Properties

Label 171.4.y.a.53.16
Level $171$
Weight $4$
Character 171.53
Analytic conductor $10.089$
Analytic rank $0$
Dimension $120$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [171,4,Mod(53,171)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(171, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([9, 11]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("171.53");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 171 = 3^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 171.y (of order \(18\), degree \(6\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.0893266110\)
Analytic rank: \(0\)
Dimension: \(120\)
Relative dimension: \(20\) over \(\Q(\zeta_{18})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 53.16
Character \(\chi\) \(=\) 171.53
Dual form 171.4.y.a.71.16

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(3.36331 + 1.22414i) q^{2} +(3.68495 + 3.09204i) q^{4} +(-13.3019 - 15.8526i) q^{5} +(-7.77429 + 13.4655i) q^{7} +(-5.70811 - 9.88673i) q^{8} +O(q^{10})\) \(q+(3.36331 + 1.22414i) q^{2} +(3.68495 + 3.09204i) q^{4} +(-13.3019 - 15.8526i) q^{5} +(-7.77429 + 13.4655i) q^{7} +(-5.70811 - 9.88673i) q^{8} +(-25.3325 - 69.6004i) q^{10} +(0.507963 - 0.293273i) q^{11} +(-46.3397 - 8.17093i) q^{13} +(-42.6310 + 35.7717i) q^{14} +(-13.7778 - 78.1379i) q^{16} +(10.6943 - 29.3824i) q^{17} +(-31.0413 - 76.7818i) q^{19} -99.5459i q^{20} +(2.06744 - 0.364546i) q^{22} +(-15.0014 + 17.8779i) q^{23} +(-52.6577 + 298.637i) q^{25} +(-145.852 - 84.2078i) q^{26} +(-70.2837 + 25.5812i) q^{28} +(267.617 - 97.4045i) q^{29} +(86.4832 + 49.9311i) q^{31} +(33.4537 - 189.726i) q^{32} +(71.9366 - 85.7307i) q^{34} +(316.875 - 55.8736i) q^{35} -53.8378i q^{37} +(-10.4094 - 296.240i) q^{38} +(-80.8014 + 222.000i) q^{40} +(58.8231 + 333.603i) q^{41} +(-199.580 + 167.468i) q^{43} +(2.77863 + 0.489948i) q^{44} +(-72.3393 + 41.7651i) q^{46} +(-210.832 - 579.255i) q^{47} +(50.6207 + 87.6777i) q^{49} +(-542.678 + 939.946i) q^{50} +(-145.495 - 173.394i) q^{52} +(116.390 + 97.6631i) q^{53} +(-11.4060 - 4.15144i) q^{55} +177.506 q^{56} +1019.31 q^{58} +(-425.794 - 154.976i) q^{59} +(-479.767 - 402.572i) q^{61} +(229.747 + 273.801i) q^{62} +(27.3934 - 47.4467i) q^{64} +(486.874 + 843.291i) q^{65} +(-309.378 - 850.010i) q^{67} +(130.260 - 75.2055i) q^{68} +(1134.14 + 199.980i) q^{70} +(186.080 - 156.140i) q^{71} +(59.3899 + 336.817i) q^{73} +(65.9052 - 181.073i) q^{74} +(123.027 - 378.918i) q^{76} +9.11995i q^{77} +(551.538 - 97.2510i) q^{79} +(-1055.41 + 1257.79i) q^{80} +(-210.537 + 1194.02i) q^{82} +(-518.748 - 299.499i) q^{83} +(-608.041 + 221.309i) q^{85} +(-876.255 + 318.931i) q^{86} +(-5.79902 - 3.34806i) q^{88} +(207.685 - 1177.84i) q^{89} +(470.284 - 560.462i) q^{91} +(-110.559 + 19.4944i) q^{92} -2206.30i q^{94} +(-804.281 + 1513.42i) q^{95} +(71.1316 - 195.432i) q^{97} +(62.9230 + 356.854i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 120 q - 36 q^{4}+O(q^{10}) \) Copy content Toggle raw display \( 120 q - 36 q^{4} - 180 q^{10} - 156 q^{13} + 180 q^{16} + 924 q^{19} + 432 q^{22} - 360 q^{25} - 624 q^{28} + 324 q^{34} + 1440 q^{40} + 1524 q^{43} + 3888 q^{46} - 3228 q^{49} - 6000 q^{52} - 4464 q^{55} + 5616 q^{58} - 5736 q^{61} - 4524 q^{64} + 372 q^{67} + 7848 q^{70} - 276 q^{73} + 4320 q^{76} + 10536 q^{79} + 3960 q^{82} - 11592 q^{85} - 11664 q^{88} - 120 q^{91} + 5904 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/171\mathbb{Z}\right)^\times\).

\(n\) \(20\) \(154\)
\(\chi(n)\) \(-1\) \(e\left(\frac{11}{18}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 3.36331 + 1.22414i 1.18911 + 0.432800i 0.859410 0.511286i \(-0.170831\pi\)
0.329698 + 0.944086i \(0.393053\pi\)
\(3\) 0 0
\(4\) 3.68495 + 3.09204i 0.460619 + 0.386505i
\(5\) −13.3019 15.8526i −1.18976 1.41790i −0.885079 0.465440i \(-0.845896\pi\)
−0.304677 0.952456i \(-0.598548\pi\)
\(6\) 0 0
\(7\) −7.77429 + 13.4655i −0.419772 + 0.727067i −0.995916 0.0902812i \(-0.971223\pi\)
0.576144 + 0.817348i \(0.304557\pi\)
\(8\) −5.70811 9.88673i −0.252265 0.436936i
\(9\) 0 0
\(10\) −25.3325 69.6004i −0.801084 2.20096i
\(11\) 0.507963 0.293273i 0.0139233 0.00803864i −0.493022 0.870017i \(-0.664108\pi\)
0.506946 + 0.861978i \(0.330775\pi\)
\(12\) 0 0
\(13\) −46.3397 8.17093i −0.988639 0.174324i −0.344131 0.938922i \(-0.611827\pi\)
−0.644508 + 0.764598i \(0.722938\pi\)
\(14\) −42.6310 + 35.7717i −0.813830 + 0.682884i
\(15\) 0 0
\(16\) −13.7778 78.1379i −0.215278 1.22090i
\(17\) 10.6943 29.3824i 0.152574 0.419193i −0.839732 0.543000i \(-0.817288\pi\)
0.992306 + 0.123807i \(0.0395104\pi\)
\(18\) 0 0
\(19\) −31.0413 76.7818i −0.374808 0.927102i
\(20\) 99.5459i 1.11296i
\(21\) 0 0
\(22\) 2.06744 0.364546i 0.0200355 0.00353280i
\(23\) −15.0014 + 17.8779i −0.136000 + 0.162078i −0.829746 0.558141i \(-0.811515\pi\)
0.693746 + 0.720220i \(0.255959\pi\)
\(24\) 0 0
\(25\) −52.6577 + 298.637i −0.421261 + 2.38909i
\(26\) −145.852 84.2078i −1.10015 0.635173i
\(27\) 0 0
\(28\) −70.2837 + 25.5812i −0.474370 + 0.172657i
\(29\) 267.617 97.4045i 1.71363 0.623709i 0.716369 0.697721i \(-0.245803\pi\)
0.997257 + 0.0740120i \(0.0235803\pi\)
\(30\) 0 0
\(31\) 86.4832 + 49.9311i 0.501059 + 0.289287i 0.729151 0.684353i \(-0.239915\pi\)
−0.228092 + 0.973640i \(0.573249\pi\)
\(32\) 33.4537 189.726i 0.184808 1.04810i
\(33\) 0 0
\(34\) 71.9366 85.7307i 0.362854 0.432432i
\(35\) 316.875 55.8736i 1.53033 0.269839i
\(36\) 0 0
\(37\) 53.8378i 0.239213i −0.992821 0.119606i \(-0.961837\pi\)
0.992821 0.119606i \(-0.0381633\pi\)
\(38\) −10.4094 296.240i −0.0444374 1.26464i
\(39\) 0 0
\(40\) −80.8014 + 222.000i −0.319396 + 0.877533i
\(41\) 58.8231 + 333.603i 0.224064 + 1.27073i 0.864466 + 0.502691i \(0.167657\pi\)
−0.640402 + 0.768040i \(0.721232\pi\)
\(42\) 0 0
\(43\) −199.580 + 167.468i −0.707808 + 0.593921i −0.923983 0.382433i \(-0.875086\pi\)
0.216175 + 0.976355i \(0.430642\pi\)
\(44\) 2.77863 + 0.489948i 0.00952033 + 0.00167869i
\(45\) 0 0
\(46\) −72.3393 + 41.7651i −0.231866 + 0.133868i
\(47\) −210.832 579.255i −0.654318 1.79772i −0.601147 0.799138i \(-0.705290\pi\)
−0.0531704 0.998585i \(-0.516933\pi\)
\(48\) 0 0
\(49\) 50.6207 + 87.6777i 0.147582 + 0.255620i
\(50\) −542.678 + 939.946i −1.53493 + 2.65857i
\(51\) 0 0
\(52\) −145.495 173.394i −0.388009 0.462411i
\(53\) 116.390 + 97.6631i 0.301650 + 0.253114i 0.781031 0.624493i \(-0.214694\pi\)
−0.479381 + 0.877607i \(0.659139\pi\)
\(54\) 0 0
\(55\) −11.4060 4.15144i −0.0279633 0.0101778i
\(56\) 177.506 0.423576
\(57\) 0 0
\(58\) 1019.31 2.30763
\(59\) −425.794 154.976i −0.939554 0.341970i −0.173564 0.984823i \(-0.555528\pi\)
−0.765990 + 0.642853i \(0.777751\pi\)
\(60\) 0 0
\(61\) −479.767 402.572i −1.00701 0.844985i −0.0190729 0.999818i \(-0.506071\pi\)
−0.987941 + 0.154833i \(0.950516\pi\)
\(62\) 229.747 + 273.801i 0.470611 + 0.560852i
\(63\) 0 0
\(64\) 27.3934 47.4467i 0.0535027 0.0926694i
\(65\) 486.874 + 843.291i 0.929066 + 1.60919i
\(66\) 0 0
\(67\) −309.378 850.010i −0.564128 1.54993i −0.813527 0.581528i \(-0.802455\pi\)
0.249399 0.968401i \(-0.419767\pi\)
\(68\) 130.260 75.2055i 0.232299 0.134118i
\(69\) 0 0
\(70\) 1134.14 + 199.980i 1.93652 + 0.341460i
\(71\) 186.080 156.140i 0.311037 0.260991i −0.473883 0.880588i \(-0.657148\pi\)
0.784921 + 0.619596i \(0.212704\pi\)
\(72\) 0 0
\(73\) 59.3899 + 336.817i 0.0952200 + 0.540020i 0.994680 + 0.103016i \(0.0328492\pi\)
−0.899460 + 0.437004i \(0.856040\pi\)
\(74\) 65.9052 181.073i 0.103531 0.284450i
\(75\) 0 0
\(76\) 123.027 378.918i 0.185686 0.571906i
\(77\) 9.11995i 0.0134976i
\(78\) 0 0
\(79\) 551.538 97.2510i 0.785479 0.138501i 0.233497 0.972357i \(-0.424983\pi\)
0.551982 + 0.833856i \(0.313872\pi\)
\(80\) −1055.41 + 1257.79i −1.47499 + 1.75782i
\(81\) 0 0
\(82\) −210.537 + 1194.02i −0.283536 + 1.60801i
\(83\) −518.748 299.499i −0.686024 0.396076i 0.116097 0.993238i \(-0.462962\pi\)
−0.802121 + 0.597162i \(0.796295\pi\)
\(84\) 0 0
\(85\) −608.041 + 221.309i −0.775898 + 0.282404i
\(86\) −876.255 + 318.931i −1.09871 + 0.399898i
\(87\) 0 0
\(88\) −5.79902 3.34806i −0.00702474 0.00405574i
\(89\) 207.685 1177.84i 0.247355 1.40282i −0.567605 0.823301i \(-0.692130\pi\)
0.814960 0.579518i \(-0.196759\pi\)
\(90\) 0 0
\(91\) 470.284 560.462i 0.541748 0.645631i
\(92\) −110.559 + 19.4944i −0.125288 + 0.0220917i
\(93\) 0 0
\(94\) 2206.30i 2.42088i
\(95\) −804.281 + 1513.42i −0.868605 + 1.63446i
\(96\) 0 0
\(97\) 71.1316 195.432i 0.0744569 0.204569i −0.896881 0.442272i \(-0.854172\pi\)
0.971338 + 0.237704i \(0.0763947\pi\)
\(98\) 62.9230 + 356.854i 0.0648590 + 0.367834i
\(99\) 0 0
\(100\) −1117.44 + 937.642i −1.11744 + 0.937642i
\(101\) 1472.31 + 259.609i 1.45050 + 0.255762i 0.842724 0.538345i \(-0.180950\pi\)
0.607777 + 0.794108i \(0.292062\pi\)
\(102\) 0 0
\(103\) −592.237 + 341.928i −0.566552 + 0.327099i −0.755771 0.654836i \(-0.772738\pi\)
0.189219 + 0.981935i \(0.439404\pi\)
\(104\) 183.728 + 504.788i 0.173231 + 0.475948i
\(105\) 0 0
\(106\) 271.903 + 470.949i 0.249146 + 0.431534i
\(107\) 403.890 699.557i 0.364911 0.632044i −0.623851 0.781543i \(-0.714433\pi\)
0.988762 + 0.149499i \(0.0477661\pi\)
\(108\) 0 0
\(109\) 202.419 + 241.233i 0.177873 + 0.211981i 0.847613 0.530615i \(-0.178039\pi\)
−0.669740 + 0.742596i \(0.733594\pi\)
\(110\) −33.2799 27.9251i −0.0288465 0.0242051i
\(111\) 0 0
\(112\) 1159.28 + 421.942i 0.978048 + 0.355980i
\(113\) −397.509 −0.330925 −0.165462 0.986216i \(-0.552912\pi\)
−0.165462 + 0.986216i \(0.552912\pi\)
\(114\) 0 0
\(115\) 482.957 0.391617
\(116\) 1287.33 + 468.551i 1.03040 + 0.375033i
\(117\) 0 0
\(118\) −1242.36 1042.47i −0.969227 0.813278i
\(119\) 312.507 + 372.432i 0.240735 + 0.286897i
\(120\) 0 0
\(121\) −665.328 + 1152.38i −0.499871 + 0.865802i
\(122\) −1120.80 1941.28i −0.831739 1.44061i
\(123\) 0 0
\(124\) 164.297 + 451.403i 0.118987 + 0.326913i
\(125\) 3194.40 1844.29i 2.28573 1.31967i
\(126\) 0 0
\(127\) 1404.21 + 247.599i 0.981127 + 0.172999i 0.641134 0.767429i \(-0.278464\pi\)
0.339993 + 0.940428i \(0.389575\pi\)
\(128\) −1030.43 + 864.632i −0.711546 + 0.597058i
\(129\) 0 0
\(130\) 605.198 + 3432.25i 0.408303 + 2.31560i
\(131\) 621.100 1706.46i 0.414242 1.13812i −0.540670 0.841235i \(-0.681829\pi\)
0.954913 0.296887i \(-0.0959485\pi\)
\(132\) 0 0
\(133\) 1275.23 + 178.939i 0.831400 + 0.116661i
\(134\) 3237.57i 2.08719i
\(135\) 0 0
\(136\) −351.540 + 61.9861i −0.221650 + 0.0390828i
\(137\) −71.1041 + 84.7386i −0.0443419 + 0.0528446i −0.787760 0.615983i \(-0.788759\pi\)
0.743418 + 0.668827i \(0.233203\pi\)
\(138\) 0 0
\(139\) −307.402 + 1743.37i −0.187579 + 1.06382i 0.735017 + 0.678049i \(0.237174\pi\)
−0.922596 + 0.385767i \(0.873937\pi\)
\(140\) 1340.43 + 773.899i 0.809194 + 0.467188i
\(141\) 0 0
\(142\) 816.982 297.357i 0.482814 0.175730i
\(143\) −25.9352 + 9.43963i −0.0151665 + 0.00552015i
\(144\) 0 0
\(145\) −5103.92 2946.75i −2.92315 1.68768i
\(146\) −212.566 + 1205.52i −0.120494 + 0.683353i
\(147\) 0 0
\(148\) 166.469 198.390i 0.0924570 0.110186i
\(149\) −1037.46 + 182.932i −0.570417 + 0.100580i −0.451415 0.892314i \(-0.649081\pi\)
−0.119002 + 0.992894i \(0.537969\pi\)
\(150\) 0 0
\(151\) 1020.14i 0.549789i −0.961474 0.274895i \(-0.911357\pi\)
0.961474 0.274895i \(-0.0886430\pi\)
\(152\) −581.934 + 745.175i −0.310533 + 0.397643i
\(153\) 0 0
\(154\) −11.1641 + 30.6732i −0.00584176 + 0.0160501i
\(155\) −358.853 2035.16i −0.185960 1.05463i
\(156\) 0 0
\(157\) 2296.68 1927.14i 1.16748 0.979634i 0.167502 0.985872i \(-0.446430\pi\)
0.999981 + 0.00623754i \(0.00198549\pi\)
\(158\) 1974.04 + 348.077i 0.993963 + 0.175263i
\(159\) 0 0
\(160\) −3452.63 + 1993.38i −1.70597 + 0.984940i
\(161\) −124.110 340.988i −0.0607529 0.166917i
\(162\) 0 0
\(163\) −773.278 1339.36i −0.371582 0.643599i 0.618227 0.785999i \(-0.287851\pi\)
−0.989809 + 0.142401i \(0.954518\pi\)
\(164\) −814.753 + 1411.19i −0.387936 + 0.671925i
\(165\) 0 0
\(166\) −1378.08 1642.33i −0.644336 0.767889i
\(167\) −3156.36 2648.50i −1.46255 1.22723i −0.922730 0.385448i \(-0.874047\pi\)
−0.539822 0.841779i \(-0.681509\pi\)
\(168\) 0 0
\(169\) 16.0952 + 5.85818i 0.00732600 + 0.00266645i
\(170\) −2315.94 −1.04485
\(171\) 0 0
\(172\) −1253.26 −0.555583
\(173\) −3385.01 1232.04i −1.48761 0.541448i −0.534794 0.844982i \(-0.679611\pi\)
−0.952820 + 0.303535i \(0.901833\pi\)
\(174\) 0 0
\(175\) −3611.91 3030.75i −1.56020 1.30916i
\(176\) −29.9144 35.6505i −0.0128118 0.0152685i
\(177\) 0 0
\(178\) 2140.36 3707.20i 0.901272 1.56105i
\(179\) 389.679 + 674.943i 0.162715 + 0.281830i 0.935841 0.352421i \(-0.114642\pi\)
−0.773127 + 0.634252i \(0.781308\pi\)
\(180\) 0 0
\(181\) 296.501 + 814.631i 0.121761 + 0.334536i 0.985566 0.169290i \(-0.0541474\pi\)
−0.863805 + 0.503826i \(0.831925\pi\)
\(182\) 2267.79 1309.31i 0.923627 0.533256i
\(183\) 0 0
\(184\) 262.383 + 46.2653i 0.105126 + 0.0185365i
\(185\) −853.467 + 716.144i −0.339179 + 0.284605i
\(186\) 0 0
\(187\) −3.18474 18.0615i −0.00124541 0.00706305i
\(188\) 1014.18 2786.43i 0.393438 1.08096i
\(189\) 0 0
\(190\) −4557.69 + 4105.56i −1.74026 + 1.56762i
\(191\) 3746.70i 1.41938i 0.704514 + 0.709690i \(0.251165\pi\)
−0.704514 + 0.709690i \(0.748835\pi\)
\(192\) 0 0
\(193\) 1602.36 282.539i 0.597617 0.105376i 0.133347 0.991069i \(-0.457428\pi\)
0.464271 + 0.885693i \(0.346316\pi\)
\(194\) 478.475 570.224i 0.177075 0.211029i
\(195\) 0 0
\(196\) −84.5681 + 479.610i −0.0308193 + 0.174785i
\(197\) 319.858 + 184.670i 0.115680 + 0.0667878i 0.556724 0.830698i \(-0.312058\pi\)
−0.441044 + 0.897486i \(0.645392\pi\)
\(198\) 0 0
\(199\) 2623.17 954.754i 0.934429 0.340104i 0.170465 0.985364i \(-0.445473\pi\)
0.763963 + 0.645259i \(0.223251\pi\)
\(200\) 3253.11 1184.04i 1.15015 0.418620i
\(201\) 0 0
\(202\) 4634.04 + 2675.47i 1.61411 + 0.931907i
\(203\) −768.933 + 4360.84i −0.265855 + 1.50774i
\(204\) 0 0
\(205\) 4506.00 5370.04i 1.53518 1.82956i
\(206\) −2410.45 + 425.027i −0.815261 + 0.143752i
\(207\) 0 0
\(208\) 3733.46i 1.24456i
\(209\) −38.2858 29.8988i −0.0126712 0.00989541i
\(210\) 0 0
\(211\) 674.084 1852.03i 0.219933 0.604261i −0.779831 0.625990i \(-0.784695\pi\)
0.999764 + 0.0217291i \(0.00691714\pi\)
\(212\) 126.914 + 719.767i 0.0411156 + 0.233178i
\(213\) 0 0
\(214\) 2214.76 1858.41i 0.707468 0.593636i
\(215\) 5309.59 + 936.224i 1.68424 + 0.296976i
\(216\) 0 0
\(217\) −1344.69 + 776.358i −0.420662 + 0.242869i
\(218\) 385.492 + 1059.13i 0.119765 + 0.329052i
\(219\) 0 0
\(220\) −29.1941 50.5656i −0.00894666 0.0154961i
\(221\) −735.653 + 1274.19i −0.223916 + 0.387834i
\(222\) 0 0
\(223\) 3862.31 + 4602.93i 1.15982 + 1.38222i 0.910352 + 0.413835i \(0.135811\pi\)
0.249467 + 0.968383i \(0.419745\pi\)
\(224\) 2294.67 + 1925.45i 0.684459 + 0.574329i
\(225\) 0 0
\(226\) −1336.95 486.608i −0.393506 0.143224i
\(227\) −2018.84 −0.590287 −0.295143 0.955453i \(-0.595367\pi\)
−0.295143 + 0.955453i \(0.595367\pi\)
\(228\) 0 0
\(229\) 4532.55 1.30794 0.653972 0.756519i \(-0.273101\pi\)
0.653972 + 0.756519i \(0.273101\pi\)
\(230\) 1624.33 + 591.209i 0.465675 + 0.169492i
\(231\) 0 0
\(232\) −2490.60 2089.86i −0.704809 0.591405i
\(233\) −2069.78 2466.67i −0.581957 0.693550i 0.392082 0.919930i \(-0.371755\pi\)
−0.974039 + 0.226381i \(0.927311\pi\)
\(234\) 0 0
\(235\) −6378.22 + 11047.4i −1.77051 + 3.06661i
\(236\) −1089.84 1887.65i −0.300603 0.520660i
\(237\) 0 0
\(238\) 595.148 + 1635.16i 0.162091 + 0.445342i
\(239\) −4014.76 + 2317.92i −1.08658 + 0.627339i −0.932664 0.360745i \(-0.882522\pi\)
−0.153918 + 0.988084i \(0.549189\pi\)
\(240\) 0 0
\(241\) −6641.51 1171.08i −1.77517 0.313011i −0.812356 0.583162i \(-0.801815\pi\)
−0.962818 + 0.270151i \(0.912927\pi\)
\(242\) −3648.38 + 3061.36i −0.969120 + 0.813188i
\(243\) 0 0
\(244\) −523.147 2966.92i −0.137259 0.778432i
\(245\) 716.565 1968.75i 0.186856 0.513382i
\(246\) 0 0
\(247\) 811.062 + 3811.68i 0.208934 + 0.981908i
\(248\) 1140.05i 0.291908i
\(249\) 0 0
\(250\) 13001.4 2292.50i 3.28913 0.579963i
\(251\) −2630.37 + 3134.75i −0.661463 + 0.788301i −0.987595 0.157023i \(-0.949810\pi\)
0.326132 + 0.945324i \(0.394255\pi\)
\(252\) 0 0
\(253\) −2.37703 + 13.4808i −0.000590683 + 0.00334993i
\(254\) 4419.68 + 2551.70i 1.09179 + 0.630347i
\(255\) 0 0
\(256\) −4935.94 + 1796.54i −1.20506 + 0.438608i
\(257\) 5250.22 1910.92i 1.27432 0.463814i 0.385769 0.922595i \(-0.373936\pi\)
0.888549 + 0.458781i \(0.151714\pi\)
\(258\) 0 0
\(259\) 724.951 + 418.551i 0.173924 + 0.100415i
\(260\) −813.382 + 4612.92i −0.194015 + 1.10031i
\(261\) 0 0
\(262\) 4177.90 4979.03i 0.985158 1.17407i
\(263\) 7263.49 1280.75i 1.70299 0.300283i 0.764251 0.644918i \(-0.223109\pi\)
0.938737 + 0.344636i \(0.111998\pi\)
\(264\) 0 0
\(265\) 3144.19i 0.728852i
\(266\) 4069.93 + 2162.89i 0.938133 + 0.498553i
\(267\) 0 0
\(268\) 1488.22 4088.86i 0.339207 0.931965i
\(269\) −177.720 1007.90i −0.0402816 0.228448i 0.958020 0.286700i \(-0.0925584\pi\)
−0.998302 + 0.0582520i \(0.981447\pi\)
\(270\) 0 0
\(271\) −4082.96 + 3426.01i −0.915212 + 0.767954i −0.973103 0.230369i \(-0.926007\pi\)
0.0578917 + 0.998323i \(0.481562\pi\)
\(272\) −2443.23 430.807i −0.544641 0.0960349i
\(273\) 0 0
\(274\) −342.877 + 197.960i −0.0755984 + 0.0436468i
\(275\) 60.8338 + 167.140i 0.0133397 + 0.0366505i
\(276\) 0 0
\(277\) 2776.61 + 4809.22i 0.602274 + 1.04317i 0.992476 + 0.122440i \(0.0390721\pi\)
−0.390201 + 0.920730i \(0.627595\pi\)
\(278\) −3168.02 + 5487.17i −0.683472 + 1.18381i
\(279\) 0 0
\(280\) −2361.16 2813.92i −0.503952 0.600586i
\(281\) 5678.68 + 4764.98i 1.20556 + 1.01158i 0.999454 + 0.0330525i \(0.0105228\pi\)
0.206104 + 0.978530i \(0.433922\pi\)
\(282\) 0 0
\(283\) 3476.62 + 1265.39i 0.730260 + 0.265793i 0.680275 0.732957i \(-0.261860\pi\)
0.0499849 + 0.998750i \(0.484083\pi\)
\(284\) 1168.49 0.244144
\(285\) 0 0
\(286\) −98.7834 −0.0204237
\(287\) −4949.42 1801.44i −1.01796 0.370508i
\(288\) 0 0
\(289\) 3014.62 + 2529.57i 0.613600 + 0.514872i
\(290\) −13558.8 16158.7i −2.74552 3.27198i
\(291\) 0 0
\(292\) −822.603 + 1424.79i −0.164860 + 0.285546i
\(293\) 158.920 + 275.257i 0.0316867 + 0.0548830i 0.881434 0.472307i \(-0.156579\pi\)
−0.849747 + 0.527190i \(0.823245\pi\)
\(294\) 0 0
\(295\) 3207.09 + 8811.41i 0.632963 + 1.73905i
\(296\) −532.280 + 307.312i −0.104521 + 0.0603451i
\(297\) 0 0
\(298\) −3713.24 654.744i −0.721819 0.127276i
\(299\) 841.237 705.882i 0.162709 0.136529i
\(300\) 0 0
\(301\) −703.437 3989.39i −0.134702 0.763935i
\(302\) 1248.80 3431.06i 0.237949 0.653759i
\(303\) 0 0
\(304\) −5571.89 + 3483.38i −1.05122 + 0.657190i
\(305\) 12960.5i 2.43317i
\(306\) 0 0
\(307\) 2868.16 505.735i 0.533208 0.0940189i 0.0994398 0.995044i \(-0.468295\pi\)
0.433768 + 0.901025i \(0.357184\pi\)
\(308\) −28.1993 + 33.6066i −0.00521689 + 0.00621725i
\(309\) 0 0
\(310\) 1284.39 7284.15i 0.235318 1.33455i
\(311\) −4209.45 2430.33i −0.767512 0.443123i 0.0644743 0.997919i \(-0.479463\pi\)
−0.831986 + 0.554796i \(0.812796\pi\)
\(312\) 0 0
\(313\) −4039.58 + 1470.29i −0.729491 + 0.265513i −0.679950 0.733259i \(-0.737998\pi\)
−0.0495418 + 0.998772i \(0.515776\pi\)
\(314\) 10083.5 3670.10i 1.81225 0.659605i
\(315\) 0 0
\(316\) 2333.09 + 1347.01i 0.415338 + 0.239795i
\(317\) 710.113 4027.25i 0.125817 0.713542i −0.855003 0.518623i \(-0.826445\pi\)
0.980819 0.194919i \(-0.0624442\pi\)
\(318\) 0 0
\(319\) 107.373 127.963i 0.0188456 0.0224593i
\(320\) −1116.54 + 196.875i −0.195051 + 0.0343927i
\(321\) 0 0
\(322\) 1298.78i 0.224776i
\(323\) −2588.00 + 90.9378i −0.445821 + 0.0156654i
\(324\) 0 0
\(325\) 4880.28 13408.5i 0.832951 2.28851i
\(326\) −961.207 5451.27i −0.163302 0.926129i
\(327\) 0 0
\(328\) 2962.47 2485.81i 0.498704 0.418463i
\(329\) 9439.01 + 1664.35i 1.58173 + 0.278902i
\(330\) 0 0
\(331\) −4107.97 + 2371.74i −0.682158 + 0.393844i −0.800668 0.599109i \(-0.795522\pi\)
0.118509 + 0.992953i \(0.462188\pi\)
\(332\) −985.498 2707.63i −0.162910 0.447592i
\(333\) 0 0
\(334\) −7373.65 12771.5i −1.20799 2.09230i
\(335\) −9359.52 + 16211.2i −1.52646 + 2.64391i
\(336\) 0 0
\(337\) 3482.36 + 4150.11i 0.562897 + 0.670834i 0.970157 0.242478i \(-0.0779603\pi\)
−0.407260 + 0.913312i \(0.633516\pi\)
\(338\) 46.9619 + 39.4057i 0.00755738 + 0.00634139i
\(339\) 0 0
\(340\) −2924.90 1064.58i −0.466544 0.169808i
\(341\) 58.5737 0.00930189
\(342\) 0 0
\(343\) −6907.33 −1.08735
\(344\) 2794.94 + 1017.27i 0.438061 + 0.159441i
\(345\) 0 0
\(346\) −9876.62 8287.47i −1.53460 1.28768i
\(347\) −4198.08 5003.07i −0.649466 0.774003i 0.336368 0.941731i \(-0.390802\pi\)
−0.985833 + 0.167728i \(0.946357\pi\)
\(348\) 0 0
\(349\) 2007.68 3477.41i 0.307934 0.533357i −0.669977 0.742382i \(-0.733696\pi\)
0.977910 + 0.209026i \(0.0670292\pi\)
\(350\) −8437.88 14614.8i −1.28864 2.23199i
\(351\) 0 0
\(352\) −38.6481 106.185i −0.00585213 0.0160786i
\(353\) 2038.50 1176.93i 0.307361 0.177455i −0.338384 0.941008i \(-0.609880\pi\)
0.645745 + 0.763553i \(0.276547\pi\)
\(354\) 0 0
\(355\) −4950.43 872.894i −0.740117 0.130503i
\(356\) 4407.24 3698.12i 0.656133 0.550561i
\(357\) 0 0
\(358\) 484.381 + 2747.06i 0.0715094 + 0.405550i
\(359\) 730.862 2008.03i 0.107447 0.295208i −0.874304 0.485378i \(-0.838682\pi\)
0.981751 + 0.190170i \(0.0609041\pi\)
\(360\) 0 0
\(361\) −4931.88 + 4766.81i −0.719038 + 0.694971i
\(362\) 3102.81i 0.450498i
\(363\) 0 0
\(364\) 3465.94 611.139i 0.499079 0.0880011i
\(365\) 4549.41 5421.78i 0.652403 0.777504i
\(366\) 0 0
\(367\) 548.074 3108.28i 0.0779543 0.442101i −0.920701 0.390268i \(-0.872383\pi\)
0.998656 0.0518331i \(-0.0165064\pi\)
\(368\) 1603.63 + 925.856i 0.227160 + 0.131151i
\(369\) 0 0
\(370\) −3747.13 + 1363.85i −0.526498 + 0.191630i
\(371\) −2219.93 + 807.989i −0.310655 + 0.113069i
\(372\) 0 0
\(373\) −6283.68 3627.89i −0.872270 0.503605i −0.00416822 0.999991i \(-0.501327\pi\)
−0.868102 + 0.496386i \(0.834660\pi\)
\(374\) 11.3987 64.6451i 0.00157597 0.00893775i
\(375\) 0 0
\(376\) −4523.49 + 5390.88i −0.620428 + 0.739398i
\(377\) −13197.2 + 2327.01i −1.80289 + 0.317897i
\(378\) 0 0
\(379\) 5263.86i 0.713420i 0.934215 + 0.356710i \(0.116102\pi\)
−0.934215 + 0.356710i \(0.883898\pi\)
\(380\) −7643.31 + 3090.03i −1.03182 + 0.417145i
\(381\) 0 0
\(382\) −4586.50 + 12601.3i −0.614308 + 1.68780i
\(383\) −976.746 5539.40i −0.130312 0.739035i −0.978010 0.208556i \(-0.933124\pi\)
0.847699 0.530478i \(-0.177988\pi\)
\(384\) 0 0
\(385\) 144.575 121.312i 0.0191382 0.0160588i
\(386\) 5735.09 + 1011.25i 0.756239 + 0.133345i
\(387\) 0 0
\(388\) 866.401 500.217i 0.113363 0.0654502i
\(389\) −2418.52 6644.84i −0.315229 0.866084i −0.991579 0.129504i \(-0.958662\pi\)
0.676350 0.736580i \(-0.263561\pi\)
\(390\) 0 0
\(391\) 364.867 + 631.968i 0.0471921 + 0.0817392i
\(392\) 577.897 1000.95i 0.0744597 0.128968i
\(393\) 0 0
\(394\) 849.717 + 1012.65i 0.108650 + 0.129484i
\(395\) −8878.16 7449.66i −1.13091 0.948945i
\(396\) 0 0
\(397\) 9183.64 + 3342.57i 1.16099 + 0.422566i 0.849452 0.527667i \(-0.176933\pi\)
0.311540 + 0.950233i \(0.399155\pi\)
\(398\) 9991.27 1.25833
\(399\) 0 0
\(400\) 24060.3 3.00754
\(401\) 4793.19 + 1744.58i 0.596909 + 0.217257i 0.622765 0.782409i \(-0.286009\pi\)
−0.0258567 + 0.999666i \(0.508231\pi\)
\(402\) 0 0
\(403\) −3599.62 3020.44i −0.444937 0.373347i
\(404\) 4622.68 + 5509.10i 0.569275 + 0.678435i
\(405\) 0 0
\(406\) −7924.45 + 13725.5i −0.968679 + 1.67780i
\(407\) −15.7892 27.3476i −0.00192295 0.00333064i
\(408\) 0 0
\(409\) −16.0667 44.1429i −0.00194242 0.00533674i 0.938718 0.344687i \(-0.112015\pi\)
−0.940660 + 0.339350i \(0.889793\pi\)
\(410\) 21728.7 12545.1i 2.61733 1.51112i
\(411\) 0 0
\(412\) −3239.62 571.233i −0.387390 0.0683073i
\(413\) 5397.08 4528.69i 0.643034 0.539569i
\(414\) 0 0
\(415\) 2152.49 + 12207.4i 0.254607 + 1.44395i
\(416\) −3100.47 + 8518.47i −0.365416 + 1.00397i
\(417\) 0 0
\(418\) −92.1666 147.426i −0.0107847 0.0172508i
\(419\) 4773.84i 0.556605i −0.960494 0.278302i \(-0.910228\pi\)
0.960494 0.278302i \(-0.0897717\pi\)
\(420\) 0 0
\(421\) 864.150 152.373i 0.100038 0.0176394i −0.123405 0.992356i \(-0.539381\pi\)
0.223443 + 0.974717i \(0.428270\pi\)
\(422\) 4534.31 5403.78i 0.523049 0.623345i
\(423\) 0 0
\(424\) 301.200 1708.19i 0.0344990 0.195653i
\(425\) 8211.53 + 4740.93i 0.937218 + 0.541103i
\(426\) 0 0
\(427\) 9150.67 3330.57i 1.03708 0.377465i
\(428\) 3651.37 1328.99i 0.412373 0.150092i
\(429\) 0 0
\(430\) 16711.7 + 9648.51i 1.87421 + 1.08208i
\(431\) −592.556 + 3360.55i −0.0662237 + 0.375573i 0.933626 + 0.358249i \(0.116626\pi\)
−0.999850 + 0.0173246i \(0.994485\pi\)
\(432\) 0 0
\(433\) 5080.87 6055.15i 0.563905 0.672036i −0.406463 0.913667i \(-0.633238\pi\)
0.970368 + 0.241631i \(0.0776824\pi\)
\(434\) −5472.98 + 965.035i −0.605326 + 0.106735i
\(435\) 0 0
\(436\) 1514.82i 0.166392i
\(437\) 1838.36 + 596.878i 0.201237 + 0.0653376i
\(438\) 0 0
\(439\) 5891.95 16188.0i 0.640564 1.75994i −0.00938327 0.999956i \(-0.502987\pi\)
0.649947 0.759979i \(-0.274791\pi\)
\(440\) 24.0624 + 136.465i 0.00260712 + 0.0147857i
\(441\) 0 0
\(442\) −4034.02 + 3384.94i −0.434115 + 0.364265i
\(443\) 6847.95 + 1207.48i 0.734438 + 0.129501i 0.528343 0.849031i \(-0.322813\pi\)
0.206095 + 0.978532i \(0.433925\pi\)
\(444\) 0 0
\(445\) −21434.4 + 12375.2i −2.28334 + 1.31829i
\(446\) 7355.50 + 20209.1i 0.780926 + 2.14558i
\(447\) 0 0
\(448\) 425.928 + 737.730i 0.0449179 + 0.0778001i
\(449\) −1530.82 + 2651.46i −0.160899 + 0.278686i −0.935192 0.354142i \(-0.884773\pi\)
0.774292 + 0.632828i \(0.218106\pi\)
\(450\) 0 0
\(451\) 127.717 + 152.207i 0.0133347 + 0.0158916i
\(452\) −1464.80 1229.11i −0.152430 0.127904i
\(453\) 0 0
\(454\) −6789.98 2471.35i −0.701915 0.255476i
\(455\) −15140.4 −1.55999
\(456\) 0 0
\(457\) −13086.6 −1.33953 −0.669766 0.742572i \(-0.733606\pi\)
−0.669766 + 0.742572i \(0.733606\pi\)
\(458\) 15244.3 + 5548.49i 1.55529 + 0.566078i
\(459\) 0 0
\(460\) 1779.67 + 1493.32i 0.180386 + 0.151362i
\(461\) 6745.89 + 8039.44i 0.681535 + 0.812221i 0.990304 0.138916i \(-0.0443617\pi\)
−0.308770 + 0.951137i \(0.599917\pi\)
\(462\) 0 0
\(463\) 7339.34 12712.1i 0.736691 1.27599i −0.217286 0.976108i \(-0.569721\pi\)
0.953977 0.299878i \(-0.0969461\pi\)
\(464\) −11298.2 19569.0i −1.13040 1.95790i
\(465\) 0 0
\(466\) −3941.76 10829.9i −0.391842 1.07658i
\(467\) −4543.90 + 2623.42i −0.450250 + 0.259952i −0.707936 0.706277i \(-0.750373\pi\)
0.257686 + 0.966229i \(0.417040\pi\)
\(468\) 0 0
\(469\) 13851.0 + 2442.30i 1.36371 + 0.240458i
\(470\) −34975.5 + 29347.9i −3.43255 + 2.88025i
\(471\) 0 0
\(472\) 898.269 + 5094.33i 0.0875978 + 0.496792i
\(473\) −52.2658 + 143.599i −0.00508073 + 0.0139592i
\(474\) 0 0
\(475\) 24564.4 5226.90i 2.37283 0.504898i
\(476\) 2338.68i 0.225196i
\(477\) 0 0
\(478\) −16340.3 + 2881.24i −1.56358 + 0.275701i
\(479\) 3625.56 4320.77i 0.345837 0.412153i −0.564887 0.825169i \(-0.691080\pi\)
0.910724 + 0.413016i \(0.135525\pi\)
\(480\) 0 0
\(481\) −439.905 + 2494.83i −0.0417005 + 0.236495i
\(482\) −20903.9 12068.8i −1.97540 1.14050i
\(483\) 0 0
\(484\) −6014.91 + 2189.25i −0.564887 + 0.205602i
\(485\) −4044.29 + 1472.00i −0.378642 + 0.137815i
\(486\) 0 0
\(487\) 7501.19 + 4330.81i 0.697970 + 0.402973i 0.806591 0.591110i \(-0.201310\pi\)
−0.108621 + 0.994083i \(0.534643\pi\)
\(488\) −1241.56 + 7041.25i −0.115170 + 0.653160i
\(489\) 0 0
\(490\) 4820.06 5744.32i 0.444384 0.529596i
\(491\) −13111.7 + 2311.95i −1.20514 + 0.212499i −0.739920 0.672695i \(-0.765137\pi\)
−0.465222 + 0.885194i \(0.654026\pi\)
\(492\) 0 0
\(493\) 8904.90i 0.813502i
\(494\) −1938.19 + 13812.7i −0.176525 + 1.25802i
\(495\) 0 0
\(496\) 2709.96 7445.56i 0.245324 0.674023i
\(497\) 655.854 + 3719.53i 0.0591933 + 0.335702i
\(498\) 0 0
\(499\) −6868.77 + 5763.59i −0.616209 + 0.517061i −0.896609 0.442822i \(-0.853977\pi\)
0.280400 + 0.959883i \(0.409533\pi\)
\(500\) 17473.8 + 3081.11i 1.56291 + 0.275583i
\(501\) 0 0
\(502\) −12684.1 + 7323.17i −1.12773 + 0.651094i
\(503\) −732.241 2011.81i −0.0649085 0.178335i 0.902998 0.429644i \(-0.141361\pi\)
−0.967907 + 0.251309i \(0.919139\pi\)
\(504\) 0 0
\(505\) −15469.1 26793.2i −1.36310 2.36095i
\(506\) −24.4971 + 42.4303i −0.00215223 + 0.00372778i
\(507\) 0 0
\(508\) 4408.84 + 5254.25i 0.385060 + 0.458897i
\(509\) 16941.6 + 14215.7i 1.47529 + 1.23792i 0.911042 + 0.412315i \(0.135280\pi\)
0.564251 + 0.825603i \(0.309165\pi\)
\(510\) 0 0
\(511\) −4997.11 1818.80i −0.432601 0.157454i
\(512\) −8039.28 −0.693925
\(513\) 0 0
\(514\) 19997.4 1.71604
\(515\) 13298.3 + 4840.19i 1.13785 + 0.414144i
\(516\) 0 0
\(517\) −276.974 232.409i −0.0235615 0.0197705i
\(518\) 1925.87 + 2295.16i 0.163355 + 0.194679i
\(519\) 0 0
\(520\) 5558.26 9627.19i 0.468742 0.811885i
\(521\) −1634.47 2830.98i −0.137442 0.238057i 0.789086 0.614283i \(-0.210555\pi\)
−0.926528 + 0.376227i \(0.877221\pi\)
\(522\) 0 0
\(523\) −2224.28 6111.15i −0.185967 0.510941i 0.811316 0.584608i \(-0.198752\pi\)
−0.997283 + 0.0736677i \(0.976530\pi\)
\(524\) 7565.16 4367.75i 0.630698 0.364134i
\(525\) 0 0
\(526\) 25997.2 + 4584.00i 2.15500 + 0.379985i
\(527\) 2391.98 2007.11i 0.197716 0.165903i
\(528\) 0 0
\(529\) 2018.20 + 11445.8i 0.165875 + 0.940722i
\(530\) 3848.94 10574.9i 0.315447 0.866684i
\(531\) 0 0
\(532\) 4145.86 + 4602.43i 0.337868 + 0.375077i
\(533\) 15939.7i 1.29535i
\(534\) 0 0
\(535\) −16462.3 + 2902.74i −1.33033 + 0.234573i
\(536\) −6637.85 + 7910.69i −0.534910 + 0.637481i
\(537\) 0 0
\(538\) 636.086 3607.42i 0.0509733 0.289084i
\(539\) 51.4270 + 29.6914i 0.00410968 + 0.00237272i
\(540\) 0 0
\(541\) 20922.5 7615.15i 1.66271 0.605178i 0.671926 0.740618i \(-0.265467\pi\)
0.990785 + 0.135441i \(0.0432450\pi\)
\(542\) −17926.2 + 6524.60i −1.42066 + 0.517077i
\(543\) 0 0
\(544\) −5216.83 3011.94i −0.411158 0.237382i
\(545\) 1131.62 6417.71i 0.0889415 0.504412i
\(546\) 0 0
\(547\) −2657.93 + 3167.60i −0.207761 + 0.247599i −0.859855 0.510538i \(-0.829446\pi\)
0.652094 + 0.758138i \(0.273891\pi\)
\(548\) −524.030 + 92.4007i −0.0408494 + 0.00720285i
\(549\) 0 0
\(550\) 636.611i 0.0493549i
\(551\) −15786.1 17524.5i −1.22052 1.35494i
\(552\) 0 0
\(553\) −2978.29 + 8182.77i −0.229023 + 0.629235i
\(554\) 3451.40 + 19573.9i 0.264686 + 1.50111i
\(555\) 0 0
\(556\) −6523.32 + 5473.72i −0.497573 + 0.417513i
\(557\) −3266.41 575.957i −0.248478 0.0438134i 0.0480217 0.998846i \(-0.484708\pi\)
−0.296500 + 0.955033i \(0.595819\pi\)
\(558\) 0 0
\(559\) 10616.9 6129.65i 0.803301 0.463786i
\(560\) −8731.69 23990.1i −0.658895 1.81030i
\(561\) 0 0
\(562\) 13266.1 + 22977.6i 0.995725 + 1.72465i
\(563\) −8843.07 + 15316.6i −0.661973 + 1.14657i 0.318123 + 0.948049i \(0.396947\pi\)
−0.980096 + 0.198522i \(0.936386\pi\)
\(564\) 0 0
\(565\) 5287.62 + 6301.54i 0.393720 + 0.469217i
\(566\) 10143.9 + 8511.76i 0.753323 + 0.632113i
\(567\) 0 0
\(568\) −2605.88 948.462i −0.192500 0.0700644i
\(569\) 10925.5 0.804959 0.402480 0.915429i \(-0.368148\pi\)
0.402480 + 0.915429i \(0.368148\pi\)
\(570\) 0 0
\(571\) −13116.4 −0.961305 −0.480652 0.876911i \(-0.659600\pi\)
−0.480652 + 0.876911i \(0.659600\pi\)
\(572\) −124.758 45.4080i −0.00911954 0.00331924i
\(573\) 0 0
\(574\) −14441.2 12117.6i −1.05011 0.881149i
\(575\) −4549.06 5421.36i −0.329929 0.393194i
\(576\) 0 0
\(577\) −4494.99 + 7785.54i −0.324313 + 0.561727i −0.981373 0.192111i \(-0.938467\pi\)
0.657060 + 0.753838i \(0.271800\pi\)
\(578\) 7042.54 + 12198.0i 0.506801 + 0.877805i
\(579\) 0 0
\(580\) −9696.22 26640.1i −0.694161 1.90719i
\(581\) 8065.80 4656.79i 0.575948 0.332524i
\(582\) 0 0
\(583\) 87.7639 + 15.4751i 0.00623467 + 0.00109934i
\(584\) 2991.01 2509.76i 0.211933 0.177833i
\(585\) 0 0
\(586\) 197.542 + 1120.32i 0.0139256 + 0.0789758i
\(587\) 6445.89 17709.9i 0.453237 1.24526i −0.477196 0.878797i \(-0.658347\pi\)
0.930433 0.366462i \(-0.119431\pi\)
\(588\) 0 0
\(589\) 1149.25 8190.26i 0.0803974 0.572960i
\(590\) 33561.4i 2.34187i
\(591\) 0 0
\(592\) −4206.77 + 741.768i −0.292056 + 0.0514974i
\(593\) 5754.77 6858.27i 0.398516 0.474933i −0.529051 0.848590i \(-0.677452\pi\)
0.927567 + 0.373657i \(0.121896\pi\)
\(594\) 0 0
\(595\) 1747.06 9908.08i 0.120374 0.682675i
\(596\) −4388.63 2533.78i −0.301620 0.174140i
\(597\) 0 0
\(598\) 3693.44 1344.30i 0.252568 0.0919274i
\(599\) −9574.28 + 3484.75i −0.653079 + 0.237701i −0.647246 0.762281i \(-0.724079\pi\)
−0.00583382 + 0.999983i \(0.501857\pi\)
\(600\) 0 0
\(601\) −1647.80 951.360i −0.111839 0.0645704i 0.443037 0.896503i \(-0.353901\pi\)
−0.554876 + 0.831933i \(0.687234\pi\)
\(602\) 2517.71 14278.6i 0.170456 0.966701i
\(603\) 0 0
\(604\) 3154.33 3759.18i 0.212496 0.253243i
\(605\) 27118.3 4781.69i 1.82234 0.321328i
\(606\) 0 0
\(607\) 3728.13i 0.249292i 0.992201 + 0.124646i \(0.0397795\pi\)
−0.992201 + 0.124646i \(0.960221\pi\)
\(608\) −15605.9 + 3320.68i −1.04096 + 0.221499i
\(609\) 0 0
\(610\) −15865.5 + 43590.1i −1.05307 + 2.89330i
\(611\) 5036.81 + 28565.2i 0.333498 + 1.89136i
\(612\) 0 0
\(613\) −3839.31 + 3221.57i −0.252966 + 0.212264i −0.760448 0.649398i \(-0.775021\pi\)
0.507482 + 0.861662i \(0.330576\pi\)
\(614\) 10265.6 + 1810.10i 0.674733 + 0.118974i
\(615\) 0 0
\(616\) 90.1665 52.0577i 0.00589759 0.00340497i
\(617\) −7116.73 19553.0i −0.464358 1.27581i −0.922178 0.386767i \(-0.873592\pi\)
0.457820 0.889045i \(-0.348630\pi\)
\(618\) 0 0
\(619\) 6410.57 + 11103.4i 0.416256 + 0.720977i 0.995559 0.0941351i \(-0.0300086\pi\)
−0.579303 + 0.815112i \(0.696675\pi\)
\(620\) 4970.43 8609.04i 0.321964 0.557657i
\(621\) 0 0
\(622\) −11182.6 13326.9i −0.720871 0.859101i
\(623\) 14245.6 + 11953.5i 0.916111 + 0.768708i
\(624\) 0 0
\(625\) −36108.8 13142.5i −2.31096 0.841122i
\(626\) −15386.2 −0.982359
\(627\) 0 0
\(628\) 14421.9 0.916398
\(629\) −1581.88 575.759i −0.100276 0.0364976i
\(630\) 0 0
\(631\) 18059.7 + 15153.9i 1.13937 + 0.956047i 0.999418 0.0341111i \(-0.0108600\pi\)
0.139954 + 0.990158i \(0.455304\pi\)
\(632\) −4109.73 4897.79i −0.258665 0.308265i
\(633\) 0 0
\(634\) 7318.26 12675.6i 0.458431 0.794025i
\(635\) −14753.5 25553.8i −0.922007 1.59696i
\(636\) 0 0
\(637\) −1629.34 4476.57i −0.101345 0.278443i
\(638\) 517.774 298.937i 0.0321299 0.0185502i
\(639\) 0 0
\(640\) 27413.3 + 4833.70i 1.69313 + 0.298545i
\(641\) 6448.66 5411.07i 0.397358 0.333423i −0.422113 0.906543i \(-0.638712\pi\)
0.819472 + 0.573120i \(0.194267\pi\)
\(642\) 0 0
\(643\) −525.679 2981.27i −0.0322407 0.182846i 0.964435 0.264321i \(-0.0851479\pi\)
−0.996675 + 0.0814754i \(0.974037\pi\)
\(644\) 597.012 1640.28i 0.0365304 0.100366i
\(645\) 0 0
\(646\) −8815.56 2862.23i −0.536909 0.174324i
\(647\) 8844.45i 0.537421i 0.963221 + 0.268710i \(0.0865975\pi\)
−0.963221 + 0.268710i \(0.913403\pi\)
\(648\) 0 0
\(649\) −261.738 + 46.1515i −0.0158307 + 0.00279138i
\(650\) 32827.8 39122.6i 1.98094 2.36079i
\(651\) 0 0
\(652\) 1291.86 7326.48i 0.0775966 0.440072i
\(653\) −5428.18 3133.96i −0.325300 0.187812i 0.328452 0.944521i \(-0.393473\pi\)
−0.653753 + 0.756708i \(0.726806\pi\)
\(654\) 0 0
\(655\) −35313.5 + 12853.1i −2.10659 + 0.766734i
\(656\) 25256.6 9192.63i 1.50321 0.547122i
\(657\) 0 0
\(658\) 29708.9 + 17152.4i 1.76014 + 1.01622i
\(659\) 1752.32 9937.90i 0.103582 0.587444i −0.888195 0.459467i \(-0.848041\pi\)
0.991777 0.127977i \(-0.0408484\pi\)
\(660\) 0 0
\(661\) −6084.26 + 7250.94i −0.358019 + 0.426670i −0.914749 0.404024i \(-0.867611\pi\)
0.556730 + 0.830694i \(0.312056\pi\)
\(662\) −16719.7 + 2948.14i −0.981616 + 0.173085i
\(663\) 0 0
\(664\) 6838.30i 0.399665i
\(665\) −14126.3 22595.8i −0.823749 1.31764i
\(666\) 0 0
\(667\) −2273.22 + 6245.63i −0.131963 + 0.362566i
\(668\) −3441.76 19519.2i −0.199350 1.13057i
\(669\) 0 0
\(670\) −51323.7 + 43065.7i −2.95942 + 2.48324i
\(671\) −361.767 63.7893i −0.0208135 0.00366998i
\(672\) 0 0
\(673\) −2930.86 + 1692.13i −0.167870 + 0.0969196i −0.581581 0.813489i \(-0.697566\pi\)
0.413711 + 0.910408i \(0.364232\pi\)
\(674\) 6631.91 + 18221.0i 0.379008 + 1.04132i
\(675\) 0 0
\(676\) 41.1964 + 71.3542i 0.00234390 + 0.00405975i
\(677\) −6198.39 + 10735.9i −0.351881 + 0.609476i −0.986579 0.163284i \(-0.947791\pi\)
0.634698 + 0.772760i \(0.281124\pi\)
\(678\) 0 0
\(679\) 2078.59 + 2477.17i 0.117480 + 0.140007i
\(680\) 5658.78 + 4748.28i 0.319124 + 0.267777i
\(681\) 0 0
\(682\) 197.001 + 71.7027i 0.0110610 + 0.00402586i
\(683\) 18080.6 1.01293 0.506466 0.862260i \(-0.330951\pi\)
0.506466 + 0.862260i \(0.330951\pi\)
\(684\) 0 0
\(685\) 2289.14 0.127684
\(686\) −23231.5 8455.56i −1.29298 0.470605i
\(687\) 0 0
\(688\) 15835.4 + 13287.5i 0.877497 + 0.736307i
\(689\) −4595.49 5476.69i −0.254099 0.302823i
\(690\) 0 0
\(691\) 9026.08 15633.6i 0.496915 0.860682i −0.503079 0.864241i \(-0.667799\pi\)
0.999994 + 0.00355848i \(0.00113270\pi\)
\(692\) −8664.06 15006.6i −0.475951 0.824372i
\(693\) 0 0
\(694\) −7994.94 21965.9i −0.437297 1.20146i
\(695\) 31725.8 18316.9i 1.73155 0.999713i
\(696\) 0 0
\(697\) 10431.1 + 1839.29i 0.566868 + 0.0999541i
\(698\) 11009.3 9237.90i 0.597003 0.500945i
\(699\) 0 0
\(700\) −3938.50 22336.3i −0.212659 1.20605i
\(701\) 5123.61 14077.0i 0.276057 0.758460i −0.721743 0.692161i \(-0.756659\pi\)
0.997800 0.0662989i \(-0.0211191\pi\)
\(702\) 0 0
\(703\) −4133.76 + 1671.19i −0.221775 + 0.0896589i
\(704\) 32.1349i 0.00172036i
\(705\) 0 0
\(706\) 8296.84 1462.96i 0.442289 0.0779874i
\(707\) −14941.9 + 17807.1i −0.794837 + 0.947250i
\(708\) 0 0
\(709\) 4549.43 25801.1i 0.240984 1.36669i −0.588654 0.808385i \(-0.700342\pi\)
0.829638 0.558302i \(-0.188547\pi\)
\(710\) −15581.3 8995.85i −0.823598 0.475505i
\(711\) 0 0
\(712\) −12830.5 + 4669.91i −0.675341 + 0.245804i
\(713\) −2190.03 + 797.105i −0.115031 + 0.0418679i
\(714\) 0 0
\(715\) 494.629 + 285.574i 0.0258714 + 0.0149369i
\(716\) −651.005 + 3692.04i −0.0339794 + 0.192706i
\(717\) 0 0
\(718\) 4916.23 5858.93i 0.255532 0.304531i
\(719\) 25947.0 4575.16i 1.34584 0.237308i 0.546135 0.837697i \(-0.316099\pi\)
0.799708 + 0.600389i \(0.204988\pi\)
\(720\) 0 0
\(721\) 10633.0i 0.549229i
\(722\) −22422.7 + 9994.90i −1.15580 + 0.515196i
\(723\) 0 0
\(724\) −1426.28 + 3918.67i −0.0732144 + 0.201155i
\(725\) 14996.5 + 85049.2i 0.768214 + 4.35676i
\(726\) 0 0
\(727\) −2045.11 + 1716.05i −0.104331 + 0.0875443i −0.693461 0.720494i \(-0.743915\pi\)
0.589130 + 0.808038i \(0.299471\pi\)
\(728\) −8225.57 1450.39i −0.418763 0.0738393i
\(729\) 0 0
\(730\) 21938.1 12666.0i 1.11228 0.642176i
\(731\) 2786.23 + 7655.11i 0.140975 + 0.387325i
\(732\) 0 0
\(733\) −13594.0 23545.5i −0.685002 1.18646i −0.973436 0.228959i \(-0.926468\pi\)
0.288434 0.957500i \(-0.406865\pi\)
\(734\) 5648.32 9783.18i 0.284037 0.491967i
\(735\) 0 0
\(736\) 2890.05 + 3444.22i 0.144740 + 0.172494i
\(737\) −406.438 341.042i −0.0203139 0.0170454i
\(738\) 0 0
\(739\) −1733.94 631.102i −0.0863111 0.0314147i 0.298504 0.954408i \(-0.403512\pi\)
−0.384815 + 0.922994i \(0.625735\pi\)
\(740\) −5359.33 −0.266234
\(741\) 0 0
\(742\) −8455.41 −0.418339
\(743\) −25271.5 9198.07i −1.24781 0.454165i −0.368148 0.929767i \(-0.620008\pi\)
−0.879660 + 0.475602i \(0.842230\pi\)
\(744\) 0 0
\(745\) 16700.1 + 14013.1i 0.821269 + 0.689126i
\(746\) −16692.9 19893.8i −0.819264 0.976360i
\(747\) 0 0
\(748\) 44.1114 76.4033i 0.00215625 0.00373473i
\(749\) 6279.91 + 10877.1i 0.306359 + 0.530630i
\(750\) 0 0
\(751\) −5931.55 16296.8i −0.288209 0.791849i −0.996317 0.0857445i \(-0.972673\pi\)
0.708108 0.706104i \(-0.249549\pi\)
\(752\) −42357.0 + 24454.8i −2.05399 + 1.18587i
\(753\) 0 0
\(754\) −47234.7 8328.75i −2.28141 0.402275i
\(755\) −16171.9 + 13569.8i −0.779544 + 0.654115i
\(756\) 0 0
\(757\) −1788.97 10145.7i −0.0858931 0.487124i −0.997160 0.0753083i \(-0.976006\pi\)
0.911267 0.411816i \(-0.135105\pi\)
\(758\) −6443.72 + 17704.0i −0.308768 + 0.848334i
\(759\) 0 0
\(760\) 19553.7 687.085i 0.933275 0.0327937i
\(761\) 22833.9i 1.08769i −0.839187 0.543843i \(-0.816969\pi\)
0.839187 0.543843i \(-0.183031\pi\)
\(762\) 0 0
\(763\) −4821.98 + 850.246i −0.228791 + 0.0403420i
\(764\) −11584.9 + 13806.4i −0.548598 + 0.653793i
\(765\) 0 0
\(766\) 3495.93 19826.4i 0.164899 0.935191i
\(767\) 18464.9 + 10660.7i 0.869266 + 0.501871i
\(768\) 0 0
\(769\) 23430.0 8527.84i 1.09871 0.399898i 0.271870 0.962334i \(-0.412358\pi\)
0.826841 + 0.562436i \(0.190136\pi\)
\(770\) 634.753 231.031i 0.0297077 0.0108127i
\(771\) 0 0
\(772\) 6778.23 + 3913.41i 0.316002 + 0.182444i
\(773\) −340.976 + 1933.77i −0.0158655 + 0.0899779i −0.991712 0.128478i \(-0.958991\pi\)
0.975847 + 0.218456i \(0.0701020\pi\)
\(774\) 0 0
\(775\) −19465.3 + 23197.8i −0.902210 + 1.07521i
\(776\) −2338.21 + 412.290i −0.108166 + 0.0190726i
\(777\) 0 0
\(778\) 25309.2i 1.16630i
\(779\) 23788.7 14872.0i 1.09412 0.684011i
\(780\) 0 0
\(781\) 48.7304 133.886i 0.00223266 0.00613419i
\(782\) 453.540 + 2572.15i 0.0207398 + 0.117622i
\(783\) 0 0
\(784\) 6153.51 5163.41i 0.280317 0.235214i
\(785\) −61100.2 10773.6i −2.77804 0.489843i
\(786\) 0 0
\(787\) −23562.3 + 13603.7i −1.06723 + 0.616163i −0.927422 0.374016i \(-0.877980\pi\)
−0.139803 + 0.990179i \(0.544647\pi\)
\(788\) 607.653 + 1669.51i 0.0274705 + 0.0754746i
\(789\) 0 0
\(790\) −20740.5 35923.7i −0.934070 1.61786i
\(791\) 3090.35 5352.65i 0.138913 0.240605i
\(792\) 0 0
\(793\) 18942.8 + 22575.2i 0.848272 + 1.01093i
\(794\) 26795.6 + 22484.2i 1.19766 + 1.00495i
\(795\) 0 0
\(796\) 12618.4 + 4592.71i 0.561868 + 0.204503i
\(797\) 13880.4 0.616899 0.308449 0.951241i \(-0.400190\pi\)
0.308449 + 0.951241i \(0.400190\pi\)
\(798\) 0 0
\(799\) −19274.6 −0.853425
\(800\) 54897.4 + 19981.0i 2.42615 + 0.883045i
\(801\) 0 0
\(802\) 13985.3 + 11735.1i 0.615760 + 0.516684i
\(803\) 128.947 + 153.673i 0.00566681 + 0.00675344i
\(804\) 0 0
\(805\) −3754.65 + 6503.24i −0.164390 + 0.284732i
\(806\) −8409.17 14565.1i −0.367494 0.636519i
\(807\) 0 0
\(808\) −5837.44 16038.2i −0.254159 0.698296i
\(809\) −9580.31 + 5531.20i −0.416348 + 0.240379i −0.693514 0.720443i \(-0.743938\pi\)
0.277165 + 0.960822i \(0.410605\pi\)
\(810\) 0 0
\(811\) 6132.92 + 1081.40i 0.265544 + 0.0468225i 0.304835 0.952405i \(-0.401399\pi\)
−0.0392909 + 0.999228i \(0.512510\pi\)
\(812\) −16317.4 + 13691.9i −0.705206 + 0.591738i
\(813\) 0 0
\(814\) −19.6264 111.307i −0.000845091 0.00479275i
\(815\) −10946.2 + 30074.4i −0.470464 + 1.29259i
\(816\) 0 0
\(817\) 19053.7 + 10125.7i 0.815918 + 0.433604i
\(818\) 168.134i 0.00718665i
\(819\) 0 0
\(820\) 33208.8 5855.60i 1.41427 0.249374i
\(821\) 9106.86 10853.1i 0.387128 0.461361i −0.536923 0.843631i \(-0.680413\pi\)
0.924050 + 0.382271i \(0.124858\pi\)
\(822\) 0 0
\(823\) 973.517 5521.09i 0.0412329 0.233843i −0.957226 0.289342i \(-0.906564\pi\)
0.998459 + 0.0554984i \(0.0176748\pi\)
\(824\) 6761.11 + 3903.53i 0.285843 + 0.165031i
\(825\) 0 0
\(826\) 23695.8 8624.57i 0.998163 0.363301i
\(827\) 13477.3 4905.34i 0.566690 0.206258i −0.0427566 0.999086i \(-0.513614\pi\)
0.609446 + 0.792827i \(0.291392\pi\)
\(828\) 0 0
\(829\) 17268.0 + 9969.69i 0.723453 + 0.417686i 0.816022 0.578020i \(-0.196175\pi\)
−0.0925691 + 0.995706i \(0.529508\pi\)
\(830\) −7704.11 + 43692.2i −0.322185 + 1.82720i
\(831\) 0 0
\(832\) −1657.08 + 1974.84i −0.0690494 + 0.0822898i
\(833\) 3117.54 549.706i 0.129671 0.0228646i
\(834\) 0 0
\(835\) 85266.3i 3.53385i
\(836\) −48.6332 228.557i −0.00201198 0.00945551i
\(837\) 0 0
\(838\) 5843.87 16055.9i 0.240899 0.661864i
\(839\) −6999.02 39693.4i −0.288001 1.63334i −0.694364 0.719624i \(-0.744314\pi\)
0.406362 0.913712i \(-0.366797\pi\)
\(840\) 0 0
\(841\) 43448.0 36457.2i 1.78146 1.49482i
\(842\) 3092.93 + 545.367i 0.126591 + 0.0223214i
\(843\) 0 0
\(844\) 8210.53 4740.35i 0.334855 0.193329i
\(845\) −121.230 333.075i −0.00493541 0.0135599i
\(846\) 0 0
\(847\) −10344.9 17917.9i −0.419664 0.726879i
\(848\) 6027.58 10440.1i 0.244090 0.422776i
\(849\) 0 0
\(850\) 21814.3 + 25997.3i 0.880264 + 1.04906i
\(851\) 962.508 + 807.640i 0.0387713 + 0.0325329i
\(852\) 0 0
\(853\) −21299.9 7752.55i −0.854978 0.311187i −0.122910 0.992418i \(-0.539223\pi\)
−0.732068 + 0.681231i \(0.761445\pi\)
\(854\) 34853.6 1.39656
\(855\) 0 0
\(856\) −9221.78 −0.368217
\(857\) 9943.89 + 3619.28i 0.396355 + 0.144262i 0.532505 0.846427i \(-0.321251\pi\)
−0.136150 + 0.990688i \(0.543473\pi\)
\(858\) 0 0
\(859\) 9275.48 + 7783.06i 0.368423 + 0.309144i 0.808137 0.588994i \(-0.200476\pi\)
−0.439714 + 0.898138i \(0.644920\pi\)
\(860\) 16670.7 + 19867.4i 0.661009 + 0.787759i
\(861\) 0 0
\(862\) −6106.74 + 10577.2i −0.241295 + 0.417936i
\(863\) 873.926 + 1513.68i 0.0344714 + 0.0597062i 0.882746 0.469850i \(-0.155692\pi\)
−0.848275 + 0.529556i \(0.822359\pi\)
\(864\) 0 0
\(865\) 25495.9 + 70049.5i 1.00218 + 2.75347i
\(866\) 24500.9 14145.6i 0.961402 0.555066i
\(867\) 0 0
\(868\) −7355.65 1297.00i −0.287635 0.0507178i
\(869\) 251.640 211.151i 0.00982313 0.00824258i
\(870\) 0 0
\(871\) 7391.11 + 41917.1i 0.287530 + 1.63066i
\(872\) 1229.58 3378.25i 0.0477510 0.131195i
\(873\) 0 0
\(874\) 5452.30 + 4257.90i 0.211015 + 0.164789i
\(875\) 57352.2i 2.21584i
\(876\) 0 0
\(877\) −38701.9 + 6824.19i −1.49016 + 0.262755i −0.858630 0.512596i \(-0.828684\pi\)
−0.631530 + 0.775351i \(0.717573\pi\)
\(878\) 39632.9 47232.7i 1.52340 1.81552i
\(879\) 0 0
\(880\) −167.235 + 948.438i −0.00640625 + 0.0363316i
\(881\) −34092.5 19683.3i −1.30375 0.752722i −0.322707 0.946499i \(-0.604593\pi\)
−0.981046 + 0.193777i \(0.937926\pi\)
\(882\) 0 0
\(883\) 11453.2 4168.64i 0.436503 0.158874i −0.114416 0.993433i \(-0.536500\pi\)
0.550919 + 0.834559i \(0.314277\pi\)
\(884\) −6650.69 + 2420.65i −0.253040 + 0.0920988i
\(885\) 0 0
\(886\) 21553.6 + 12444.0i 0.817278 + 0.471856i
\(887\) 1295.85 7349.15i 0.0490535 0.278196i −0.950408 0.311006i \(-0.899334\pi\)
0.999462 + 0.0328091i \(0.0104453\pi\)
\(888\) 0 0
\(889\) −14250.7 + 16983.4i −0.537632 + 0.640725i
\(890\) −87239.4 + 15382.7i −3.28570 + 0.579357i
\(891\) 0 0
\(892\) 28904.0i 1.08495i
\(893\) −37931.7 + 34168.8i −1.42143 + 1.28042i
\(894\) 0 0
\(895\) 5516.12 15155.4i 0.206015 0.566022i
\(896\) −3631.83 20597.1i −0.135414 0.767970i
\(897\) 0 0
\(898\) −8394.38 + 7043.72i −0.311942 + 0.261751i
\(899\) 28007.9 + 4938.54i 1.03906 + 0.183214i
\(900\) 0 0
\(901\) 4114.29 2375.39i 0.152128 0.0878309i
\(902\) 243.227 + 668.261i 0.00897847 + 0.0246681i
\(903\) 0 0
\(904\) 2269.02 + 3930.07i 0.0834808 + 0.144593i
\(905\) 8969.96 15536.4i 0.329471 0.570661i
\(906\) 0 0
\(907\) −14099.2 16802.7i −0.516158 0.615133i 0.443510 0.896270i \(-0.353733\pi\)
−0.959668 + 0.281136i \(0.909289\pi\)
\(908\) −7439.32 6242.33i −0.271897 0.228149i
\(909\) 0 0
\(910\) −50921.9 18534.0i −1.85499 0.675162i
\(911\) 24183.3 0.879505 0.439752 0.898119i \(-0.355066\pi\)
0.439752 + 0.898119i \(0.355066\pi\)
\(912\) 0 0
\(913\) −351.340 −0.0127357
\(914\) −44014.3 16019.9i −1.59285 0.579750i
\(915\) 0 0
\(916\) 16702.2 + 14014.8i 0.602464 + 0.505527i
\(917\) 18149.6 + 21629.9i 0.653603 + 0.778934i
\(918\) 0 0
\(919\) 24138.2 41808.5i 0.866425 1.50069i 0.000800280 1.00000i \(-0.499745\pi\)
0.865625 0.500693i \(-0.166921\pi\)
\(920\) −2756.77 4774.86i −0.0987913 0.171112i
\(921\) 0 0
\(922\) 12847.1 + 35297.0i 0.458889 + 1.26079i
\(923\) −9898.70 + 5715.02i −0.353001 + 0.203805i
\(924\) 0 0
\(925\) 16077.9 + 2834.97i 0.571502 + 0.100771i
\(926\) 40245.9 33770.3i 1.42825 1.19845i
\(927\) 0 0
\(928\) −9527.35 54032.3i −0.337016 1.91131i
\(929\) −12132.2 + 33333.0i −0.428466 + 1.17720i 0.518278 + 0.855212i \(0.326573\pi\)
−0.946744 + 0.321988i \(0.895649\pi\)
\(930\) 0 0
\(931\) 5160.72 6608.38i 0.181671 0.232632i
\(932\) 15489.4i 0.544392i
\(933\) 0 0
\(934\) −18494.0 + 3260.99i −0.647903 + 0.114243i
\(935\) −243.959 + 290.739i −0.00853295 + 0.0101692i
\(936\) 0 0
\(937\) 5916.58 33554.6i 0.206282 1.16988i −0.689128 0.724640i \(-0.742006\pi\)
0.895410 0.445243i \(-0.146883\pi\)
\(938\) 43595.4 + 25169.8i 1.51753 + 0.876144i
\(939\) 0 0
\(940\) −57662.4 + 20987.4i −2.00079 + 0.728227i
\(941\) 18113.4 6592.72i 0.627501 0.228392i −0.00864207 0.999963i \(-0.502751\pi\)
0.636143 + 0.771571i \(0.280529\pi\)
\(942\) 0 0
\(943\) −6846.55 3952.86i −0.236431 0.136503i
\(944\) −6243.02 + 35405.9i −0.215247 + 1.22072i
\(945\) 0 0
\(946\) −351.572 + 418.987i −0.0120831 + 0.0144000i
\(947\) −33803.9 + 5960.54i −1.15996 + 0.204532i −0.720319 0.693643i \(-0.756005\pi\)
−0.439638 + 0.898175i \(0.644893\pi\)
\(948\) 0 0
\(949\) 16093.2i 0.550484i
\(950\) 89016.1 + 12490.7i 3.04007 + 0.426580i
\(951\) 0 0
\(952\) 1898.31 5215.55i 0.0646265 0.177560i
\(953\) 160.465 + 910.044i 0.00545434 + 0.0309331i 0.987413 0.158160i \(-0.0505562\pi\)
−0.981959 + 0.189093i \(0.939445\pi\)
\(954\) 0 0
\(955\) 59394.7 49838.1i 2.01253 1.68872i
\(956\) −21961.3 3872.37i −0.742970 0.131006i
\(957\) 0 0
\(958\) 17483.1 10093.9i 0.589618 0.340416i
\(959\) −588.261 1616.23i −0.0198081 0.0544222i
\(960\) 0 0
\(961\) −9909.27 17163.4i −0.332626 0.576126i
\(962\) −4533.56 + 7852.36i −0.151942 + 0.263171i
\(963\) 0 0
\(964\) −20852.6 24851.2i −0.696698 0.830293i
\(965\) −25793.3 21643.2i −0.860431 0.721988i
\(966\) 0 0
\(967\) 24660.1 + 8975.53i 0.820077 + 0.298483i 0.717780 0.696270i \(-0.245159\pi\)
0.102297 + 0.994754i \(0.467381\pi\)
\(968\) 15191.1 0.504400
\(969\) 0 0
\(970\) −15404.1 −0.509893
\(971\) 18612.1 + 6774.26i 0.615131 + 0.223889i 0.630747 0.775989i \(-0.282749\pi\)
−0.0156160 + 0.999878i \(0.504971\pi\)
\(972\) 0 0
\(973\) −21085.4 17692.8i −0.694725 0.582943i
\(974\) 19927.3 + 23748.4i 0.655555 + 0.781260i
\(975\) 0 0
\(976\) −24846.0 + 43034.5i −0.814857 + 1.41137i
\(977\) −9613.30 16650.7i −0.314797 0.545245i 0.664597 0.747202i \(-0.268603\pi\)
−0.979394 + 0.201957i \(0.935270\pi\)
\(978\) 0 0
\(979\) −239.932 659.208i −0.00783276 0.0215203i
\(980\) 8727.95 5039.09i 0.284494 0.164253i
\(981\) 0 0
\(982\) −46929.0 8274.85i −1.52501 0.268901i
\(983\) −31572.8 + 26492.7i −1.02443 + 0.859601i −0.990178 0.139813i \(-0.955350\pi\)
−0.0342541 + 0.999413i \(0.510906\pi\)
\(984\) 0 0
\(985\) −1327.22 7527.02i −0.0429326 0.243483i
\(986\) 10900.9 29949.9i 0.352084 0.967343i
\(987\) 0 0
\(988\) −8797.14 + 16553.7i −0.283274 + 0.533039i
\(989\) 6080.33i 0.195494i
\(990\) 0 0
\(991\) −3507.79 + 618.518i −0.112441 + 0.0198263i −0.229585 0.973289i \(-0.573737\pi\)
0.117145 + 0.993115i \(0.462626\pi\)
\(992\) 12366.4 14737.7i 0.395800 0.471696i
\(993\) 0 0
\(994\) −2347.40 + 13312.8i −0.0749046 + 0.424805i
\(995\) −50028.3 28883.9i −1.59397 0.920282i
\(996\) 0 0
\(997\) 448.486 163.236i 0.0142464 0.00518528i −0.334887 0.942258i \(-0.608698\pi\)
0.349134 + 0.937073i \(0.386476\pi\)
\(998\) −30157.3 + 10976.3i −0.956524 + 0.348146i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 171.4.y.a.53.16 yes 120
3.2 odd 2 inner 171.4.y.a.53.5 120
19.14 odd 18 inner 171.4.y.a.71.5 yes 120
57.14 even 18 inner 171.4.y.a.71.16 yes 120
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
171.4.y.a.53.5 120 3.2 odd 2 inner
171.4.y.a.53.16 yes 120 1.1 even 1 trivial
171.4.y.a.71.5 yes 120 19.14 odd 18 inner
171.4.y.a.71.16 yes 120 57.14 even 18 inner