Properties

Label 171.4.y.a.53.4
Level $171$
Weight $4$
Character 171.53
Analytic conductor $10.089$
Analytic rank $0$
Dimension $120$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [171,4,Mod(53,171)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(171, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([9, 11]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("171.53");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 171 = 3^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 171.y (of order \(18\), degree \(6\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.0893266110\)
Analytic rank: \(0\)
Dimension: \(120\)
Relative dimension: \(20\) over \(\Q(\zeta_{18})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 53.4
Character \(\chi\) \(=\) 171.53
Dual form 171.4.y.a.71.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-3.41758 - 1.24390i) q^{2} +(4.00419 + 3.35992i) q^{4} +(8.24027 + 9.82037i) q^{5} +(8.78095 - 15.2090i) q^{7} +(5.04239 + 8.73367i) q^{8} +O(q^{10})\) \(q+(-3.41758 - 1.24390i) q^{2} +(4.00419 + 3.35992i) q^{4} +(8.24027 + 9.82037i) q^{5} +(8.78095 - 15.2090i) q^{7} +(5.04239 + 8.73367i) q^{8} +(-15.9462 - 43.8119i) q^{10} +(-26.1479 + 15.0965i) q^{11} +(-14.9344 - 2.63335i) q^{13} +(-48.9280 + 41.0555i) q^{14} +(-13.6304 - 77.3017i) q^{16} +(-14.7722 + 40.5862i) q^{17} +(15.7637 + 81.3050i) q^{19} +67.0093i q^{20} +(108.141 - 19.0681i) q^{22} +(-38.7796 + 46.2158i) q^{23} +(-6.83160 + 38.7439i) q^{25} +(47.7640 + 27.5766i) q^{26} +(86.2617 - 31.3967i) q^{28} +(169.499 - 61.6927i) q^{29} +(190.151 + 109.784i) q^{31} +(-35.5628 + 201.687i) q^{32} +(100.970 - 120.331i) q^{34} +(221.716 - 39.0945i) q^{35} +328.229i q^{37} +(47.2615 - 297.474i) q^{38} +(-44.2172 + 121.486i) q^{40} +(72.0795 + 408.783i) q^{41} +(15.5396 - 13.0393i) q^{43} +(-155.424 - 27.4054i) q^{44} +(190.020 - 109.708i) q^{46} +(-3.06102 - 8.41010i) q^{47} +(17.2900 + 29.9471i) q^{49} +(71.5409 - 123.913i) q^{50} +(-50.9526 - 60.7229i) q^{52} +(233.838 + 196.214i) q^{53} +(-363.718 - 132.383i) q^{55} +177.108 q^{56} -656.017 q^{58} +(-739.115 - 269.016i) q^{59} +(286.803 + 240.656i) q^{61} +(-513.296 - 611.723i) q^{62} +(58.4391 - 101.220i) q^{64} +(-97.2034 - 168.361i) q^{65} +(0.129481 + 0.355746i) q^{67} +(-195.517 + 112.882i) q^{68} +(-806.360 - 142.183i) q^{70} +(-34.6533 + 29.0775i) q^{71} +(-86.2498 - 489.147i) q^{73} +(408.282 - 1121.75i) q^{74} +(-210.057 + 378.526i) q^{76} +530.245i q^{77} +(235.529 - 41.5301i) q^{79} +(646.813 - 770.842i) q^{80} +(262.147 - 1486.71i) q^{82} +(-196.347 - 113.361i) q^{83} +(-520.298 + 189.373i) q^{85} +(-69.3272 + 25.2330i) q^{86} +(-263.695 - 152.244i) q^{88} +(-115.476 + 654.899i) q^{89} +(-171.189 + 204.015i) q^{91} +(-310.562 + 54.7605i) q^{92} +32.5497i q^{94} +(-668.548 + 824.780i) q^{95} +(-367.982 + 1011.02i) q^{97} +(-21.8387 - 123.854i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 120 q - 36 q^{4}+O(q^{10}) \) Copy content Toggle raw display \( 120 q - 36 q^{4} - 180 q^{10} - 156 q^{13} + 180 q^{16} + 924 q^{19} + 432 q^{22} - 360 q^{25} - 624 q^{28} + 324 q^{34} + 1440 q^{40} + 1524 q^{43} + 3888 q^{46} - 3228 q^{49} - 6000 q^{52} - 4464 q^{55} + 5616 q^{58} - 5736 q^{61} - 4524 q^{64} + 372 q^{67} + 7848 q^{70} - 276 q^{73} + 4320 q^{76} + 10536 q^{79} + 3960 q^{82} - 11592 q^{85} - 11664 q^{88} - 120 q^{91} + 5904 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/171\mathbb{Z}\right)^\times\).

\(n\) \(20\) \(154\)
\(\chi(n)\) \(-1\) \(e\left(\frac{11}{18}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −3.41758 1.24390i −1.20830 0.439784i −0.342183 0.939633i \(-0.611166\pi\)
−0.866112 + 0.499850i \(0.833389\pi\)
\(3\) 0 0
\(4\) 4.00419 + 3.35992i 0.500524 + 0.419990i
\(5\) 8.24027 + 9.82037i 0.737032 + 0.878360i 0.996166 0.0874809i \(-0.0278817\pi\)
−0.259134 + 0.965841i \(0.583437\pi\)
\(6\) 0 0
\(7\) 8.78095 15.2090i 0.474126 0.821211i −0.525435 0.850834i \(-0.676097\pi\)
0.999561 + 0.0296228i \(0.00943060\pi\)
\(8\) 5.04239 + 8.73367i 0.222844 + 0.385977i
\(9\) 0 0
\(10\) −15.9462 43.8119i −0.504264 1.38545i
\(11\) −26.1479 + 15.0965i −0.716716 + 0.413796i −0.813543 0.581505i \(-0.802464\pi\)
0.0968268 + 0.995301i \(0.469131\pi\)
\(12\) 0 0
\(13\) −14.9344 2.63335i −0.318621 0.0561814i 0.0120507 0.999927i \(-0.496164\pi\)
−0.330671 + 0.943746i \(0.607275\pi\)
\(14\) −48.9280 + 41.0555i −0.934040 + 0.783753i
\(15\) 0 0
\(16\) −13.6304 77.3017i −0.212975 1.20784i
\(17\) −14.7722 + 40.5862i −0.210752 + 0.579035i −0.999357 0.0358647i \(-0.988581\pi\)
0.788605 + 0.614900i \(0.210804\pi\)
\(18\) 0 0
\(19\) 15.7637 + 81.3050i 0.190339 + 0.981719i
\(20\) 67.0093i 0.749186i
\(21\) 0 0
\(22\) 108.141 19.0681i 1.04799 0.184788i
\(23\) −38.7796 + 46.2158i −0.351570 + 0.418985i −0.912628 0.408792i \(-0.865950\pi\)
0.561057 + 0.827777i \(0.310395\pi\)
\(24\) 0 0
\(25\) −6.83160 + 38.7439i −0.0546528 + 0.309951i
\(26\) 47.7640 + 27.5766i 0.360280 + 0.208008i
\(27\) 0 0
\(28\) 86.2617 31.3967i 0.582212 0.211908i
\(29\) 169.499 61.6927i 1.08535 0.395036i 0.263456 0.964671i \(-0.415138\pi\)
0.821898 + 0.569635i \(0.192915\pi\)
\(30\) 0 0
\(31\) 190.151 + 109.784i 1.10168 + 0.636057i 0.936662 0.350234i \(-0.113898\pi\)
0.165020 + 0.986290i \(0.447231\pi\)
\(32\) −35.5628 + 201.687i −0.196459 + 1.11417i
\(33\) 0 0
\(34\) 100.970 120.331i 0.509301 0.606961i
\(35\) 221.716 39.0945i 1.07077 0.188805i
\(36\) 0 0
\(37\) 328.229i 1.45839i 0.684305 + 0.729196i \(0.260106\pi\)
−0.684305 + 0.729196i \(0.739894\pi\)
\(38\) 47.2615 297.474i 0.201758 1.26991i
\(39\) 0 0
\(40\) −44.2172 + 121.486i −0.174784 + 0.480215i
\(41\) 72.0795 + 408.783i 0.274559 + 1.55710i 0.740358 + 0.672213i \(0.234656\pi\)
−0.465799 + 0.884891i \(0.654233\pi\)
\(42\) 0 0
\(43\) 15.5396 13.0393i 0.0551108 0.0462435i −0.614816 0.788670i \(-0.710770\pi\)
0.669927 + 0.742427i \(0.266325\pi\)
\(44\) −155.424 27.4054i −0.532524 0.0938983i
\(45\) 0 0
\(46\) 190.020 109.708i 0.609064 0.351643i
\(47\) −3.06102 8.41010i −0.00949992 0.0261008i 0.934852 0.355038i \(-0.115532\pi\)
−0.944352 + 0.328937i \(0.893310\pi\)
\(48\) 0 0
\(49\) 17.2900 + 29.9471i 0.0504081 + 0.0873095i
\(50\) 71.5409 123.913i 0.202348 0.350478i
\(51\) 0 0
\(52\) −50.9526 60.7229i −0.135882 0.161938i
\(53\) 233.838 + 196.214i 0.606041 + 0.508528i 0.893381 0.449300i \(-0.148327\pi\)
−0.287340 + 0.957829i \(0.592771\pi\)
\(54\) 0 0
\(55\) −363.718 132.383i −0.891705 0.324554i
\(56\) 177.108 0.422625
\(57\) 0 0
\(58\) −656.017 −1.48516
\(59\) −739.115 269.016i −1.63092 0.593608i −0.645506 0.763755i \(-0.723353\pi\)
−0.985419 + 0.170148i \(0.945576\pi\)
\(60\) 0 0
\(61\) 286.803 + 240.656i 0.601989 + 0.505129i 0.892084 0.451869i \(-0.149242\pi\)
−0.290095 + 0.956998i \(0.593687\pi\)
\(62\) −513.296 611.723i −1.05143 1.25305i
\(63\) 0 0
\(64\) 58.4391 101.220i 0.114139 0.197694i
\(65\) −97.2034 168.361i −0.185486 0.321271i
\(66\) 0 0
\(67\) 0.129481 + 0.355746i 0.000236099 + 0.000648676i 0.939811 0.341696i \(-0.111001\pi\)
−0.939575 + 0.342344i \(0.888779\pi\)
\(68\) −195.517 + 112.882i −0.348675 + 0.201308i
\(69\) 0 0
\(70\) −806.360 142.183i −1.37683 0.242773i
\(71\) −34.6533 + 29.0775i −0.0579237 + 0.0486038i −0.671290 0.741195i \(-0.734259\pi\)
0.613366 + 0.789799i \(0.289815\pi\)
\(72\) 0 0
\(73\) −86.2498 489.147i −0.138285 0.784251i −0.972516 0.232836i \(-0.925199\pi\)
0.834231 0.551415i \(-0.185912\pi\)
\(74\) 408.282 1121.75i 0.641377 1.76217i
\(75\) 0 0
\(76\) −210.057 + 378.526i −0.317043 + 0.571314i
\(77\) 530.245i 0.784767i
\(78\) 0 0
\(79\) 235.529 41.5301i 0.335431 0.0591456i −0.00339593 0.999994i \(-0.501081\pi\)
0.338827 + 0.940849i \(0.389970\pi\)
\(80\) 646.813 770.842i 0.903949 1.07728i
\(81\) 0 0
\(82\) 262.147 1486.71i 0.353040 2.00219i
\(83\) −196.347 113.361i −0.259661 0.149915i 0.364519 0.931196i \(-0.381233\pi\)
−0.624180 + 0.781281i \(0.714567\pi\)
\(84\) 0 0
\(85\) −520.298 + 189.373i −0.663932 + 0.241652i
\(86\) −69.3272 + 25.2330i −0.0869273 + 0.0316389i
\(87\) 0 0
\(88\) −263.695 152.244i −0.319432 0.184424i
\(89\) −115.476 + 654.899i −0.137533 + 0.779991i 0.835529 + 0.549447i \(0.185162\pi\)
−0.973062 + 0.230544i \(0.925950\pi\)
\(90\) 0 0
\(91\) −171.189 + 204.015i −0.197203 + 0.235018i
\(92\) −310.562 + 54.7605i −0.351939 + 0.0620563i
\(93\) 0 0
\(94\) 32.5497i 0.0357154i
\(95\) −668.548 + 824.780i −0.722017 + 0.890744i
\(96\) 0 0
\(97\) −367.982 + 1011.02i −0.385184 + 1.05829i 0.583958 + 0.811784i \(0.301503\pi\)
−0.969142 + 0.246502i \(0.920719\pi\)
\(98\) −21.8387 123.854i −0.0225107 0.127664i
\(99\) 0 0
\(100\) −157.531 + 132.185i −0.157531 + 0.132185i
\(101\) −1187.90 209.459i −1.17030 0.206356i −0.445481 0.895292i \(-0.646967\pi\)
−0.724823 + 0.688936i \(0.758078\pi\)
\(102\) 0 0
\(103\) 676.755 390.725i 0.647404 0.373779i −0.140057 0.990143i \(-0.544729\pi\)
0.787461 + 0.616365i \(0.211395\pi\)
\(104\) −52.3065 143.711i −0.0493180 0.135500i
\(105\) 0 0
\(106\) −555.091 961.445i −0.508634 0.880979i
\(107\) 977.241 1692.63i 0.882930 1.52928i 0.0348618 0.999392i \(-0.488901\pi\)
0.848068 0.529887i \(-0.177766\pi\)
\(108\) 0 0
\(109\) 876.677 + 1044.78i 0.770371 + 0.918092i 0.998456 0.0555492i \(-0.0176910\pi\)
−0.228085 + 0.973641i \(0.573247\pi\)
\(110\) 1078.36 + 904.855i 0.934709 + 0.784314i
\(111\) 0 0
\(112\) −1295.37 471.477i −1.09287 0.397771i
\(113\) 280.971 0.233907 0.116954 0.993137i \(-0.462687\pi\)
0.116954 + 0.993137i \(0.462687\pi\)
\(114\) 0 0
\(115\) −773.411 −0.627138
\(116\) 885.991 + 322.474i 0.709157 + 0.258112i
\(117\) 0 0
\(118\) 2191.35 + 1838.76i 1.70958 + 1.43451i
\(119\) 487.564 + 581.056i 0.375587 + 0.447608i
\(120\) 0 0
\(121\) −209.693 + 363.199i −0.157546 + 0.272877i
\(122\) −680.820 1179.21i −0.505234 0.875090i
\(123\) 0 0
\(124\) 392.537 + 1078.49i 0.284281 + 0.781057i
\(125\) 950.986 549.052i 0.680470 0.392870i
\(126\) 0 0
\(127\) 2017.43 + 355.727i 1.40959 + 0.248548i 0.826077 0.563557i \(-0.190567\pi\)
0.583511 + 0.812105i \(0.301678\pi\)
\(128\) 929.449 779.900i 0.641816 0.538548i
\(129\) 0 0
\(130\) 122.776 + 696.298i 0.0828322 + 0.469764i
\(131\) −737.475 + 2026.19i −0.491858 + 1.35137i 0.407119 + 0.913375i \(0.366533\pi\)
−0.898977 + 0.437995i \(0.855689\pi\)
\(132\) 0 0
\(133\) 1374.99 + 474.185i 0.896443 + 0.309151i
\(134\) 1.37685i 0.000887625i
\(135\) 0 0
\(136\) −428.953 + 75.6361i −0.270459 + 0.0476893i
\(137\) 540.816 644.519i 0.337263 0.401934i −0.570582 0.821241i \(-0.693282\pi\)
0.907845 + 0.419306i \(0.137727\pi\)
\(138\) 0 0
\(139\) 468.290 2655.80i 0.285754 1.62059i −0.416826 0.908987i \(-0.636857\pi\)
0.702580 0.711605i \(-0.252031\pi\)
\(140\) 1019.15 + 588.405i 0.615240 + 0.355209i
\(141\) 0 0
\(142\) 154.600 56.2696i 0.0913641 0.0332538i
\(143\) 430.258 156.601i 0.251608 0.0915779i
\(144\) 0 0
\(145\) 2002.57 + 1156.18i 1.14692 + 0.662177i
\(146\) −313.683 + 1778.98i −0.177812 + 1.00842i
\(147\) 0 0
\(148\) −1102.82 + 1314.29i −0.612509 + 0.729960i
\(149\) −3381.53 + 596.255i −1.85923 + 0.327833i −0.986932 0.161137i \(-0.948484\pi\)
−0.872301 + 0.488970i \(0.837373\pi\)
\(150\) 0 0
\(151\) 955.281i 0.514832i 0.966301 + 0.257416i \(0.0828711\pi\)
−0.966301 + 0.257416i \(0.917129\pi\)
\(152\) −630.605 + 547.646i −0.336505 + 0.292237i
\(153\) 0 0
\(154\) 659.570 1812.15i 0.345128 0.948230i
\(155\) 488.779 + 2772.00i 0.253288 + 1.43647i
\(156\) 0 0
\(157\) 2095.39 1758.24i 1.06516 0.893777i 0.0705560 0.997508i \(-0.477523\pi\)
0.994605 + 0.103731i \(0.0330782\pi\)
\(158\) −856.597 151.041i −0.431311 0.0760518i
\(159\) 0 0
\(160\) −2273.69 + 1312.71i −1.12344 + 0.648619i
\(161\) 362.376 + 995.620i 0.177386 + 0.487365i
\(162\) 0 0
\(163\) −1996.64 3458.29i −0.959442 1.66180i −0.723858 0.689949i \(-0.757633\pi\)
−0.235584 0.971854i \(-0.575700\pi\)
\(164\) −1084.86 + 1879.03i −0.516544 + 0.894680i
\(165\) 0 0
\(166\) 530.021 + 631.654i 0.247817 + 0.295337i
\(167\) 419.497 + 352.000i 0.194381 + 0.163105i 0.734784 0.678301i \(-0.237284\pi\)
−0.540403 + 0.841407i \(0.681728\pi\)
\(168\) 0 0
\(169\) −1848.40 672.763i −0.841330 0.306219i
\(170\) 2013.72 0.908501
\(171\) 0 0
\(172\) 106.034 0.0470061
\(173\) 224.273 + 81.6286i 0.0985615 + 0.0358735i 0.390830 0.920463i \(-0.372188\pi\)
−0.292269 + 0.956336i \(0.594410\pi\)
\(174\) 0 0
\(175\) 529.270 + 444.110i 0.228623 + 0.191838i
\(176\) 1523.39 + 1815.50i 0.652442 + 0.777550i
\(177\) 0 0
\(178\) 1209.28 2094.53i 0.509208 0.881974i
\(179\) −974.838 1688.47i −0.407055 0.705040i 0.587503 0.809222i \(-0.300111\pi\)
−0.994558 + 0.104182i \(0.966778\pi\)
\(180\) 0 0
\(181\) −1442.04 3961.97i −0.592187 1.62702i −0.766438 0.642319i \(-0.777973\pi\)
0.174251 0.984701i \(-0.444250\pi\)
\(182\) 838.826 484.296i 0.341637 0.197244i
\(183\) 0 0
\(184\) −599.175 105.651i −0.240064 0.0423298i
\(185\) −3223.33 + 2704.69i −1.28099 + 1.07488i
\(186\) 0 0
\(187\) −226.448 1284.25i −0.0885535 0.502212i
\(188\) 16.0003 43.9604i 0.00620713 0.0170540i
\(189\) 0 0
\(190\) 3310.76 1987.14i 1.26414 0.758750i
\(191\) 466.765i 0.176827i 0.996084 + 0.0884134i \(0.0281797\pi\)
−0.996084 + 0.0884134i \(0.971820\pi\)
\(192\) 0 0
\(193\) −3288.92 + 579.926i −1.22664 + 0.216290i −0.749182 0.662364i \(-0.769553\pi\)
−0.477460 + 0.878654i \(0.658442\pi\)
\(194\) 2515.21 2997.51i 0.930833 1.10932i
\(195\) 0 0
\(196\) −31.3875 + 178.007i −0.0114386 + 0.0648714i
\(197\) −3943.46 2276.76i −1.42619 0.823412i −0.429373 0.903127i \(-0.641265\pi\)
−0.996818 + 0.0797156i \(0.974599\pi\)
\(198\) 0 0
\(199\) 2100.16 764.394i 0.748121 0.272294i 0.0603064 0.998180i \(-0.480792\pi\)
0.687815 + 0.725886i \(0.258570\pi\)
\(200\) −372.824 + 135.697i −0.131813 + 0.0479761i
\(201\) 0 0
\(202\) 3799.20 + 2193.47i 1.32332 + 0.764019i
\(203\) 550.078 3119.64i 0.190187 1.07860i
\(204\) 0 0
\(205\) −3420.45 + 4076.33i −1.16534 + 1.38880i
\(206\) −2798.88 + 493.518i −0.946637 + 0.166918i
\(207\) 0 0
\(208\) 1190.35i 0.396808i
\(209\) −1639.61 1887.98i −0.542650 0.624852i
\(210\) 0 0
\(211\) −1723.25 + 4734.59i −0.562244 + 1.54475i 0.254094 + 0.967179i \(0.418223\pi\)
−0.816339 + 0.577574i \(0.804000\pi\)
\(212\) 277.072 + 1571.35i 0.0897613 + 0.509062i
\(213\) 0 0
\(214\) −5445.25 + 4569.11i −1.73939 + 1.45952i
\(215\) 256.101 + 45.1575i 0.0812368 + 0.0143242i
\(216\) 0 0
\(217\) 3339.41 1928.01i 1.04467 0.603143i
\(218\) −1696.51 4661.12i −0.527074 1.44812i
\(219\) 0 0
\(220\) −1011.60 1752.15i −0.310010 0.536954i
\(221\) 327.492 567.232i 0.0996809 0.172652i
\(222\) 0 0
\(223\) −772.977 921.198i −0.232118 0.276628i 0.637395 0.770537i \(-0.280012\pi\)
−0.869513 + 0.493909i \(0.835567\pi\)
\(224\) 2755.19 + 2311.88i 0.821825 + 0.689593i
\(225\) 0 0
\(226\) −960.239 349.498i −0.282629 0.102869i
\(227\) 3313.62 0.968865 0.484433 0.874829i \(-0.339026\pi\)
0.484433 + 0.874829i \(0.339026\pi\)
\(228\) 0 0
\(229\) 2572.79 0.742422 0.371211 0.928549i \(-0.378943\pi\)
0.371211 + 0.928549i \(0.378943\pi\)
\(230\) 2643.19 + 962.042i 0.757769 + 0.275805i
\(231\) 0 0
\(232\) 1393.49 + 1169.27i 0.394340 + 0.330890i
\(233\) −359.708 428.683i −0.101138 0.120532i 0.713101 0.701061i \(-0.247290\pi\)
−0.814239 + 0.580529i \(0.802846\pi\)
\(234\) 0 0
\(235\) 57.3666 99.3618i 0.0159242 0.0275815i
\(236\) −2055.69 3560.55i −0.567008 0.982086i
\(237\) 0 0
\(238\) −943.513 2592.28i −0.256970 0.706019i
\(239\) 3915.56 2260.65i 1.05973 0.611837i 0.134375 0.990931i \(-0.457097\pi\)
0.925359 + 0.379093i \(0.123764\pi\)
\(240\) 0 0
\(241\) −1958.06 345.259i −0.523360 0.0922824i −0.0942741 0.995546i \(-0.530053\pi\)
−0.429086 + 0.903264i \(0.641164\pi\)
\(242\) 1168.42 980.424i 0.310368 0.260430i
\(243\) 0 0
\(244\) 339.829 + 1927.27i 0.0891613 + 0.505659i
\(245\) −151.618 + 416.567i −0.0395368 + 0.108626i
\(246\) 0 0
\(247\) −21.3174 1255.76i −0.00549147 0.323489i
\(248\) 2214.29i 0.566966i
\(249\) 0 0
\(250\) −3933.03 + 693.500i −0.994987 + 0.175443i
\(251\) 3219.35 3836.67i 0.809576 0.964815i −0.190281 0.981730i \(-0.560940\pi\)
0.999857 + 0.0169147i \(0.00538437\pi\)
\(252\) 0 0
\(253\) 316.309 1793.88i 0.0786016 0.445772i
\(254\) −6452.22 3725.19i −1.59389 0.920234i
\(255\) 0 0
\(256\) −5025.21 + 1829.03i −1.22686 + 0.446540i
\(257\) 1026.87 373.750i 0.249239 0.0907156i −0.214380 0.976750i \(-0.568773\pi\)
0.463619 + 0.886035i \(0.346551\pi\)
\(258\) 0 0
\(259\) 4992.05 + 2882.16i 1.19765 + 0.691462i
\(260\) 176.459 1000.75i 0.0420904 0.238706i
\(261\) 0 0
\(262\) 5040.75 6007.33i 1.18862 1.41654i
\(263\) 5623.97 991.658i 1.31859 0.232503i 0.530301 0.847809i \(-0.322079\pi\)
0.788288 + 0.615307i \(0.210968\pi\)
\(264\) 0 0
\(265\) 3913.23i 0.907124i
\(266\) −4109.30 3330.91i −0.947208 0.767786i
\(267\) 0 0
\(268\) −0.676811 + 1.85952i −0.000154264 + 0.000423837i
\(269\) 88.0758 + 499.503i 0.0199631 + 0.113216i 0.993161 0.116753i \(-0.0372485\pi\)
−0.973198 + 0.229969i \(0.926137\pi\)
\(270\) 0 0
\(271\) −6678.92 + 5604.28i −1.49711 + 1.25622i −0.611976 + 0.790876i \(0.709625\pi\)
−0.885130 + 0.465345i \(0.845930\pi\)
\(272\) 3338.73 + 588.709i 0.744266 + 0.131234i
\(273\) 0 0
\(274\) −2649.99 + 1529.97i −0.584277 + 0.337333i
\(275\) −406.265 1116.20i −0.0890862 0.244762i
\(276\) 0 0
\(277\) 2134.16 + 3696.47i 0.462920 + 0.801802i 0.999105 0.0422991i \(-0.0134682\pi\)
−0.536185 + 0.844101i \(0.680135\pi\)
\(278\) −4903.96 + 8493.90i −1.05799 + 1.83248i
\(279\) 0 0
\(280\) 1459.41 + 1739.26i 0.311488 + 0.371217i
\(281\) 3621.28 + 3038.62i 0.768782 + 0.645085i 0.940397 0.340080i \(-0.110454\pi\)
−0.171615 + 0.985164i \(0.554898\pi\)
\(282\) 0 0
\(283\) −4175.27 1519.67i −0.877010 0.319206i −0.136008 0.990708i \(-0.543427\pi\)
−0.741003 + 0.671502i \(0.765649\pi\)
\(284\) −236.456 −0.0494053
\(285\) 0 0
\(286\) −1665.23 −0.344292
\(287\) 6850.13 + 2493.24i 1.40889 + 0.512793i
\(288\) 0 0
\(289\) 2334.55 + 1958.92i 0.475179 + 0.398722i
\(290\) −5405.75 6442.32i −1.09461 1.30450i
\(291\) 0 0
\(292\) 1298.13 2248.43i 0.260162 0.450615i
\(293\) −3087.63 5347.92i −0.615635 1.06631i −0.990273 0.139140i \(-0.955566\pi\)
0.374638 0.927171i \(-0.377767\pi\)
\(294\) 0 0
\(295\) −3448.67 9475.14i −0.680642 1.87005i
\(296\) −2866.64 + 1655.06i −0.562906 + 0.324994i
\(297\) 0 0
\(298\) 12298.3 + 2168.52i 2.39068 + 0.421541i
\(299\) 700.855 588.087i 0.135557 0.113746i
\(300\) 0 0
\(301\) −61.8624 350.839i −0.0118462 0.0671829i
\(302\) 1188.27 3264.74i 0.226415 0.622069i
\(303\) 0 0
\(304\) 6070.15 2326.78i 1.14522 0.438980i
\(305\) 4799.58i 0.901060i
\(306\) 0 0
\(307\) −2645.45 + 466.464i −0.491803 + 0.0867182i −0.414049 0.910254i \(-0.635886\pi\)
−0.0777538 + 0.996973i \(0.524775\pi\)
\(308\) −1781.58 + 2123.20i −0.329594 + 0.392795i
\(309\) 0 0
\(310\) 1777.64 10081.5i 0.325688 1.84707i
\(311\) 1261.31 + 728.219i 0.229976 + 0.132776i 0.610561 0.791969i \(-0.290944\pi\)
−0.380585 + 0.924746i \(0.624277\pi\)
\(312\) 0 0
\(313\) −4689.16 + 1706.71i −0.846795 + 0.308208i −0.728733 0.684798i \(-0.759890\pi\)
−0.118062 + 0.993006i \(0.537668\pi\)
\(314\) −9348.22 + 3402.48i −1.68010 + 0.611506i
\(315\) 0 0
\(316\) 1082.64 + 625.063i 0.192732 + 0.111274i
\(317\) 1196.68 6786.70i 0.212026 1.20246i −0.673968 0.738760i \(-0.735412\pi\)
0.885994 0.463697i \(-0.153477\pi\)
\(318\) 0 0
\(319\) −3500.70 + 4171.98i −0.614426 + 0.732244i
\(320\) 1475.57 260.182i 0.257771 0.0454520i
\(321\) 0 0
\(322\) 3853.36i 0.666893i
\(323\) −3532.73 561.264i −0.608564 0.0966860i
\(324\) 0 0
\(325\) 204.052 560.629i 0.0348270 0.0956865i
\(326\) 2521.93 + 14302.6i 0.428456 + 2.42990i
\(327\) 0 0
\(328\) −3206.73 + 2690.76i −0.539823 + 0.452965i
\(329\) −154.788 27.2933i −0.0259385 0.00457365i
\(330\) 0 0
\(331\) −3272.13 + 1889.16i −0.543360 + 0.313709i −0.746440 0.665453i \(-0.768238\pi\)
0.203079 + 0.979162i \(0.434905\pi\)
\(332\) −405.327 1113.63i −0.0670037 0.184091i
\(333\) 0 0
\(334\) −995.812 1724.80i −0.163139 0.282565i
\(335\) −2.42660 + 4.20299i −0.000395759 + 0.000685475i
\(336\) 0 0
\(337\) −853.261 1016.88i −0.137923 0.164370i 0.692661 0.721263i \(-0.256438\pi\)
−0.830585 + 0.556892i \(0.811994\pi\)
\(338\) 5480.21 + 4598.44i 0.881905 + 0.740006i
\(339\) 0 0
\(340\) −2719.65 989.872i −0.433805 0.157892i
\(341\) −6629.39 −1.05279
\(342\) 0 0
\(343\) 6631.02 1.04385
\(344\) 192.237 + 69.9686i 0.0301300 + 0.0109664i
\(345\) 0 0
\(346\) −664.932 557.944i −0.103315 0.0866915i
\(347\) 1850.12 + 2204.88i 0.286223 + 0.341107i 0.889928 0.456100i \(-0.150754\pi\)
−0.603705 + 0.797208i \(0.706310\pi\)
\(348\) 0 0
\(349\) 4675.53 8098.25i 0.717121 1.24209i −0.245015 0.969519i \(-0.578793\pi\)
0.962136 0.272570i \(-0.0878737\pi\)
\(350\) −1256.39 2176.14i −0.191877 0.332341i
\(351\) 0 0
\(352\) −2114.87 5810.55i −0.320235 0.879839i
\(353\) −4297.40 + 2481.10i −0.647953 + 0.374096i −0.787672 0.616095i \(-0.788714\pi\)
0.139718 + 0.990191i \(0.455380\pi\)
\(354\) 0 0
\(355\) −571.104 100.701i −0.0853833 0.0150554i
\(356\) −2662.80 + 2234.35i −0.396427 + 0.332642i
\(357\) 0 0
\(358\) 1231.30 + 6983.07i 0.181778 + 1.03091i
\(359\) −1104.27 + 3033.95i −0.162343 + 0.446033i −0.994016 0.109232i \(-0.965161\pi\)
0.831673 + 0.555265i \(0.187383\pi\)
\(360\) 0 0
\(361\) −6362.01 + 2563.33i −0.927542 + 0.373718i
\(362\) 15334.1i 2.22635i
\(363\) 0 0
\(364\) −1370.95 + 241.735i −0.197410 + 0.0348087i
\(365\) 4092.88 4877.71i 0.586935 0.699482i
\(366\) 0 0
\(367\) 2254.38 12785.2i 0.320648 1.81848i −0.217995 0.975950i \(-0.569952\pi\)
0.538643 0.842534i \(-0.318937\pi\)
\(368\) 4101.14 + 2367.79i 0.580942 + 0.335407i
\(369\) 0 0
\(370\) 14380.3 5234.01i 2.02053 0.735414i
\(371\) 5037.54 1833.52i 0.704949 0.256581i
\(372\) 0 0
\(373\) 9787.35 + 5650.73i 1.35863 + 0.784407i 0.989440 0.144946i \(-0.0463009\pi\)
0.369193 + 0.929353i \(0.379634\pi\)
\(374\) −823.570 + 4670.70i −0.113866 + 0.645765i
\(375\) 0 0
\(376\) 58.0161 69.1409i 0.00795732 0.00948317i
\(377\) −2693.84 + 474.996i −0.368010 + 0.0648901i
\(378\) 0 0
\(379\) 1085.01i 0.147053i −0.997293 0.0735267i \(-0.976575\pi\)
0.997293 0.0735267i \(-0.0234254\pi\)
\(380\) −5448.19 + 1056.31i −0.735490 + 0.142599i
\(381\) 0 0
\(382\) 580.607 1595.21i 0.0777656 0.213659i
\(383\) −757.250 4294.58i −0.101028 0.572957i −0.992733 0.120340i \(-0.961602\pi\)
0.891705 0.452617i \(-0.149510\pi\)
\(384\) 0 0
\(385\) −5207.20 + 4369.36i −0.689308 + 0.578398i
\(386\) 11961.5 + 2109.14i 1.57727 + 0.278115i
\(387\) 0 0
\(388\) −4870.42 + 2811.94i −0.637263 + 0.367924i
\(389\) 3827.19 + 10515.1i 0.498833 + 1.37053i 0.892403 + 0.451239i \(0.149018\pi\)
−0.393570 + 0.919295i \(0.628760\pi\)
\(390\) 0 0
\(391\) −1302.86 2256.63i −0.168513 0.291873i
\(392\) −174.366 + 302.010i −0.0224663 + 0.0389128i
\(393\) 0 0
\(394\) 10645.0 + 12686.2i 1.36114 + 1.62214i
\(395\) 2348.66 + 1970.76i 0.299175 + 0.251037i
\(396\) 0 0
\(397\) 6472.89 + 2355.94i 0.818300 + 0.297837i 0.717048 0.697024i \(-0.245493\pi\)
0.101252 + 0.994861i \(0.467715\pi\)
\(398\) −8128.27 −1.02370
\(399\) 0 0
\(400\) 3088.09 0.386011
\(401\) 11087.8 + 4035.64i 1.38080 + 0.502569i 0.922420 0.386188i \(-0.126208\pi\)
0.458378 + 0.888757i \(0.348431\pi\)
\(402\) 0 0
\(403\) −2550.70 2140.29i −0.315284 0.264555i
\(404\) −4052.82 4829.97i −0.499098 0.594801i
\(405\) 0 0
\(406\) −5760.45 + 9977.38i −0.704153 + 1.21963i
\(407\) −4955.10 8582.48i −0.603477 1.04525i
\(408\) 0 0
\(409\) 3167.89 + 8703.70i 0.382988 + 1.05225i 0.970092 + 0.242739i \(0.0780458\pi\)
−0.587104 + 0.809512i \(0.699732\pi\)
\(410\) 16760.2 9676.49i 2.01884 1.16558i
\(411\) 0 0
\(412\) 4022.66 + 709.303i 0.481025 + 0.0848176i
\(413\) −10581.6 + 8879.01i −1.26074 + 1.05789i
\(414\) 0 0
\(415\) −504.704 2862.32i −0.0596987 0.338568i
\(416\) 1062.22 2918.43i 0.125192 0.343961i
\(417\) 0 0
\(418\) 3255.03 + 8491.80i 0.380882 + 0.993654i
\(419\) 13294.4i 1.55006i −0.631925 0.775029i \(-0.717735\pi\)
0.631925 0.775029i \(-0.282265\pi\)
\(420\) 0 0
\(421\) 2877.93 507.457i 0.333164 0.0587457i −0.00456412 0.999990i \(-0.501453\pi\)
0.337728 + 0.941244i \(0.390342\pi\)
\(422\) 11778.7 14037.3i 1.35871 1.61925i
\(423\) 0 0
\(424\) −534.562 + 3031.65i −0.0612279 + 0.347240i
\(425\) −1471.55 849.601i −0.167955 0.0969687i
\(426\) 0 0
\(427\) 6178.55 2248.81i 0.700237 0.254865i
\(428\) 9600.17 3494.17i 1.08421 0.394620i
\(429\) 0 0
\(430\) −819.072 472.892i −0.0918586 0.0530346i
\(431\) −1097.00 + 6221.38i −0.122600 + 0.695297i 0.860105 + 0.510117i \(0.170398\pi\)
−0.982705 + 0.185180i \(0.940713\pi\)
\(432\) 0 0
\(433\) 1830.97 2182.06i 0.203212 0.242178i −0.654808 0.755795i \(-0.727250\pi\)
0.858019 + 0.513617i \(0.171695\pi\)
\(434\) −13810.9 + 2435.24i −1.52753 + 0.269344i
\(435\) 0 0
\(436\) 7129.07i 0.783075i
\(437\) −4368.88 2424.45i −0.478243 0.265394i
\(438\) 0 0
\(439\) −1425.72 + 3917.13i −0.155002 + 0.425864i −0.992751 0.120191i \(-0.961649\pi\)
0.837749 + 0.546056i \(0.183871\pi\)
\(440\) −677.822 3844.12i −0.0734407 0.416503i
\(441\) 0 0
\(442\) −1824.81 + 1531.19i −0.196374 + 0.164777i
\(443\) 10107.8 + 1782.29i 1.08406 + 0.191149i 0.687010 0.726648i \(-0.258923\pi\)
0.397050 + 0.917797i \(0.370034\pi\)
\(444\) 0 0
\(445\) −7382.91 + 4262.52i −0.786480 + 0.454074i
\(446\) 1495.83 + 4109.76i 0.158811 + 0.436330i
\(447\) 0 0
\(448\) −1026.30 1777.61i −0.108233 0.187464i
\(449\) −165.110 + 285.978i −0.0173541 + 0.0300582i −0.874572 0.484896i \(-0.838858\pi\)
0.857218 + 0.514954i \(0.172191\pi\)
\(450\) 0 0
\(451\) −8055.91 9600.66i −0.841105 1.00239i
\(452\) 1125.06 + 944.038i 0.117076 + 0.0982386i
\(453\) 0 0
\(454\) −11324.5 4121.79i −1.17068 0.426091i
\(455\) −3414.15 −0.351775
\(456\) 0 0
\(457\) −1887.93 −0.193247 −0.0966234 0.995321i \(-0.530804\pi\)
−0.0966234 + 0.995321i \(0.530804\pi\)
\(458\) −8792.70 3200.28i −0.897065 0.326505i
\(459\) 0 0
\(460\) −3096.89 2598.60i −0.313898 0.263392i
\(461\) −3171.97 3780.20i −0.320463 0.381912i 0.581631 0.813453i \(-0.302415\pi\)
−0.902094 + 0.431540i \(0.857970\pi\)
\(462\) 0 0
\(463\) 1743.29 3019.47i 0.174984 0.303081i −0.765172 0.643826i \(-0.777346\pi\)
0.940156 + 0.340745i \(0.110679\pi\)
\(464\) −7079.30 12261.7i −0.708293 1.22680i
\(465\) 0 0
\(466\) 696.092 + 1912.50i 0.0691971 + 0.190117i
\(467\) 10763.7 6214.40i 1.06656 0.615777i 0.139319 0.990248i \(-0.455509\pi\)
0.927239 + 0.374470i \(0.122175\pi\)
\(468\) 0 0
\(469\) 6.54752 + 1.15451i 0.000644641 + 0.000113668i
\(470\) −319.650 + 268.219i −0.0313710 + 0.0263234i
\(471\) 0 0
\(472\) −1377.41 7811.66i −0.134323 0.761782i
\(473\) −209.480 + 575.542i −0.0203634 + 0.0559481i
\(474\) 0 0
\(475\) −3257.77 + 55.3030i −0.314688 + 0.00534205i
\(476\) 3964.83i 0.381781i
\(477\) 0 0
\(478\) −16193.7 + 2855.39i −1.54955 + 0.273227i
\(479\) 2107.53 2511.66i 0.201034 0.239584i −0.656103 0.754671i \(-0.727796\pi\)
0.857137 + 0.515088i \(0.172241\pi\)
\(480\) 0 0
\(481\) 864.340 4901.91i 0.0819345 0.464674i
\(482\) 6262.35 + 3615.57i 0.591789 + 0.341669i
\(483\) 0 0
\(484\) −2059.97 + 749.768i −0.193461 + 0.0704140i
\(485\) −12960.9 + 4717.37i −1.21345 + 0.441659i
\(486\) 0 0
\(487\) −1540.54 889.431i −0.143344 0.0827597i 0.426613 0.904434i \(-0.359707\pi\)
−0.569957 + 0.821675i \(0.693040\pi\)
\(488\) −655.641 + 3718.32i −0.0608186 + 0.344919i
\(489\) 0 0
\(490\) 1036.33 1235.05i 0.0955442 0.113865i
\(491\) −12735.6 + 2245.64i −1.17057 + 0.206403i −0.724940 0.688812i \(-0.758132\pi\)
−0.445633 + 0.895216i \(0.647021\pi\)
\(492\) 0 0
\(493\) 7790.67i 0.711713i
\(494\) −1489.18 + 4318.16i −0.135630 + 0.393286i
\(495\) 0 0
\(496\) 5894.65 16195.4i 0.533624 1.46612i
\(497\) 137.953 + 782.371i 0.0124508 + 0.0706119i
\(498\) 0 0
\(499\) 11719.5 9833.86i 1.05138 0.882213i 0.0581421 0.998308i \(-0.481482\pi\)
0.993238 + 0.116096i \(0.0370379\pi\)
\(500\) 5652.70 + 996.724i 0.505593 + 0.0891497i
\(501\) 0 0
\(502\) −15774.8 + 9107.58i −1.40252 + 0.809743i
\(503\) −2424.90 6662.35i −0.214952 0.590576i 0.784616 0.619983i \(-0.212860\pi\)
−0.999568 + 0.0294069i \(0.990638\pi\)
\(504\) 0 0
\(505\) −7731.66 13391.6i −0.681296 1.18004i
\(506\) −3312.41 + 5737.26i −0.291017 + 0.504056i
\(507\) 0 0
\(508\) 6882.96 + 8202.79i 0.601145 + 0.716417i
\(509\) −9050.24 7594.06i −0.788104 0.661298i 0.157171 0.987571i \(-0.449763\pi\)
−0.945275 + 0.326273i \(0.894207\pi\)
\(510\) 0 0
\(511\) −8196.81 2983.40i −0.709600 0.258273i
\(512\) 9742.70 0.840958
\(513\) 0 0
\(514\) −3974.31 −0.341050
\(515\) 9413.70 + 3426.31i 0.805470 + 0.293167i
\(516\) 0 0
\(517\) 207.002 + 173.695i 0.0176092 + 0.0147758i
\(518\) −13475.6 16059.6i −1.14302 1.36220i
\(519\) 0 0
\(520\) 980.274 1697.88i 0.0826690 0.143187i
\(521\) −7946.82 13764.3i −0.668247 1.15744i −0.978394 0.206749i \(-0.933712\pi\)
0.310147 0.950689i \(-0.399622\pi\)
\(522\) 0 0
\(523\) 1678.92 + 4612.79i 0.140371 + 0.385666i 0.989880 0.141909i \(-0.0453239\pi\)
−0.849509 + 0.527574i \(0.823102\pi\)
\(524\) −9760.84 + 5635.42i −0.813748 + 0.469818i
\(525\) 0 0
\(526\) −20453.9 3606.57i −1.69550 0.298962i
\(527\) −7264.65 + 6095.77i −0.600481 + 0.503863i
\(528\) 0 0
\(529\) 1480.74 + 8397.69i 0.121701 + 0.690202i
\(530\) 4867.65 13373.8i 0.398938 1.09607i
\(531\) 0 0
\(532\) 3912.51 + 6518.58i 0.318851 + 0.531234i
\(533\) 6294.76i 0.511551i
\(534\) 0 0
\(535\) 24675.0 4350.87i 1.99401 0.351597i
\(536\) −2.45408 + 2.92465i −0.000197761 + 0.000235682i
\(537\) 0 0
\(538\) 320.324 1816.65i 0.0256694 0.145578i
\(539\) −904.193 522.036i −0.0722566 0.0417174i
\(540\) 0 0
\(541\) −14890.1 + 5419.54i −1.18332 + 0.430692i −0.857372 0.514698i \(-0.827904\pi\)
−0.325944 + 0.945389i \(0.605682\pi\)
\(542\) 29796.9 10845.2i 2.36141 0.859484i
\(543\) 0 0
\(544\) −7660.36 4422.71i −0.603741 0.348570i
\(545\) −3036.10 + 17218.6i −0.238628 + 1.35333i
\(546\) 0 0
\(547\) 14302.6 17045.1i 1.11798 1.33235i 0.180792 0.983521i \(-0.442134\pi\)
0.937185 0.348832i \(-0.113422\pi\)
\(548\) 4331.06 763.683i 0.337616 0.0595309i
\(549\) 0 0
\(550\) 4320.06i 0.334924i
\(551\) 7687.86 + 12808.7i 0.594399 + 0.990321i
\(552\) 0 0
\(553\) 1436.53 3946.84i 0.110466 0.303502i
\(554\) −2695.62 15287.6i −0.206725 1.17240i
\(555\) 0 0
\(556\) 10798.4 9060.93i 0.823659 0.691132i
\(557\) 9402.00 + 1657.83i 0.715217 + 0.126112i 0.519403 0.854529i \(-0.326154\pi\)
0.195813 + 0.980641i \(0.437265\pi\)
\(558\) 0 0
\(559\) −266.412 + 153.813i −0.0201575 + 0.0116379i
\(560\) −6044.14 16606.1i −0.456092 1.25310i
\(561\) 0 0
\(562\) −8596.29 14889.2i −0.645218 1.11755i
\(563\) −8862.29 + 15349.9i −0.663412 + 1.14906i 0.316301 + 0.948659i \(0.397559\pi\)
−0.979713 + 0.200405i \(0.935774\pi\)
\(564\) 0 0
\(565\) 2315.27 + 2759.24i 0.172397 + 0.205455i
\(566\) 12379.0 + 10387.2i 0.919306 + 0.771389i
\(567\) 0 0
\(568\) −428.689 156.030i −0.0316679 0.0115262i
\(569\) −3866.18 −0.284848 −0.142424 0.989806i \(-0.545490\pi\)
−0.142424 + 0.989806i \(0.545490\pi\)
\(570\) 0 0
\(571\) 7240.38 0.530649 0.265324 0.964159i \(-0.414521\pi\)
0.265324 + 0.964159i \(0.414521\pi\)
\(572\) 2249.00 + 818.570i 0.164398 + 0.0598359i
\(573\) 0 0
\(574\) −20309.5 17041.7i −1.47683 1.23921i
\(575\) −1525.65 1818.20i −0.110651 0.131868i
\(576\) 0 0
\(577\) −7854.36 + 13604.1i −0.566692 + 0.981539i 0.430198 + 0.902734i \(0.358444\pi\)
−0.996890 + 0.0788047i \(0.974890\pi\)
\(578\) −5541.82 9598.71i −0.398805 0.690750i
\(579\) 0 0
\(580\) 4133.99 + 11358.0i 0.295956 + 0.813132i
\(581\) −3448.22 + 1990.83i −0.246224 + 0.142158i
\(582\) 0 0
\(583\) −9076.50 1600.43i −0.644786 0.113693i
\(584\) 3837.14 3219.74i 0.271887 0.228140i
\(585\) 0 0
\(586\) 3899.93 + 22117.6i 0.274923 + 1.55916i
\(587\) 7664.97 21059.3i 0.538956 1.48077i −0.309187 0.951001i \(-0.600057\pi\)
0.848143 0.529767i \(-0.177721\pi\)
\(588\) 0 0
\(589\) −5928.50 + 17190.8i −0.414736 + 1.20261i
\(590\) 36671.8i 2.55890i
\(591\) 0 0
\(592\) 25372.6 4473.88i 1.76150 0.310600i
\(593\) −13204.5 + 15736.5i −0.914405 + 1.08974i 0.0812567 + 0.996693i \(0.474107\pi\)
−0.995661 + 0.0930518i \(0.970338\pi\)
\(594\) 0 0
\(595\) −1688.53 + 9576.11i −0.116341 + 0.659802i
\(596\) −15543.7 8974.14i −1.06828 0.616770i
\(597\) 0 0
\(598\) −3126.74 + 1138.04i −0.213816 + 0.0778227i
\(599\) −1666.77 + 606.654i −0.113693 + 0.0413810i −0.398240 0.917281i \(-0.630379\pi\)
0.284547 + 0.958662i \(0.408157\pi\)
\(600\) 0 0
\(601\) 19474.0 + 11243.3i 1.32173 + 0.763102i 0.984005 0.178143i \(-0.0570089\pi\)
0.337726 + 0.941244i \(0.390342\pi\)
\(602\) −224.988 + 1275.97i −0.0152323 + 0.0863865i
\(603\) 0 0
\(604\) −3209.66 + 3825.13i −0.216224 + 0.257686i
\(605\) −5294.68 + 933.594i −0.355800 + 0.0627372i
\(606\) 0 0
\(607\) 15274.4i 1.02136i −0.859770 0.510682i \(-0.829393\pi\)
0.859770 0.510682i \(-0.170607\pi\)
\(608\) −16958.7 + 287.887i −1.13120 + 0.0192029i
\(609\) 0 0
\(610\) 5970.18 16402.9i 0.396271 1.08875i
\(611\) 23.5680 + 133.661i 0.00156049 + 0.00884998i
\(612\) 0 0
\(613\) −18373.0 + 15416.8i −1.21057 + 1.01579i −0.211303 + 0.977421i \(0.567771\pi\)
−0.999264 + 0.0383657i \(0.987785\pi\)
\(614\) 9621.25 + 1696.49i 0.632381 + 0.111506i
\(615\) 0 0
\(616\) −4630.99 + 2673.70i −0.302902 + 0.174881i
\(617\) 1994.06 + 5478.62i 0.130110 + 0.357473i 0.987592 0.157039i \(-0.0501950\pi\)
−0.857483 + 0.514513i \(0.827973\pi\)
\(618\) 0 0
\(619\) 6933.09 + 12008.5i 0.450185 + 0.779743i 0.998397 0.0565963i \(-0.0180248\pi\)
−0.548212 + 0.836339i \(0.684691\pi\)
\(620\) −7356.53 + 12741.9i −0.476525 + 0.825365i
\(621\) 0 0
\(622\) −3404.80 4057.68i −0.219486 0.261573i
\(623\) 8946.40 + 7506.92i 0.575329 + 0.482758i
\(624\) 0 0
\(625\) 17849.4 + 6496.65i 1.14236 + 0.415786i
\(626\) 18148.5 1.15872
\(627\) 0 0
\(628\) 14297.9 0.908516
\(629\) −13321.6 4848.65i −0.844460 0.307358i
\(630\) 0 0
\(631\) 3386.13 + 2841.30i 0.213629 + 0.179256i 0.743323 0.668933i \(-0.233249\pi\)
−0.529694 + 0.848189i \(0.677693\pi\)
\(632\) 1550.34 + 1847.62i 0.0975777 + 0.116289i
\(633\) 0 0
\(634\) −12531.7 + 21705.5i −0.785010 + 1.35968i
\(635\) 13130.8 + 22743.2i 0.820597 + 1.42131i
\(636\) 0 0
\(637\) −179.355 492.775i −0.0111559 0.0306506i
\(638\) 17153.4 9903.53i 1.06444 0.614553i
\(639\) 0 0
\(640\) 15317.8 + 2700.94i 0.946078 + 0.166819i
\(641\) 16396.9 13758.6i 1.01036 0.847790i 0.0219716 0.999759i \(-0.493006\pi\)
0.988385 + 0.151968i \(0.0485612\pi\)
\(642\) 0 0
\(643\) −2117.42 12008.5i −0.129864 0.736498i −0.978299 0.207198i \(-0.933566\pi\)
0.848435 0.529300i \(-0.177545\pi\)
\(644\) −1894.18 + 5204.21i −0.115902 + 0.318439i
\(645\) 0 0
\(646\) 11375.2 + 6312.51i 0.692804 + 0.384462i
\(647\) 5526.23i 0.335794i −0.985805 0.167897i \(-0.946302\pi\)
0.985805 0.167897i \(-0.0536976\pi\)
\(648\) 0 0
\(649\) 23387.5 4123.84i 1.41454 0.249422i
\(650\) −1394.73 + 1662.17i −0.0841627 + 0.100301i
\(651\) 0 0
\(652\) 3624.61 20556.2i 0.217716 1.23473i
\(653\) 8261.98 + 4770.05i 0.495124 + 0.285860i 0.726698 0.686957i \(-0.241054\pi\)
−0.231574 + 0.972817i \(0.574387\pi\)
\(654\) 0 0
\(655\) −25975.0 + 9454.11i −1.54951 + 0.563974i
\(656\) 30617.2 11143.7i 1.82226 0.663247i
\(657\) 0 0
\(658\) 495.050 + 285.818i 0.0293299 + 0.0169336i
\(659\) −1529.56 + 8674.56i −0.0904146 + 0.512766i 0.905642 + 0.424044i \(0.139390\pi\)
−0.996056 + 0.0887229i \(0.971721\pi\)
\(660\) 0 0
\(661\) 20213.8 24089.8i 1.18945 1.41753i 0.304073 0.952649i \(-0.401653\pi\)
0.885374 0.464880i \(-0.153902\pi\)
\(662\) 13532.7 2386.17i 0.794504 0.140093i
\(663\) 0 0
\(664\) 2286.44i 0.133631i
\(665\) 6673.63 + 17410.3i 0.389161 + 1.01525i
\(666\) 0 0
\(667\) −3721.95 + 10226.0i −0.216064 + 0.593630i
\(668\) 497.057 + 2818.95i 0.0287900 + 0.163276i
\(669\) 0 0
\(670\) 13.5212 11.3456i 0.000779655 0.000654208i
\(671\) −11132.3 1962.93i −0.640476 0.112933i
\(672\) 0 0
\(673\) 22577.1 13034.9i 1.29314 0.746593i 0.313928 0.949447i \(-0.398355\pi\)
0.979209 + 0.202853i \(0.0650215\pi\)
\(674\) 1651.20 + 4536.62i 0.0943645 + 0.259264i
\(675\) 0 0
\(676\) −5140.93 8904.35i −0.292497 0.506620i
\(677\) −10775.8 + 18664.2i −0.611738 + 1.05956i 0.379209 + 0.925311i \(0.376196\pi\)
−0.990947 + 0.134250i \(0.957137\pi\)
\(678\) 0 0
\(679\) 12145.4 + 14474.4i 0.686450 + 0.818079i
\(680\) −4277.47 3589.22i −0.241225 0.202412i
\(681\) 0 0
\(682\) 22656.5 + 8246.28i 1.27208 + 0.463000i
\(683\) 10420.4 0.583787 0.291893 0.956451i \(-0.405715\pi\)
0.291893 + 0.956451i \(0.405715\pi\)
\(684\) 0 0
\(685\) 10785.9 0.601617
\(686\) −22662.0 8248.30i −1.26128 0.459069i
\(687\) 0 0
\(688\) −1219.77 1023.51i −0.0675919 0.0567163i
\(689\) −2975.55 3546.12i −0.164527 0.196076i
\(690\) 0 0
\(691\) −5403.97 + 9359.94i −0.297506 + 0.515295i −0.975565 0.219712i \(-0.929488\pi\)
0.678059 + 0.735008i \(0.262821\pi\)
\(692\) 623.766 + 1080.39i 0.0342659 + 0.0593503i
\(693\) 0 0
\(694\) −3580.27 9836.70i −0.195829 0.538035i
\(695\) 29939.8 17285.7i 1.63407 0.943433i
\(696\) 0 0
\(697\) −17655.7 3113.18i −0.959482 0.169183i
\(698\) −26052.3 + 21860.5i −1.41274 + 1.18543i
\(699\) 0 0
\(700\) 627.126 + 3556.61i 0.0338616 + 0.192039i
\(701\) 360.375 990.121i 0.0194168 0.0533472i −0.929606 0.368556i \(-0.879852\pi\)
0.949022 + 0.315209i \(0.102075\pi\)
\(702\) 0 0
\(703\) −26686.6 + 5174.09i −1.43173 + 0.277588i
\(704\) 3528.90i 0.188921i
\(705\) 0 0
\(706\) 17772.9 3133.85i 0.947440 0.167059i
\(707\) −13616.6 + 16227.6i −0.724334 + 0.863227i
\(708\) 0 0
\(709\) −4796.08 + 27199.9i −0.254049 + 1.44078i 0.544455 + 0.838790i \(0.316737\pi\)
−0.798503 + 0.601991i \(0.794374\pi\)
\(710\) 1826.53 + 1054.55i 0.0965471 + 0.0557415i
\(711\) 0 0
\(712\) −6301.95 + 2293.72i −0.331707 + 0.120732i
\(713\) −12447.7 + 4530.61i −0.653817 + 0.237970i
\(714\) 0 0
\(715\) 5083.32 + 2934.86i 0.265882 + 0.153507i
\(716\) 1769.68 10036.3i 0.0923686 0.523848i
\(717\) 0 0
\(718\) 7547.85 8995.17i 0.392316 0.467544i
\(719\) 2033.51 358.562i 0.105476 0.0185982i −0.120661 0.992694i \(-0.538501\pi\)
0.226137 + 0.974096i \(0.427390\pi\)
\(720\) 0 0
\(721\) 13723.7i 0.708874i
\(722\) 24931.2 846.694i 1.28510 0.0436436i
\(723\) 0 0
\(724\) 7537.68 20709.6i 0.386928 1.06308i
\(725\) 1232.27 + 6988.53i 0.0631245 + 0.357997i
\(726\) 0 0
\(727\) 11286.9 9470.81i 0.575801 0.483154i −0.307764 0.951463i \(-0.599581\pi\)
0.883565 + 0.468309i \(0.155136\pi\)
\(728\) −2645.00 466.386i −0.134657 0.0237437i
\(729\) 0 0
\(730\) −20055.1 + 11578.8i −1.01681 + 0.587056i
\(731\) 299.661 + 823.311i 0.0151619 + 0.0416570i
\(732\) 0 0
\(733\) 6550.21 + 11345.3i 0.330065 + 0.571689i 0.982524 0.186135i \(-0.0595961\pi\)
−0.652460 + 0.757824i \(0.726263\pi\)
\(734\) −23608.0 + 40890.3i −1.18718 + 2.05625i
\(735\) 0 0
\(736\) −7942.00 9464.90i −0.397753 0.474023i
\(737\) −8.75616 7.34729i −0.000437636 0.000367220i
\(738\) 0 0
\(739\) −25913.1 9431.61i −1.28989 0.469482i −0.396200 0.918164i \(-0.629671\pi\)
−0.893692 + 0.448682i \(0.851894\pi\)
\(740\) −21994.4 −1.09261
\(741\) 0 0
\(742\) −19496.9 −0.964627
\(743\) −10790.6 3927.45i −0.532796 0.193922i 0.0615901 0.998102i \(-0.480383\pi\)
−0.594387 + 0.804179i \(0.702605\pi\)
\(744\) 0 0
\(745\) −33720.1 28294.6i −1.65827 1.39145i
\(746\) −26420.1 31486.2i −1.29666 1.54530i
\(747\) 0 0
\(748\) 3408.23 5903.23i 0.166601 0.288561i
\(749\) −17162.2 29725.8i −0.837241 1.45014i
\(750\) 0 0
\(751\) 3542.37 + 9732.58i 0.172121 + 0.472899i 0.995519 0.0945663i \(-0.0301464\pi\)
−0.823398 + 0.567465i \(0.807924\pi\)
\(752\) −608.392 + 351.255i −0.0295024 + 0.0170332i
\(753\) 0 0
\(754\) 9797.24 + 1727.52i 0.473202 + 0.0834383i
\(755\) −9381.21 + 7871.77i −0.452208 + 0.379448i
\(756\) 0 0
\(757\) −2770.76 15713.8i −0.133032 0.754460i −0.976210 0.216826i \(-0.930429\pi\)
0.843179 0.537634i \(-0.180682\pi\)
\(758\) −1349.64 + 3708.11i −0.0646717 + 0.177684i
\(759\) 0 0
\(760\) −10574.4 1680.02i −0.504704 0.0801852i
\(761\) 785.685i 0.0374258i −0.999825 0.0187129i \(-0.994043\pi\)
0.999825 0.0187129i \(-0.00595686\pi\)
\(762\) 0 0
\(763\) 23588.2 4159.23i 1.11920 0.197345i
\(764\) −1568.29 + 1869.02i −0.0742655 + 0.0885061i
\(765\) 0 0
\(766\) −2754.05 + 15619.0i −0.129906 + 0.736732i
\(767\) 10329.9 + 5963.94i 0.486297 + 0.280763i
\(768\) 0 0
\(769\) 3744.21 1362.78i 0.175578 0.0639052i −0.252735 0.967535i \(-0.581330\pi\)
0.428313 + 0.903630i \(0.359108\pi\)
\(770\) 23231.0 8455.41i 1.08726 0.395730i
\(771\) 0 0
\(772\) −15118.0 8728.37i −0.704804 0.406919i
\(773\) 2619.42 14855.5i 0.121881 0.691223i −0.861230 0.508215i \(-0.830306\pi\)
0.983111 0.183008i \(-0.0585833\pi\)
\(774\) 0 0
\(775\) −5552.49 + 6617.20i −0.257357 + 0.306706i
\(776\) −10685.4 + 1884.13i −0.494310 + 0.0871602i
\(777\) 0 0
\(778\) 40696.8i 1.87539i
\(779\) −32099.9 + 12304.4i −1.47638 + 0.565917i
\(780\) 0 0
\(781\) 467.140 1283.46i 0.0214028 0.0588037i
\(782\) 1645.63 + 9332.82i 0.0752526 + 0.426779i
\(783\) 0 0
\(784\) 2079.30 1744.74i 0.0947201 0.0794796i
\(785\) 34533.1 + 6089.13i 1.57012 + 0.276854i
\(786\) 0 0
\(787\) −23483.6 + 13558.3i −1.06366 + 0.614104i −0.926442 0.376436i \(-0.877149\pi\)
−0.137218 + 0.990541i \(0.543816\pi\)
\(788\) −8140.65 22366.3i −0.368019 1.01112i
\(789\) 0 0
\(790\) −5575.31 9656.71i −0.251089 0.434899i
\(791\) 2467.19 4273.30i 0.110902 0.192087i
\(792\) 0 0
\(793\) −3649.51 4349.32i −0.163427 0.194765i
\(794\) −19191.1 16103.2i −0.857765 0.719750i
\(795\) 0 0
\(796\) 10977.7 + 3995.57i 0.488813 + 0.177914i
\(797\) 10093.7 0.448605 0.224302 0.974520i \(-0.427990\pi\)
0.224302 + 0.974520i \(0.427990\pi\)
\(798\) 0 0
\(799\) 386.552 0.0171154
\(800\) −7571.19 2755.69i −0.334602 0.121785i
\(801\) 0 0
\(802\) −32873.6 27584.2i −1.44739 1.21450i
\(803\) 9639.64 + 11488.1i 0.423631 + 0.504864i
\(804\) 0 0
\(805\) −6791.28 + 11762.8i −0.297343 + 0.515013i
\(806\) 6054.92 + 10487.4i 0.264610 + 0.458317i
\(807\) 0 0
\(808\) −4160.51 11430.9i −0.181146 0.497696i
\(809\) 19457.2 11233.6i 0.845586 0.488199i −0.0135733 0.999908i \(-0.504321\pi\)
0.859159 + 0.511709i \(0.170987\pi\)
\(810\) 0 0
\(811\) 4820.06 + 849.906i 0.208699 + 0.0367993i 0.277020 0.960864i \(-0.410653\pi\)
−0.0683210 + 0.997663i \(0.521764\pi\)
\(812\) 12684.4 10643.4i 0.548194 0.459990i
\(813\) 0 0
\(814\) 6258.71 + 35494.9i 0.269493 + 1.52837i
\(815\) 17508.8 48105.0i 0.752522 2.06754i
\(816\) 0 0
\(817\) 1305.12 + 1057.90i 0.0558878 + 0.0453014i
\(818\) 33686.1i 1.43986i
\(819\) 0 0
\(820\) −27392.3 + 4830.00i −1.16656 + 0.205696i
\(821\) −13065.9 + 15571.3i −0.555422 + 0.661927i −0.968571 0.248737i \(-0.919985\pi\)
0.413149 + 0.910664i \(0.364429\pi\)
\(822\) 0 0
\(823\) −6338.87 + 35949.5i −0.268480 + 1.52263i 0.490458 + 0.871465i \(0.336829\pi\)
−0.758938 + 0.651162i \(0.774282\pi\)
\(824\) 6824.92 + 3940.37i 0.288540 + 0.166589i
\(825\) 0 0
\(826\) 47208.0 17182.3i 1.98859 0.723788i
\(827\) 6498.43 2365.24i 0.273244 0.0994526i −0.201764 0.979434i \(-0.564667\pi\)
0.475008 + 0.879982i \(0.342445\pi\)
\(828\) 0 0
\(829\) −12847.8 7417.70i −0.538268 0.310769i 0.206109 0.978529i \(-0.433920\pi\)
−0.744377 + 0.667760i \(0.767253\pi\)
\(830\) −1835.56 + 10410.0i −0.0767631 + 0.435345i
\(831\) 0 0
\(832\) −1139.30 + 1357.77i −0.0474738 + 0.0565770i
\(833\) −1470.85 + 259.351i −0.0611789 + 0.0107875i
\(834\) 0 0
\(835\) 7020.19i 0.290951i
\(836\) −221.852 13068.8i −0.00917812 0.540661i
\(837\) 0 0
\(838\) −16536.9 + 45434.7i −0.681691 + 1.87293i
\(839\) 1101.10 + 6244.67i 0.0453091 + 0.256960i 0.999045 0.0436838i \(-0.0139094\pi\)
−0.953736 + 0.300644i \(0.902798\pi\)
\(840\) 0 0
\(841\) 6241.00 5236.82i 0.255894 0.214721i
\(842\) −10466.8 1845.58i −0.428395 0.0755377i
\(843\) 0 0
\(844\) −22808.1 + 13168.2i −0.930197 + 0.537050i
\(845\) −8624.54 23695.7i −0.351116 0.964684i
\(846\) 0 0
\(847\) 3682.61 + 6378.46i 0.149393 + 0.258756i
\(848\) 11980.3 20750.6i 0.485149 0.840303i
\(849\) 0 0
\(850\) 3972.33 + 4734.03i 0.160294 + 0.191031i
\(851\) −15169.4 12728.6i −0.611044 0.512727i
\(852\) 0 0
\(853\) 8256.21 + 3005.02i 0.331404 + 0.120621i 0.502363 0.864657i \(-0.332464\pi\)
−0.170959 + 0.985278i \(0.554687\pi\)
\(854\) −23913.0 −0.958179
\(855\) 0 0
\(856\) 19710.5 0.787023
\(857\) 38469.3 + 14001.7i 1.53336 + 0.558096i 0.964441 0.264299i \(-0.0851406\pi\)
0.568916 + 0.822395i \(0.307363\pi\)
\(858\) 0 0
\(859\) 32724.0 + 27458.7i 1.29980 + 1.09066i 0.990180 + 0.139800i \(0.0446459\pi\)
0.309619 + 0.950861i \(0.399799\pi\)
\(860\) 873.751 + 1041.30i 0.0346450 + 0.0412883i
\(861\) 0 0
\(862\) 11487.8 19897.5i 0.453917 0.786207i
\(863\) 9577.00 + 16587.8i 0.377758 + 0.654295i 0.990736 0.135805i \(-0.0433619\pi\)
−0.612978 + 0.790100i \(0.710029\pi\)
\(864\) 0 0
\(865\) 1046.44 + 2875.08i 0.0411332 + 0.113012i
\(866\) −8971.72 + 5179.83i −0.352046 + 0.203254i
\(867\) 0 0
\(868\) 19849.6 + 3500.02i 0.776198 + 0.136865i
\(869\) −5531.62 + 4641.58i −0.215935 + 0.181191i
\(870\) 0 0
\(871\) −0.996924 5.65384i −3.87824e−5 0.000219946i
\(872\) −4704.24 + 12924.8i −0.182690 + 0.501937i
\(873\) 0 0
\(874\) 11915.2 + 13720.2i 0.461143 + 0.530998i
\(875\) 19284.8i 0.745080i
\(876\) 0 0
\(877\) −3819.28 + 673.442i −0.147056 + 0.0259299i −0.246691 0.969094i \(-0.579343\pi\)
0.0996356 + 0.995024i \(0.468232\pi\)
\(878\) 9745.01 11613.6i 0.374576 0.446403i
\(879\) 0 0
\(880\) −5275.79 + 29920.5i −0.202099 + 1.14616i
\(881\) −15994.1 9234.20i −0.611640 0.353130i 0.161967 0.986796i \(-0.448216\pi\)
−0.773607 + 0.633666i \(0.781549\pi\)
\(882\) 0 0
\(883\) −5094.76 + 1854.34i −0.194170 + 0.0706722i −0.437275 0.899328i \(-0.644056\pi\)
0.243105 + 0.970000i \(0.421834\pi\)
\(884\) 3217.19 1170.96i 0.122405 0.0445517i
\(885\) 0 0
\(886\) −32327.4 18664.2i −1.22580 0.707716i
\(887\) 4279.09 24267.9i 0.161982 0.918645i −0.790140 0.612926i \(-0.789992\pi\)
0.952122 0.305718i \(-0.0988966\pi\)
\(888\) 0 0
\(889\) 23125.2 27559.5i 0.872434 1.03973i
\(890\) 30533.8 5383.93i 1.14999 0.202775i
\(891\) 0 0
\(892\) 6285.79i 0.235946i
\(893\) 635.530 381.451i 0.0238155 0.0142942i
\(894\) 0 0
\(895\) 8548.46 23486.7i 0.319267 0.877178i
\(896\) −3700.10 20984.3i −0.137959 0.782406i
\(897\) 0 0
\(898\) 920.002 771.973i 0.0341880 0.0286872i
\(899\) 39003.4 + 6877.35i 1.44698 + 0.255142i
\(900\) 0 0
\(901\) −11417.9 + 6592.11i −0.422180 + 0.243746i
\(902\) 15589.5 + 42831.7i 0.575468 + 1.58109i
\(903\) 0 0
\(904\) 1416.76 + 2453.91i 0.0521248 + 0.0902828i
\(905\) 27025.2 46809.0i 0.992649 1.71932i
\(906\) 0 0
\(907\) −18846.2 22460.0i −0.689943 0.822242i 0.301406 0.953496i \(-0.402544\pi\)
−0.991349 + 0.131254i \(0.958100\pi\)
\(908\) 13268.4 + 11133.5i 0.484940 + 0.406913i
\(909\) 0 0
\(910\) 11668.1 + 4246.85i 0.425049 + 0.154705i
\(911\) −46962.2 −1.70793 −0.853966 0.520329i \(-0.825809\pi\)
−0.853966 + 0.520329i \(0.825809\pi\)
\(912\) 0 0
\(913\) 6845.39 0.248137
\(914\) 6452.15 + 2348.39i 0.233499 + 0.0849867i
\(915\) 0 0
\(916\) 10301.9 + 8644.35i 0.371600 + 0.311810i
\(917\) 24340.8 + 29008.2i 0.876557 + 1.04464i
\(918\) 0 0
\(919\) −16777.0 + 29058.7i −0.602202 + 1.04304i 0.390285 + 0.920694i \(0.372376\pi\)
−0.992487 + 0.122350i \(0.960957\pi\)
\(920\) −3899.83 6754.71i −0.139754 0.242061i
\(921\) 0 0
\(922\) 6138.26 + 16864.7i 0.219255 + 0.602397i
\(923\) 594.098 343.003i 0.0211863 0.0122319i
\(924\) 0 0
\(925\) −12716.9 2242.33i −0.452031 0.0797052i
\(926\) −9713.74 + 8150.79i −0.344723 + 0.289257i
\(927\) 0 0
\(928\) 6414.73 + 36379.8i 0.226912 + 1.28688i
\(929\) 94.7034 260.195i 0.00334458 0.00918917i −0.938009 0.346611i \(-0.887333\pi\)
0.941354 + 0.337421i \(0.109555\pi\)
\(930\) 0 0
\(931\) −2162.30 + 1877.84i −0.0761187 + 0.0661050i
\(932\) 2925.12i 0.102806i
\(933\) 0 0
\(934\) −44515.7 + 7849.31i −1.55953 + 0.274986i
\(935\) 10745.8 12806.4i 0.375856 0.447928i
\(936\) 0 0
\(937\) 2500.73 14182.4i 0.0871883 0.494469i −0.909675 0.415322i \(-0.863669\pi\)
0.996863 0.0791477i \(-0.0252199\pi\)
\(938\) −20.9406 12.0900i −0.000728928 0.000420847i
\(939\) 0 0
\(940\) 563.554 205.117i 0.0195544 0.00711721i
\(941\) −29494.6 + 10735.1i −1.02178 + 0.371898i −0.797946 0.602729i \(-0.794080\pi\)
−0.223835 + 0.974627i \(0.571858\pi\)
\(942\) 0 0
\(943\) −21687.5 12521.3i −0.748930 0.432395i
\(944\) −10721.0 + 60801.6i −0.369637 + 2.09632i
\(945\) 0 0
\(946\) 1431.83 1706.39i 0.0492101 0.0586463i
\(947\) −51442.3 + 9070.67i −1.76521 + 0.311253i −0.959636 0.281246i \(-0.909252\pi\)
−0.805571 + 0.592500i \(0.798141\pi\)
\(948\) 0 0
\(949\) 7532.26i 0.257648i
\(950\) 11202.5 + 3863.32i 0.382585 + 0.131940i
\(951\) 0 0
\(952\) −2616.26 + 7188.13i −0.0890689 + 0.244715i
\(953\) −8533.57 48396.3i −0.290063 1.64503i −0.686620 0.727016i \(-0.740906\pi\)
0.396558 0.918010i \(-0.370205\pi\)
\(954\) 0 0
\(955\) −4583.80 + 3846.27i −0.155318 + 0.130327i
\(956\) 23274.2 + 4103.88i 0.787388 + 0.138838i
\(957\) 0 0
\(958\) −10326.9 + 5962.23i −0.348274 + 0.201076i
\(959\) −5053.65 13884.8i −0.170168 0.467532i
\(960\) 0 0
\(961\) 9209.47 + 15951.3i 0.309136 + 0.535439i
\(962\) −9051.42 + 15677.5i −0.303357 + 0.525430i
\(963\) 0 0
\(964\) −6680.41 7961.40i −0.223197 0.265995i
\(965\) −32796.7 27519.7i −1.09405 0.918021i
\(966\) 0 0
\(967\) −21225.5 7725.46i −0.705860 0.256912i −0.0359492 0.999354i \(-0.511445\pi\)
−0.669911 + 0.742442i \(0.733668\pi\)
\(968\) −4229.41 −0.140432
\(969\) 0 0
\(970\) 50162.7 1.66044
\(971\) −29507.8 10740.0i −0.975234 0.354956i −0.195248 0.980754i \(-0.562551\pi\)
−0.779985 + 0.625798i \(0.784773\pi\)
\(972\) 0 0
\(973\) −36280.2 30442.7i −1.19536 1.00303i
\(974\) 4158.55 + 4955.97i 0.136806 + 0.163038i
\(975\) 0 0
\(976\) 14693.9 25450.6i 0.481906 0.834686i
\(977\) 23328.9 + 40406.9i 0.763929 + 1.32316i 0.940811 + 0.338932i \(0.110066\pi\)
−0.176882 + 0.984232i \(0.556601\pi\)
\(978\) 0 0
\(979\) −6867.21 18867.5i −0.224185 0.615943i
\(980\) −2006.74 + 1158.59i −0.0654111 + 0.0377651i
\(981\) 0 0
\(982\) 46318.3 + 8167.17i 1.50517 + 0.265402i
\(983\) 1552.55 1302.74i 0.0503750 0.0422696i −0.617253 0.786765i \(-0.711754\pi\)
0.667628 + 0.744495i \(0.267310\pi\)
\(984\) 0 0
\(985\) −10136.6 57487.3i −0.327896 1.85959i
\(986\) 9690.79 26625.2i 0.313000 0.859959i
\(987\) 0 0
\(988\) 4133.88 5099.92i 0.133114 0.164221i
\(989\) 1223.83i 0.0393484i
\(990\) 0 0
\(991\) 21577.5 3804.70i 0.691658 0.121958i 0.183240 0.983068i \(-0.441342\pi\)
0.508418 + 0.861110i \(0.330230\pi\)
\(992\) −28904.3 + 34446.7i −0.925112 + 1.10251i
\(993\) 0 0
\(994\) 501.723 2845.41i 0.0160097 0.0907958i
\(995\) 24812.5 + 14325.5i 0.790561 + 0.456431i
\(996\) 0 0
\(997\) −21098.1 + 7679.07i −0.670193 + 0.243930i −0.654631 0.755949i \(-0.727176\pi\)
−0.0155621 + 0.999879i \(0.504954\pi\)
\(998\) −52284.7 + 19030.1i −1.65836 + 0.603594i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 171.4.y.a.53.4 120
3.2 odd 2 inner 171.4.y.a.53.17 yes 120
19.14 odd 18 inner 171.4.y.a.71.17 yes 120
57.14 even 18 inner 171.4.y.a.71.4 yes 120
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
171.4.y.a.53.4 120 1.1 even 1 trivial
171.4.y.a.53.17 yes 120 3.2 odd 2 inner
171.4.y.a.71.4 yes 120 57.14 even 18 inner
171.4.y.a.71.17 yes 120 19.14 odd 18 inner