Properties

Label 171.6.a.k.1.4
Level $171$
Weight $6$
Character 171.1
Self dual yes
Analytic conductor $27.426$
Analytic rank $1$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [171,6,Mod(1,171)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(171, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("171.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 171 = 3^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 171.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(27.4256331880\)
Analytic rank: \(1\)
Dimension: \(6\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 117x^{4} + 2916x^{2} - 1216 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(0.651309\) of defining polynomial
Character \(\chi\) \(=\) 171.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.651309 q^{2} -31.5758 q^{4} -26.1790 q^{5} +104.778 q^{7} -41.4075 q^{8} -17.0506 q^{10} +666.012 q^{11} +59.2525 q^{13} +68.2428 q^{14} +983.456 q^{16} -1622.03 q^{17} -361.000 q^{19} +826.624 q^{20} +433.780 q^{22} -3075.44 q^{23} -2439.66 q^{25} +38.5917 q^{26} -3308.45 q^{28} +4576.41 q^{29} -10093.8 q^{31} +1965.57 q^{32} -1056.44 q^{34} -2742.99 q^{35} -12600.4 q^{37} -235.123 q^{38} +1084.01 q^{40} -2740.11 q^{41} -754.986 q^{43} -21029.9 q^{44} -2003.06 q^{46} +20823.5 q^{47} -5828.58 q^{49} -1588.97 q^{50} -1870.95 q^{52} +39977.9 q^{53} -17435.6 q^{55} -4338.59 q^{56} +2980.66 q^{58} -32031.4 q^{59} +9691.67 q^{61} -6574.19 q^{62} -30190.4 q^{64} -1551.17 q^{65} -16096.6 q^{67} +51216.8 q^{68} -1786.53 q^{70} -71074.9 q^{71} -61898.9 q^{73} -8206.77 q^{74} +11398.9 q^{76} +69783.4 q^{77} -61222.3 q^{79} -25745.9 q^{80} -1784.66 q^{82} -88873.1 q^{83} +42463.1 q^{85} -491.730 q^{86} -27577.9 q^{88} +49104.1 q^{89} +6208.36 q^{91} +97109.5 q^{92} +13562.5 q^{94} +9450.63 q^{95} +102195. q^{97} -3796.21 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 42 q^{4} - 10 q^{7} - 788 q^{10} - 1256 q^{13} - 606 q^{16} - 2166 q^{19} - 2524 q^{22} - 3944 q^{25} - 9632 q^{28} - 18136 q^{31} - 14072 q^{34} - 23764 q^{37} - 34284 q^{40} - 24606 q^{43} - 45640 q^{46}+ \cdots - 16492 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.651309 0.115136 0.0575681 0.998342i \(-0.481665\pi\)
0.0575681 + 0.998342i \(0.481665\pi\)
\(3\) 0 0
\(4\) −31.5758 −0.986744
\(5\) −26.1790 −0.468305 −0.234152 0.972200i \(-0.575231\pi\)
−0.234152 + 0.972200i \(0.575231\pi\)
\(6\) 0 0
\(7\) 104.778 0.808211 0.404106 0.914712i \(-0.367583\pi\)
0.404106 + 0.914712i \(0.367583\pi\)
\(8\) −41.4075 −0.228746
\(9\) 0 0
\(10\) −17.0506 −0.0539189
\(11\) 666.012 1.65959 0.829794 0.558070i \(-0.188458\pi\)
0.829794 + 0.558070i \(0.188458\pi\)
\(12\) 0 0
\(13\) 59.2525 0.0972408 0.0486204 0.998817i \(-0.484518\pi\)
0.0486204 + 0.998817i \(0.484518\pi\)
\(14\) 68.2428 0.0930544
\(15\) 0 0
\(16\) 983.456 0.960407
\(17\) −1622.03 −1.36124 −0.680621 0.732635i \(-0.738290\pi\)
−0.680621 + 0.732635i \(0.738290\pi\)
\(18\) 0 0
\(19\) −361.000 −0.229416
\(20\) 826.624 0.462097
\(21\) 0 0
\(22\) 433.780 0.191079
\(23\) −3075.44 −1.21224 −0.606119 0.795374i \(-0.707274\pi\)
−0.606119 + 0.795374i \(0.707274\pi\)
\(24\) 0 0
\(25\) −2439.66 −0.780691
\(26\) 38.5917 0.0111959
\(27\) 0 0
\(28\) −3308.45 −0.797497
\(29\) 4576.41 1.01049 0.505243 0.862977i \(-0.331403\pi\)
0.505243 + 0.862977i \(0.331403\pi\)
\(30\) 0 0
\(31\) −10093.8 −1.88647 −0.943237 0.332120i \(-0.892236\pi\)
−0.943237 + 0.332120i \(0.892236\pi\)
\(32\) 1965.57 0.339324
\(33\) 0 0
\(34\) −1056.44 −0.156728
\(35\) −2742.99 −0.378489
\(36\) 0 0
\(37\) −12600.4 −1.51315 −0.756573 0.653910i \(-0.773128\pi\)
−0.756573 + 0.653910i \(0.773128\pi\)
\(38\) −235.123 −0.0264141
\(39\) 0 0
\(40\) 1084.01 0.107123
\(41\) −2740.11 −0.254571 −0.127285 0.991866i \(-0.540626\pi\)
−0.127285 + 0.991866i \(0.540626\pi\)
\(42\) 0 0
\(43\) −754.986 −0.0622684 −0.0311342 0.999515i \(-0.509912\pi\)
−0.0311342 + 0.999515i \(0.509912\pi\)
\(44\) −21029.9 −1.63759
\(45\) 0 0
\(46\) −2003.06 −0.139573
\(47\) 20823.5 1.37502 0.687510 0.726175i \(-0.258704\pi\)
0.687510 + 0.726175i \(0.258704\pi\)
\(48\) 0 0
\(49\) −5828.58 −0.346795
\(50\) −1588.97 −0.0898858
\(51\) 0 0
\(52\) −1870.95 −0.0959518
\(53\) 39977.9 1.95492 0.977462 0.211111i \(-0.0677081\pi\)
0.977462 + 0.211111i \(0.0677081\pi\)
\(54\) 0 0
\(55\) −17435.6 −0.777193
\(56\) −4338.59 −0.184875
\(57\) 0 0
\(58\) 2980.66 0.116344
\(59\) −32031.4 −1.19797 −0.598985 0.800760i \(-0.704429\pi\)
−0.598985 + 0.800760i \(0.704429\pi\)
\(60\) 0 0
\(61\) 9691.67 0.333483 0.166742 0.986001i \(-0.446675\pi\)
0.166742 + 0.986001i \(0.446675\pi\)
\(62\) −6574.19 −0.217202
\(63\) 0 0
\(64\) −30190.4 −0.921338
\(65\) −1551.17 −0.0455383
\(66\) 0 0
\(67\) −16096.6 −0.438074 −0.219037 0.975717i \(-0.570292\pi\)
−0.219037 + 0.975717i \(0.570292\pi\)
\(68\) 51216.8 1.34320
\(69\) 0 0
\(70\) −1786.53 −0.0435778
\(71\) −71074.9 −1.67329 −0.836643 0.547748i \(-0.815485\pi\)
−0.836643 + 0.547748i \(0.815485\pi\)
\(72\) 0 0
\(73\) −61898.9 −1.35949 −0.679745 0.733448i \(-0.737910\pi\)
−0.679745 + 0.733448i \(0.737910\pi\)
\(74\) −8206.77 −0.174218
\(75\) 0 0
\(76\) 11398.9 0.226375
\(77\) 69783.4 1.34130
\(78\) 0 0
\(79\) −61222.3 −1.10368 −0.551838 0.833951i \(-0.686074\pi\)
−0.551838 + 0.833951i \(0.686074\pi\)
\(80\) −25745.9 −0.449763
\(81\) 0 0
\(82\) −1784.66 −0.0293103
\(83\) −88873.1 −1.41604 −0.708019 0.706193i \(-0.750411\pi\)
−0.708019 + 0.706193i \(0.750411\pi\)
\(84\) 0 0
\(85\) 42463.1 0.637476
\(86\) −491.730 −0.00716936
\(87\) 0 0
\(88\) −27577.9 −0.379625
\(89\) 49104.1 0.657117 0.328559 0.944484i \(-0.393437\pi\)
0.328559 + 0.944484i \(0.393437\pi\)
\(90\) 0 0
\(91\) 6208.36 0.0785911
\(92\) 97109.5 1.19617
\(93\) 0 0
\(94\) 13562.5 0.158315
\(95\) 9450.63 0.107436
\(96\) 0 0
\(97\) 102195. 1.10281 0.551404 0.834238i \(-0.314092\pi\)
0.551404 + 0.834238i \(0.314092\pi\)
\(98\) −3796.21 −0.0399287
\(99\) 0 0
\(100\) 77034.1 0.770341
\(101\) 25539.6 0.249121 0.124560 0.992212i \(-0.460248\pi\)
0.124560 + 0.992212i \(0.460248\pi\)
\(102\) 0 0
\(103\) −16349.9 −0.151853 −0.0759263 0.997113i \(-0.524191\pi\)
−0.0759263 + 0.997113i \(0.524191\pi\)
\(104\) −2453.50 −0.0222435
\(105\) 0 0
\(106\) 26038.0 0.225083
\(107\) 112847. 0.952862 0.476431 0.879212i \(-0.341930\pi\)
0.476431 + 0.879212i \(0.341930\pi\)
\(108\) 0 0
\(109\) −119910. −0.966694 −0.483347 0.875429i \(-0.660579\pi\)
−0.483347 + 0.875429i \(0.660579\pi\)
\(110\) −11355.9 −0.0894831
\(111\) 0 0
\(112\) 103045. 0.776211
\(113\) −224892. −1.65683 −0.828416 0.560114i \(-0.810757\pi\)
−0.828416 + 0.560114i \(0.810757\pi\)
\(114\) 0 0
\(115\) 80512.1 0.567697
\(116\) −144504. −0.997091
\(117\) 0 0
\(118\) −20862.3 −0.137930
\(119\) −169953. −1.10017
\(120\) 0 0
\(121\) 282521. 1.75423
\(122\) 6312.28 0.0383960
\(123\) 0 0
\(124\) 318720. 1.86147
\(125\) 145677. 0.833906
\(126\) 0 0
\(127\) 15307.7 0.0842171 0.0421085 0.999113i \(-0.486592\pi\)
0.0421085 + 0.999113i \(0.486592\pi\)
\(128\) −82561.7 −0.445403
\(129\) 0 0
\(130\) −1010.29 −0.00524312
\(131\) 321750. 1.63810 0.819049 0.573723i \(-0.194501\pi\)
0.819049 + 0.573723i \(0.194501\pi\)
\(132\) 0 0
\(133\) −37824.8 −0.185416
\(134\) −10483.9 −0.0504382
\(135\) 0 0
\(136\) 67164.0 0.311379
\(137\) 65909.6 0.300018 0.150009 0.988685i \(-0.452070\pi\)
0.150009 + 0.988685i \(0.452070\pi\)
\(138\) 0 0
\(139\) 123516. 0.542233 0.271117 0.962547i \(-0.412607\pi\)
0.271117 + 0.962547i \(0.412607\pi\)
\(140\) 86612.0 0.373472
\(141\) 0 0
\(142\) −46291.7 −0.192656
\(143\) 39462.9 0.161380
\(144\) 0 0
\(145\) −119806. −0.473216
\(146\) −40315.3 −0.156527
\(147\) 0 0
\(148\) 397868. 1.49309
\(149\) −389588. −1.43760 −0.718802 0.695215i \(-0.755309\pi\)
−0.718802 + 0.695215i \(0.755309\pi\)
\(150\) 0 0
\(151\) −136823. −0.488335 −0.244168 0.969733i \(-0.578515\pi\)
−0.244168 + 0.969733i \(0.578515\pi\)
\(152\) 14948.1 0.0524780
\(153\) 0 0
\(154\) 45450.5 0.154432
\(155\) 264246. 0.883445
\(156\) 0 0
\(157\) 109944. 0.355978 0.177989 0.984033i \(-0.443041\pi\)
0.177989 + 0.984033i \(0.443041\pi\)
\(158\) −39874.6 −0.127073
\(159\) 0 0
\(160\) −51456.8 −0.158907
\(161\) −322238. −0.979744
\(162\) 0 0
\(163\) −242251. −0.714161 −0.357081 0.934074i \(-0.616228\pi\)
−0.357081 + 0.934074i \(0.616228\pi\)
\(164\) 86521.2 0.251196
\(165\) 0 0
\(166\) −57883.9 −0.163037
\(167\) −241920. −0.671245 −0.335622 0.941997i \(-0.608947\pi\)
−0.335622 + 0.941997i \(0.608947\pi\)
\(168\) 0 0
\(169\) −367782. −0.990544
\(170\) 27656.6 0.0733967
\(171\) 0 0
\(172\) 23839.3 0.0614430
\(173\) 520255. 1.32160 0.660801 0.750561i \(-0.270217\pi\)
0.660801 + 0.750561i \(0.270217\pi\)
\(174\) 0 0
\(175\) −255622. −0.630963
\(176\) 654994. 1.59388
\(177\) 0 0
\(178\) 31982.0 0.0756580
\(179\) −21203.7 −0.0494628 −0.0247314 0.999694i \(-0.507873\pi\)
−0.0247314 + 0.999694i \(0.507873\pi\)
\(180\) 0 0
\(181\) 637689. 1.44681 0.723406 0.690423i \(-0.242575\pi\)
0.723406 + 0.690423i \(0.242575\pi\)
\(182\) 4043.56 0.00904869
\(183\) 0 0
\(184\) 127346. 0.277295
\(185\) 329867. 0.708613
\(186\) 0 0
\(187\) −1.08029e6 −2.25910
\(188\) −657518. −1.35679
\(189\) 0 0
\(190\) 6155.28 0.0123698
\(191\) −725313. −1.43861 −0.719303 0.694696i \(-0.755539\pi\)
−0.719303 + 0.694696i \(0.755539\pi\)
\(192\) 0 0
\(193\) −509164. −0.983931 −0.491965 0.870615i \(-0.663721\pi\)
−0.491965 + 0.870615i \(0.663721\pi\)
\(194\) 66560.5 0.126973
\(195\) 0 0
\(196\) 184042. 0.342198
\(197\) 168522. 0.309380 0.154690 0.987963i \(-0.450562\pi\)
0.154690 + 0.987963i \(0.450562\pi\)
\(198\) 0 0
\(199\) 398703. 0.713702 0.356851 0.934161i \(-0.383850\pi\)
0.356851 + 0.934161i \(0.383850\pi\)
\(200\) 101020. 0.178580
\(201\) 0 0
\(202\) 16634.2 0.0286829
\(203\) 479507. 0.816686
\(204\) 0 0
\(205\) 71733.5 0.119217
\(206\) −10648.8 −0.0174838
\(207\) 0 0
\(208\) 58272.3 0.0933907
\(209\) −240430. −0.380736
\(210\) 0 0
\(211\) 645289. 0.997811 0.498905 0.866656i \(-0.333736\pi\)
0.498905 + 0.866656i \(0.333736\pi\)
\(212\) −1.26233e6 −1.92901
\(213\) 0 0
\(214\) 73498.2 0.109709
\(215\) 19764.8 0.0291606
\(216\) 0 0
\(217\) −1.05761e6 −1.52467
\(218\) −78098.4 −0.111302
\(219\) 0 0
\(220\) 550541. 0.766890
\(221\) −96109.2 −0.132368
\(222\) 0 0
\(223\) −481247. −0.648046 −0.324023 0.946049i \(-0.605036\pi\)
−0.324023 + 0.946049i \(0.605036\pi\)
\(224\) 205949. 0.274245
\(225\) 0 0
\(226\) −146474. −0.190761
\(227\) 726154. 0.935328 0.467664 0.883906i \(-0.345096\pi\)
0.467664 + 0.883906i \(0.345096\pi\)
\(228\) 0 0
\(229\) −1.26607e6 −1.59540 −0.797698 0.603057i \(-0.793949\pi\)
−0.797698 + 0.603057i \(0.793949\pi\)
\(230\) 52438.3 0.0653625
\(231\) 0 0
\(232\) −189498. −0.231145
\(233\) 173092. 0.208875 0.104438 0.994531i \(-0.466696\pi\)
0.104438 + 0.994531i \(0.466696\pi\)
\(234\) 0 0
\(235\) −545139. −0.643928
\(236\) 1.01142e6 1.18209
\(237\) 0 0
\(238\) −110692. −0.126670
\(239\) −1.25124e6 −1.41693 −0.708463 0.705748i \(-0.750611\pi\)
−0.708463 + 0.705748i \(0.750611\pi\)
\(240\) 0 0
\(241\) −711877. −0.789518 −0.394759 0.918785i \(-0.629172\pi\)
−0.394759 + 0.918785i \(0.629172\pi\)
\(242\) 184008. 0.201976
\(243\) 0 0
\(244\) −306022. −0.329063
\(245\) 152587. 0.162406
\(246\) 0 0
\(247\) −21390.2 −0.0223086
\(248\) 417959. 0.431524
\(249\) 0 0
\(250\) 94881.0 0.0960128
\(251\) 885324. 0.886989 0.443494 0.896277i \(-0.353739\pi\)
0.443494 + 0.896277i \(0.353739\pi\)
\(252\) 0 0
\(253\) −2.04828e6 −2.01182
\(254\) 9970.03 0.00969644
\(255\) 0 0
\(256\) 912320. 0.870056
\(257\) −892654. −0.843044 −0.421522 0.906818i \(-0.638504\pi\)
−0.421522 + 0.906818i \(0.638504\pi\)
\(258\) 0 0
\(259\) −1.32025e6 −1.22294
\(260\) 48979.6 0.0449347
\(261\) 0 0
\(262\) 209559. 0.188605
\(263\) −132173. −0.117830 −0.0589148 0.998263i \(-0.518764\pi\)
−0.0589148 + 0.998263i \(0.518764\pi\)
\(264\) 0 0
\(265\) −1.04658e6 −0.915501
\(266\) −24635.7 −0.0213481
\(267\) 0 0
\(268\) 508264. 0.432267
\(269\) 669484. 0.564104 0.282052 0.959399i \(-0.408985\pi\)
0.282052 + 0.959399i \(0.408985\pi\)
\(270\) 0 0
\(271\) 1.70117e6 1.40710 0.703550 0.710646i \(-0.251597\pi\)
0.703550 + 0.710646i \(0.251597\pi\)
\(272\) −1.59519e6 −1.30735
\(273\) 0 0
\(274\) 42927.5 0.0345429
\(275\) −1.62484e6 −1.29562
\(276\) 0 0
\(277\) 795334. 0.622802 0.311401 0.950279i \(-0.399202\pi\)
0.311401 + 0.950279i \(0.399202\pi\)
\(278\) 80447.1 0.0624307
\(279\) 0 0
\(280\) 113580. 0.0865780
\(281\) −464075. −0.350608 −0.175304 0.984514i \(-0.556091\pi\)
−0.175304 + 0.984514i \(0.556091\pi\)
\(282\) 0 0
\(283\) −1.49463e6 −1.10934 −0.554672 0.832069i \(-0.687156\pi\)
−0.554672 + 0.832069i \(0.687156\pi\)
\(284\) 2.24425e6 1.65110
\(285\) 0 0
\(286\) 25702.5 0.0185807
\(287\) −287103. −0.205747
\(288\) 0 0
\(289\) 1.21111e6 0.852981
\(290\) −78030.8 −0.0544843
\(291\) 0 0
\(292\) 1.95451e6 1.34147
\(293\) 923428. 0.628397 0.314198 0.949357i \(-0.398264\pi\)
0.314198 + 0.949357i \(0.398264\pi\)
\(294\) 0 0
\(295\) 838551. 0.561015
\(296\) 521752. 0.346126
\(297\) 0 0
\(298\) −253742. −0.165520
\(299\) −182228. −0.117879
\(300\) 0 0
\(301\) −79105.9 −0.0503260
\(302\) −89114.4 −0.0562251
\(303\) 0 0
\(304\) −355028. −0.220332
\(305\) −253719. −0.156172
\(306\) 0 0
\(307\) 2.40441e6 1.45601 0.728003 0.685574i \(-0.240449\pi\)
0.728003 + 0.685574i \(0.240449\pi\)
\(308\) −2.20347e6 −1.32352
\(309\) 0 0
\(310\) 172106. 0.101717
\(311\) 344292. 0.201849 0.100924 0.994894i \(-0.467820\pi\)
0.100924 + 0.994894i \(0.467820\pi\)
\(312\) 0 0
\(313\) 778240. 0.449007 0.224503 0.974473i \(-0.427924\pi\)
0.224503 + 0.974473i \(0.427924\pi\)
\(314\) 71607.6 0.0409859
\(315\) 0 0
\(316\) 1.93314e6 1.08905
\(317\) 568016. 0.317477 0.158739 0.987321i \(-0.449257\pi\)
0.158739 + 0.987321i \(0.449257\pi\)
\(318\) 0 0
\(319\) 3.04795e6 1.67699
\(320\) 790356. 0.431467
\(321\) 0 0
\(322\) −209877. −0.112804
\(323\) 585551. 0.312290
\(324\) 0 0
\(325\) −144556. −0.0759150
\(326\) −157780. −0.0822259
\(327\) 0 0
\(328\) 113461. 0.0582321
\(329\) 2.18184e6 1.11131
\(330\) 0 0
\(331\) −1.22041e6 −0.612260 −0.306130 0.951990i \(-0.599034\pi\)
−0.306130 + 0.951990i \(0.599034\pi\)
\(332\) 2.80624e6 1.39727
\(333\) 0 0
\(334\) −157565. −0.0772846
\(335\) 421394. 0.205152
\(336\) 0 0
\(337\) 2.85370e6 1.36878 0.684391 0.729115i \(-0.260068\pi\)
0.684391 + 0.729115i \(0.260068\pi\)
\(338\) −239540. −0.114048
\(339\) 0 0
\(340\) −1.34081e6 −0.629026
\(341\) −6.72260e6 −3.13077
\(342\) 0 0
\(343\) −2.37171e6 −1.08849
\(344\) 31262.1 0.0142437
\(345\) 0 0
\(346\) 338847. 0.152164
\(347\) −2.14302e6 −0.955440 −0.477720 0.878512i \(-0.658537\pi\)
−0.477720 + 0.878512i \(0.658537\pi\)
\(348\) 0 0
\(349\) −1.05371e6 −0.463083 −0.231542 0.972825i \(-0.574377\pi\)
−0.231542 + 0.972825i \(0.574377\pi\)
\(350\) −166489. −0.0726467
\(351\) 0 0
\(352\) 1.30910e6 0.563138
\(353\) 2.17660e6 0.929699 0.464850 0.885390i \(-0.346108\pi\)
0.464850 + 0.885390i \(0.346108\pi\)
\(354\) 0 0
\(355\) 1.86067e6 0.783608
\(356\) −1.55050e6 −0.648406
\(357\) 0 0
\(358\) −13810.2 −0.00569497
\(359\) 1.35843e6 0.556290 0.278145 0.960539i \(-0.410280\pi\)
0.278145 + 0.960539i \(0.410280\pi\)
\(360\) 0 0
\(361\) 130321. 0.0526316
\(362\) 415332. 0.166581
\(363\) 0 0
\(364\) −196034. −0.0775493
\(365\) 1.62045e6 0.636656
\(366\) 0 0
\(367\) 309670. 0.120015 0.0600074 0.998198i \(-0.480888\pi\)
0.0600074 + 0.998198i \(0.480888\pi\)
\(368\) −3.02456e6 −1.16424
\(369\) 0 0
\(370\) 214845. 0.0815871
\(371\) 4.18880e6 1.57999
\(372\) 0 0
\(373\) 2.01892e6 0.751357 0.375679 0.926750i \(-0.377410\pi\)
0.375679 + 0.926750i \(0.377410\pi\)
\(374\) −703602. −0.260105
\(375\) 0 0
\(376\) −862248. −0.314530
\(377\) 271164. 0.0982605
\(378\) 0 0
\(379\) 2.82488e6 1.01019 0.505094 0.863064i \(-0.331458\pi\)
0.505094 + 0.863064i \(0.331458\pi\)
\(380\) −298411. −0.106012
\(381\) 0 0
\(382\) −472403. −0.165636
\(383\) 3.09625e6 1.07855 0.539274 0.842130i \(-0.318699\pi\)
0.539274 + 0.842130i \(0.318699\pi\)
\(384\) 0 0
\(385\) −1.82686e6 −0.628136
\(386\) −331623. −0.113286
\(387\) 0 0
\(388\) −3.22689e6 −1.08819
\(389\) 1.48523e6 0.497644 0.248822 0.968549i \(-0.419957\pi\)
0.248822 + 0.968549i \(0.419957\pi\)
\(390\) 0 0
\(391\) 4.98845e6 1.65015
\(392\) 241347. 0.0793280
\(393\) 0 0
\(394\) 109760. 0.0356208
\(395\) 1.60274e6 0.516857
\(396\) 0 0
\(397\) −450478. −0.143449 −0.0717244 0.997424i \(-0.522850\pi\)
−0.0717244 + 0.997424i \(0.522850\pi\)
\(398\) 259679. 0.0821730
\(399\) 0 0
\(400\) −2.39930e6 −0.749780
\(401\) −608993. −0.189126 −0.0945631 0.995519i \(-0.530145\pi\)
−0.0945631 + 0.995519i \(0.530145\pi\)
\(402\) 0 0
\(403\) −598084. −0.183442
\(404\) −806432. −0.245818
\(405\) 0 0
\(406\) 312308. 0.0940302
\(407\) −8.39203e6 −2.51120
\(408\) 0 0
\(409\) −350421. −0.103581 −0.0517907 0.998658i \(-0.516493\pi\)
−0.0517907 + 0.998658i \(0.516493\pi\)
\(410\) 46720.7 0.0137262
\(411\) 0 0
\(412\) 516262. 0.149840
\(413\) −3.35618e6 −0.968213
\(414\) 0 0
\(415\) 2.32661e6 0.663138
\(416\) 116465. 0.0329961
\(417\) 0 0
\(418\) −156594. −0.0438365
\(419\) −2.70802e6 −0.753559 −0.376779 0.926303i \(-0.622969\pi\)
−0.376779 + 0.926303i \(0.622969\pi\)
\(420\) 0 0
\(421\) −4.72890e6 −1.30033 −0.650167 0.759791i \(-0.725301\pi\)
−0.650167 + 0.759791i \(0.725301\pi\)
\(422\) 420283. 0.114884
\(423\) 0 0
\(424\) −1.65538e6 −0.447182
\(425\) 3.95719e6 1.06271
\(426\) 0 0
\(427\) 1.01547e6 0.269525
\(428\) −3.56323e6 −0.940231
\(429\) 0 0
\(430\) 12873.0 0.00335744
\(431\) −1.05099e6 −0.272523 −0.136262 0.990673i \(-0.543509\pi\)
−0.136262 + 0.990673i \(0.543509\pi\)
\(432\) 0 0
\(433\) −982966. −0.251953 −0.125976 0.992033i \(-0.540206\pi\)
−0.125976 + 0.992033i \(0.540206\pi\)
\(434\) −688830. −0.175545
\(435\) 0 0
\(436\) 3.78625e6 0.953879
\(437\) 1.11023e6 0.278106
\(438\) 0 0
\(439\) −4.02905e6 −0.997794 −0.498897 0.866661i \(-0.666261\pi\)
−0.498897 + 0.866661i \(0.666261\pi\)
\(440\) 721963. 0.177780
\(441\) 0 0
\(442\) −62596.8 −0.0152404
\(443\) 2.56728e6 0.621533 0.310767 0.950486i \(-0.399414\pi\)
0.310767 + 0.950486i \(0.399414\pi\)
\(444\) 0 0
\(445\) −1.28550e6 −0.307731
\(446\) −313441. −0.0746136
\(447\) 0 0
\(448\) −3.16329e6 −0.744636
\(449\) −336148. −0.0786891 −0.0393446 0.999226i \(-0.512527\pi\)
−0.0393446 + 0.999226i \(0.512527\pi\)
\(450\) 0 0
\(451\) −1.82495e6 −0.422483
\(452\) 7.10115e6 1.63487
\(453\) 0 0
\(454\) 472951. 0.107690
\(455\) −162529. −0.0368046
\(456\) 0 0
\(457\) −693109. −0.155243 −0.0776214 0.996983i \(-0.524733\pi\)
−0.0776214 + 0.996983i \(0.524733\pi\)
\(458\) −824602. −0.183688
\(459\) 0 0
\(460\) −2.54223e6 −0.560171
\(461\) 1.04251e6 0.228470 0.114235 0.993454i \(-0.463558\pi\)
0.114235 + 0.993454i \(0.463558\pi\)
\(462\) 0 0
\(463\) 6.36632e6 1.38018 0.690091 0.723723i \(-0.257571\pi\)
0.690091 + 0.723723i \(0.257571\pi\)
\(464\) 4.50070e6 0.970478
\(465\) 0 0
\(466\) 112736. 0.0240491
\(467\) 2.08396e6 0.442178 0.221089 0.975254i \(-0.429039\pi\)
0.221089 + 0.975254i \(0.429039\pi\)
\(468\) 0 0
\(469\) −1.68657e6 −0.354056
\(470\) −355054. −0.0741395
\(471\) 0 0
\(472\) 1.32634e6 0.274031
\(473\) −502830. −0.103340
\(474\) 0 0
\(475\) 880717. 0.179103
\(476\) 5.36639e6 1.08559
\(477\) 0 0
\(478\) −814946. −0.163139
\(479\) −6.65036e6 −1.32436 −0.662181 0.749344i \(-0.730369\pi\)
−0.662181 + 0.749344i \(0.730369\pi\)
\(480\) 0 0
\(481\) −746607. −0.147139
\(482\) −463652. −0.0909022
\(483\) 0 0
\(484\) −8.92082e6 −1.73098
\(485\) −2.67537e6 −0.516451
\(486\) 0 0
\(487\) −4.54164e6 −0.867740 −0.433870 0.900975i \(-0.642852\pi\)
−0.433870 + 0.900975i \(0.642852\pi\)
\(488\) −401308. −0.0762831
\(489\) 0 0
\(490\) 99381.1 0.0186988
\(491\) 7.40910e6 1.38695 0.693477 0.720479i \(-0.256078\pi\)
0.693477 + 0.720479i \(0.256078\pi\)
\(492\) 0 0
\(493\) −7.42306e6 −1.37552
\(494\) −13931.6 −0.00256853
\(495\) 0 0
\(496\) −9.92682e6 −1.81178
\(497\) −7.44708e6 −1.35237
\(498\) 0 0
\(499\) 6.19453e6 1.11367 0.556835 0.830623i \(-0.312015\pi\)
0.556835 + 0.830623i \(0.312015\pi\)
\(500\) −4.59988e6 −0.822851
\(501\) 0 0
\(502\) 576620. 0.102125
\(503\) 3.56610e6 0.628454 0.314227 0.949348i \(-0.398255\pi\)
0.314227 + 0.949348i \(0.398255\pi\)
\(504\) 0 0
\(505\) −668601. −0.116665
\(506\) −1.33406e6 −0.231633
\(507\) 0 0
\(508\) −483352. −0.0831006
\(509\) −9.21155e6 −1.57593 −0.787967 0.615717i \(-0.788866\pi\)
−0.787967 + 0.615717i \(0.788866\pi\)
\(510\) 0 0
\(511\) −6.48564e6 −1.09875
\(512\) 3.23618e6 0.545578
\(513\) 0 0
\(514\) −581394. −0.0970650
\(515\) 428025. 0.0711133
\(516\) 0 0
\(517\) 1.38687e7 2.28197
\(518\) −859888. −0.140805
\(519\) 0 0
\(520\) 64230.2 0.0104167
\(521\) 3.11211e6 0.502297 0.251148 0.967949i \(-0.419192\pi\)
0.251148 + 0.967949i \(0.419192\pi\)
\(522\) 0 0
\(523\) −1.17678e7 −1.88122 −0.940612 0.339484i \(-0.889748\pi\)
−0.940612 + 0.339484i \(0.889748\pi\)
\(524\) −1.01595e7 −1.61638
\(525\) 0 0
\(526\) −86085.7 −0.0135665
\(527\) 1.63724e7 2.56795
\(528\) 0 0
\(529\) 3.02200e6 0.469521
\(530\) −681648. −0.105407
\(531\) 0 0
\(532\) 1.19435e6 0.182958
\(533\) −162359. −0.0247547
\(534\) 0 0
\(535\) −2.95422e6 −0.446230
\(536\) 666521. 0.100208
\(537\) 0 0
\(538\) 436041. 0.0649489
\(539\) −3.88190e6 −0.575537
\(540\) 0 0
\(541\) 791282. 0.116235 0.0581176 0.998310i \(-0.481490\pi\)
0.0581176 + 0.998310i \(0.481490\pi\)
\(542\) 1.10799e6 0.162008
\(543\) 0 0
\(544\) −3.18821e6 −0.461902
\(545\) 3.13913e6 0.452707
\(546\) 0 0
\(547\) −3.23625e6 −0.462460 −0.231230 0.972899i \(-0.574275\pi\)
−0.231230 + 0.972899i \(0.574275\pi\)
\(548\) −2.08115e6 −0.296041
\(549\) 0 0
\(550\) −1.05827e6 −0.149173
\(551\) −1.65209e6 −0.231821
\(552\) 0 0
\(553\) −6.41475e6 −0.892004
\(554\) 518008. 0.0717071
\(555\) 0 0
\(556\) −3.90012e6 −0.535045
\(557\) 42741.4 0.00583728 0.00291864 0.999996i \(-0.499071\pi\)
0.00291864 + 0.999996i \(0.499071\pi\)
\(558\) 0 0
\(559\) −44734.9 −0.00605503
\(560\) −2.69761e6 −0.363504
\(561\) 0 0
\(562\) −302256. −0.0403677
\(563\) −3.19178e6 −0.424386 −0.212193 0.977228i \(-0.568061\pi\)
−0.212193 + 0.977228i \(0.568061\pi\)
\(564\) 0 0
\(565\) 5.88746e6 0.775902
\(566\) −973464. −0.127726
\(567\) 0 0
\(568\) 2.94303e6 0.382758
\(569\) 1.13198e7 1.46574 0.732870 0.680368i \(-0.238180\pi\)
0.732870 + 0.680368i \(0.238180\pi\)
\(570\) 0 0
\(571\) 1.35992e7 1.74551 0.872754 0.488159i \(-0.162332\pi\)
0.872754 + 0.488159i \(0.162332\pi\)
\(572\) −1.24607e6 −0.159240
\(573\) 0 0
\(574\) −186993. −0.0236889
\(575\) 7.50303e6 0.946383
\(576\) 0 0
\(577\) 1.09106e7 1.36430 0.682152 0.731211i \(-0.261044\pi\)
0.682152 + 0.731211i \(0.261044\pi\)
\(578\) 788808. 0.0982091
\(579\) 0 0
\(580\) 3.78297e6 0.466942
\(581\) −9.31194e6 −1.14446
\(582\) 0 0
\(583\) 2.66257e7 3.24437
\(584\) 2.56308e6 0.310978
\(585\) 0 0
\(586\) 601437. 0.0723513
\(587\) −4.76976e6 −0.571348 −0.285674 0.958327i \(-0.592218\pi\)
−0.285674 + 0.958327i \(0.592218\pi\)
\(588\) 0 0
\(589\) 3.64387e6 0.432787
\(590\) 546156. 0.0645932
\(591\) 0 0
\(592\) −1.23920e7 −1.45323
\(593\) −83908.0 −0.00979866 −0.00489933 0.999988i \(-0.501560\pi\)
−0.00489933 + 0.999988i \(0.501560\pi\)
\(594\) 0 0
\(595\) 4.44919e6 0.515216
\(596\) 1.23015e7 1.41855
\(597\) 0 0
\(598\) −118687. −0.0135722
\(599\) −1.02532e7 −1.16760 −0.583800 0.811897i \(-0.698435\pi\)
−0.583800 + 0.811897i \(0.698435\pi\)
\(600\) 0 0
\(601\) −8.66133e6 −0.978134 −0.489067 0.872246i \(-0.662663\pi\)
−0.489067 + 0.872246i \(0.662663\pi\)
\(602\) −51522.4 −0.00579435
\(603\) 0 0
\(604\) 4.32031e6 0.481862
\(605\) −7.39613e6 −0.821516
\(606\) 0 0
\(607\) 1.46859e7 1.61781 0.808905 0.587940i \(-0.200061\pi\)
0.808905 + 0.587940i \(0.200061\pi\)
\(608\) −709572. −0.0778462
\(609\) 0 0
\(610\) −165249. −0.0179810
\(611\) 1.23384e6 0.133708
\(612\) 0 0
\(613\) −338556. −0.0363898 −0.0181949 0.999834i \(-0.505792\pi\)
−0.0181949 + 0.999834i \(0.505792\pi\)
\(614\) 1.56602e6 0.167639
\(615\) 0 0
\(616\) −2.88955e6 −0.306817
\(617\) −5.99200e6 −0.633664 −0.316832 0.948482i \(-0.602619\pi\)
−0.316832 + 0.948482i \(0.602619\pi\)
\(618\) 0 0
\(619\) 8.64654e6 0.907018 0.453509 0.891252i \(-0.350172\pi\)
0.453509 + 0.891252i \(0.350172\pi\)
\(620\) −8.34379e6 −0.871734
\(621\) 0 0
\(622\) 224241. 0.0232401
\(623\) 5.14503e6 0.531089
\(624\) 0 0
\(625\) 3.81024e6 0.390168
\(626\) 506875. 0.0516970
\(627\) 0 0
\(628\) −3.47157e6 −0.351259
\(629\) 2.04382e7 2.05976
\(630\) 0 0
\(631\) 1.23119e7 1.23098 0.615489 0.788146i \(-0.288959\pi\)
0.615489 + 0.788146i \(0.288959\pi\)
\(632\) 2.53506e6 0.252462
\(633\) 0 0
\(634\) 369954. 0.0365532
\(635\) −400740. −0.0394393
\(636\) 0 0
\(637\) −345358. −0.0337226
\(638\) 1.98516e6 0.193082
\(639\) 0 0
\(640\) 2.16138e6 0.208585
\(641\) −9.97174e6 −0.958574 −0.479287 0.877658i \(-0.659105\pi\)
−0.479287 + 0.877658i \(0.659105\pi\)
\(642\) 0 0
\(643\) 1.12498e7 1.07304 0.536520 0.843888i \(-0.319739\pi\)
0.536520 + 0.843888i \(0.319739\pi\)
\(644\) 1.01749e7 0.966756
\(645\) 0 0
\(646\) 381375. 0.0359560
\(647\) −9.23633e6 −0.867439 −0.433719 0.901048i \(-0.642799\pi\)
−0.433719 + 0.901048i \(0.642799\pi\)
\(648\) 0 0
\(649\) −2.13333e7 −1.98814
\(650\) −94150.6 −0.00874057
\(651\) 0 0
\(652\) 7.64926e6 0.704694
\(653\) −6.03428e6 −0.553787 −0.276893 0.960901i \(-0.589305\pi\)
−0.276893 + 0.960901i \(0.589305\pi\)
\(654\) 0 0
\(655\) −8.42310e6 −0.767130
\(656\) −2.69478e6 −0.244492
\(657\) 0 0
\(658\) 1.42105e6 0.127952
\(659\) −9.48721e6 −0.850991 −0.425495 0.904961i \(-0.639900\pi\)
−0.425495 + 0.904961i \(0.639900\pi\)
\(660\) 0 0
\(661\) −1.05339e7 −0.937745 −0.468872 0.883266i \(-0.655340\pi\)
−0.468872 + 0.883266i \(0.655340\pi\)
\(662\) −794864. −0.0704933
\(663\) 0 0
\(664\) 3.68001e6 0.323914
\(665\) 990218. 0.0868314
\(666\) 0 0
\(667\) −1.40745e7 −1.22495
\(668\) 7.63882e6 0.662347
\(669\) 0 0
\(670\) 274458. 0.0236205
\(671\) 6.45477e6 0.553445
\(672\) 0 0
\(673\) −8.45056e6 −0.719197 −0.359598 0.933107i \(-0.617086\pi\)
−0.359598 + 0.933107i \(0.617086\pi\)
\(674\) 1.85864e6 0.157596
\(675\) 0 0
\(676\) 1.16130e7 0.977413
\(677\) 2.17879e7 1.82702 0.913511 0.406814i \(-0.133360\pi\)
0.913511 + 0.406814i \(0.133360\pi\)
\(678\) 0 0
\(679\) 1.07078e7 0.891302
\(680\) −1.75829e6 −0.145820
\(681\) 0 0
\(682\) −4.37849e6 −0.360465
\(683\) −1.17335e7 −0.962446 −0.481223 0.876598i \(-0.659807\pi\)
−0.481223 + 0.876598i \(0.659807\pi\)
\(684\) 0 0
\(685\) −1.72545e6 −0.140500
\(686\) −1.54472e6 −0.125325
\(687\) 0 0
\(688\) −742496. −0.0598030
\(689\) 2.36879e6 0.190098
\(690\) 0 0
\(691\) 1.45733e7 1.16108 0.580541 0.814231i \(-0.302841\pi\)
0.580541 + 0.814231i \(0.302841\pi\)
\(692\) −1.64275e7 −1.30408
\(693\) 0 0
\(694\) −1.39577e6 −0.110006
\(695\) −3.23353e6 −0.253930
\(696\) 0 0
\(697\) 4.44453e6 0.346533
\(698\) −686293. −0.0533177
\(699\) 0 0
\(700\) 8.07148e6 0.622598
\(701\) −7.05513e6 −0.542263 −0.271132 0.962542i \(-0.587398\pi\)
−0.271132 + 0.962542i \(0.587398\pi\)
\(702\) 0 0
\(703\) 4.54875e6 0.347139
\(704\) −2.01072e7 −1.52904
\(705\) 0 0
\(706\) 1.41764e6 0.107042
\(707\) 2.67598e6 0.201342
\(708\) 0 0
\(709\) −6.85574e6 −0.512199 −0.256100 0.966650i \(-0.582437\pi\)
−0.256100 + 0.966650i \(0.582437\pi\)
\(710\) 1.21187e6 0.0902217
\(711\) 0 0
\(712\) −2.03328e6 −0.150313
\(713\) 3.10429e7 2.28686
\(714\) 0 0
\(715\) −1.03310e6 −0.0755749
\(716\) 669524. 0.0488071
\(717\) 0 0
\(718\) 884758. 0.0640492
\(719\) 5.08273e6 0.366670 0.183335 0.983051i \(-0.441311\pi\)
0.183335 + 0.983051i \(0.441311\pi\)
\(720\) 0 0
\(721\) −1.71311e6 −0.122729
\(722\) 84879.3 0.00605980
\(723\) 0 0
\(724\) −2.01355e7 −1.42763
\(725\) −1.11649e7 −0.788877
\(726\) 0 0
\(727\) 1.60828e7 1.12856 0.564282 0.825582i \(-0.309153\pi\)
0.564282 + 0.825582i \(0.309153\pi\)
\(728\) −257073. −0.0179774
\(729\) 0 0
\(730\) 1.05542e6 0.0733022
\(731\) 1.22461e6 0.0847625
\(732\) 0 0
\(733\) −1.20642e7 −0.829348 −0.414674 0.909970i \(-0.636104\pi\)
−0.414674 + 0.909970i \(0.636104\pi\)
\(734\) 201691. 0.0138181
\(735\) 0 0
\(736\) −6.04501e6 −0.411341
\(737\) −1.07205e7 −0.727023
\(738\) 0 0
\(739\) −1.32586e7 −0.893074 −0.446537 0.894765i \(-0.647343\pi\)
−0.446537 + 0.894765i \(0.647343\pi\)
\(740\) −1.04158e7 −0.699220
\(741\) 0 0
\(742\) 2.72820e6 0.181914
\(743\) −1.26802e7 −0.842661 −0.421331 0.906907i \(-0.638437\pi\)
−0.421331 + 0.906907i \(0.638437\pi\)
\(744\) 0 0
\(745\) 1.01990e7 0.673237
\(746\) 1.31494e6 0.0865085
\(747\) 0 0
\(748\) 3.41110e7 2.22915
\(749\) 1.18239e7 0.770114
\(750\) 0 0
\(751\) 3.25560e6 0.210635 0.105318 0.994439i \(-0.466414\pi\)
0.105318 + 0.994439i \(0.466414\pi\)
\(752\) 2.04790e7 1.32058
\(753\) 0 0
\(754\) 176612. 0.0113133
\(755\) 3.58191e6 0.228690
\(756\) 0 0
\(757\) 8.66051e6 0.549293 0.274646 0.961545i \(-0.411439\pi\)
0.274646 + 0.961545i \(0.411439\pi\)
\(758\) 1.83987e6 0.116309
\(759\) 0 0
\(760\) −391327. −0.0245757
\(761\) 2.45364e7 1.53585 0.767926 0.640539i \(-0.221289\pi\)
0.767926 + 0.640539i \(0.221289\pi\)
\(762\) 0 0
\(763\) −1.25639e7 −0.781292
\(764\) 2.29023e7 1.41954
\(765\) 0 0
\(766\) 2.01662e6 0.124180
\(767\) −1.89794e6 −0.116492
\(768\) 0 0
\(769\) −2.14448e7 −1.30769 −0.653846 0.756628i \(-0.726846\pi\)
−0.653846 + 0.756628i \(0.726846\pi\)
\(770\) −1.18985e6 −0.0723213
\(771\) 0 0
\(772\) 1.60773e7 0.970888
\(773\) 2.10403e7 1.26650 0.633248 0.773949i \(-0.281721\pi\)
0.633248 + 0.773949i \(0.281721\pi\)
\(774\) 0 0
\(775\) 2.46254e7 1.47275
\(776\) −4.23164e6 −0.252263
\(777\) 0 0
\(778\) 967341. 0.0572968
\(779\) 989180. 0.0584026
\(780\) 0 0
\(781\) −4.73367e7 −2.77697
\(782\) 3.24902e6 0.189992
\(783\) 0 0
\(784\) −5.73216e6 −0.333064
\(785\) −2.87823e6 −0.166706
\(786\) 0 0
\(787\) −2.21485e7 −1.27470 −0.637348 0.770576i \(-0.719969\pi\)
−0.637348 + 0.770576i \(0.719969\pi\)
\(788\) −5.32123e6 −0.305278
\(789\) 0 0
\(790\) 1.04388e6 0.0595090
\(791\) −2.35637e7 −1.33907
\(792\) 0 0
\(793\) 574256. 0.0324282
\(794\) −293400. −0.0165162
\(795\) 0 0
\(796\) −1.25894e7 −0.704241
\(797\) −1.39498e7 −0.777894 −0.388947 0.921260i \(-0.627161\pi\)
−0.388947 + 0.921260i \(0.627161\pi\)
\(798\) 0 0
\(799\) −3.37762e7 −1.87173
\(800\) −4.79533e6 −0.264907
\(801\) 0 0
\(802\) −396643. −0.0217753
\(803\) −4.12254e7 −2.25619
\(804\) 0 0
\(805\) 8.43589e6 0.458819
\(806\) −389538. −0.0211209
\(807\) 0 0
\(808\) −1.05753e6 −0.0569855
\(809\) 2.30945e7 1.24061 0.620307 0.784359i \(-0.287008\pi\)
0.620307 + 0.784359i \(0.287008\pi\)
\(810\) 0 0
\(811\) −6.43405e6 −0.343504 −0.171752 0.985140i \(-0.554943\pi\)
−0.171752 + 0.985140i \(0.554943\pi\)
\(812\) −1.51408e7 −0.805860
\(813\) 0 0
\(814\) −5.46580e6 −0.289130
\(815\) 6.34189e6 0.334445
\(816\) 0 0
\(817\) 272550. 0.0142854
\(818\) −228233. −0.0119260
\(819\) 0 0
\(820\) −2.26504e6 −0.117636
\(821\) −3.20040e7 −1.65709 −0.828545 0.559922i \(-0.810831\pi\)
−0.828545 + 0.559922i \(0.810831\pi\)
\(822\) 0 0
\(823\) −2.47454e7 −1.27349 −0.636744 0.771075i \(-0.719719\pi\)
−0.636744 + 0.771075i \(0.719719\pi\)
\(824\) 677009. 0.0347357
\(825\) 0 0
\(826\) −2.18591e6 −0.111476
\(827\) −2.86416e7 −1.45624 −0.728120 0.685449i \(-0.759606\pi\)
−0.728120 + 0.685449i \(0.759606\pi\)
\(828\) 0 0
\(829\) −2.72449e7 −1.37689 −0.688444 0.725290i \(-0.741706\pi\)
−0.688444 + 0.725290i \(0.741706\pi\)
\(830\) 1.51534e6 0.0763512
\(831\) 0 0
\(832\) −1.78886e6 −0.0895917
\(833\) 9.45411e6 0.472072
\(834\) 0 0
\(835\) 6.33324e6 0.314347
\(836\) 7.59178e6 0.375688
\(837\) 0 0
\(838\) −1.76376e6 −0.0867620
\(839\) 2.28624e7 1.12129 0.560644 0.828057i \(-0.310554\pi\)
0.560644 + 0.828057i \(0.310554\pi\)
\(840\) 0 0
\(841\) 432425. 0.0210824
\(842\) −3.07998e6 −0.149716
\(843\) 0 0
\(844\) −2.03755e7 −0.984583
\(845\) 9.62818e6 0.463877
\(846\) 0 0
\(847\) 2.96020e7 1.41779
\(848\) 3.93165e7 1.87752
\(849\) 0 0
\(850\) 2.57735e6 0.122356
\(851\) 3.87518e7 1.83429
\(852\) 0 0
\(853\) −3.04928e7 −1.43491 −0.717456 0.696604i \(-0.754694\pi\)
−0.717456 + 0.696604i \(0.754694\pi\)
\(854\) 661387. 0.0310321
\(855\) 0 0
\(856\) −4.67271e6 −0.217964
\(857\) −3.67912e7 −1.71116 −0.855582 0.517668i \(-0.826800\pi\)
−0.855582 + 0.517668i \(0.826800\pi\)
\(858\) 0 0
\(859\) 1.21414e7 0.561420 0.280710 0.959793i \(-0.409430\pi\)
0.280710 + 0.959793i \(0.409430\pi\)
\(860\) −624090. −0.0287741
\(861\) 0 0
\(862\) −684517. −0.0313773
\(863\) 3.31868e7 1.51684 0.758418 0.651769i \(-0.225973\pi\)
0.758418 + 0.651769i \(0.225973\pi\)
\(864\) 0 0
\(865\) −1.36198e7 −0.618913
\(866\) −640215. −0.0290089
\(867\) 0 0
\(868\) 3.33948e7 1.50446
\(869\) −4.07748e7 −1.83165
\(870\) 0 0
\(871\) −953766. −0.0425987
\(872\) 4.96517e6 0.221128
\(873\) 0 0
\(874\) 723106. 0.0320201
\(875\) 1.52638e7 0.673972
\(876\) 0 0
\(877\) −2.34716e7 −1.03049 −0.515244 0.857043i \(-0.672299\pi\)
−0.515244 + 0.857043i \(0.672299\pi\)
\(878\) −2.62416e6 −0.114882
\(879\) 0 0
\(880\) −1.71471e7 −0.746421
\(881\) −2.09622e7 −0.909909 −0.454954 0.890515i \(-0.650344\pi\)
−0.454954 + 0.890515i \(0.650344\pi\)
\(882\) 0 0
\(883\) 2.84258e7 1.22690 0.613452 0.789732i \(-0.289781\pi\)
0.613452 + 0.789732i \(0.289781\pi\)
\(884\) 3.03472e6 0.130614
\(885\) 0 0
\(886\) 1.67209e6 0.0715610
\(887\) 1.66822e7 0.711940 0.355970 0.934497i \(-0.384151\pi\)
0.355970 + 0.934497i \(0.384151\pi\)
\(888\) 0 0
\(889\) 1.60391e6 0.0680652
\(890\) −837257. −0.0354310
\(891\) 0 0
\(892\) 1.51958e7 0.639455
\(893\) −7.51728e6 −0.315451
\(894\) 0 0
\(895\) 555092. 0.0231637
\(896\) −8.65064e6 −0.359980
\(897\) 0 0
\(898\) −218936. −0.00905997
\(899\) −4.61935e7 −1.90626
\(900\) 0 0
\(901\) −6.48451e7 −2.66113
\(902\) −1.18860e6 −0.0486431
\(903\) 0 0
\(904\) 9.31222e6 0.378994
\(905\) −1.66941e7 −0.677549
\(906\) 0 0
\(907\) 3.46166e7 1.39722 0.698611 0.715501i \(-0.253802\pi\)
0.698611 + 0.715501i \(0.253802\pi\)
\(908\) −2.29289e7 −0.922929
\(909\) 0 0
\(910\) −105857. −0.00423754
\(911\) 3.10235e7 1.23850 0.619249 0.785195i \(-0.287437\pi\)
0.619249 + 0.785195i \(0.287437\pi\)
\(912\) 0 0
\(913\) −5.91906e7 −2.35004
\(914\) −451429. −0.0178741
\(915\) 0 0
\(916\) 3.99771e7 1.57425
\(917\) 3.37123e7 1.32393
\(918\) 0 0
\(919\) 1.35357e7 0.528679 0.264340 0.964430i \(-0.414846\pi\)
0.264340 + 0.964430i \(0.414846\pi\)
\(920\) −3.33380e6 −0.129859
\(921\) 0 0
\(922\) 678999. 0.0263052
\(923\) −4.21137e6 −0.162712
\(924\) 0 0
\(925\) 3.07407e7 1.18130
\(926\) 4.14644e6 0.158909
\(927\) 0 0
\(928\) 8.99528e6 0.342882
\(929\) −8.96239e6 −0.340710 −0.170355 0.985383i \(-0.554491\pi\)
−0.170355 + 0.985383i \(0.554491\pi\)
\(930\) 0 0
\(931\) 2.10412e6 0.0795602
\(932\) −5.46552e6 −0.206107
\(933\) 0 0
\(934\) 1.35730e6 0.0509107
\(935\) 2.82809e7 1.05795
\(936\) 0 0
\(937\) −2.81081e6 −0.104588 −0.0522941 0.998632i \(-0.516653\pi\)
−0.0522941 + 0.998632i \(0.516653\pi\)
\(938\) −1.09848e6 −0.0407647
\(939\) 0 0
\(940\) 1.72132e7 0.635392
\(941\) 2.85941e7 1.05270 0.526348 0.850269i \(-0.323561\pi\)
0.526348 + 0.850269i \(0.323561\pi\)
\(942\) 0 0
\(943\) 8.42705e6 0.308600
\(944\) −3.15015e7 −1.15054
\(945\) 0 0
\(946\) −327498. −0.0118982
\(947\) 1.37193e7 0.497114 0.248557 0.968617i \(-0.420044\pi\)
0.248557 + 0.968617i \(0.420044\pi\)
\(948\) 0 0
\(949\) −3.66767e6 −0.132198
\(950\) 573619. 0.0206212
\(951\) 0 0
\(952\) 7.03731e6 0.251660
\(953\) −5.00552e7 −1.78532 −0.892661 0.450728i \(-0.851164\pi\)
−0.892661 + 0.450728i \(0.851164\pi\)
\(954\) 0 0
\(955\) 1.89880e7 0.673706
\(956\) 3.95090e7 1.39814
\(957\) 0 0
\(958\) −4.33144e6 −0.152482
\(959\) 6.90587e6 0.242478
\(960\) 0 0
\(961\) 7.32559e7 2.55879
\(962\) −486272. −0.0169411
\(963\) 0 0
\(964\) 2.24781e7 0.779052
\(965\) 1.33294e7 0.460780
\(966\) 0 0
\(967\) −5.43686e7 −1.86974 −0.934872 0.354984i \(-0.884486\pi\)
−0.934872 + 0.354984i \(0.884486\pi\)
\(968\) −1.16985e7 −0.401274
\(969\) 0 0
\(970\) −1.74249e6 −0.0594622
\(971\) 3.23373e7 1.10067 0.550333 0.834945i \(-0.314501\pi\)
0.550333 + 0.834945i \(0.314501\pi\)
\(972\) 0 0
\(973\) 1.29418e7 0.438239
\(974\) −2.95801e6 −0.0999084
\(975\) 0 0
\(976\) 9.53134e6 0.320280
\(977\) 3.20023e6 0.107262 0.0536309 0.998561i \(-0.482921\pi\)
0.0536309 + 0.998561i \(0.482921\pi\)
\(978\) 0 0
\(979\) 3.27039e7 1.09054
\(980\) −4.81804e6 −0.160253
\(981\) 0 0
\(982\) 4.82562e6 0.159689
\(983\) 2.95731e7 0.976142 0.488071 0.872804i \(-0.337701\pi\)
0.488071 + 0.872804i \(0.337701\pi\)
\(984\) 0 0
\(985\) −4.41175e6 −0.144884
\(986\) −4.83471e6 −0.158372
\(987\) 0 0
\(988\) 675412. 0.0220128
\(989\) 2.32192e6 0.0754842
\(990\) 0 0
\(991\) −1.28280e7 −0.414931 −0.207465 0.978242i \(-0.566521\pi\)
−0.207465 + 0.978242i \(0.566521\pi\)
\(992\) −1.98401e7 −0.640126
\(993\) 0 0
\(994\) −4.85035e6 −0.155707
\(995\) −1.04377e7 −0.334230
\(996\) 0 0
\(997\) 1.08720e7 0.346395 0.173197 0.984887i \(-0.444590\pi\)
0.173197 + 0.984887i \(0.444590\pi\)
\(998\) 4.03455e6 0.128224
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 171.6.a.k.1.4 yes 6
3.2 odd 2 inner 171.6.a.k.1.3 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
171.6.a.k.1.3 6 3.2 odd 2 inner
171.6.a.k.1.4 yes 6 1.1 even 1 trivial