Properties

Label 1710.2.n.i
Level $1710$
Weight $2$
Character orbit 1710.n
Analytic conductor $13.654$
Analytic rank $0$
Dimension $20$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1710,2,Mod(647,1710)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1710, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1710.647");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1710 = 2 \cdot 3^{2} \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1710.n (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.6544187456\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(10\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - 4 x^{19} - 10 x^{18} + 56 x^{17} + 50 x^{16} - 336 x^{15} + 672 x^{14} - 776 x^{13} + 626 x^{12} + \cdots + 32 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{10} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{19}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_{7} q^{2} - \beta_{10} q^{4} + \beta_{14} q^{5} + \beta_{17} q^{7} - \beta_{5} q^{8} + \beta_{16} q^{10} + (\beta_{12} - \beta_{11} + \cdots - \beta_{5}) q^{11} + (\beta_{10} + \beta_{8} - 1) q^{13}+ \cdots + ( - \beta_{19} + \beta_{14} + \cdots - 2 \beta_{2}) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q + 4 q^{10} - 12 q^{13} - 20 q^{16} - 16 q^{22} + 16 q^{31} - 12 q^{37} - 8 q^{46} + 12 q^{52} + 20 q^{58} - 16 q^{61} + 20 q^{73} + 20 q^{76} - 28 q^{82} - 8 q^{85} - 16 q^{88} + 32 q^{91} - 20 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{20} - 4 x^{19} - 10 x^{18} + 56 x^{17} + 50 x^{16} - 336 x^{15} + 672 x^{14} - 776 x^{13} + 626 x^{12} + \cdots + 32 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( 72\!\cdots\!24 \nu^{19} + \cdots - 12\!\cdots\!06 ) / 27\!\cdots\!18 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( 17\!\cdots\!69 \nu^{19} + \cdots - 23\!\cdots\!40 ) / 55\!\cdots\!36 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( - 15\!\cdots\!44 \nu^{19} + \cdots - 11\!\cdots\!40 ) / 27\!\cdots\!18 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( 19\!\cdots\!80 \nu^{19} + \cdots - 14\!\cdots\!86 ) / 27\!\cdots\!18 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( 29\!\cdots\!52 \nu^{19} + \cdots - 22\!\cdots\!30 ) / 27\!\cdots\!18 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( - 65\!\cdots\!87 \nu^{19} + \cdots - 26\!\cdots\!04 ) / 55\!\cdots\!36 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( 14\!\cdots\!11 \nu^{19} + \cdots + 58\!\cdots\!44 ) / 11\!\cdots\!72 \) Copy content Toggle raw display
\(\beta_{8}\)\(=\) \( ( - 37\!\cdots\!76 \nu^{19} + \cdots + 78\!\cdots\!96 ) / 27\!\cdots\!18 \) Copy content Toggle raw display
\(\beta_{9}\)\(=\) \( ( - 81\!\cdots\!29 \nu^{19} + \cdots - 44\!\cdots\!84 ) / 55\!\cdots\!36 \) Copy content Toggle raw display
\(\beta_{10}\)\(=\) \( ( - 22\!\cdots\!16 \nu^{19} + \cdots + 33\!\cdots\!04 ) / 12\!\cdots\!36 \) Copy content Toggle raw display
\(\beta_{11}\)\(=\) \( ( - 39\!\cdots\!85 \nu^{19} + \cdots - 26\!\cdots\!92 ) / 11\!\cdots\!72 \) Copy content Toggle raw display
\(\beta_{12}\)\(=\) \( ( 21\!\cdots\!23 \nu^{19} + \cdots - 28\!\cdots\!60 ) / 55\!\cdots\!36 \) Copy content Toggle raw display
\(\beta_{13}\)\(=\) \( ( - 21\!\cdots\!69 \nu^{19} + \cdots + 25\!\cdots\!96 ) / 55\!\cdots\!36 \) Copy content Toggle raw display
\(\beta_{14}\)\(=\) \( ( 44\!\cdots\!85 \nu^{19} + \cdots + 12\!\cdots\!60 ) / 11\!\cdots\!72 \) Copy content Toggle raw display
\(\beta_{15}\)\(=\) \( ( 30\!\cdots\!00 \nu^{19} + \cdots - 90\!\cdots\!64 ) / 55\!\cdots\!36 \) Copy content Toggle raw display
\(\beta_{16}\)\(=\) \( ( - 32\!\cdots\!00 \nu^{19} + \cdots + 16\!\cdots\!80 ) / 55\!\cdots\!36 \) Copy content Toggle raw display
\(\beta_{17}\)\(=\) \( ( - 19\!\cdots\!96 \nu^{19} + \cdots + 12\!\cdots\!12 ) / 27\!\cdots\!18 \) Copy content Toggle raw display
\(\beta_{18}\)\(=\) \( ( 21\!\cdots\!80 \nu^{19} + \cdots + 66\!\cdots\!68 ) / 27\!\cdots\!18 \) Copy content Toggle raw display
\(\beta_{19}\)\(=\) \( ( - 57\!\cdots\!19 \nu^{19} + \cdots + 71\!\cdots\!96 ) / 55\!\cdots\!36 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{16} + \beta_{15} + \beta_{14} + \beta_{11} ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_{19} - \beta_{17} + 4\beta_{10} - \beta_{9} - \beta_{6} + 8\beta_{5} + \beta_{3} - \beta_{2} + 4 ) / 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( 2 \beta_{16} + 5 \beta_{15} + 10 \beta_{14} - 2 \beta_{13} - 5 \beta_{12} + 11 \beta_{11} + 3 \beta_{10} + \cdots + 1 ) / 2 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( ( 16 \beta_{19} + 12 \beta_{18} - 12 \beta_{17} + 4 \beta_{14} - 4 \beta_{13} - 4 \beta_{12} + \cdots + 6 \beta_1 ) / 2 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( 7 \beta_{19} + 7 \beta_{18} - 3 \beta_{17} - 74 \beta_{16} - 34 \beta_{15} + 34 \beta_{14} - 127 \beta_{13} + \cdots - 32 ) / 2 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( ( 155 \beta_{19} + 217 \beta_{18} - 119 \beta_{16} - 105 \beta_{15} - 10 \beta_{14} - 160 \beta_{13} + \cdots - 770 ) / 2 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( ( 85 \beta_{19} + 204 \beta_{18} + 85 \beta_{17} - 1936 \beta_{16} - 1719 \beta_{15} - 1016 \beta_{14} + \cdots - 1615 ) / 2 \) Copy content Toggle raw display
\(\nu^{8}\)\(=\) \( ( 2091 \beta_{18} + 2091 \beta_{17} - 3213 \beta_{16} - 3213 \beta_{15} - 2472 \beta_{14} - 2472 \beta_{13} + \cdots - 15198 ) / 2 \) Copy content Toggle raw display
\(\nu^{9}\)\(=\) \( ( - 1751 \beta_{19} + 1751 \beta_{18} + 4223 \beta_{17} - 23928 \beta_{16} - 26880 \beta_{15} + \cdots - 29058 ) / 2 \) Copy content Toggle raw display
\(\nu^{10}\)\(=\) \( ( - 28971 \beta_{19} + 40959 \beta_{17} - 36490 \beta_{16} - 44936 \beta_{15} - 57594 \beta_{14} + \cdots - 152110 ) / 2 \) Copy content Toggle raw display
\(\nu^{11}\)\(=\) \( ( - 76720 \beta_{19} - 31784 \beta_{18} + 76720 \beta_{17} - 99769 \beta_{16} - 198670 \beta_{15} + \cdots - 203811 ) / 2 \) Copy content Toggle raw display
\(\nu^{12}\)\(=\) \( ( - 579460 \beta_{19} - 409761 \beta_{18} + 409761 \beta_{17} + 108504 \beta_{16} - 108504 \beta_{15} + \cdots - 973170 \beta_1 ) / 2 \) Copy content Toggle raw display
\(\nu^{13}\)\(=\) \( ( - 1305657 \beta_{19} - 1305657 \beta_{18} + 540837 \beta_{17} + 2851151 \beta_{16} + 1452169 \beta_{15} + \cdots + 3331860 ) / 2 \) Copy content Toggle raw display
\(\nu^{14}\)\(=\) \( ( - 5894213 \beta_{19} - 8335603 \beta_{18} + 12537223 \beta_{16} + 9925909 \beta_{15} + 1846494 \beta_{14} + \cdots + 31996842 ) / 2 \) Copy content Toggle raw display
\(\nu^{15}\)\(=\) \( ( - 8865233 \beta_{19} - 21402456 \beta_{18} - 8865233 \beta_{17} + 80056861 \beta_{16} + \cdots + 128586181 ) / 2 \) Copy content Toggle raw display
\(\nu^{16}\)\(=\) \( ( - 85951074 \beta_{18} - 85951074 \beta_{17} + 253671703 \beta_{16} + 253671703 \beta_{15} + \cdots + 667647854 ) / 2 \) Copy content Toggle raw display
\(\nu^{17}\)\(=\) \( ( 141969696 \beta_{19} - 141969696 \beta_{18} - 342744864 \beta_{17} + 1059472869 \beta_{16} + \cdots + 2025632800 ) / 2 \) Copy content Toggle raw display
\(\nu^{18}\)\(=\) \( ( 1266976935 \beta_{19} - 1791775503 \beta_{17} + 2481169810 \beta_{16} + 3166659538 \beta_{15} + \cdots + 7022575476 ) / 2 \) Copy content Toggle raw display
\(\nu^{19}\)\(=\) \( ( 5405826548 \beta_{19} + 2239167010 \beta_{18} - 5405826548 \beta_{17} + 4742172932 \beta_{16} + \cdots + 13087434199 ) / 2 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1710\mathbb{Z}\right)^\times\).

\(n\) \(191\) \(1027\) \(1351\)
\(\chi(n)\) \(-1\) \(\beta_{10}\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
647.1
0.232147 0.560453i
−0.185128 + 0.446939i
0.618697 1.49367i
0.153903 0.371555i
−0.526726 + 1.27163i
−3.06999 1.27163i
0.897013 + 0.371555i
3.60603 + 1.49367i
−1.07901 0.446939i
1.35305 + 0.560453i
0.232147 + 0.560453i
−0.185128 0.446939i
0.618697 + 1.49367i
0.153903 + 0.371555i
−0.526726 1.27163i
−3.06999 + 1.27163i
0.897013 0.371555i
3.60603 1.49367i
−1.07901 + 0.446939i
1.35305 0.560453i
−0.707107 + 0.707107i 0 1.00000i −2.03893 + 0.918023i 0 −1.07805 1.07805i 0.707107 + 0.707107i 0 0.792601 2.09088i
647.2 −0.707107 + 0.707107i 0 1.00000i −1.06972 + 1.96359i 0 3.58826 + 3.58826i 0.707107 + 0.707107i 0 −0.632067 2.14488i
647.3 −0.707107 + 0.707107i 0 1.00000i −0.975056 2.01228i 0 −3.02518 3.02518i 0.707107 + 0.707107i 0 2.11236 + 0.733428i
647.4 −0.707107 + 0.707107i 0 1.00000i 1.16531 1.90842i 0 2.34049 + 2.34049i 0.707107 + 0.707107i 0 0.525458 + 2.17345i
647.5 −0.707107 + 0.707107i 0 1.00000i 2.21129 + 0.331972i 0 −1.82552 1.82552i 0.707107 + 0.707107i 0 −1.79836 + 1.32888i
647.6 0.707107 0.707107i 0 1.00000i −2.21129 0.331972i 0 −1.82552 1.82552i −0.707107 0.707107i 0 −1.79836 + 1.32888i
647.7 0.707107 0.707107i 0 1.00000i −1.16531 + 1.90842i 0 2.34049 + 2.34049i −0.707107 0.707107i 0 0.525458 + 2.17345i
647.8 0.707107 0.707107i 0 1.00000i 0.975056 + 2.01228i 0 −3.02518 3.02518i −0.707107 0.707107i 0 2.11236 + 0.733428i
647.9 0.707107 0.707107i 0 1.00000i 1.06972 1.96359i 0 3.58826 + 3.58826i −0.707107 0.707107i 0 −0.632067 2.14488i
647.10 0.707107 0.707107i 0 1.00000i 2.03893 0.918023i 0 −1.07805 1.07805i −0.707107 0.707107i 0 0.792601 2.09088i
1673.1 −0.707107 0.707107i 0 1.00000i −2.03893 0.918023i 0 −1.07805 + 1.07805i 0.707107 0.707107i 0 0.792601 + 2.09088i
1673.2 −0.707107 0.707107i 0 1.00000i −1.06972 1.96359i 0 3.58826 3.58826i 0.707107 0.707107i 0 −0.632067 + 2.14488i
1673.3 −0.707107 0.707107i 0 1.00000i −0.975056 + 2.01228i 0 −3.02518 + 3.02518i 0.707107 0.707107i 0 2.11236 0.733428i
1673.4 −0.707107 0.707107i 0 1.00000i 1.16531 + 1.90842i 0 2.34049 2.34049i 0.707107 0.707107i 0 0.525458 2.17345i
1673.5 −0.707107 0.707107i 0 1.00000i 2.21129 0.331972i 0 −1.82552 + 1.82552i 0.707107 0.707107i 0 −1.79836 1.32888i
1673.6 0.707107 + 0.707107i 0 1.00000i −2.21129 + 0.331972i 0 −1.82552 + 1.82552i −0.707107 + 0.707107i 0 −1.79836 1.32888i
1673.7 0.707107 + 0.707107i 0 1.00000i −1.16531 1.90842i 0 2.34049 2.34049i −0.707107 + 0.707107i 0 0.525458 2.17345i
1673.8 0.707107 + 0.707107i 0 1.00000i 0.975056 2.01228i 0 −3.02518 + 3.02518i −0.707107 + 0.707107i 0 2.11236 0.733428i
1673.9 0.707107 + 0.707107i 0 1.00000i 1.06972 + 1.96359i 0 3.58826 3.58826i −0.707107 + 0.707107i 0 −0.632067 + 2.14488i
1673.10 0.707107 + 0.707107i 0 1.00000i 2.03893 + 0.918023i 0 −1.07805 + 1.07805i −0.707107 + 0.707107i 0 0.792601 + 2.09088i
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 647.10
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner
5.c odd 4 1 inner
15.e even 4 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1710.2.n.i 20
3.b odd 2 1 inner 1710.2.n.i 20
5.c odd 4 1 inner 1710.2.n.i 20
15.e even 4 1 inner 1710.2.n.i 20
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1710.2.n.i 20 1.a even 1 1 trivial
1710.2.n.i 20 3.b odd 2 1 inner
1710.2.n.i 20 5.c odd 4 1 inner
1710.2.n.i 20 15.e even 4 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(1710, [\chi])\):

\( T_{7}^{10} + 32T_{7}^{7} + 584T_{7}^{6} + 624T_{7}^{5} + 512T_{7}^{4} + 5760T_{7}^{3} + 48400T_{7}^{2} + 88000T_{7} + 80000 \) Copy content Toggle raw display
\( T_{17}^{20} + 2288T_{17}^{16} + 1179008T_{17}^{12} + 165189632T_{17}^{8} + 6196826112T_{17}^{4} + 68719476736 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{4} + 1)^{5} \) Copy content Toggle raw display
$3$ \( T^{20} \) Copy content Toggle raw display
$5$ \( T^{20} + 13 T^{16} + \cdots + 9765625 \) Copy content Toggle raw display
$7$ \( (T^{10} + 32 T^{7} + \cdots + 80000)^{2} \) Copy content Toggle raw display
$11$ \( (T^{10} + 64 T^{8} + \cdots + 128)^{2} \) Copy content Toggle raw display
$13$ \( (T^{10} + 6 T^{9} + \cdots + 128)^{2} \) Copy content Toggle raw display
$17$ \( T^{20} + \cdots + 68719476736 \) Copy content Toggle raw display
$19$ \( (T^{2} + 1)^{10} \) Copy content Toggle raw display
$23$ \( T^{20} + \cdots + 4294967296 \) Copy content Toggle raw display
$29$ \( (T^{10} - 218 T^{8} + \cdots - 21727232)^{2} \) Copy content Toggle raw display
$31$ \( (T^{5} - 4 T^{4} - 56 T^{3} + \cdots - 64)^{4} \) Copy content Toggle raw display
$37$ \( (T^{10} + 6 T^{9} + \cdots + 128)^{2} \) Copy content Toggle raw display
$41$ \( (T^{10} + 226 T^{8} + \cdots + 123008)^{2} \) Copy content Toggle raw display
$43$ \( (T^{10} + 248 T^{7} + \cdots + 76880000)^{2} \) Copy content Toggle raw display
$47$ \( T^{20} + \cdots + 10\!\cdots\!56 \) Copy content Toggle raw display
$53$ \( T^{20} + \cdots + 68719476736 \) Copy content Toggle raw display
$59$ \( (T^{10} - 104 T^{8} + \cdots - 8192)^{2} \) Copy content Toggle raw display
$61$ \( (T^{5} + 4 T^{4} + \cdots + 8896)^{4} \) Copy content Toggle raw display
$67$ \( T^{20} \) Copy content Toggle raw display
$71$ \( (T^{10} + 512 T^{8} + \cdots + 22151168)^{2} \) Copy content Toggle raw display
$73$ \( (T^{10} - 10 T^{9} + \cdots + 4921113632)^{2} \) Copy content Toggle raw display
$79$ \( (T^{10} + 640 T^{8} + \cdots + 904806400)^{2} \) Copy content Toggle raw display
$83$ \( T^{20} + 47248 T^{16} + \cdots + 16777216 \) Copy content Toggle raw display
$89$ \( (T^{10} - 578 T^{8} + \cdots - 4739484800)^{2} \) Copy content Toggle raw display
$97$ \( (T^{10} + 10 T^{9} + \cdots + 1073512448)^{2} \) Copy content Toggle raw display
show more
show less