Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [1710,2,Mod(647,1710)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1710, base_ring=CyclotomicField(4))
chi = DirichletCharacter(H, H._module([2, 1, 0]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("1710.647");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 1710.n (of order , degree , minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Relative dimension: | over |
Coefficient field: | |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
|
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | yes |
Sato-Tate group: |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the -expansion are expressed in terms of a basis for the coefficient ring described below. We also show the integral -expansion of the trace form.
Basis of coefficient ring in terms of a root of
:
Character values
We give the values of on generators for .
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
647.1 |
|
−0.707107 | + | 0.707107i | 0 | − | 1.00000i | −2.03893 | + | 0.918023i | 0 | −1.07805 | − | 1.07805i | 0.707107 | + | 0.707107i | 0 | 0.792601 | − | 2.09088i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
647.2 | −0.707107 | + | 0.707107i | 0 | − | 1.00000i | −1.06972 | + | 1.96359i | 0 | 3.58826 | + | 3.58826i | 0.707107 | + | 0.707107i | 0 | −0.632067 | − | 2.14488i | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
647.3 | −0.707107 | + | 0.707107i | 0 | − | 1.00000i | −0.975056 | − | 2.01228i | 0 | −3.02518 | − | 3.02518i | 0.707107 | + | 0.707107i | 0 | 2.11236 | + | 0.733428i | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
647.4 | −0.707107 | + | 0.707107i | 0 | − | 1.00000i | 1.16531 | − | 1.90842i | 0 | 2.34049 | + | 2.34049i | 0.707107 | + | 0.707107i | 0 | 0.525458 | + | 2.17345i | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
647.5 | −0.707107 | + | 0.707107i | 0 | − | 1.00000i | 2.21129 | + | 0.331972i | 0 | −1.82552 | − | 1.82552i | 0.707107 | + | 0.707107i | 0 | −1.79836 | + | 1.32888i | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
647.6 | 0.707107 | − | 0.707107i | 0 | − | 1.00000i | −2.21129 | − | 0.331972i | 0 | −1.82552 | − | 1.82552i | −0.707107 | − | 0.707107i | 0 | −1.79836 | + | 1.32888i | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
647.7 | 0.707107 | − | 0.707107i | 0 | − | 1.00000i | −1.16531 | + | 1.90842i | 0 | 2.34049 | + | 2.34049i | −0.707107 | − | 0.707107i | 0 | 0.525458 | + | 2.17345i | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
647.8 | 0.707107 | − | 0.707107i | 0 | − | 1.00000i | 0.975056 | + | 2.01228i | 0 | −3.02518 | − | 3.02518i | −0.707107 | − | 0.707107i | 0 | 2.11236 | + | 0.733428i | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
647.9 | 0.707107 | − | 0.707107i | 0 | − | 1.00000i | 1.06972 | − | 1.96359i | 0 | 3.58826 | + | 3.58826i | −0.707107 | − | 0.707107i | 0 | −0.632067 | − | 2.14488i | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
647.10 | 0.707107 | − | 0.707107i | 0 | − | 1.00000i | 2.03893 | − | 0.918023i | 0 | −1.07805 | − | 1.07805i | −0.707107 | − | 0.707107i | 0 | 0.792601 | − | 2.09088i | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1673.1 | −0.707107 | − | 0.707107i | 0 | 1.00000i | −2.03893 | − | 0.918023i | 0 | −1.07805 | + | 1.07805i | 0.707107 | − | 0.707107i | 0 | 0.792601 | + | 2.09088i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1673.2 | −0.707107 | − | 0.707107i | 0 | 1.00000i | −1.06972 | − | 1.96359i | 0 | 3.58826 | − | 3.58826i | 0.707107 | − | 0.707107i | 0 | −0.632067 | + | 2.14488i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1673.3 | −0.707107 | − | 0.707107i | 0 | 1.00000i | −0.975056 | + | 2.01228i | 0 | −3.02518 | + | 3.02518i | 0.707107 | − | 0.707107i | 0 | 2.11236 | − | 0.733428i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1673.4 | −0.707107 | − | 0.707107i | 0 | 1.00000i | 1.16531 | + | 1.90842i | 0 | 2.34049 | − | 2.34049i | 0.707107 | − | 0.707107i | 0 | 0.525458 | − | 2.17345i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1673.5 | −0.707107 | − | 0.707107i | 0 | 1.00000i | 2.21129 | − | 0.331972i | 0 | −1.82552 | + | 1.82552i | 0.707107 | − | 0.707107i | 0 | −1.79836 | − | 1.32888i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1673.6 | 0.707107 | + | 0.707107i | 0 | 1.00000i | −2.21129 | + | 0.331972i | 0 | −1.82552 | + | 1.82552i | −0.707107 | + | 0.707107i | 0 | −1.79836 | − | 1.32888i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1673.7 | 0.707107 | + | 0.707107i | 0 | 1.00000i | −1.16531 | − | 1.90842i | 0 | 2.34049 | − | 2.34049i | −0.707107 | + | 0.707107i | 0 | 0.525458 | − | 2.17345i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1673.8 | 0.707107 | + | 0.707107i | 0 | 1.00000i | 0.975056 | − | 2.01228i | 0 | −3.02518 | + | 3.02518i | −0.707107 | + | 0.707107i | 0 | 2.11236 | − | 0.733428i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1673.9 | 0.707107 | + | 0.707107i | 0 | 1.00000i | 1.06972 | + | 1.96359i | 0 | 3.58826 | − | 3.58826i | −0.707107 | + | 0.707107i | 0 | −0.632067 | + | 2.14488i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1673.10 | 0.707107 | + | 0.707107i | 0 | 1.00000i | 2.03893 | + | 0.918023i | 0 | −1.07805 | + | 1.07805i | −0.707107 | + | 0.707107i | 0 | 0.792601 | + | 2.09088i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
3.b | odd | 2 | 1 | inner |
5.c | odd | 4 | 1 | inner |
15.e | even | 4 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 1710.2.n.i | ✓ | 20 |
3.b | odd | 2 | 1 | inner | 1710.2.n.i | ✓ | 20 |
5.c | odd | 4 | 1 | inner | 1710.2.n.i | ✓ | 20 |
15.e | even | 4 | 1 | inner | 1710.2.n.i | ✓ | 20 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
1710.2.n.i | ✓ | 20 | 1.a | even | 1 | 1 | trivial |
1710.2.n.i | ✓ | 20 | 3.b | odd | 2 | 1 | inner |
1710.2.n.i | ✓ | 20 | 5.c | odd | 4 | 1 | inner |
1710.2.n.i | ✓ | 20 | 15.e | even | 4 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on :
|
|