Properties

Label 171.4.y.a.53.9
Level $171$
Weight $4$
Character 171.53
Analytic conductor $10.089$
Analytic rank $0$
Dimension $120$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [171,4,Mod(53,171)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(171, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([9, 11]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("171.53");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 171 = 3^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 171.y (of order \(18\), degree \(6\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.0893266110\)
Analytic rank: \(0\)
Dimension: \(120\)
Relative dimension: \(20\) over \(\Q(\zeta_{18})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 53.9
Character \(\chi\) \(=\) 171.53
Dual form 171.4.y.a.71.9

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.02676 - 0.373709i) q^{2} +(-5.21378 - 4.37488i) q^{4} +(-4.49187 - 5.35320i) q^{5} +(9.55306 - 16.5464i) q^{7} +(8.08896 + 14.0105i) q^{8} +O(q^{10})\) \(q+(-1.02676 - 0.373709i) q^{2} +(-5.21378 - 4.37488i) q^{4} +(-4.49187 - 5.35320i) q^{5} +(9.55306 - 16.5464i) q^{7} +(8.08896 + 14.0105i) q^{8} +(2.61152 + 7.17509i) q^{10} +(21.7010 - 12.5291i) q^{11} +(-55.1705 - 9.72805i) q^{13} +(-15.9922 + 13.4191i) q^{14} +(6.38540 + 36.2134i) q^{16} +(-47.2141 + 129.720i) q^{17} +(-51.0021 - 65.2517i) q^{19} +47.5618i q^{20} +(-26.9639 + 4.75447i) q^{22} +(-74.2193 + 88.4512i) q^{23} +(13.2262 - 75.0092i) q^{25} +(53.0113 + 30.6061i) q^{26} +(-122.196 + 44.4758i) q^{28} +(-8.46316 + 3.08034i) q^{29} +(-150.551 - 86.9205i) q^{31} +(29.4512 - 167.026i) q^{32} +(96.9548 - 115.546i) q^{34} +(-131.487 + 23.1847i) q^{35} +419.365i q^{37} +(27.9816 + 86.0576i) q^{38} +(38.6664 - 106.235i) q^{40} +(61.5401 + 349.011i) q^{41} +(15.2144 - 12.7664i) q^{43} +(-167.958 - 29.6155i) q^{44} +(109.260 - 63.0814i) q^{46} +(-132.663 - 364.487i) q^{47} +(-11.0220 - 19.0907i) q^{49} +(-41.6117 + 72.0735i) q^{50} +(245.088 + 292.085i) q^{52} +(-202.318 - 169.765i) q^{53} +(-164.549 - 59.8909i) q^{55} +309.097 q^{56} +9.84076 q^{58} +(-75.3603 - 27.4289i) q^{59} +(-287.655 - 241.371i) q^{61} +(122.096 + 145.508i) q^{62} +(54.4300 - 94.2756i) q^{64} +(195.743 + 339.036i) q^{65} +(162.434 + 446.284i) q^{67} +(813.672 - 469.774i) q^{68} +(143.670 + 25.3329i) q^{70} +(371.275 - 311.537i) q^{71} +(-97.0717 - 550.521i) q^{73} +(156.720 - 430.586i) q^{74} +(-19.5547 + 563.337i) q^{76} -478.765i q^{77} +(999.614 - 176.259i) q^{79} +(165.175 - 196.848i) q^{80} +(67.2419 - 381.348i) q^{82} +(-1116.92 - 644.856i) q^{83} +(906.494 - 329.937i) q^{85} +(-20.3923 + 7.42221i) q^{86} +(351.078 + 202.695i) q^{88} +(20.8524 - 118.260i) q^{89} +(-688.012 + 819.940i) q^{91} +(773.927 - 136.464i) q^{92} +423.817i q^{94} +(-120.211 + 566.127i) q^{95} +(449.849 - 1235.95i) q^{97} +(4.18257 + 23.7205i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 120 q - 36 q^{4}+O(q^{10}) \) Copy content Toggle raw display \( 120 q - 36 q^{4} - 180 q^{10} - 156 q^{13} + 180 q^{16} + 924 q^{19} + 432 q^{22} - 360 q^{25} - 624 q^{28} + 324 q^{34} + 1440 q^{40} + 1524 q^{43} + 3888 q^{46} - 3228 q^{49} - 6000 q^{52} - 4464 q^{55} + 5616 q^{58} - 5736 q^{61} - 4524 q^{64} + 372 q^{67} + 7848 q^{70} - 276 q^{73} + 4320 q^{76} + 10536 q^{79} + 3960 q^{82} - 11592 q^{85} - 11664 q^{88} - 120 q^{91} + 5904 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/171\mathbb{Z}\right)^\times\).

\(n\) \(20\) \(154\)
\(\chi(n)\) \(-1\) \(e\left(\frac{11}{18}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.02676 0.373709i −0.363013 0.132126i 0.154073 0.988060i \(-0.450761\pi\)
−0.517086 + 0.855933i \(0.672983\pi\)
\(3\) 0 0
\(4\) −5.21378 4.37488i −0.651723 0.546861i
\(5\) −4.49187 5.35320i −0.401765 0.478805i 0.526792 0.849994i \(-0.323395\pi\)
−0.928557 + 0.371189i \(0.878950\pi\)
\(6\) 0 0
\(7\) 9.55306 16.5464i 0.515817 0.893421i −0.484015 0.875060i \(-0.660822\pi\)
0.999831 0.0183611i \(-0.00584486\pi\)
\(8\) 8.08896 + 14.0105i 0.357485 + 0.619182i
\(9\) 0 0
\(10\) 2.61152 + 7.17509i 0.0825834 + 0.226896i
\(11\) 21.7010 12.5291i 0.594828 0.343424i −0.172176 0.985066i \(-0.555080\pi\)
0.767004 + 0.641642i \(0.221747\pi\)
\(12\) 0 0
\(13\) −55.1705 9.72805i −1.17704 0.207544i −0.449291 0.893385i \(-0.648323\pi\)
−0.727751 + 0.685841i \(0.759434\pi\)
\(14\) −15.9922 + 13.4191i −0.305293 + 0.256171i
\(15\) 0 0
\(16\) 6.38540 + 36.2134i 0.0997719 + 0.565834i
\(17\) −47.2141 + 129.720i −0.673594 + 1.85068i −0.173198 + 0.984887i \(0.555410\pi\)
−0.500395 + 0.865797i \(0.666812\pi\)
\(18\) 0 0
\(19\) −51.0021 65.2517i −0.615826 0.787883i
\(20\) 47.5618i 0.531758i
\(21\) 0 0
\(22\) −26.9639 + 4.75447i −0.261306 + 0.0460752i
\(23\) −74.2193 + 88.4512i −0.672861 + 0.801884i −0.989170 0.146772i \(-0.953112\pi\)
0.316310 + 0.948656i \(0.397556\pi\)
\(24\) 0 0
\(25\) 13.2262 75.0092i 0.105809 0.600074i
\(26\) 53.0113 + 30.6061i 0.399860 + 0.230859i
\(27\) 0 0
\(28\) −122.196 + 44.4758i −0.824747 + 0.300183i
\(29\) −8.46316 + 3.08034i −0.0541921 + 0.0197243i −0.368974 0.929440i \(-0.620291\pi\)
0.314782 + 0.949164i \(0.398069\pi\)
\(30\) 0 0
\(31\) −150.551 86.9205i −0.872249 0.503593i −0.00415372 0.999991i \(-0.501322\pi\)
−0.868095 + 0.496398i \(0.834656\pi\)
\(32\) 29.4512 167.026i 0.162696 0.922696i
\(33\) 0 0
\(34\) 96.9548 115.546i 0.489047 0.582824i
\(35\) −131.487 + 23.1847i −0.635011 + 0.111970i
\(36\) 0 0
\(37\) 419.365i 1.86333i 0.363321 + 0.931664i \(0.381643\pi\)
−0.363321 + 0.931664i \(0.618357\pi\)
\(38\) 27.9816 + 86.0576i 0.119453 + 0.367378i
\(39\) 0 0
\(40\) 38.6664 106.235i 0.152842 0.419931i
\(41\) 61.5401 + 349.011i 0.234413 + 1.32942i 0.843846 + 0.536586i \(0.180286\pi\)
−0.609433 + 0.792838i \(0.708603\pi\)
\(42\) 0 0
\(43\) 15.2144 12.7664i 0.0539574 0.0452756i −0.615410 0.788207i \(-0.711010\pi\)
0.669368 + 0.742931i \(0.266565\pi\)
\(44\) −167.958 29.6155i −0.575468 0.101471i
\(45\) 0 0
\(46\) 109.260 63.0814i 0.350207 0.202192i
\(47\) −132.663 364.487i −0.411719 1.13119i −0.956276 0.292466i \(-0.905524\pi\)
0.544557 0.838724i \(-0.316698\pi\)
\(48\) 0 0
\(49\) −11.0220 19.0907i −0.0321342 0.0556580i
\(50\) −41.6117 + 72.0735i −0.117696 + 0.203855i
\(51\) 0 0
\(52\) 245.088 + 292.085i 0.653608 + 0.778939i
\(53\) −202.318 169.765i −0.524349 0.439981i 0.341796 0.939774i \(-0.388965\pi\)
−0.866145 + 0.499793i \(0.833409\pi\)
\(54\) 0 0
\(55\) −164.549 59.8909i −0.403414 0.146831i
\(56\) 309.097 0.737587
\(57\) 0 0
\(58\) 9.84076 0.0222785
\(59\) −75.3603 27.4289i −0.166289 0.0605244i 0.257534 0.966269i \(-0.417090\pi\)
−0.423823 + 0.905745i \(0.639312\pi\)
\(60\) 0 0
\(61\) −287.655 241.371i −0.603778 0.506630i 0.288880 0.957365i \(-0.406717\pi\)
−0.892657 + 0.450736i \(0.851162\pi\)
\(62\) 122.096 + 145.508i 0.250100 + 0.298058i
\(63\) 0 0
\(64\) 54.4300 94.2756i 0.106309 0.184132i
\(65\) 195.743 + 339.036i 0.373521 + 0.646958i
\(66\) 0 0
\(67\) 162.434 + 446.284i 0.296186 + 0.813765i 0.995128 + 0.0985871i \(0.0314323\pi\)
−0.698942 + 0.715178i \(0.746345\pi\)
\(68\) 813.672 469.774i 1.45106 0.837771i
\(69\) 0 0
\(70\) 143.670 + 25.3329i 0.245312 + 0.0432551i
\(71\) 371.275 311.537i 0.620595 0.520741i −0.277396 0.960756i \(-0.589471\pi\)
0.897991 + 0.440015i \(0.145027\pi\)
\(72\) 0 0
\(73\) −97.0717 550.521i −0.155635 0.882652i −0.958203 0.286091i \(-0.907644\pi\)
0.802567 0.596562i \(-0.203467\pi\)
\(74\) 156.720 430.586i 0.246194 0.676413i
\(75\) 0 0
\(76\) −19.5547 + 563.337i −0.0295141 + 0.850252i
\(77\) 478.765i 0.708576i
\(78\) 0 0
\(79\) 999.614 176.259i 1.42361 0.251021i 0.591803 0.806083i \(-0.298416\pi\)
0.831809 + 0.555061i \(0.187305\pi\)
\(80\) 165.175 196.848i 0.230839 0.275104i
\(81\) 0 0
\(82\) 67.2419 381.348i 0.0905564 0.513571i
\(83\) −1116.92 644.856i −1.47709 0.852797i −0.477423 0.878673i \(-0.658429\pi\)
−0.999665 + 0.0258760i \(0.991763\pi\)
\(84\) 0 0
\(85\) 906.494 329.937i 1.15674 0.421020i
\(86\) −20.3923 + 7.42221i −0.0255693 + 0.00930648i
\(87\) 0 0
\(88\) 351.078 + 202.695i 0.425284 + 0.245538i
\(89\) 20.8524 118.260i 0.0248354 0.140848i −0.969869 0.243628i \(-0.921662\pi\)
0.994704 + 0.102779i \(0.0327736\pi\)
\(90\) 0 0
\(91\) −688.012 + 819.940i −0.792563 + 0.944540i
\(92\) 773.927 136.464i 0.877038 0.154645i
\(93\) 0 0
\(94\) 423.817i 0.465036i
\(95\) −120.211 + 566.127i −0.129825 + 0.611404i
\(96\) 0 0
\(97\) 449.849 1235.95i 0.470879 1.29373i −0.446167 0.894950i \(-0.647211\pi\)
0.917046 0.398780i \(-0.130566\pi\)
\(98\) 4.18257 + 23.7205i 0.00431126 + 0.0244504i
\(99\) 0 0
\(100\) −397.115 + 333.219i −0.397115 + 0.333219i
\(101\) −1155.05 203.666i −1.13793 0.200649i −0.427233 0.904142i \(-0.640511\pi\)
−0.710702 + 0.703493i \(0.751623\pi\)
\(102\) 0 0
\(103\) −712.793 + 411.531i −0.681880 + 0.393684i −0.800563 0.599249i \(-0.795466\pi\)
0.118683 + 0.992932i \(0.462133\pi\)
\(104\) −309.977 851.656i −0.292267 0.802998i
\(105\) 0 0
\(106\) 144.288 + 249.915i 0.132213 + 0.228999i
\(107\) 51.9112 89.9128i 0.0469013 0.0812355i −0.841622 0.540068i \(-0.818399\pi\)
0.888523 + 0.458832i \(0.151732\pi\)
\(108\) 0 0
\(109\) −532.921 635.110i −0.468299 0.558097i 0.479262 0.877672i \(-0.340904\pi\)
−0.947561 + 0.319575i \(0.896460\pi\)
\(110\) 146.570 + 122.987i 0.127045 + 0.106603i
\(111\) 0 0
\(112\) 660.201 + 240.294i 0.556992 + 0.202729i
\(113\) 659.556 0.549078 0.274539 0.961576i \(-0.411475\pi\)
0.274539 + 0.961576i \(0.411475\pi\)
\(114\) 0 0
\(115\) 806.880 0.654278
\(116\) 57.6012 + 20.9651i 0.0461047 + 0.0167807i
\(117\) 0 0
\(118\) 67.1262 + 56.3256i 0.0523684 + 0.0439423i
\(119\) 1695.35 + 2020.44i 1.30599 + 1.55642i
\(120\) 0 0
\(121\) −351.544 + 608.891i −0.264120 + 0.457469i
\(122\) 205.149 + 355.329i 0.152240 + 0.263688i
\(123\) 0 0
\(124\) 404.672 + 1111.83i 0.293069 + 0.805201i
\(125\) −1217.43 + 702.886i −0.871125 + 0.502944i
\(126\) 0 0
\(127\) −1670.80 294.606i −1.16740 0.205843i −0.443838 0.896107i \(-0.646383\pi\)
−0.723558 + 0.690264i \(0.757494\pi\)
\(128\) −1130.50 + 948.604i −0.780650 + 0.655043i
\(129\) 0 0
\(130\) −74.2792 421.258i −0.0501132 0.284206i
\(131\) 205.409 564.357i 0.136998 0.376398i −0.852155 0.523290i \(-0.824705\pi\)
0.989153 + 0.146892i \(0.0469269\pi\)
\(132\) 0 0
\(133\) −1566.91 + 220.547i −1.02156 + 0.143788i
\(134\) 518.928i 0.334542i
\(135\) 0 0
\(136\) −2199.35 + 387.805i −1.38671 + 0.244514i
\(137\) −1061.49 + 1265.03i −0.661964 + 0.788897i −0.987666 0.156575i \(-0.949955\pi\)
0.325703 + 0.945472i \(0.394399\pi\)
\(138\) 0 0
\(139\) 221.349 1255.33i 0.135069 0.766013i −0.839743 0.542984i \(-0.817294\pi\)
0.974812 0.223029i \(-0.0715944\pi\)
\(140\) 786.977 + 454.361i 0.475083 + 0.274290i
\(141\) 0 0
\(142\) −497.633 + 181.124i −0.294088 + 0.107039i
\(143\) −1319.14 + 480.128i −0.771413 + 0.280771i
\(144\) 0 0
\(145\) 54.5051 + 31.4685i 0.0312166 + 0.0180229i
\(146\) −106.066 + 601.528i −0.0601236 + 0.340978i
\(147\) 0 0
\(148\) 1834.67 2186.48i 1.01898 1.21437i
\(149\) −1369.62 + 241.501i −0.753044 + 0.132782i −0.536978 0.843597i \(-0.680434\pi\)
−0.216067 + 0.976379i \(0.569323\pi\)
\(150\) 0 0
\(151\) 1135.54i 0.611977i −0.952035 0.305989i \(-0.901013\pi\)
0.952035 0.305989i \(-0.0989869\pi\)
\(152\) 501.654 1242.38i 0.267694 0.662964i
\(153\) 0 0
\(154\) −178.919 + 491.575i −0.0936213 + 0.257222i
\(155\) 210.951 + 1196.36i 0.109316 + 0.619963i
\(156\) 0 0
\(157\) 413.929 347.328i 0.210415 0.176559i −0.531489 0.847065i \(-0.678367\pi\)
0.741904 + 0.670506i \(0.233923\pi\)
\(158\) −1092.23 192.590i −0.549957 0.0969722i
\(159\) 0 0
\(160\) −1026.41 + 592.600i −0.507157 + 0.292807i
\(161\) 754.525 + 2073.04i 0.369347 + 1.01477i
\(162\) 0 0
\(163\) −298.203 516.504i −0.143295 0.248194i 0.785440 0.618937i \(-0.212436\pi\)
−0.928736 + 0.370743i \(0.879103\pi\)
\(164\) 1206.03 2088.90i 0.574237 0.994607i
\(165\) 0 0
\(166\) 905.821 + 1079.52i 0.423526 + 0.504739i
\(167\) 1506.45 + 1264.06i 0.698041 + 0.585726i 0.921216 0.389053i \(-0.127198\pi\)
−0.223175 + 0.974778i \(0.571642\pi\)
\(168\) 0 0
\(169\) 884.647 + 321.985i 0.402661 + 0.146557i
\(170\) −1054.05 −0.475541
\(171\) 0 0
\(172\) −135.176 −0.0599247
\(173\) −3837.95 1396.90i −1.68667 0.613897i −0.692470 0.721447i \(-0.743477\pi\)
−0.994200 + 0.107550i \(0.965700\pi\)
\(174\) 0 0
\(175\) −1114.78 935.413i −0.481540 0.404060i
\(176\) 592.291 + 705.865i 0.253668 + 0.302310i
\(177\) 0 0
\(178\) −65.6051 + 113.631i −0.0276253 + 0.0478485i
\(179\) 773.834 + 1340.32i 0.323123 + 0.559666i 0.981131 0.193345i \(-0.0619338\pi\)
−0.658007 + 0.753012i \(0.728600\pi\)
\(180\) 0 0
\(181\) −540.228 1484.26i −0.221850 0.609528i 0.777974 0.628297i \(-0.216248\pi\)
−0.999824 + 0.0187689i \(0.994025\pi\)
\(182\) 1012.84 584.763i 0.412509 0.238162i
\(183\) 0 0
\(184\) −1839.60 324.371i −0.737050 0.129962i
\(185\) 2244.94 1883.73i 0.892170 0.748620i
\(186\) 0 0
\(187\) 600.675 + 3406.60i 0.234897 + 1.33217i
\(188\) −902.916 + 2480.74i −0.350276 + 0.962376i
\(189\) 0 0
\(190\) 334.994 536.351i 0.127911 0.204795i
\(191\) 1653.75i 0.626497i −0.949671 0.313248i \(-0.898583\pi\)
0.949671 0.313248i \(-0.101417\pi\)
\(192\) 0 0
\(193\) 1860.16 327.996i 0.693768 0.122330i 0.184364 0.982858i \(-0.440977\pi\)
0.509403 + 0.860528i \(0.329866\pi\)
\(194\) −923.772 + 1100.91i −0.341871 + 0.407426i
\(195\) 0 0
\(196\) −26.0532 + 147.755i −0.00949460 + 0.0538465i
\(197\) 1372.16 + 792.214i 0.496254 + 0.286512i 0.727165 0.686462i \(-0.240837\pi\)
−0.230911 + 0.972975i \(0.574171\pi\)
\(198\) 0 0
\(199\) −2001.13 + 728.352i −0.712846 + 0.259455i −0.672886 0.739746i \(-0.734945\pi\)
−0.0399607 + 0.999201i \(0.512723\pi\)
\(200\) 1157.90 421.442i 0.409380 0.149002i
\(201\) 0 0
\(202\) 1109.84 + 640.766i 0.386575 + 0.223189i
\(203\) −29.8806 + 169.461i −0.0103311 + 0.0585905i
\(204\) 0 0
\(205\) 1591.90 1897.15i 0.542355 0.646354i
\(206\) 885.659 156.165i 0.299547 0.0528183i
\(207\) 0 0
\(208\) 2060.03i 0.686718i
\(209\) −1924.34 777.019i −0.636888 0.257165i
\(210\) 0 0
\(211\) 747.181 2052.86i 0.243782 0.669786i −0.756100 0.654456i \(-0.772898\pi\)
0.999882 0.0153302i \(-0.00487996\pi\)
\(212\) 312.140 + 1770.23i 0.101122 + 0.573491i
\(213\) 0 0
\(214\) −86.9014 + 72.9189i −0.0277591 + 0.0232927i
\(215\) −136.682 24.1007i −0.0433564 0.00764490i
\(216\) 0 0
\(217\) −2876.44 + 1660.71i −0.899841 + 0.519523i
\(218\) 309.834 + 851.261i 0.0962595 + 0.264471i
\(219\) 0 0
\(220\) 595.907 + 1032.14i 0.182618 + 0.316304i
\(221\) 3866.74 6697.40i 1.17695 2.03853i
\(222\) 0 0
\(223\) 272.714 + 325.008i 0.0818937 + 0.0975971i 0.805435 0.592684i \(-0.201932\pi\)
−0.723542 + 0.690281i \(0.757487\pi\)
\(224\) −2482.33 2082.92i −0.740435 0.621298i
\(225\) 0 0
\(226\) −677.203 246.482i −0.199323 0.0725475i
\(227\) 3939.83 1.15196 0.575982 0.817463i \(-0.304620\pi\)
0.575982 + 0.817463i \(0.304620\pi\)
\(228\) 0 0
\(229\) 1301.54 0.375580 0.187790 0.982209i \(-0.439867\pi\)
0.187790 + 0.982209i \(0.439867\pi\)
\(230\) −828.470 301.538i −0.237512 0.0864472i
\(231\) 0 0
\(232\) −111.615 93.6564i −0.0315858 0.0265036i
\(233\) −2074.81 2472.66i −0.583371 0.695234i 0.390947 0.920413i \(-0.372148\pi\)
−0.974317 + 0.225179i \(0.927703\pi\)
\(234\) 0 0
\(235\) −1355.27 + 2347.40i −0.376205 + 0.651606i
\(236\) 272.914 + 472.701i 0.0752762 + 0.130382i
\(237\) 0 0
\(238\) −985.657 2708.07i −0.268448 0.737555i
\(239\) −5423.52 + 3131.27i −1.46786 + 0.847469i −0.999352 0.0359911i \(-0.988541\pi\)
−0.468507 + 0.883460i \(0.655208\pi\)
\(240\) 0 0
\(241\) 7096.32 + 1251.27i 1.89674 + 0.334446i 0.995168 0.0981849i \(-0.0313036\pi\)
0.901571 + 0.432631i \(0.142415\pi\)
\(242\) 588.498 493.808i 0.156323 0.131170i
\(243\) 0 0
\(244\) 443.800 + 2516.91i 0.116440 + 0.660365i
\(245\) −52.6869 + 144.756i −0.0137389 + 0.0377474i
\(246\) 0 0
\(247\) 2179.04 + 4096.12i 0.561332 + 1.05518i
\(248\) 2812.39i 0.720108i
\(249\) 0 0
\(250\) 1512.68 266.727i 0.382682 0.0674772i
\(251\) 4223.49 5033.36i 1.06209 1.26575i 0.0994256 0.995045i \(-0.468299\pi\)
0.962663 0.270703i \(-0.0872561\pi\)
\(252\) 0 0
\(253\) −502.423 + 2849.38i −0.124850 + 0.708060i
\(254\) 1605.40 + 926.881i 0.396583 + 0.228967i
\(255\) 0 0
\(256\) 696.893 253.648i 0.170140 0.0619258i
\(257\) −3525.46 + 1283.16i −0.855690 + 0.311446i −0.732358 0.680920i \(-0.761580\pi\)
−0.123332 + 0.992365i \(0.539358\pi\)
\(258\) 0 0
\(259\) 6938.97 + 4006.22i 1.66474 + 0.961136i
\(260\) 462.684 2624.01i 0.110363 0.625901i
\(261\) 0 0
\(262\) −421.811 + 502.694i −0.0994639 + 0.118537i
\(263\) 5217.46 919.979i 1.22328 0.215697i 0.475543 0.879693i \(-0.342252\pi\)
0.747737 + 0.663996i \(0.231141\pi\)
\(264\) 0 0
\(265\) 1845.61i 0.427829i
\(266\) 1691.25 + 359.119i 0.389840 + 0.0827781i
\(267\) 0 0
\(268\) 1105.54 3037.46i 0.251985 0.692322i
\(269\) −1004.71 5698.00i −0.227726 1.29150i −0.857404 0.514643i \(-0.827924\pi\)
0.629678 0.776856i \(-0.283187\pi\)
\(270\) 0 0
\(271\) −1239.10 + 1039.73i −0.277750 + 0.233060i −0.771012 0.636821i \(-0.780249\pi\)
0.493262 + 0.869881i \(0.335805\pi\)
\(272\) −4999.07 881.471i −1.11439 0.196496i
\(273\) 0 0
\(274\) 1562.64 902.193i 0.344536 0.198918i
\(275\) −652.777 1793.49i −0.143141 0.393278i
\(276\) 0 0
\(277\) −1703.14 2949.93i −0.369430 0.639871i 0.620047 0.784565i \(-0.287114\pi\)
−0.989476 + 0.144694i \(0.953780\pi\)
\(278\) −696.400 + 1206.20i −0.150242 + 0.260227i
\(279\) 0 0
\(280\) −1388.43 1654.66i −0.296337 0.353160i
\(281\) −1712.42 1436.89i −0.363538 0.305045i 0.442661 0.896689i \(-0.354035\pi\)
−0.806199 + 0.591644i \(0.798479\pi\)
\(282\) 0 0
\(283\) 1210.23 + 440.489i 0.254208 + 0.0925242i 0.465981 0.884795i \(-0.345702\pi\)
−0.211773 + 0.977319i \(0.567924\pi\)
\(284\) −3298.69 −0.689229
\(285\) 0 0
\(286\) 1533.86 0.317131
\(287\) 6362.77 + 2315.86i 1.30865 + 0.476309i
\(288\) 0 0
\(289\) −10834.4 9091.17i −2.20526 1.85043i
\(290\) −44.2034 52.6796i −0.00895074 0.0106671i
\(291\) 0 0
\(292\) −1902.36 + 3294.98i −0.381257 + 0.660356i
\(293\) 4227.55 + 7322.32i 0.842921 + 1.45998i 0.887414 + 0.460972i \(0.152499\pi\)
−0.0444934 + 0.999010i \(0.514167\pi\)
\(294\) 0 0
\(295\) 191.676 + 526.626i 0.0378299 + 0.103937i
\(296\) −5875.51 + 3392.23i −1.15374 + 0.666112i
\(297\) 0 0
\(298\) 1496.52 + 263.876i 0.290909 + 0.0512951i
\(299\) 4955.18 4157.89i 0.958412 0.804203i
\(300\) 0 0
\(301\) −65.8935 373.700i −0.0126181 0.0715606i
\(302\) −424.360 + 1165.92i −0.0808581 + 0.222156i
\(303\) 0 0
\(304\) 2037.32 2263.62i 0.384369 0.427064i
\(305\) 2624.08i 0.492638i
\(306\) 0 0
\(307\) 1792.01 315.979i 0.333144 0.0587423i −0.00457421 0.999990i \(-0.501456\pi\)
0.337718 + 0.941247i \(0.390345\pi\)
\(308\) −2094.54 + 2496.18i −0.387492 + 0.461795i
\(309\) 0 0
\(310\) 230.496 1307.21i 0.0422300 0.239498i
\(311\) −1489.75 860.109i −0.271628 0.156824i 0.358000 0.933722i \(-0.383459\pi\)
−0.629627 + 0.776898i \(0.716792\pi\)
\(312\) 0 0
\(313\) 1506.16 548.196i 0.271990 0.0989964i −0.202424 0.979298i \(-0.564882\pi\)
0.474415 + 0.880302i \(0.342660\pi\)
\(314\) −554.804 + 201.932i −0.0997114 + 0.0362920i
\(315\) 0 0
\(316\) −5982.88 3454.22i −1.06507 0.614921i
\(317\) −545.188 + 3091.91i −0.0965956 + 0.547821i 0.897651 + 0.440707i \(0.145272\pi\)
−0.994247 + 0.107114i \(0.965839\pi\)
\(318\) 0 0
\(319\) −145.065 + 172.882i −0.0254612 + 0.0303434i
\(320\) −749.168 + 132.099i −0.130874 + 0.0230767i
\(321\) 0 0
\(322\) 2410.48i 0.417177i
\(323\) 10872.4 3535.17i 1.87294 0.608986i
\(324\) 0 0
\(325\) −1459.39 + 4009.63i −0.249084 + 0.684352i
\(326\) 113.160 + 641.765i 0.0192251 + 0.109031i
\(327\) 0 0
\(328\) −4392.02 + 3685.34i −0.739356 + 0.620394i
\(329\) −7298.28 1286.88i −1.22300 0.215648i
\(330\) 0 0
\(331\) −7994.76 + 4615.77i −1.32759 + 0.766483i −0.984926 0.172976i \(-0.944662\pi\)
−0.342662 + 0.939459i \(0.611328\pi\)
\(332\) 3002.23 + 8248.56i 0.496291 + 1.36355i
\(333\) 0 0
\(334\) −1074.37 1860.86i −0.176009 0.304856i
\(335\) 1659.42 2874.19i 0.270637 0.468758i
\(336\) 0 0
\(337\) 4194.73 + 4999.09i 0.678046 + 0.808064i 0.989855 0.142081i \(-0.0453793\pi\)
−0.311809 + 0.950145i \(0.600935\pi\)
\(338\) −787.988 661.201i −0.126807 0.106404i
\(339\) 0 0
\(340\) −6169.70 2245.59i −0.984115 0.358189i
\(341\) −4356.14 −0.691784
\(342\) 0 0
\(343\) 6132.22 0.965332
\(344\) 301.931 + 109.894i 0.0473228 + 0.0172241i
\(345\) 0 0
\(346\) 3418.61 + 2868.55i 0.531172 + 0.445706i
\(347\) 6767.67 + 8065.40i 1.04700 + 1.24776i 0.968017 + 0.250885i \(0.0807217\pi\)
0.0789795 + 0.996876i \(0.474834\pi\)
\(348\) 0 0
\(349\) 5270.27 9128.37i 0.808341 1.40009i −0.105671 0.994401i \(-0.533699\pi\)
0.914012 0.405687i \(-0.132968\pi\)
\(350\) 795.038 + 1377.05i 0.121419 + 0.210303i
\(351\) 0 0
\(352\) −1453.56 3993.63i −0.220100 0.604719i
\(353\) −5189.48 + 2996.15i −0.782459 + 0.451753i −0.837301 0.546742i \(-0.815868\pi\)
0.0548419 + 0.998495i \(0.482535\pi\)
\(354\) 0 0
\(355\) −3335.44 588.128i −0.498667 0.0879284i
\(356\) −626.093 + 525.354i −0.0932103 + 0.0782127i
\(357\) 0 0
\(358\) −293.650 1665.37i −0.0433516 0.245859i
\(359\) −4059.28 + 11152.8i −0.596771 + 1.63961i 0.160895 + 0.986972i \(0.448562\pi\)
−0.757666 + 0.652643i \(0.773660\pi\)
\(360\) 0 0
\(361\) −1656.57 + 6655.95i −0.241518 + 0.970396i
\(362\) 1725.87i 0.250579i
\(363\) 0 0
\(364\) 7174.29 1265.02i 1.03306 0.182157i
\(365\) −2511.02 + 2992.51i −0.360089 + 0.429138i
\(366\) 0 0
\(367\) −317.137 + 1798.57i −0.0451074 + 0.255817i −0.999020 0.0442689i \(-0.985904\pi\)
0.953912 + 0.300086i \(0.0970153\pi\)
\(368\) −3677.04 2122.94i −0.520866 0.300722i
\(369\) 0 0
\(370\) −3008.98 + 1095.18i −0.422782 + 0.153880i
\(371\) −4741.75 + 1725.85i −0.663556 + 0.241515i
\(372\) 0 0
\(373\) −5746.38 3317.67i −0.797685 0.460543i 0.0449763 0.998988i \(-0.485679\pi\)
−0.842661 + 0.538445i \(0.819012\pi\)
\(374\) 656.329 3722.23i 0.0907432 0.514630i
\(375\) 0 0
\(376\) 4033.54 4806.99i 0.553229 0.659313i
\(377\) 496.883 87.6139i 0.0678800 0.0119691i
\(378\) 0 0
\(379\) 2511.14i 0.340339i −0.985415 0.170170i \(-0.945568\pi\)
0.985415 0.170170i \(-0.0544315\pi\)
\(380\) 3103.49 2425.75i 0.418962 0.327470i
\(381\) 0 0
\(382\) −618.020 + 1698.00i −0.0827765 + 0.227427i
\(383\) −1614.98 9158.99i −0.215461 1.22194i −0.880105 0.474779i \(-0.842528\pi\)
0.664644 0.747160i \(-0.268583\pi\)
\(384\) 0 0
\(385\) −2562.92 + 2150.55i −0.339269 + 0.284681i
\(386\) −2032.51 358.386i −0.268010 0.0472574i
\(387\) 0 0
\(388\) −7752.56 + 4475.94i −1.01437 + 0.585648i
\(389\) −3526.18 9688.09i −0.459600 1.26274i −0.925784 0.378052i \(-0.876594\pi\)
0.466185 0.884687i \(-0.345628\pi\)
\(390\) 0 0
\(391\) −7969.65 13803.8i −1.03080 1.78540i
\(392\) 178.313 308.848i 0.0229750 0.0397938i
\(393\) 0 0
\(394\) −1112.81 1326.20i −0.142291 0.169576i
\(395\) −5433.68 4559.40i −0.692148 0.580781i
\(396\) 0 0
\(397\) −4607.91 1677.14i −0.582531 0.212024i 0.0339105 0.999425i \(-0.489204\pi\)
−0.616441 + 0.787401i \(0.711426\pi\)
\(398\) 2326.87 0.293054
\(399\) 0 0
\(400\) 2800.79 0.350099
\(401\) −2396.16 872.132i −0.298401 0.108609i 0.188481 0.982077i \(-0.439644\pi\)
−0.486882 + 0.873468i \(0.661866\pi\)
\(402\) 0 0
\(403\) 7460.39 + 6260.01i 0.922156 + 0.773780i
\(404\) 5131.15 + 6115.06i 0.631891 + 0.753059i
\(405\) 0 0
\(406\) 94.0094 162.829i 0.0114916 0.0199041i
\(407\) 5254.26 + 9100.64i 0.639911 + 1.10836i
\(408\) 0 0
\(409\) 789.489 + 2169.10i 0.0954467 + 0.262238i 0.978223 0.207555i \(-0.0665507\pi\)
−0.882777 + 0.469793i \(0.844329\pi\)
\(410\) −2343.47 + 1353.00i −0.282282 + 0.162976i
\(411\) 0 0
\(412\) 5516.75 + 972.753i 0.659687 + 0.116321i
\(413\) −1173.77 + 984.910i −0.139849 + 0.117347i
\(414\) 0 0
\(415\) 1565.03 + 8875.73i 0.185119 + 1.04986i
\(416\) −3249.67 + 8928.40i −0.383001 + 1.05229i
\(417\) 0 0
\(418\) 1685.45 + 1516.95i 0.197221 + 0.177504i
\(419\) 6841.40i 0.797671i 0.917022 + 0.398836i \(0.130586\pi\)
−0.917022 + 0.398836i \(0.869414\pi\)
\(420\) 0 0
\(421\) 1336.82 235.717i 0.154757 0.0272878i −0.0957330 0.995407i \(-0.530519\pi\)
0.250490 + 0.968119i \(0.419408\pi\)
\(422\) −1534.35 + 1828.56i −0.176992 + 0.210931i
\(423\) 0 0
\(424\) 741.947 4207.79i 0.0849815 0.481954i
\(425\) 9105.71 + 5257.18i 1.03927 + 0.600025i
\(426\) 0 0
\(427\) −6741.81 + 2453.82i −0.764073 + 0.278100i
\(428\) −664.012 + 241.681i −0.0749912 + 0.0272946i
\(429\) 0 0
\(430\) 131.332 + 75.8247i 0.0147288 + 0.00850370i
\(431\) 2205.75 12509.4i 0.246514 1.39805i −0.570437 0.821341i \(-0.693226\pi\)
0.816951 0.576707i \(-0.195663\pi\)
\(432\) 0 0
\(433\) 8937.43 10651.2i 0.991929 1.18214i 0.00866258 0.999962i \(-0.497243\pi\)
0.983267 0.182173i \(-0.0583130\pi\)
\(434\) 3574.03 630.198i 0.395297 0.0697015i
\(435\) 0 0
\(436\) 5642.79i 0.619818i
\(437\) 9556.93 + 331.742i 1.04616 + 0.0363144i
\(438\) 0 0
\(439\) −2629.41 + 7224.26i −0.285866 + 0.785410i 0.710768 + 0.703427i \(0.248348\pi\)
−0.996634 + 0.0819832i \(0.973875\pi\)
\(440\) −491.929 2789.87i −0.0532995 0.302277i
\(441\) 0 0
\(442\) −6473.08 + 5431.56i −0.696591 + 0.584509i
\(443\) −12954.5 2284.22i −1.38936 0.244981i −0.571594 0.820537i \(-0.693675\pi\)
−0.817762 + 0.575556i \(0.804786\pi\)
\(444\) 0 0
\(445\) −726.735 + 419.580i −0.0774169 + 0.0446967i
\(446\) −158.553 435.620i −0.0168334 0.0462494i
\(447\) 0 0
\(448\) −1039.95 1801.24i −0.109672 0.189957i
\(449\) 3981.53 6896.21i 0.418485 0.724838i −0.577302 0.816531i \(-0.695894\pi\)
0.995787 + 0.0916928i \(0.0292278\pi\)
\(450\) 0 0
\(451\) 5708.28 + 6802.86i 0.595992 + 0.710275i
\(452\) −3438.78 2885.48i −0.357847 0.300269i
\(453\) 0 0
\(454\) −4045.25 1472.35i −0.418178 0.152204i
\(455\) 7479.76 0.770674
\(456\) 0 0
\(457\) 3938.81 0.403172 0.201586 0.979471i \(-0.435390\pi\)
0.201586 + 0.979471i \(0.435390\pi\)
\(458\) −1336.36 486.396i −0.136341 0.0496240i
\(459\) 0 0
\(460\) −4206.90 3530.01i −0.426408 0.357799i
\(461\) 3222.21 + 3840.08i 0.325539 + 0.387962i 0.903847 0.427857i \(-0.140731\pi\)
−0.578308 + 0.815819i \(0.696287\pi\)
\(462\) 0 0
\(463\) −5806.80 + 10057.7i −0.582861 + 1.00955i 0.412277 + 0.911059i \(0.364734\pi\)
−0.995138 + 0.0984871i \(0.968600\pi\)
\(464\) −165.590 286.811i −0.0165675 0.0286958i
\(465\) 0 0
\(466\) 1206.27 + 3314.20i 0.119913 + 0.329458i
\(467\) 1449.35 836.781i 0.143614 0.0829156i −0.426471 0.904501i \(-0.640243\pi\)
0.570085 + 0.821586i \(0.306910\pi\)
\(468\) 0 0
\(469\) 8936.14 + 1575.68i 0.879813 + 0.155135i
\(470\) 2268.78 1903.73i 0.222661 0.186835i
\(471\) 0 0
\(472\) −225.294 1277.71i −0.0219703 0.124600i
\(473\) 170.216 467.665i 0.0165466 0.0454614i
\(474\) 0 0
\(475\) −5569.04 + 2962.60i −0.537948 + 0.286176i
\(476\) 17951.1i 1.72855i
\(477\) 0 0
\(478\) 6738.82 1188.24i 0.644825 0.113700i
\(479\) −2094.64 + 2496.29i −0.199805 + 0.238118i −0.856638 0.515918i \(-0.827451\pi\)
0.656833 + 0.754036i \(0.271895\pi\)
\(480\) 0 0
\(481\) 4079.60 23136.6i 0.386723 2.19322i
\(482\) −6818.58 3936.71i −0.644353 0.372017i
\(483\) 0 0
\(484\) 4496.70 1636.67i 0.422305 0.153706i
\(485\) −8636.96 + 3143.60i −0.808627 + 0.294316i
\(486\) 0 0
\(487\) 16948.9 + 9785.48i 1.57706 + 0.910518i 0.995266 + 0.0971839i \(0.0309835\pi\)
0.581797 + 0.813334i \(0.302350\pi\)
\(488\) 1054.90 5982.63i 0.0978546 0.554961i
\(489\) 0 0
\(490\) 108.193 128.940i 0.00997484 0.0118876i
\(491\) 1805.40 318.341i 0.165940 0.0292597i −0.0900607 0.995936i \(-0.528706\pi\)
0.256001 + 0.966677i \(0.417595\pi\)
\(492\) 0 0
\(493\) 1243.27i 0.113579i
\(494\) −706.588 5020.05i −0.0643540 0.457212i
\(495\) 0 0
\(496\) 2186.36 6006.98i 0.197924 0.543793i
\(497\) −1607.99 9119.39i −0.145128 0.823060i
\(498\) 0 0
\(499\) 13291.5 11152.9i 1.19240 1.00055i 0.192590 0.981279i \(-0.438311\pi\)
0.999814 0.0192670i \(-0.00613327\pi\)
\(500\) 9422.48 + 1661.44i 0.842773 + 0.148604i
\(501\) 0 0
\(502\) −6217.51 + 3589.68i −0.552791 + 0.319154i
\(503\) 4141.92 + 11379.8i 0.367155 + 1.00875i 0.976438 + 0.215798i \(0.0692352\pi\)
−0.609283 + 0.792953i \(0.708543\pi\)
\(504\) 0 0
\(505\) 4098.05 + 7098.03i 0.361111 + 0.625462i
\(506\) 1580.71 2737.86i 0.138875 0.240539i
\(507\) 0 0
\(508\) 7422.30 + 8845.56i 0.648251 + 0.772555i
\(509\) −13427.2 11266.8i −1.16926 0.981123i −0.169266 0.985570i \(-0.554140\pi\)
−0.999990 + 0.00444765i \(0.998584\pi\)
\(510\) 0 0
\(511\) −10036.5 3652.98i −0.868860 0.316239i
\(512\) 10995.8 0.949121
\(513\) 0 0
\(514\) 4099.32 0.351777
\(515\) 5404.79 + 1967.18i 0.462453 + 0.168319i
\(516\) 0 0
\(517\) −7445.61 6247.61i −0.633380 0.531469i
\(518\) −5627.48 6706.57i −0.477330 0.568860i
\(519\) 0 0
\(520\) −3166.71 + 5484.90i −0.267056 + 0.462555i
\(521\) 7187.90 + 12449.8i 0.604430 + 1.04690i 0.992141 + 0.125122i \(0.0399323\pi\)
−0.387712 + 0.921781i \(0.626734\pi\)
\(522\) 0 0
\(523\) −4579.81 12582.9i −0.382909 1.05203i −0.970126 0.242604i \(-0.921999\pi\)
0.587217 0.809430i \(-0.300224\pi\)
\(524\) −3539.96 + 2043.80i −0.295122 + 0.170389i
\(525\) 0 0
\(526\) −5700.87 1005.22i −0.472566 0.0833261i
\(527\) 18383.4 15425.5i 1.51953 1.27504i
\(528\) 0 0
\(529\) −202.320 1147.41i −0.0166286 0.0943055i
\(530\) 689.720 1894.99i 0.0565274 0.155308i
\(531\) 0 0
\(532\) 9134.38 + 5705.15i 0.744409 + 0.464943i
\(533\) 19853.8i 1.61344i
\(534\) 0 0
\(535\) −714.499 + 125.986i −0.0577393 + 0.0101810i
\(536\) −4938.74 + 5885.76i −0.397987 + 0.474302i
\(537\) 0 0
\(538\) −1097.80 + 6225.93i −0.0879731 + 0.498920i
\(539\) −478.378 276.192i −0.0382286 0.0220713i
\(540\) 0 0
\(541\) 8538.52 3107.77i 0.678558 0.246975i 0.0203296 0.999793i \(-0.493528\pi\)
0.658228 + 0.752819i \(0.271306\pi\)
\(542\) 1660.82 604.488i 0.131620 0.0479058i
\(543\) 0 0
\(544\) 20276.0 + 11706.4i 1.59803 + 0.922622i
\(545\) −1006.06 + 5705.66i −0.0790733 + 0.448447i
\(546\) 0 0
\(547\) −4904.33 + 5844.75i −0.383353 + 0.456862i −0.922869 0.385113i \(-0.874162\pi\)
0.539517 + 0.841975i \(0.318607\pi\)
\(548\) 11068.7 1951.72i 0.862834 0.152141i
\(549\) 0 0
\(550\) 2085.43i 0.161678i
\(551\) 632.637 + 395.132i 0.0489133 + 0.0305503i
\(552\) 0 0
\(553\) 6632.93 18223.8i 0.510056 1.40137i
\(554\) 646.299 + 3665.34i 0.0495643 + 0.281093i
\(555\) 0 0
\(556\) −6645.99 + 5576.65i −0.506929 + 0.425364i
\(557\) −6839.48 1205.98i −0.520283 0.0917400i −0.0926615 0.995698i \(-0.529537\pi\)
−0.427622 + 0.903958i \(0.640649\pi\)
\(558\) 0 0
\(559\) −963.576 + 556.321i −0.0729068 + 0.0420928i
\(560\) −1679.20 4613.56i −0.126713 0.348140i
\(561\) 0 0
\(562\) 1221.26 + 2115.28i 0.0916649 + 0.158768i
\(563\) 8727.13 15115.8i 0.653294 1.13154i −0.329024 0.944322i \(-0.606720\pi\)
0.982318 0.187218i \(-0.0599469\pi\)
\(564\) 0 0
\(565\) −2962.64 3530.73i −0.220600 0.262901i
\(566\) −1078.00 904.550i −0.0800561 0.0671750i
\(567\) 0 0
\(568\) 7368.01 + 2681.74i 0.544287 + 0.198104i
\(569\) −16278.6 −1.19936 −0.599679 0.800240i \(-0.704705\pi\)
−0.599679 + 0.800240i \(0.704705\pi\)
\(570\) 0 0
\(571\) −23492.9 −1.72180 −0.860901 0.508773i \(-0.830099\pi\)
−0.860901 + 0.508773i \(0.830099\pi\)
\(572\) 8978.22 + 3267.80i 0.656291 + 0.238870i
\(573\) 0 0
\(574\) −5667.56 4755.65i −0.412124 0.345813i
\(575\) 5653.02 + 6737.00i 0.409995 + 0.488613i
\(576\) 0 0
\(577\) 2634.09 4562.37i 0.190049 0.329175i −0.755217 0.655475i \(-0.772469\pi\)
0.945266 + 0.326300i \(0.105802\pi\)
\(578\) 7726.88 + 13383.3i 0.556048 + 0.963103i
\(579\) 0 0
\(580\) −146.507 402.524i −0.0104885 0.0288170i
\(581\) −21340.1 + 12320.7i −1.52381 + 0.879775i
\(582\) 0 0
\(583\) −6517.50 1149.21i −0.462997 0.0816389i
\(584\) 6927.86 5813.17i 0.490885 0.411902i
\(585\) 0 0
\(586\) −1604.24 9098.12i −0.113090 0.641365i
\(587\) −4998.01 + 13731.9i −0.351431 + 0.965549i 0.630480 + 0.776206i \(0.282858\pi\)
−0.981911 + 0.189343i \(0.939364\pi\)
\(588\) 0 0
\(589\) 2006.69 + 14256.8i 0.140381 + 0.997355i
\(590\) 612.347i 0.0427287i
\(591\) 0 0
\(592\) −15186.6 + 2677.81i −1.05434 + 0.185908i
\(593\) −9960.87 + 11870.9i −0.689787 + 0.822056i −0.991330 0.131396i \(-0.958054\pi\)
0.301543 + 0.953453i \(0.402498\pi\)
\(594\) 0 0
\(595\) 3200.53 18151.1i 0.220519 1.25063i
\(596\) 8197.44 + 4732.79i 0.563390 + 0.325273i
\(597\) 0 0
\(598\) −6641.60 + 2417.34i −0.454173 + 0.165305i
\(599\) −7411.15 + 2697.44i −0.505528 + 0.183997i −0.582179 0.813061i \(-0.697800\pi\)
0.0766506 + 0.997058i \(0.475577\pi\)
\(600\) 0 0
\(601\) 2579.64 + 1489.35i 0.175084 + 0.101085i 0.584981 0.811047i \(-0.301102\pi\)
−0.409897 + 0.912132i \(0.634435\pi\)
\(602\) −71.9986 + 408.324i −0.00487449 + 0.0276446i
\(603\) 0 0
\(604\) −4967.83 + 5920.43i −0.334666 + 0.398840i
\(605\) 4838.61 853.177i 0.325153 0.0573332i
\(606\) 0 0
\(607\) 15489.8i 1.03577i 0.855452 + 0.517883i \(0.173280\pi\)
−0.855452 + 0.517883i \(0.826720\pi\)
\(608\) −12400.8 + 6596.93i −0.827168 + 0.440034i
\(609\) 0 0
\(610\) 980.643 2694.29i 0.0650903 0.178834i
\(611\) 3773.31 + 21399.5i 0.249839 + 1.41691i
\(612\) 0 0
\(613\) −9333.78 + 7831.97i −0.614989 + 0.516037i −0.896224 0.443602i \(-0.853700\pi\)
0.281235 + 0.959639i \(0.409256\pi\)
\(614\) −1958.04 345.255i −0.128697 0.0226928i
\(615\) 0 0
\(616\) 6707.73 3872.71i 0.438737 0.253305i
\(617\) 4535.24 + 12460.5i 0.295919 + 0.813031i 0.995171 + 0.0981555i \(0.0312943\pi\)
−0.699252 + 0.714875i \(0.746484\pi\)
\(618\) 0 0
\(619\) −8561.76 14829.4i −0.555939 0.962915i −0.997830 0.0658460i \(-0.979025\pi\)
0.441891 0.897069i \(-0.354308\pi\)
\(620\) 4134.10 7160.47i 0.267789 0.463825i
\(621\) 0 0
\(622\) 1208.18 + 1439.86i 0.0778839 + 0.0928184i
\(623\) −1757.57 1474.78i −0.113026 0.0948405i
\(624\) 0 0
\(625\) 284.623 + 103.594i 0.0182159 + 0.00663003i
\(626\) −1751.32 −0.111816
\(627\) 0 0
\(628\) −3677.65 −0.233685
\(629\) −54399.8 19799.9i −3.44843 1.25513i
\(630\) 0 0
\(631\) 10029.9 + 8416.08i 0.632779 + 0.530965i 0.901791 0.432172i \(-0.142253\pi\)
−0.269012 + 0.963137i \(0.586697\pi\)
\(632\) 10555.3 + 12579.3i 0.664348 + 0.791739i
\(633\) 0 0
\(634\) 1715.25 2970.90i 0.107447 0.186103i
\(635\) 5927.91 + 10267.4i 0.370460 + 0.641655i
\(636\) 0 0
\(637\) 422.375 + 1160.47i 0.0262718 + 0.0721811i
\(638\) 213.555 123.296i 0.0132519 0.00765099i
\(639\) 0 0
\(640\) 10156.1 + 1790.80i 0.627276 + 0.110606i
\(641\) −10507.9 + 8817.20i −0.647486 + 0.543305i −0.906307 0.422620i \(-0.861110\pi\)
0.258821 + 0.965925i \(0.416666\pi\)
\(642\) 0 0
\(643\) 2842.52 + 16120.7i 0.174336 + 0.988707i 0.938908 + 0.344169i \(0.111839\pi\)
−0.764572 + 0.644538i \(0.777050\pi\)
\(644\) 5135.38 14109.4i 0.314227 0.863333i
\(645\) 0 0
\(646\) −12484.5 433.364i −0.760364 0.0263939i
\(647\) 6379.48i 0.387640i −0.981037 0.193820i \(-0.937912\pi\)
0.981037 0.193820i \(-0.0620878\pi\)
\(648\) 0 0
\(649\) −1979.05 + 348.961i −0.119699 + 0.0211062i
\(650\) 2996.87 3571.53i 0.180842 0.215519i
\(651\) 0 0
\(652\) −704.875 + 3997.54i −0.0423390 + 0.240116i
\(653\) 9638.64 + 5564.87i 0.577625 + 0.333492i 0.760189 0.649702i \(-0.225106\pi\)
−0.182564 + 0.983194i \(0.558440\pi\)
\(654\) 0 0
\(655\) −3943.79 + 1435.42i −0.235262 + 0.0856283i
\(656\) −12245.9 + 4457.15i −0.728846 + 0.265278i
\(657\) 0 0
\(658\) 7012.64 + 4048.75i 0.415473 + 0.239873i
\(659\) −1314.49 + 7454.85i −0.0777015 + 0.440667i 0.920993 + 0.389580i \(0.127380\pi\)
−0.998694 + 0.0510873i \(0.983731\pi\)
\(660\) 0 0
\(661\) 6467.72 7707.93i 0.380583 0.453561i −0.541415 0.840755i \(-0.682111\pi\)
0.921998 + 0.387194i \(0.126556\pi\)
\(662\) 9933.63 1751.57i 0.583204 0.102835i
\(663\) 0 0
\(664\) 20864.9i 1.21945i
\(665\) 8218.97 + 7397.30i 0.479275 + 0.431361i
\(666\) 0 0
\(667\) 355.671 977.197i 0.0206471 0.0567275i
\(668\) −2324.19 13181.1i −0.134619 0.763462i
\(669\) 0 0
\(670\) −2777.93 + 2330.96i −0.160180 + 0.134407i
\(671\) −9266.57 1633.95i −0.533133 0.0940057i
\(672\) 0 0
\(673\) −22460.8 + 12967.8i −1.28648 + 0.742749i −0.978024 0.208490i \(-0.933145\pi\)
−0.308455 + 0.951239i \(0.599812\pi\)
\(674\) −2438.77 6700.45i −0.139374 0.382926i
\(675\) 0 0
\(676\) −3203.71 5548.99i −0.182278 0.315714i
\(677\) 2879.85 4988.05i 0.163489 0.283171i −0.772629 0.634858i \(-0.781059\pi\)
0.936118 + 0.351687i \(0.114392\pi\)
\(678\) 0 0
\(679\) −16153.1 19250.5i −0.912958 1.08802i
\(680\) 11955.2 + 10031.6i 0.674206 + 0.565726i
\(681\) 0 0
\(682\) 4472.70 + 1627.93i 0.251127 + 0.0914026i
\(683\) −524.910 −0.0294072 −0.0147036 0.999892i \(-0.504680\pi\)
−0.0147036 + 0.999892i \(0.504680\pi\)
\(684\) 0 0
\(685\) 11540.0 0.643682
\(686\) −6296.30 2291.67i −0.350429 0.127546i
\(687\) 0 0
\(688\) 559.463 + 469.445i 0.0310019 + 0.0260137i
\(689\) 9510.49 + 11334.2i 0.525865 + 0.626701i
\(690\) 0 0
\(691\) −8123.39 + 14070.1i −0.447219 + 0.774606i −0.998204 0.0599095i \(-0.980919\pi\)
0.550985 + 0.834515i \(0.314252\pi\)
\(692\) 13899.0 + 24073.7i 0.763525 + 1.32246i
\(693\) 0 0
\(694\) −3934.64 10810.3i −0.215212 0.591290i
\(695\) −7714.31 + 4453.86i −0.421036 + 0.243085i
\(696\) 0 0
\(697\) −48179.1 8495.28i −2.61824 0.461667i
\(698\) −8822.64 + 7403.07i −0.478427 + 0.401448i
\(699\) 0 0
\(700\) 1719.91 + 9754.08i 0.0928663 + 0.526671i
\(701\) 8737.82 24007.0i 0.470789 1.29348i −0.446330 0.894868i \(-0.647269\pi\)
0.917119 0.398613i \(-0.130508\pi\)
\(702\) 0 0
\(703\) 27364.3 21388.5i 1.46808 1.14748i
\(704\) 2727.84i 0.146036i
\(705\) 0 0
\(706\) 6448.02 1136.96i 0.343732 0.0606091i
\(707\) −14404.2 + 17166.2i −0.766230 + 0.913157i
\(708\) 0 0
\(709\) 5068.89 28747.1i 0.268500 1.52274i −0.490382 0.871508i \(-0.663143\pi\)
0.758881 0.651229i \(-0.225746\pi\)
\(710\) 3204.89 + 1850.35i 0.169405 + 0.0978060i
\(711\) 0 0
\(712\) 1825.55 664.447i 0.0960891 0.0349736i
\(713\) 18862.0 6865.20i 0.990725 0.360594i
\(714\) 0 0
\(715\) 8495.63 + 4904.95i 0.444361 + 0.256552i
\(716\) 1829.14 10373.6i 0.0954724 0.541451i
\(717\) 0 0
\(718\) 8335.79 9934.21i 0.433272 0.516353i
\(719\) −21970.2 + 3873.95i −1.13957 + 0.200937i −0.711418 0.702769i \(-0.751947\pi\)
−0.428153 + 0.903706i \(0.640836\pi\)
\(720\) 0 0
\(721\) 15725.5i 0.812274i
\(722\) 4188.28 6214.97i 0.215889 0.320356i
\(723\) 0 0
\(724\) −3676.85 + 10102.1i −0.188742 + 0.518564i
\(725\) 119.119 + 675.556i 0.00610202 + 0.0346063i
\(726\) 0 0
\(727\) −3808.02 + 3195.31i −0.194266 + 0.163009i −0.734733 0.678357i \(-0.762692\pi\)
0.540466 + 0.841366i \(0.318248\pi\)
\(728\) −17053.1 3006.92i −0.868171 0.153082i
\(729\) 0 0
\(730\) 3696.53 2134.19i 0.187418 0.108206i
\(731\) 937.715 + 2576.35i 0.0474455 + 0.130355i
\(732\) 0 0
\(733\) −8489.19 14703.7i −0.427770 0.740919i 0.568905 0.822403i \(-0.307367\pi\)
−0.996675 + 0.0814843i \(0.974034\pi\)
\(734\) 997.766 1728.18i 0.0501747 0.0869051i
\(735\) 0 0
\(736\) 12587.8 + 15001.5i 0.630424 + 0.751310i
\(737\) 9116.52 + 7649.67i 0.455646 + 0.382333i
\(738\) 0 0
\(739\) −6175.36 2247.65i −0.307394 0.111882i 0.183717 0.982979i \(-0.441187\pi\)
−0.491111 + 0.871097i \(0.663409\pi\)
\(740\) −19945.8 −0.990839
\(741\) 0 0
\(742\) 5513.59 0.272790
\(743\) 5534.49 + 2014.39i 0.273271 + 0.0994626i 0.475021 0.879975i \(-0.342440\pi\)
−0.201750 + 0.979437i \(0.564663\pi\)
\(744\) 0 0
\(745\) 7444.95 + 6247.06i 0.366124 + 0.307214i
\(746\) 4660.29 + 5553.92i 0.228720 + 0.272578i
\(747\) 0 0
\(748\) 11771.7 20389.2i 0.575422 0.996659i
\(749\) −991.821 1717.89i −0.0483850 0.0838053i
\(750\) 0 0
\(751\) 3929.29 + 10795.6i 0.190921 + 0.524552i 0.997810 0.0661524i \(-0.0210723\pi\)
−0.806888 + 0.590704i \(0.798850\pi\)
\(752\) 12352.2 7131.56i 0.598988 0.345826i
\(753\) 0 0
\(754\) −542.920 95.7314i −0.0262228 0.00462378i
\(755\) −6078.75 + 5100.67i −0.293018 + 0.245871i
\(756\) 0 0
\(757\) 1749.49 + 9921.88i 0.0839980 + 0.476376i 0.997568 + 0.0696954i \(0.0222027\pi\)
−0.913570 + 0.406681i \(0.866686\pi\)
\(758\) −938.435 + 2578.33i −0.0449677 + 0.123548i
\(759\) 0 0
\(760\) −8904.09 + 2895.17i −0.424981 + 0.138182i
\(761\) 19688.7i 0.937862i −0.883235 0.468931i \(-0.844639\pi\)
0.883235 0.468931i \(-0.155361\pi\)
\(762\) 0 0
\(763\) −15599.8 + 2750.67i −0.740172 + 0.130512i
\(764\) −7234.95 + 8622.28i −0.342606 + 0.408302i
\(765\) 0 0
\(766\) −1764.61 + 10007.6i −0.0832348 + 0.472048i
\(767\) 3890.84 + 2246.37i 0.183168 + 0.105752i
\(768\) 0 0
\(769\) −15579.7 + 5670.55i −0.730584 + 0.265911i −0.680412 0.732830i \(-0.738199\pi\)
−0.0501719 + 0.998741i \(0.515977\pi\)
\(770\) 3435.18 1250.30i 0.160773 0.0585166i
\(771\) 0 0
\(772\) −11133.4 6427.88i −0.519042 0.299669i
\(773\) −5068.11 + 28742.7i −0.235818 + 1.33739i 0.605066 + 0.796175i \(0.293147\pi\)
−0.840884 + 0.541215i \(0.817965\pi\)
\(774\) 0 0
\(775\) −8511.04 + 10143.1i −0.394485 + 0.470129i
\(776\) 20955.1 3694.95i 0.969387 0.170929i
\(777\) 0 0
\(778\) 11265.1i 0.519117i
\(779\) 19634.9 21815.9i 0.903072 1.00338i
\(780\) 0 0
\(781\) 4153.78 11412.4i 0.190312 0.522878i
\(782\) 3024.28 + 17151.5i 0.138297 + 0.784319i
\(783\) 0 0
\(784\) 620.959 521.047i 0.0282871 0.0237357i
\(785\) −3718.63 655.694i −0.169075 0.0298124i
\(786\) 0 0
\(787\) −7153.14 + 4129.87i −0.323992 + 0.187057i −0.653171 0.757211i \(-0.726562\pi\)
0.329178 + 0.944268i \(0.393228\pi\)
\(788\) −3688.28 10133.5i −0.166738 0.458109i
\(789\) 0 0
\(790\) 3875.18 + 6712.01i 0.174523 + 0.302282i
\(791\) 6300.78 10913.3i 0.283224 0.490558i
\(792\) 0 0
\(793\) 13522.0 + 16114.9i 0.605524 + 0.721635i
\(794\) 4104.44 + 3444.04i 0.183452 + 0.153935i
\(795\) 0 0
\(796\) 13619.9 + 4957.25i 0.606464 + 0.220735i
\(797\) 8216.48 0.365173 0.182586 0.983190i \(-0.441553\pi\)
0.182586 + 0.983190i \(0.441553\pi\)
\(798\) 0 0
\(799\) 53544.7 2.37081
\(800\) −12139.0 4418.22i −0.536471 0.195259i
\(801\) 0 0
\(802\) 2134.35 + 1790.94i 0.0939734 + 0.0788530i
\(803\) −9004.09 10730.7i −0.395700 0.471577i
\(804\) 0 0
\(805\) 7708.18 13351.0i 0.337488 0.584546i
\(806\) −5320.59 9215.53i −0.232518 0.402733i
\(807\) 0 0
\(808\) −6489.67 17830.2i −0.282557 0.776318i
\(809\) 35978.4 20772.2i 1.56358 0.902732i 0.566687 0.823933i \(-0.308225\pi\)
0.996891 0.0787991i \(-0.0251086\pi\)
\(810\) 0 0
\(811\) 35857.3 + 6322.62i 1.55255 + 0.273757i 0.883132 0.469125i \(-0.155431\pi\)
0.669422 + 0.742882i \(0.266542\pi\)
\(812\) 897.166 752.811i 0.0387738 0.0325351i
\(813\) 0 0
\(814\) −1993.85 11307.7i −0.0858533 0.486898i
\(815\) −1425.46 + 3916.41i −0.0612657 + 0.168326i
\(816\) 0 0
\(817\) −1608.99 341.651i −0.0689002 0.0146302i
\(818\) 2522.18i 0.107807i
\(819\) 0 0
\(820\) −16599.6 + 2926.96i −0.706931 + 0.124651i
\(821\) 4890.72 5828.53i 0.207902 0.247768i −0.652010 0.758210i \(-0.726074\pi\)
0.859912 + 0.510443i \(0.170518\pi\)
\(822\) 0 0
\(823\) 3366.90 19094.6i 0.142604 0.808745i −0.826657 0.562707i \(-0.809760\pi\)
0.969260 0.246038i \(-0.0791289\pi\)
\(824\) −11531.5 6657.73i −0.487524 0.281472i
\(825\) 0 0
\(826\) 1573.25 572.615i 0.0662715 0.0241209i
\(827\) 30831.8 11221.9i 1.29641 0.471853i 0.400581 0.916261i \(-0.368808\pi\)
0.895824 + 0.444409i \(0.146586\pi\)
\(828\) 0 0
\(829\) 16458.5 + 9502.34i 0.689540 + 0.398106i 0.803440 0.595386i \(-0.203001\pi\)
−0.113900 + 0.993492i \(0.536334\pi\)
\(830\) 1710.03 9698.08i 0.0715134 0.405573i
\(831\) 0 0
\(832\) −3920.05 + 4671.73i −0.163345 + 0.194667i
\(833\) 2996.83 528.423i 0.124651 0.0219793i
\(834\) 0 0
\(835\) 13742.4i 0.569549i
\(836\) 6633.74 + 12470.0i 0.274441 + 0.515889i
\(837\) 0 0
\(838\) 2556.69 7024.45i 0.105393 0.289565i
\(839\) −7538.49 42752.9i −0.310200 1.75923i −0.597959 0.801527i \(-0.704021\pi\)
0.287759 0.957703i \(-0.407090\pi\)
\(840\) 0 0
\(841\) −18620.9 + 15624.8i −0.763497 + 0.640650i
\(842\) −1460.68 257.557i −0.0597842 0.0105416i
\(843\) 0 0
\(844\) −12876.7 + 7434.35i −0.525158 + 0.303200i
\(845\) −2250.07 6182.01i −0.0916031 0.251677i
\(846\) 0 0
\(847\) 6716.64 + 11633.6i 0.272475 + 0.471941i
\(848\) 4855.88 8410.63i 0.196641 0.340592i
\(849\) 0 0
\(850\) −7384.69 8800.73i −0.297992 0.355132i
\(851\) −37093.3 31125.0i −1.49417 1.25376i
\(852\) 0 0
\(853\) 184.023 + 66.9791i 0.00738669 + 0.00268853i 0.345711 0.938341i \(-0.387638\pi\)
−0.338324 + 0.941030i \(0.609860\pi\)
\(854\) 7839.21 0.314113
\(855\) 0 0
\(856\) 1679.63 0.0670661
\(857\) 12538.9 + 4563.79i 0.499792 + 0.181909i 0.579600 0.814901i \(-0.303209\pi\)
−0.0798086 + 0.996810i \(0.525431\pi\)
\(858\) 0 0
\(859\) −636.366 533.975i −0.0252765 0.0212095i 0.630062 0.776545i \(-0.283030\pi\)
−0.655338 + 0.755335i \(0.727474\pi\)
\(860\) 607.191 + 723.623i 0.0240756 + 0.0286922i
\(861\) 0 0
\(862\) −6939.66 + 12019.8i −0.274206 + 0.474939i
\(863\) −18598.3 32213.3i −0.733598 1.27063i −0.955336 0.295522i \(-0.904506\pi\)
0.221738 0.975106i \(-0.428827\pi\)
\(864\) 0 0
\(865\) 9761.68 + 26820.0i 0.383708 + 1.05423i
\(866\) −13157.0 + 7596.21i −0.516274 + 0.298071i
\(867\) 0 0
\(868\) 22262.6 + 3925.49i 0.870554 + 0.153502i
\(869\) 19484.3 16349.3i 0.760597 0.638217i
\(870\) 0 0
\(871\) −4620.10 26201.9i −0.179732 1.01931i
\(872\) 4587.43 12603.9i 0.178154 0.489473i
\(873\) 0 0
\(874\) −9688.67 3912.13i −0.374970 0.151407i
\(875\) 26858.9i 1.03771i
\(876\) 0 0
\(877\) 8374.99 1476.74i 0.322467 0.0568596i −0.0100718 0.999949i \(-0.503206\pi\)
0.332538 + 0.943090i \(0.392095\pi\)
\(878\) 5399.54 6434.92i 0.207546 0.247344i
\(879\) 0 0
\(880\) 1118.14 6341.30i 0.0428325 0.242915i
\(881\) −647.493 373.830i −0.0247612 0.0142959i 0.487568 0.873085i \(-0.337884\pi\)
−0.512329 + 0.858789i \(0.671217\pi\)
\(882\) 0 0
\(883\) 27766.7 10106.3i 1.05824 0.385167i 0.246472 0.969150i \(-0.420729\pi\)
0.811766 + 0.583983i \(0.198506\pi\)
\(884\) −49460.7 + 18002.2i −1.88184 + 0.684933i
\(885\) 0 0
\(886\) 12447.4 + 7186.53i 0.471986 + 0.272502i
\(887\) 1018.01 5773.41i 0.0385359 0.218548i −0.959459 0.281850i \(-0.909052\pi\)
0.997994 + 0.0633019i \(0.0201631\pi\)
\(888\) 0 0
\(889\) −20835.9 + 24831.3i −0.786067 + 0.936798i
\(890\) 902.981 159.220i 0.0340090 0.00599670i
\(891\) 0 0
\(892\) 2887.62i 0.108391i
\(893\) −17017.3 + 27246.1i −0.637697 + 1.02100i
\(894\) 0 0
\(895\) 3699.04 10163.0i 0.138151 0.379567i
\(896\) 4896.21 + 27767.8i 0.182557 + 1.03533i
\(897\) 0 0
\(898\) −6665.24 + 5592.80i −0.247686 + 0.207833i
\(899\) 1541.88 + 271.875i 0.0572020 + 0.0100863i
\(900\) 0 0
\(901\) 31574.1 18229.3i 1.16746 0.674035i
\(902\) −3318.72 9118.11i −0.122507 0.336585i
\(903\) 0 0
\(904\) 5335.12 + 9240.70i 0.196287 + 0.339979i
\(905\) −5518.93 + 9559.07i −0.202713 + 0.351110i
\(906\) 0 0
\(907\) 20538.0 + 24476.3i 0.751879 + 0.896054i 0.997305 0.0733610i \(-0.0233725\pi\)
−0.245427 + 0.969415i \(0.578928\pi\)
\(908\) −20541.4 17236.3i −0.750761 0.629963i
\(909\) 0 0
\(910\) −7679.90 2795.25i −0.279765 0.101826i
\(911\) 46413.8 1.68799 0.843994 0.536353i \(-0.180199\pi\)
0.843994 + 0.536353i \(0.180199\pi\)
\(912\) 0 0
\(913\) −32317.9 −1.17148
\(914\) −4044.20 1471.97i −0.146357 0.0532696i
\(915\) 0 0
\(916\) −6785.93 5694.07i −0.244774 0.205390i
\(917\) −7375.79 8790.12i −0.265616 0.316549i
\(918\) 0 0
\(919\) −4163.77 + 7211.85i −0.149456 + 0.258865i −0.931026 0.364952i \(-0.881086\pi\)
0.781571 + 0.623817i \(0.214419\pi\)
\(920\) 6526.82 + 11304.8i 0.233895 + 0.405117i
\(921\) 0 0
\(922\) −1873.35 5147.00i −0.0669150 0.183848i
\(923\) −23514.1 + 13575.9i −0.838543 + 0.484133i
\(924\) 0 0
\(925\) 31456.2 + 5546.58i 1.11813 + 0.197157i
\(926\) 9720.81 8156.73i 0.344974 0.289467i
\(927\) 0 0
\(928\) 265.246 + 1504.29i 0.00938269 + 0.0532119i
\(929\) −8010.52 + 22008.7i −0.282903 + 0.777269i 0.714110 + 0.700033i \(0.246831\pi\)
−0.997013 + 0.0772353i \(0.975391\pi\)
\(930\) 0 0
\(931\) −683.555 + 1692.87i −0.0240629 + 0.0595936i
\(932\) 21969.0i 0.772123i
\(933\) 0 0
\(934\) −1800.84 + 317.536i −0.0630891 + 0.0111243i
\(935\) 15538.0 18517.5i 0.543474 0.647688i
\(936\) 0 0
\(937\) −7508.84 + 42584.7i −0.261796 + 1.48472i 0.516209 + 0.856462i \(0.327343\pi\)
−0.778006 + 0.628257i \(0.783769\pi\)
\(938\) −8586.39 4957.36i −0.298887 0.172562i
\(939\) 0 0
\(940\) 17335.7 6309.67i 0.601519 0.218935i
\(941\) 36138.5 13153.4i 1.25195 0.455672i 0.370889 0.928677i \(-0.379053\pi\)
0.881059 + 0.473006i \(0.156831\pi\)
\(942\) 0 0
\(943\) −35437.9 20460.1i −1.22377 0.706545i
\(944\) 512.088 2904.20i 0.0176558 0.100131i
\(945\) 0 0
\(946\) −349.541 + 416.567i −0.0120133 + 0.0143169i
\(947\) 2254.56 397.540i 0.0773636 0.0136413i −0.134832 0.990868i \(-0.543050\pi\)
0.212196 + 0.977227i \(0.431938\pi\)
\(948\) 0 0
\(949\) 31316.9i 1.07122i
\(950\) 6825.20 960.669i 0.233093 0.0328087i
\(951\) 0 0
\(952\) −14593.8 + 40096.0i −0.496834 + 1.36504i
\(953\) −433.779 2460.08i −0.0147445 0.0836200i 0.976548 0.215302i \(-0.0690735\pi\)
−0.991292 + 0.131682i \(0.957962\pi\)
\(954\) 0 0
\(955\) −8852.83 + 7428.41i −0.299970 + 0.251704i
\(956\) 41976.0 + 7401.50i 1.42008 + 0.250399i
\(957\) 0 0
\(958\) 3083.57 1780.30i 0.103993 0.0600406i
\(959\) 10791.3 + 29648.7i 0.363366 + 0.998339i
\(960\) 0 0
\(961\) 214.842 + 372.118i 0.00721165 + 0.0124910i
\(962\) −12835.1 + 22231.0i −0.430167 + 0.745070i
\(963\) 0 0
\(964\) −31524.5 37569.4i −1.05325 1.25522i
\(965\) −10111.4 8484.49i −0.337304 0.283031i
\(966\) 0 0
\(967\) −51551.3 18763.1i −1.71435 0.623973i −0.717025 0.697047i \(-0.754497\pi\)
−0.997327 + 0.0730739i \(0.976719\pi\)
\(968\) −11374.5 −0.377676
\(969\) 0 0
\(970\) 10042.8 0.332429
\(971\) 14110.5 + 5135.79i 0.466351 + 0.169738i 0.564499 0.825434i \(-0.309070\pi\)
−0.0981477 + 0.995172i \(0.531292\pi\)
\(972\) 0 0
\(973\) −18656.6 15654.8i −0.614701 0.515795i
\(974\) −13745.5 16381.3i −0.452192 0.538901i
\(975\) 0 0
\(976\) 6904.08 11958.2i 0.226429 0.392186i
\(977\) 14086.4 + 24398.3i 0.461272 + 0.798946i 0.999025 0.0441562i \(-0.0140599\pi\)
−0.537753 + 0.843103i \(0.680727\pi\)
\(978\) 0 0
\(979\) −1029.17 2827.62i −0.0335980 0.0923096i
\(980\) 907.989 524.228i 0.0295966 0.0170876i
\(981\) 0 0
\(982\) −1972.68 347.836i −0.0641045 0.0113034i
\(983\) −7916.63 + 6642.84i −0.256868 + 0.215538i −0.762123 0.647432i \(-0.775843\pi\)
0.505255 + 0.862970i \(0.331398\pi\)
\(984\) 0 0
\(985\) −1922.66 10903.9i −0.0621940 0.352719i
\(986\) −464.622 + 1276.54i −0.0150067 + 0.0412305i
\(987\) 0 0
\(988\) 6559.01 30889.3i 0.211204 0.994657i
\(989\) 2293.24i 0.0737318i
\(990\) 0 0
\(991\) 22751.5 4011.70i 0.729288 0.128593i 0.203338 0.979109i \(-0.434821\pi\)
0.525950 + 0.850516i \(0.323710\pi\)
\(992\) −18951.9 + 22585.9i −0.606575 + 0.722888i
\(993\) 0 0
\(994\) −1756.98 + 9964.32i −0.0560644 + 0.317957i
\(995\) 12887.8 + 7440.80i 0.410625 + 0.237074i
\(996\) 0 0
\(997\) 806.496 293.541i 0.0256188 0.00932450i −0.329179 0.944268i \(-0.606772\pi\)
0.354798 + 0.934943i \(0.384550\pi\)
\(998\) −17815.1 + 6484.16i −0.565057 + 0.205664i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 171.4.y.a.53.9 120
3.2 odd 2 inner 171.4.y.a.53.12 yes 120
19.14 odd 18 inner 171.4.y.a.71.12 yes 120
57.14 even 18 inner 171.4.y.a.71.9 yes 120
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
171.4.y.a.53.9 120 1.1 even 1 trivial
171.4.y.a.53.12 yes 120 3.2 odd 2 inner
171.4.y.a.71.9 yes 120 57.14 even 18 inner
171.4.y.a.71.12 yes 120 19.14 odd 18 inner