 0.260968i \(0.915958\pi\)
\(350\) −4932.63 8543.57i −0.753315 1.30478i
\(351\) 0 0
\(352\) −2042.05 5610.48i −0.309209 0.849544i
\(353\) 4834.65 2791.29i 0.728959 0.420865i −0.0890820 0.996024i \(-0.528393\pi\)
0.818041 + 0.575159i \(0.195060\pi\)
\(354\) 0 0
\(355\) −143.288 25.2656i −0.0214224 0.00377735i
\(356\) −3888.80 + 3263.09i −0.578949 + 0.485796i
\(357\) 0 0
\(358\) −1070.10 6068.87i −0.157980 0.895948i
\(359\) 815.024 2239.26i 0.119820 0.329202i −0.865254 0.501333i \(-0.832843\pi\)
0.985074 + 0.172131i \(0.0550653\pi\)
\(360\) 0 0
\(361\) 1746.21 6633.00i 0.254587 0.967050i
\(362\) 5261.47i 0.763913i
\(363\) 0 0
\(364\) 6749.22 1190.07i 0.971854 0.171364i
\(365\) −10.8151 + 12.8889i −0.00155093 + 0.00184832i
\(366\) 0 0
\(367\) −709.932 + 4026.22i −0.100976 + 0.572662i 0.891776 + 0.452478i \(0.149460\pi\)
−0.992752 + 0.120185i \(0.961651\pi\)
\(368\) 3738.19 + 2158.25i 0.529530 + 0.305724i
\(369\) 0 0
\(370\) 625.888 227.804i 0.0879415 0.0320081i
\(371\) 4166.07 1516.33i 0.582996 0.212193i
\(372\) 0 0
\(373\) 9781.77 + 5647.51i 1.35786 + 0.783959i 0.989335 0.145660i \(-0.0465305\pi\)
0.368522 + 0.929619i \(0.379864\pi\)
\(374\) −2392.65 + 13569.4i −0.330804 + 1.87608i
\(375\) 0 0
\(376\) 5787.30 6897.04i 0.793769 0.945977i
\(377\) 11207.9 1976.25i 1.53113 0.269979i
\(378\) 0 0
\(379\) 9070.19i 1.22930i 0.788800 + 0.614649i \(0.210702\pi\)
−0.788800 + 0.614649i \(0.789298\pi\)
\(380\) −103.035 133.671i −0.0139095 0.0180452i
\(381\) 0 0
\(382\) 2335.23 6416.00i 0.312777 0.859348i
\(383\) 788.078 + 4469.41i 0.105141 + 0.596282i 0.991164 + 0.132642i \(0.0423460\pi\)
−0.886023 + 0.463641i \(0.846543\pi\)
\(384\) 0 0
\(385\) 523.365 439.156i 0.0692809 0.0581336i
\(386\) 12645.2 + 2229.69i 1.66742 + 0.294010i
\(387\) 0 0
\(388\) −1658.33 + 957.437i −0.216982 + 0.125275i
\(389\) 4989.51 + 13708.6i 0.650330 + 1.78677i 0.616520 + 0.787339i \(0.288542\pi\)
0.0338100 + 0.999428i \(0.489236\pi\)
\(390\) 0 0
\(391\) −2536.17 4392.78i −0.328030 0.568165i
\(392\) −1785.37 + 3092.35i −0.230038 + 0.398437i
\(393\) 0 0
\(394\) 4295.23 + 5118.86i 0.549215 + 0.654529i
\(395\) 220.549 + 185.063i 0.0280938 + 0.0235735i
\(396\) 0 0
\(397\) −7419.36 2700.42i −0.937952 0.341386i −0.172595 0.984993i \(-0.555215\pi\)
−0.765357 + 0.643606i \(0.777437\pi\)
\(398\) 994.967 0.125310
\(399\) 0 0
\(400\) −9873.59 −1.23420
\(401\) −5893.28 2144.98i −0.733907 0.267120i −0.0520890 0.998642i \(-0.516588\pi\)
−0.681817 + 0.731522i \(0.738810\pi\)
\(402\) 0 0
\(403\) −17667.6 14824.9i −2.18383 1.83245i
\(404\) 2116.39 + 2522.21i 0.260629 + 0.310606i
\(405\) 0 0
\(406\) 4895.23 8478.78i 0.598389 1.03644i
\(407\) −6810.97 11796.9i −0.829501 1.43674i
\(408\) 0 0
\(409\) 2854.80 + 7843.49i 0.345136 + 0.948253i 0.983879 + 0.178833i \(0.0572323\pi\)
−0.638744 + 0.769420i \(0.720545\pi\)
\(410\) −403.002 + 232.673i −0.0485435 + 0.0280266i
\(411\) 0 0
\(412\) −1693.76 298.655i −0.202537 0.0357128i
\(413\) −12920.0 + 10841.2i −1.53935 + 1.29167i
\(414\) 0 0
\(415\) −32.0129 181.554i −0.00378663 0.0214751i
\(416\) 4240.34 11650.2i 0.499759 1.37308i
\(417\) 0 0
\(418\) −8257.92 + 9051.65i −0.966287 + 1.05916i
\(419\) 9947.32i 1.15981i 0.814686 + 0.579903i \(0.196909\pi\)
−0.814686 + 0.579903i \(0.803091\pi\)
\(420\) 0 0
\(421\) 2245.66 395.970i 0.259968 0.0458394i −0.0421448 0.999112i \(-0.513419\pi\)
0.302113 + 0.953272i \(0.402308\pi\)
\(422\) 1274.98 1519.46i 0.147073 0.175275i
\(423\) 0 0
\(424\) 526.487 2985.86i 0.0603030 0.341995i
\(425\) 10048.1 + 5801.27i 1.14683 + 0.662125i
\(426\) 0 0
\(427\) −53.7427 + 19.5607i −0.00609085 + 0.00221689i
\(428\) −3714.21 + 1351.86i −0.419469 + 0.152674i
\(429\) 0 0
\(430\) −296.037 170.917i −0.0332004 0.0191683i
\(431\) 2203.08 12494.3i 0.246215 1.39635i −0.571440 0.820644i \(-0.693615\pi\)
0.817654 0.575709i \(-0.195274\pi\)
\(432\) 0 0
\(433\) −6721.46 + 8010.33i −0.745988 + 0.889034i −0.996876 0.0789822i \(-0.974833\pi\)
0.250888 + 0.968016i \(0.419277\pi\)
\(434\) −19539.1 + 3445.27i −2.16108 + 0.381056i
\(435\) 0 0
\(436\) 769.166i 0.0844871i
\(437\) 186.880 4506.66i 0.0204569 0.493325i
\(438\) 0 0
\(439\) −171.824 + 472.084i −0.0186805 + 0.0513242i −0.948682 0.316230i \(-0.897583\pi\)
0.930002 + 0.367555i \(0.119805\pi\)
\(440\) −81.1331 460.129i −0.00879061 0.0498540i
\(441\) 0 0
\(442\) −21917.8 + 18391.2i −2.35865 + 1.97914i
\(443\) −5725.46 1009.55i −0.614051 0.108274i −0.142032 0.989862i \(-0.545364\pi\)
−0.472019 + 0.881588i \(0.656475\pi\)
\(444\) 0 0
\(445\) −910.072 + 525.430i −0.0969473 + 0.0559726i
\(446\) 2399.97 + 6593.85i 0.254802 + 0.700062i
\(447\) 0 0
\(448\) 2189.82 + 3792.88i 0.230936 + 0.399993i
\(449\) −4756.91 + 8239.21i −0.499983 + 0.865997i −1.00000 1.91611e-5i \(-0.999994\pi\)
0.500017 + 0.866016i \(0.333327\pi\)
\(450\) 0 0
\(451\) 6117.47 + 7290.52i 0.638715 + 0.761191i
\(452\) 134.619 + 112.959i 0.0140088 + 0.0117547i
\(453\) 0 0
\(454\) 1594.95 + 580.513i 0.164878 + 0.0600106i
\(455\) 1418.68 0.146173
\(456\) 0 0
\(457\) 3290.66 0.336828 0.168414 0.985716i \(-0.446135\pi\)
0.168414 + 0.985716i \(0.446135\pi\)
\(458\) 1854.42 + 674.953i 0.189195 + 0.0688613i
\(459\) 0 0
\(460\) −85.0206 71.3407i −0.00861762 0.00723104i
\(461\) −7903.62 9419.17i −0.798500 0.951615i 0.201110 0.979569i \(-0.435545\pi\)
−0.999609 + 0.0279539i \(0.991101\pi\)
\(462\) 0 0
\(463\) 1688.63 2924.79i 0.169497 0.293578i −0.768746 0.639554i \(-0.779119\pi\)
0.938243 + 0.345976i \(0.112452\pi\)
\(464\) −4899.36 8485.94i −0.490188 0.849030i
\(465\) 0 0
\(466\) −7125.07 19576.0i −0.708289 1.94601i
\(467\) 14507.9 8376.17i 1.43758 0.829984i 0.439894 0.898050i \(-0.355016\pi\)
0.997681 + 0.0680650i \(0.0216825\pi\)
\(468\) 0 0
\(469\) 17291.3 + 3048.92i 1.70243 + 0.300184i
\(470\) −921.272 + 773.039i −0.0904151 + 0.0758673i
\(471\) 0 0
\(472\) 2002.88 + 11358.9i 0.195318 + 1.10770i
\(473\) −2391.09 + 6569.46i −0.232436 + 0.638613i
\(474\) 0 0
\(475\) 4784.09 + 9141.24i 0.462125 + 0.883008i
\(476\) 6933.89i 0.667677i
\(477\) 0 0
\(478\) 8023.21 1414.71i 0.767726 0.135371i
\(479\) 5269.24 6279.63i 0.502625 0.599006i −0.453756 0.891126i \(-0.649916\pi\)
0.956382 + 0.292120i \(0.0943607\pi\)
\(480\) 0 0
\(481\) 4911.83 27856.4i 0.465614 2.64063i
\(482\) −11667.6 6736.31i −1.10259 0.636578i
\(483\) 0 0
\(484\) 1869.80 680.551i 0.175601 0.0639135i
\(485\) −372.486 + 135.574i −0.0348737 + 0.0126930i
\(486\) 0 0
\(487\) −7957.08 4594.02i −0.740389 0.427464i 0.0818214 0.996647i \(-0.473926\pi\)
−0.822211 + 0.569183i \(0.807260\pi\)
\(488\) −6.79174 + 38.5178i −0.000630015 + 0.00357299i
\(489\) 0 0
\(490\) 306.585 365.374i 0.0282655 0.0336855i
\(491\) 6759.07 1191.81i 0.621248 0.109543i 0.145840 0.989308i \(-0.453412\pi\)
0.475408 + 0.879765i \(0.342300\pi\)
\(492\) 0 0
\(493\) 11514.6i 1.05191i
\(494\) −25217.6 + 3376.15i −2.29675 + 0.307490i
\(495\) 0 0
\(496\) −6791.60 + 18659.8i −0.614822 + 1.68921i
\(497\) 923.046 + 5234.85i 0.0833084 + 0.472465i
\(498\) 0 0
\(499\) 1098.86 922.057i 0.0985810 0.0827193i −0.592165 0.805817i \(-0.701727\pi\)
0.690746 + 0.723097i \(0.257282\pi\)
\(500\) 500.876 + 88.3180i 0.0447997 + 0.00789940i
\(501\) 0 0
\(502\) −1947.94 + 1124.64i −0.173189 + 0.0999906i
\(503\) −4447.39 12219.1i −0.394233 1.08315i −0.965049 0.262068i \(-0.915595\pi\)
0.570816 0.821078i \(-0.306627\pi\)
\(504\) 0 0
\(505\) 340.786 + 590.258i 0.0300292 + 0.0520122i
\(506\) −4028.70 + 6977.91i −0.353948 + 0.613055i
\(507\) 0 0
\(508\) −884.940 1054.63i −0.0772891 0.0921095i
\(509\) 198.099 + 166.225i 0.0172507 + 0.0144750i 0.651372 0.758758i \(-0.274194\pi\)
−0.634122 + 0.773233i \(0.718638\pi\)
\(510\) 0 0
\(511\) 577.621 + 210.237i 0.0500047 + 0.0182002i
\(512\) −385.493 −0.0332745
\(513\) 0 0
\(514\) 7007.25 0.601317
\(515\) −334.556 121.769i −0.0286259 0.0104190i
\(516\) 0 0
\(517\) 18841.5 + 15809.9i 1.60280 + 1.34491i
\(518\) −15641.2 18640.5i −1.32671 1.58111i
\(519\) 0 0
\(520\) 485.101 840.220i 0.0409098 0.0708579i
\(521\) −5415.23 9379.46i −0.455366 0.788717i 0.543343 0.839511i \(-0.317158\pi\)
−0.998709 + 0.0507938i \(0.983825\pi\)
\(522\) 0 0
\(523\) 3218.95 + 8844.00i 0.269130 + 0.739429i 0.998471 + 0.0552784i \(0.0176046\pi\)
−0.729341 + 0.684151i \(0.760173\pi\)
\(524\) 5752.55 3321.24i 0.479583 0.276887i
\(525\) 0 0
\(526\) −15585.6 2748.16i −1.29194 0.227805i
\(527\) 17875.3 14999.1i 1.47753 1.23979i
\(528\) 0 0
\(529\) 1597.71 + 9061.05i 0.131315 + 0.744723i
\(530\) −138.514 + 380.565i −0.0113522 + 0.0311900i
\(531\) 0 0
\(532\) −3301.54 + 5207.50i −0.269060 + 0.424387i
\(533\) 19762.4i 1.60601i
\(534\) 0 0
\(535\) −805.778 + 142.080i −0.0651156 + 0.0114816i
\(536\) 7718.28 9198.28i 0.621975 0.741241i
\(537\) 0 0
\(538\) 2388.21 13544.2i 0.191381 1.08538i
\(539\) −8447.78 4877.33i −0.675086 0.389761i
\(540\) 0 0
\(541\) −2903.68 + 1056.85i −0.230756 + 0.0839882i −0.454810 0.890588i \(-0.650293\pi\)
0.224054 + 0.974577i \(0.428071\pi\)
\(542\) 4687.90 1706.25i 0.371517 0.135221i
\(543\) 0 0
\(544\) 10863.1 + 6271.82i 0.856162 + 0.494305i
\(545\) 27.6487 156.803i 0.00217310 0.0123242i
\(546\) 0 0
\(547\) 3240.93 3862.39i 0.253331 0.301908i −0.624358 0.781138i \(-0.714639\pi\)
0.877690 + 0.479230i \(0.159084\pi\)
\(548\) −5122.45 + 903.225i −0.399307 + 0.0704085i
\(549\) 0 0
\(550\) 18430.6i 1.42888i
\(551\) −5482.60 + 8647.69i −0.423896 + 0.668610i
\(552\) 0 0
\(553\) 3597.47 9883.96i 0.276636 0.760052i
\(554\) −738.119 4186.08i −0.0566059 0.321028i
\(555\) 0 0
\(556\) −4115.77 + 3453.54i −0.313934 + 0.263422i
\(557\) 8222.47 + 1449.84i 0.625488 + 0.110290i 0.477404 0.878684i \(-0.341578\pi\)
0.148085 + 0.988975i \(0.452689\pi\)
\(558\) 0 0
\(559\) −12572.1 + 7258.53i −0.951243 + 0.549201i
\(560\) −417.767 1147.81i −0.0315248 0.0866137i
\(561\) 0 0
\(562\) −9831.88 17029.3i −0.737959 1.27818i
\(563\) 3656.56 6333.35i 0.273722 0.474101i −0.696090 0.717955i \(-0.745078\pi\)
0.969812 + 0.243854i \(0.0784118\pi\)
\(564\) 0 0
\(565\) 23.3832 + 27.8671i 0.00174113 + 0.00207500i
\(566\) −4908.34 4118.58i −0.364510 0.305860i
\(567\) 0 0
\(568\) 3415.98 + 1243.32i 0.252344 + 0.0918458i
\(569\) −1729.34 −0.127412 −0.0637061 0.997969i \(-0.520292\pi\)
−0.0637061 + 0.997969i \(0.520292\pi\)
\(570\) 0 0
\(571\) −6132.55 −0.449456 −0.224728 0.974422i \(-0.572149\pi\)
−0.224728 + 0.974422i \(0.572149\pi\)
\(572\) 12031.4 + 4379.09i 0.879476 + 0.320103i
\(573\) 0 0
\(574\) 13023.4 + 10927.9i 0.947012 + 0.794638i
\(575\) 4361.21 + 5197.49i 0.316305 + 0.376957i
\(576\) 0 0
\(577\) −912.698 + 1580.84i −0.0658512 + 0.114058i −0.897071 0.441886i \(-0.854310\pi\)
0.831220 + 0.555944i \(0.187643\pi\)
\(578\) −6275.90 10870.2i −0.451631 0.782248i
\(579\) 0 0
\(580\) 86.1708 + 236.752i 0.00616905 + 0.0169493i
\(581\) −5832.83 + 3367.58i −0.416500 + 0.240466i
\(582\) 0 0
\(583\) 8156.85 + 1438.27i 0.579455 + 0.102174i
\(584\) 322.024 270.210i 0.0228175 0.0191462i
\(585\) 0 0
\(586\) 1535.45 + 8707.96i 0.108240 + 0.613861i
\(587\) −758.606 + 2084.25i −0.0533407 + 0.146552i −0.963502 0.267702i \(-0.913736\pi\)
0.910161 + 0.414255i \(0.135958\pi\)
\(588\) 0 0
\(589\) 20566.5 2753.45i 1.43875 0.192621i
\(590\) 1540.67i 0.107506i
\(591\) 0 0
\(592\) −23984.0 + 4229.03i −1.66510 + 0.293601i
\(593\) −8346.12 + 9946.52i −0.577967 + 0.688794i −0.973246 0.229767i \(-0.926204\pi\)
0.395279 + 0.918561i \(0.370648\pi\)
\(594\) 0 0
\(595\) −249.248 + 1413.55i −0.0171734 + 0.0973950i
\(596\) 3131.41 + 1807.92i 0.215214 + 0.124254i
\(597\) 0 0
\(598\) −15722.3 + 5722.44i −1.07514 + 0.391318i
\(599\) −13762.7 + 5009.21i −0.938778 + 0.341687i −0.765683 0.643218i \(-0.777599\pi\)
−0.173095 + 0.984905i \(0.555377\pi\)
\(600\) 0 0
\(601\) 19762.5 + 11409.9i 1.34132 + 0.774409i 0.987000 0.160718i \(-0.0513809\pi\)
0.354315 + 0.935126i \(0.384714\pi\)
\(602\) −2168.60 + 12298.7i −0.146820 + 0.832656i
\(603\) 0 0
\(604\) 5389.20 6422.60i 0.363052 0.432668i
\(605\) 405.643 71.5259i 0.0272591 0.00480651i
\(606\) 0 0
\(607\) 18360.5i 1.22773i −0.789413 0.613863i \(-0.789615\pi\)
0.789413 0.613863i \(-0.210385\pi\)
\(608\) 5172.14 + 9882.69i 0.344997 + 0.659204i
\(609\) 0 0
\(610\) 1.78685 4.90932i 0.000118602 0.000325857i
\(611\) 8868.84 + 50297.7i 0.587226 + 3.33032i
\(612\) 0 0
\(613\) 5146.62 4318.53i 0.339103 0.284541i −0.457294 0.889316i \(-0.651181\pi\)
0.796397 + 0.604775i \(0.206737\pi\)
\(614\) 2575.76 + 454.177i 0.169299 + 0.0298519i
\(615\) 0 0
\(616\) −14782.6 + 8534.76i −0.966898 + 0.558239i
\(617\) −8520.17 23409.0i −0.555931 1.52741i −0.825486 0.564422i \(-0.809099\pi\)
0.269555 0.962985i \(-0.413123\pi\)
\(618\) 0 0
\(619\) −11964.9 20723.8i −0.776912 1.34565i −0.933714 0.358021i \(-0.883452\pi\)
0.156802 0.987630i \(-0.449882\pi\)
\(620\) 255.287 442.171i 0.0165364 0.0286419i
\(621\) 0 0
\(622\) −6197.86 7386.32i −0.399536 0.476149i
\(623\) 29409.8 + 24677.8i 1.89130 + 1.58699i
\(624\) 0 0
\(625\) −14534.2 5290.02i −0.930190 0.338561i
\(626\) 11882.3 0.758648
\(627\) 0 0
\(628\) 7442.05 0.472882
\(629\) 26892.7 + 9788.14i 1.70474 + 0.620475i
\(630\) 0 0
\(631\) 2578.39 + 2163.53i 0.162669 + 0.136496i 0.720489 0.693467i \(-0.243917\pi\)
−0.557820 + 0.829962i \(0.688362\pi\)
\(632\) −4623.70 5510.31i −0.291014 0.346817i
\(633\) 0 0
\(634\) −8491.71 + 14708.1i −0.531938 + 0.921344i
\(635\) −142.495 246.809i −0.00890511 0.0154241i
\(636\) 0 0
\(637\) −6927.85 19034.1i −0.430913 1.18392i
\(638\) 15840.3 9145.41i 0.982953 0.567508i
\(639\) 0 0
\(640\) −1083.17 190.993i −0.0669004 0.0117963i
\(641\) −13228.9 + 11100.4i −0.815148 + 0.683991i −0.951831 0.306624i \(-0.900801\pi\)
0.136682 + 0.990615i \(0.456356\pi\)
\(642\) 0 0
\(643\) −4738.13 26871.3i −0.290597 1.64806i −0.684579 0.728939i \(-0.740014\pi\)
0.393982 0.919118i \(-0.371097\pi\)
\(644\) −1386.80 + 3810.21i −0.0848567 + 0.233142i
\(645\) 0 0
\(646\) 1066.53 25719.6i 0.0649565 1.56644i
\(647\) 4344.89i 0.264011i −0.991249 0.132006i \(-0.957858\pi\)
0.991249 0.132006i \(-0.0421417\pi\)
\(648\) 0 0
\(649\) −31030.6 + 5471.53i −1.87682 + 0.330934i
\(650\) 24600.3 29317.5i 1.48447 1.76912i
\(651\) 0 0
\(652\) 524.355 2973.77i 0.0314959 0.178622i
\(653\) −6067.34 3502.98i −0.363604 0.209927i 0.307057 0.951691i \(-0.400656\pi\)
−0.670661 + 0.741764i \(0.733989\pi\)
\(654\) 0 0
\(655\) 1292.11 470.290i 0.0770793 0.0280546i
\(656\) 15989.0 5819.53i 0.951626 0.346364i
\(657\) 0 0
\(658\) 38050.3 + 21968.3i 2.25434 + 1.30154i
\(659\) 469.063 2660.19i 0.0277270 0.157248i −0.967801 0.251718i \(-0.919005\pi\)
0.995528 + 0.0944700i \(0.0301156\pi\)
\(660\) 0 0
\(661\) −10160.4 + 12108.7i −0.597874 + 0.712518i −0.977099 0.212786i \(-0.931746\pi\)
0.379225 + 0.925304i \(0.376191\pi\)
\(662\) −20024.2 + 3530.81i −1.17563 + 0.207295i
\(663\) 0 0
\(664\) 4606.02i 0.269199i
\(665\) −860.247 + 942.931i −0.0501638 + 0.0549854i
\(666\) 0 0
\(667\) −2302.96 + 6327.32i −0.133689 + 0.367309i
\(668\) −333.529 1891.54i −0.0193183 0.109560i
\(669\) 0 0
\(670\) −1228.66 + 1030.97i −0.0708467 + 0.0594474i
\(671\) −105.224 18.5539i −0.00605385 0.00106746i
\(672\) 0 0
\(673\) 12595.3 7271.90i 0.721416 0.416510i −0.0938574 0.995586i \(-0.529920\pi\)
0.815274 + 0.579076i \(0.196586\pi\)
\(674\) −576.404 1583.66i −0.0329410 0.0905048i
\(675\) 0 0
\(676\) 9846.80 + 17055.2i 0.560241 + 0.970366i
\(677\) −10866.7 + 18821.7i −0.616899 + 1.06850i 0.373149 + 0.927772i \(0.378278\pi\)
−0.990048 + 0.140729i \(0.955055\pi\)
\(678\) 0 0
\(679\) 9308.62 + 11093.6i 0.526115 + 0.626999i
\(680\) 751.954 + 630.965i 0.0424061 + 0.0355829i
\(681\) 0 0
\(682\) −34831.3 12677.6i −1.95566 0.711802i
\(683\) 26369.4 1.47730 0.738651 0.674088i \(-0.235463\pi\)
0.738651 + 0.674088i \(0.235463\pi\)
\(684\) 0 0
\(685\) −1076.74 −0.0600584
\(686\) 9149.57 + 3330.17i 0.509231 + 0.185345i
\(687\) 0 0
\(688\) 9574.80 + 8034.21i 0.530575 + 0.445206i
\(689\) 11055.4 + 13175.3i 0.611286 + 0.728502i
\(690\) 0 0
\(691\) 12254.5 21225.3i 0.674647 1.16852i −0.301924 0.953332i \(-0.597629\pi\)
0.976572 0.215192i \(-0.0690377\pi\)
\(692\) −2120.01 3671.97i −0.116461 0.201716i
\(693\) 0 0
\(694\) −6792.48 18662.2i −0.371526 1.02076i
\(695\) −963.189 + 556.097i −0.0525695 + 0.0303510i
\(696\) 0 0
\(697\) −19690.9 3472.04i −1.07008 0.188684i
\(698\) −23624.7 + 19823.5i −1.28110 + 1.07497i
\(699\) 0 0
\(700\) −1610.56 9133.95i −0.0869622 0.493187i
\(701\) 7916.65 21750.8i 0.426544 1.17192i −0.521352 0.853342i \(-0.674572\pi\)
0.947896 0.318579i \(-0.103206\pi\)
\(702\) 0 0
\(703\) 15536.4 + 20155.9i 0.833524 + 1.08136i
\(704\) 8182.17i 0.438036i
\(705\) 0 0
\(706\) 18347.7 3235.19i 0.978080 0.172462i
\(707\) 16005.6 19074.7i 0.851418 1.01468i
\(708\) 0 0
\(709\) 3260.57 18491.6i 0.172713 0.979503i −0.768038 0.640404i \(-0.778767\pi\)
0.940751 0.339099i \(-0.110122\pi\)
\(710\) −420.519 242.787i −0.0222279 0.0128333i
\(711\) 0 0
\(712\) 24671.8 8979.81i 1.29862 0.472658i
\(713\) 12822.4 4666.99i 0.673498 0.245133i
\(714\) 0 0
\(715\) 2295.34 + 1325.21i 0.120057 + 0.0693149i
\(716\) 1006.06 5705.67i 0.0525116 0.297808i
\(717\) 0 0
\(718\) 5111.89 6092.11i 0.265702 0.316651i
\(719\) −35663.3 + 6288.40i −1.84981 + 0.326172i −0.984544 0.175136i \(-0.943964\pi\)
−0.865269 + 0.501308i \(0.832852\pi\)
\(720\) 0 0
\(721\) 13007.0i 0.671852i
\(722\) 13047.2 18808.2i 0.672532 0.969483i
\(723\) 0 0
\(724\) 1691.83 4648.27i 0.0868459 0.238607i
\(725\) −2674.53 15168.0i −0.137007 0.777003i
\(726\) 0 0
\(727\) 5506.75 4620.71i 0.280927 0.235726i −0.491426 0.870919i \(-0.663524\pi\)
0.772353 + 0.635193i \(0.219080\pi\)
\(728\) −34906.6 6154.97i −1.77709 0.313350i
\(729\) 0 0
\(730\) −48.6283 + 28.0756i −0.00246550 + 0.00142346i
\(731\) −5023.49 13801.9i −0.254173 0.698334i
\(732\) 0 0
\(733\) −14800.1 25634.5i −0.745775 1.29172i −0.949832 0.312761i \(-0.898746\pi\)
0.204057 0.978959i \(-0.434587\pi\)
\(734\) −6822.00 + 11816.0i −0.343058 + 0.594194i
\(735\) 0 0
\(736\) 4714.96 + 5619.07i 0.236135 + 0.281415i
\(737\) 25128.1 + 21085.0i 1.25591 + 1.05383i
\(738\) 0 0
\(739\) −7319.55 2664.10i −0.364349 0.132612i 0.153357 0.988171i \(-0.450992\pi\)
−0.517706 + 0.855559i \(0.673214\pi\)
\(740\) 626.195 0.0311073
\(741\) 0 0
\(742\) 14795.7 0.732032
\(743\) −20762.4 7556.88i −1.02516 0.373129i −0.225926 0.974144i \(-0.572541\pi\)
−0.799238 + 0.601015i \(0.794763\pi\)
\(744\) 0 0
\(745\) 573.386 + 481.128i 0.0281976 + 0.0236606i
\(746\) 24229.8 + 28875.9i 1.18916 + 1.41719i
\(747\) 0 0
\(748\) −6477.05 + 11218.6i −0.316610 + 0.548384i
\(749\) 14946.1 + 25887.4i 0.729129 + 1.26289i
\(750\) 0 0
\(751\) 2732.26 + 7506.82i 0.132758 + 0.364751i 0.988204 0.153142i \(-0.0489391\pi\)
−0.855446 + 0.517892i \(0.826717\pi\)
\(752\) 38082.4 21986.9i 1.84671 1.06620i
\(753\) 0 0
\(754\) 37404.1 + 6595.35i 1.80660 + 0.318552i
\(755\) 1329.52 1115.60i 0.0640876 0.0537759i
\(756\) 0 0
\(757\) 4721.53 + 26777.1i 0.226694 + 1.28564i 0.859421 + 0.511269i \(0.170824\pi\)
−0.632727 + 0.774375i \(0.718065\pi\)
\(758\) −10352.9 + 28444.4i −0.496089 + 1.36299i
\(759\) 0 0
\(760\) 264.303 + 831.908i 0.0126149 + 0.0397059i
\(761\) 10543.8i 0.502250i −0.967955 0.251125i \(-0.919199\pi\)
0.967955 0.251125i \(-0.0808005\pi\)
\(762\) 0 0
\(763\) −5728.60 + 1010.11i −0.271808 + 0.0479270i
\(764\) 4126.15 4917.35i 0.195391 0.232858i
\(765\) 0 0
\(766\) −2630.05 + 14915.8i −0.124057 + 0.703562i
\(767\) −56663.6 32714.7i −2.66754 1.54010i
\(768\) 0 0
\(769\) 30280.1 11021.1i 1.41993 0.516814i 0.485905 0.874012i \(-0.338490\pi\)
0.934029 + 0.357198i \(0.116268\pi\)
\(770\) 2142.56 779.826i 0.100276 0.0364974i
\(771\) 0 0
\(772\) 10454.5 + 6035.90i 0.487390 + 0.281395i
\(773\) 1303.14 7390.48i 0.0606349 0.343877i −0.939365 0.342920i \(-0.888584\pi\)
1.00000 0.000957567i \(-0.000304803\pi\)
\(774\) 0 0
\(775\) −20063.0 + 23910.2i −0.929916 + 1.10823i
\(776\) 9753.17 1719.75i 0.451184 0.0795558i
\(777\) 0 0
\(778\) 48685.8i 2.24353i
\(779\) −13135.1 11983.3i −0.604126 0.551151i
\(780\) 0 0
\(781\) −3396.53 + 9331.88i −0.155617 + 0.427556i
\(782\) −2939.51 16670.8i −0.134420 0.762335i
\(783\) 0 0
\(784\) −13359.7 + 11210.1i −0.608588 + 0.510666i
\(785\) 1517.15 + 267.514i 0.0689800 + 0.0121630i
\(786\) 0 0
\(787\) 21769.8 12568.8i 0.986036 0.569288i 0.0819491 0.996637i \(-0.473886\pi\)
0.904087 + 0.427348i \(0.140552\pi\)
\(788\) 2148.67 + 5903.42i 0.0971360 + 0.266879i
\(789\) 0 0
\(790\) 480.416 + 832.104i 0.0216360 + 0.0374746i
\(791\) 664.508 1150.96i 0.0298700 0.0517364i
\(792\) 0 0
\(793\) −142.615 169.962i −0.00638640 0.00761102i
\(794\) −20185.0 16937.3i −0.902192 0.757029i
\(795\) 0 0
\(796\) 879.009 + 319.933i 0.0391403 + 0.0142459i
\(797\) −19343.8 −0.859715 −0.429858 0.902897i \(-0.641436\pi\)
−0.429858 + 0.902897i \(0.641436\pi\)
\(798\) 0 0
\(799\) −51673.9 −2.28798
\(800\) −15766.7 5738.60i −0.696795 0.253613i
\(801\) 0 0
\(802\) −16033.2 13453.5i −0.705926 0.592342i
\(803\) 738.167 + 879.713i 0.0324400 + 0.0386605i
\(804\) 0 0
\(805\) −419.679 + 726.905i −0.0183748 + 0.0318261i
\(806\) −38484.7 66657.5i −1.68185 2.91304i
\(807\) 0 0
\(808\) −5824.16 16001.7i −0.253581 0.696707i
\(809\) −21248.2 + 12267.6i −0.923419 + 0.533136i −0.884724 0.466115i \(-0.845653\pi\)
−0.0386947 + 0.999251i \(0.512320\pi\)
\(810\) 0 0
\(811\) 28285.6 + 4987.51i 1.22471 + 0.215950i 0.748352 0.663301i \(-0.230845\pi\)
0.476359 + 0.879251i \(0.341956\pi\)
\(812\) 7051.08 5916.56i 0.304734 0.255703i
\(813\) 0 0
\(814\) −7894.13 44769.8i −0.339913 1.92774i
\(815\) 213.792 587.388i 0.00918871 0.0252458i
\(816\) 0 0
\(817\) 2798.97 12757.5i 0.119857 0.546300i
\(818\) 27856.0i 1.19066i
\(819\) 0 0
\(820\) −430.850 + 75.9706i −0.0183487 + 0.00323537i
\(821\) −9984.71 + 11899.3i −0.424444 + 0.505833i −0.935311 0.353827i \(-0.884880\pi\)
0.510867 + 0.859660i \(0.329325\pi\)
\(822\) 0 0
\(823\) 5585.05 31674.4i 0.236552 1.34156i −0.602767 0.797917i \(-0.705935\pi\)
0.839320 0.543638i \(-0.182954\pi\)
\(824\) 7703.43 + 4447.58i 0.325682 + 0.188032i
\(825\) 0 0
\(826\) −52891.9 + 19251.1i −2.22802 + 0.810934i
\(827\) 67.8044 24.6788i 0.00285102 0.00103769i −0.340594 0.940210i \(-0.610628\pi\)
0.343445 + 0.939173i \(0.388406\pi\)
\(828\) 0 0
\(829\) −7886.87 4553.49i −0.330425 0.190771i 0.325605 0.945506i \(-0.394432\pi\)
−0.656030 + 0.754735i \(0.727765\pi\)
\(830\) 106.837 605.901i 0.00446790 0.0253387i
\(831\) 0 0
\(832\) −10921.2 + 13015.4i −0.455078 + 0.542341i
\(833\) 20182.4 3558.70i 0.839471 0.148021i
\(834\) 0 0
\(835\) 397.601i 0.0164785i
\(836\) −10206.1 + 5341.38i −0.422230 + 0.220975i
\(837\) 0 0
\(838\) −11354.1 + 31195.2i −0.468044 + 1.28594i
\(839\) 6261.98 + 35513.5i 0.257673 + 1.46134i 0.789117 + 0.614243i \(0.210538\pi\)
−0.531444 + 0.847093i \(0.678350\pi\)
\(840\) 0 0
\(841\) −6973.88 + 5851.78i −0.285944 + 0.239935i
\(842\) 7494.43 + 1321.47i 0.306740 + 0.0540866i
\(843\) 0 0
\(844\) 1614.97 932.402i 0.0658643 0.0380268i
\(845\) 1394.31 + 3830.85i 0.0567643 + 0.155959i
\(846\) 0 0
\(847\) −7524.13 13032.2i −0.305233 0.528679i
\(848\) 7404.11 12824.3i 0.299833 0.519326i
\(849\) 0 0
\(850\) 24889.5 + 29662.1i 1.00436 + 1.19694i
\(851\) 12820.0 + 10757.3i 0.516410 + 0.433319i
\(852\) 0 0
\(853\) 6387.31 + 2324.79i 0.256386 + 0.0933169i 0.467016 0.884249i \(-0.345329\pi\)
−0.210630 + 0.977566i \(0.567551\pi\)
\(854\) −190.866 −0.00764790
\(855\) 0 0
\(856\) 20442.5 0.816251
\(857\) 3798.60 + 1382.58i 0.151409 + 0.0551085i 0.416613 0.909084i \(-0.363217\pi\)
−0.265204 + 0.964192i \(0.585439\pi\)
\(858\) 0 0
\(859\) 27548.3 + 23115.8i 1.09422 + 0.918160i 0.997023 0.0771052i \(-0.0245677\pi\)
0.0971974 + 0.995265i \(0.469012\pi\)
\(860\) −206.577 246.189i −0.00819095 0.00976160i
\(861\) 0 0
\(862\) 21170.2 36667.9i 0.836497 1.44885i
\(863\) −4756.94 8239.26i −0.187634 0.324991i 0.756827 0.653615i \(-0.226749\pi\)
−0.944461 + 0.328624i \(0.893415\pi\)
\(864\) 0 0
\(865\) −300.195 824.780i −0.0117999 0.0324201i
\(866\) −30221.9 + 17448.6i −1.18589 + 0.684675i
\(867\) 0 0
\(868\) −18369.8 3239.09i −0.718331 0.126661i
\(869\) 15053.2 12631.1i 0.587624 0.493075i
\(870\) 0 0
\(871\) 11828.0 + 67079.9i 0.460134 + 2.60955i
\(872\) −1360.58 + 3738.18i −0.0528386 + 0.145173i
\(873\) 0 0
\(874\) 5730.08 13919.8i 0.221765 0.538722i
\(875\) 3846.41i 0.148609i
\(876\) 0 0
\(877\) −19644.5 + 3463.86i −0.756384 + 0.133371i −0.538525 0.842609i \(-0.681018\pi\)
−0.217859 + 0.975980i \(0.569907\pi\)
\(878\) −1077.70 + 1284.35i −0.0414242 + 0.0493675i
\(879\) 0 0
\(880\) 396.263 2247.32i 0.0151796 0.0860876i
\(881\) 20787.9 + 12001.9i 0.794963 + 0.458972i 0.841707 0.539935i \(-0.181551\pi\)
−0.0467437 + 0.998907i \(0.514884\pi\)
\(882\) 0 0
\(883\) −47464.3 + 17275.6i −1.80895 + 0.658403i −0.811716 + 0.584052i \(0.801466\pi\)
−0.997232 + 0.0743512i \(0.976311\pi\)
\(884\) −25277.1 + 9200.12i −0.961721 + 0.350038i
\(885\) 0 0
\(886\) −16802.9 9701.17i −0.637139 0.367852i
\(887\) −1675.98 + 9504.98i −0.0634431 + 0.359804i 0.936515 + 0.350628i \(0.114032\pi\)
−0.999958 + 0.00917566i \(0.997079\pi\)
\(888\) 0 0
\(889\) −6692.54 + 7975.86i −0.252487 + 0.300902i
\(890\) −3453.76 + 608.991i −0.130079 + 0.0229364i
\(891\) 0 0
\(892\) 6597.09i 0.247631i
\(893\) −38808.3 24604.3i −1.45428 0.922006i
\(894\) 0 0
\(895\) 410.195 1127.00i 0.0153199 0.0420911i
\(896\) 6977.67 + 39572.4i 0.260165 + 1.47547i
\(897\) 0 0
\(898\) −24322.3 + 20408.8i −0.903837 + 0.758409i
\(899\) −30505.3 5378.90i −1.13171 0.199551i
\(900\) 0 0
\(901\) −15069.9 + 8700.63i −0.557217 + 0.321709i
\(902\) 10863.0 + 29846.0i 0.400997 + 1.10173i
\(903\) 0 0
\(904\) −454.441 787.114i −0.0167196 0.0289591i
\(905\) 511.988 886.789i 0.0188056 0.0325722i
\(906\) 0 0
\(907\) −19230.3 22917.7i −0.704002 0.838997i 0.288971 0.957338i \(-0.406687\pi\)
−0.992973 + 0.118341i \(0.962242\pi\)
\(908\) 1222.40 + 1025.71i 0.0446770 + 0.0374885i
\(909\) 0 0
\(910\) 4449.05 + 1619.32i 0.162071 + 0.0589889i
\(911\) 22280.6 0.810306 0.405153 0.914249i \(-0.367218\pi\)
0.405153 + 0.914249i \(0.367218\pi\)
\(912\) 0 0
\(913\) −12582.8 −0.456113
\(914\) 10319.6 + 3756.04i 0.373461 + 0.135929i
\(915\) 0 0
\(916\) 1421.26 + 1192.58i 0.0512662 + 0.0430175i
\(917\) −32290.5 38482.3i −1.16284 1.38582i
\(918\) 0 0
\(919\) −1254.70 + 2173.20i −0.0450366 + 0.0780057i −0.887665 0.460490i \(-0.847674\pi\)
0.842628 + 0.538496i \(0.181007\pi\)
\(920\) 287.008 + 497.113i 0.0102852 + 0.0178145i
\(921\) 0 0
\(922\) −14034.8 38560.2i −0.501313 1.37735i
\(923\) −17858.7 + 10310.7i −0.636863 + 0.367693i
\(924\) 0 0
\(925\) −37699.1 6647.36i −1.34004 0.236285i
\(926\) 8634.03 7244.81i 0.306406 0.257105i
\(927\) 0 0
\(928\) −2891.47 16398.3i −0.102281 0.580067i
\(929\) 12528.0 34420.5i 0.442445 1.21561i −0.495435 0.868645i \(-0.664991\pi\)
0.937879 0.346961i \(-0.112787\pi\)
\(930\) 0 0
\(931\) 16851.9 + 6937.10i 0.593232 + 0.244204i
\(932\) 19585.6i 0.688355i
\(933\) 0 0
\(934\) 55058.2 9708.25i 1.92886 0.340111i
\(935\) −1723.69 + 2054.21i −0.0602894 + 0.0718501i
\(936\) 0 0
\(937\) 5344.16 30308.2i 0.186325 1.05670i −0.737917 0.674891i \(-0.764191\pi\)
0.924242 0.381808i \(-0.124698\pi\)
\(938\) 50746.0 + 29298.2i 1.76643 + 1.01985i
\(939\) 0 0
\(940\) −1062.47 + 386.709i −0.0368660 + 0.0134181i
\(941\) −43012.2 + 15655.2i −1.49007 + 0.542342i −0.953469 0.301493i \(-0.902515\pi\)
−0.536604 + 0.843834i \(0.680293\pi\)
\(942\) 0 0
\(943\) −10125.8 5846.16i −0.349674 0.201885i
\(944\) −9782.29 + 55478.1i −0.337274 + 1.91277i
\(945\) 0 0
\(946\) −14997.1 + 17872.8i −0.515430 + 0.614266i
\(947\) 42340.7 7465.80i 1.45289 0.256184i 0.609201 0.793016i \(-0.291490\pi\)
0.843689 + 0.536832i \(0.180379\pi\)
\(948\) 0 0
\(949\) 2384.63i 0.0815685i
\(950\) 4569.07 + 34127.9i 0.156042 + 1.16553i
\(951\) 0 0
\(952\) 12265.4 33699.0i 0.417568 1.14726i
\(953\) −9006.99 51081.2i −0.306154 1.73629i −0.618022 0.786161i \(-0.712066\pi\)
0.311867 0.950126i \(-0.399046\pi\)
\(954\) 0 0
\(955\) 1017.92 854.139i 0.0344913 0.0289417i
\(956\) 7543.05 + 1330.04i 0.255188 + 0.0449965i
\(957\) 0 0
\(958\) 23692.2 13678.7i 0.799021 0.461315i
\(959\) 13454.1 + 36964.8i 0.453030 + 1.24469i
\(960\) 0 0
\(961\) 16491.1 + 28563.4i 0.553559 + 0.958792i
\(962\) 47199.7 81752.2i 1.58189 2.73991i
\(963\) 0 0
\(964\) −8141.76 9702.98i −0.272021 0.324182i
\(965\) 1914.30 + 1606.29i 0.0638586 + 0.0535837i
\(966\) 0 0
\(967\) −4570.26 1663.44i −0.151985 0.0553180i 0.264907 0.964274i \(-0.414659\pi\)
−0.416892 + 0.908956i \(0.636881\pi\)
\(968\) −10291.1 −0.341704
\(969\) 0 0
\(970\) −1322.88 −0.0437887
\(971\) −3459.24 1259.06i −0.114328 0.0416120i 0.284223 0.958758i \(-0.408264\pi\)
−0.398551 + 0.917146i \(0.630487\pi\)
\(972\) 0 0
\(973\) 31126.3 + 26118.1i 1.02555 + 0.860542i
\(974\) −19710.0 23489.4i −0.648407 0.772741i
\(975\) 0 0
\(976\) −95.5137 + 165.435i −0.00313250 + 0.00542565i
\(977\) 1357.18 + 2350.71i 0.0444423 + 0.0769764i 0.887391 0.461018i \(-0.152516\pi\)
−0.842949 + 0.537994i \(0.819182\pi\)
\(978\) 0 0
\(979\) 24531.3 + 67399.2i 0.800841 + 2.20029i
\(980\) 388.341 224.209i 0.0126583 0.00730825i
\(981\) 0 0
\(982\) 22557.1 + 3977.42i 0.733019 + 0.129251i
\(983\) 10652.6 8938.61i 0.345642 0.290028i −0.453395 0.891309i \(-0.649787\pi\)
0.799037 + 0.601282i \(0.205343\pi\)
\(984\) 0 0
\(985\) 225.825 + 1280.72i 0.00730496 + 0.0414285i
\(986\) −13143.0 + 36110.1i −0.424501 + 1.16631i
\(987\) 0 0
\(988\) −23364.3 5126.09i −0.752344 0.165063i
\(989\) 8588.95i 0.276150i
\(990\) 0 0
\(991\) −12854.7 + 2266.63i −0.412051 + 0.0726557i −0.375831 0.926688i \(-0.622643\pi\)
−0.0362197 + 0.999344i \(0.511532\pi\)
\(992\) −21690.4 + 25849.6i −0.694223 + 0.827343i
\(993\) 0 0
\(994\) −3080.48 + 17470.3i −0.0982967 + 0.557468i
\(995\) 167.696 + 96.8192i 0.00534303 + 0.00308480i
\(996\) 0 0
\(997\) 32009.4 11650.5i 1.01680 0.370084i 0.220758 0.975329i \(-0.429147\pi\)
0.796040 + 0.605245i \(0.206925\pi\)
\(998\) 4498.54 1637.33i 0.142684 0.0519328i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 171.4.y.a.53.15 yes 120
3.2 odd 2 inner 171.4.y.a.53.6 120
19.14 odd 18 inner 171.4.y.a.71.6 yes 120
57.14 even 18 inner 171.4.y.a.71.15 yes 120
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
171.4.y.a.53.6 120 3.2 odd 2 inner
171.4.y.a.53.15 yes 120 1.1 even 1 trivial
171.4.y.a.71.6 yes 120 19.14 odd 18 inner
171.4.y.a.71.15 yes 120 57.14 even 18 inner