Properties

Label 1710.2.n.i
Level 17101710
Weight 22
Character orbit 1710.n
Analytic conductor 13.65413.654
Analytic rank 00
Dimension 2020
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1710,2,Mod(647,1710)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1710, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1710.647");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 1710=232519 1710 = 2 \cdot 3^{2} \cdot 5 \cdot 19
Weight: k k == 2 2
Character orbit: [χ][\chi] == 1710.n (of order 44, degree 22, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 13.654418745613.6544187456
Analytic rank: 00
Dimension: 2020
Relative dimension: 1010 over Q(i)\Q(i)
Coefficient field: Q[x]/(x20)\mathbb{Q}[x]/(x^{20} - \cdots)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x204x1910x18+56x17+50x16336x15+672x14776x13+626x12++32 x^{20} - 4 x^{19} - 10 x^{18} + 56 x^{17} + 50 x^{16} - 336 x^{15} + 672 x^{14} - 776 x^{13} + 626 x^{12} + \cdots + 32 Copy content Toggle raw display
Coefficient ring: Z[a1,,a11]\Z[a_1, \ldots, a_{11}]
Coefficient ring index: 210 2^{10}
Twist minimal: yes
Sato-Tate group: SU(2)[C4]\mathrm{SU}(2)[C_{4}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β191,\beta_1,\ldots,\beta_{19} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == qβ7q2β10q4+β14q5+β17q7β5q8+β16q10+(β12β11+β5)q11+(β10+β81)q13++(β19+β14+2β2)q98+O(q100) q - \beta_{7} q^{2} - \beta_{10} q^{4} + \beta_{14} q^{5} + \beta_{17} q^{7} - \beta_{5} q^{8} + \beta_{16} q^{10} + (\beta_{12} - \beta_{11} + \cdots - \beta_{5}) q^{11} + (\beta_{10} + \beta_{8} - 1) q^{13}+ \cdots + ( - \beta_{19} + \beta_{14} + \cdots - 2 \beta_{2}) q^{98}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 20q+4q1012q1320q1616q22+16q3112q378q46+12q52+20q5816q61+20q73+20q7628q828q8516q88+32q9120q97+O(q100) 20 q + 4 q^{10} - 12 q^{13} - 20 q^{16} - 16 q^{22} + 16 q^{31} - 12 q^{37} - 8 q^{46} + 12 q^{52} + 20 q^{58} - 16 q^{61} + 20 q^{73} + 20 q^{76} - 28 q^{82} - 8 q^{85} - 16 q^{88} + 32 q^{91} - 20 q^{97}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x204x1910x18+56x17+50x16336x15+672x14776x13+626x12++32 x^{20} - 4 x^{19} - 10 x^{18} + 56 x^{17} + 50 x^{16} - 336 x^{15} + 672 x^{14} - 776 x^{13} + 626 x^{12} + \cdots + 32 : Copy content Toggle raw display

β1\beta_{1}== (72 ⁣ ⁣24ν19+12 ⁣ ⁣06)/27 ⁣ ⁣18 ( 72\!\cdots\!24 \nu^{19} + \cdots - 12\!\cdots\!06 ) / 27\!\cdots\!18 Copy content Toggle raw display
β2\beta_{2}== (17 ⁣ ⁣69ν19+23 ⁣ ⁣40)/55 ⁣ ⁣36 ( 17\!\cdots\!69 \nu^{19} + \cdots - 23\!\cdots\!40 ) / 55\!\cdots\!36 Copy content Toggle raw display
β3\beta_{3}== (15 ⁣ ⁣44ν19+11 ⁣ ⁣40)/27 ⁣ ⁣18 ( - 15\!\cdots\!44 \nu^{19} + \cdots - 11\!\cdots\!40 ) / 27\!\cdots\!18 Copy content Toggle raw display
β4\beta_{4}== (19 ⁣ ⁣80ν19+14 ⁣ ⁣86)/27 ⁣ ⁣18 ( 19\!\cdots\!80 \nu^{19} + \cdots - 14\!\cdots\!86 ) / 27\!\cdots\!18 Copy content Toggle raw display
β5\beta_{5}== (29 ⁣ ⁣52ν19+22 ⁣ ⁣30)/27 ⁣ ⁣18 ( 29\!\cdots\!52 \nu^{19} + \cdots - 22\!\cdots\!30 ) / 27\!\cdots\!18 Copy content Toggle raw display
β6\beta_{6}== (65 ⁣ ⁣87ν19+26 ⁣ ⁣04)/55 ⁣ ⁣36 ( - 65\!\cdots\!87 \nu^{19} + \cdots - 26\!\cdots\!04 ) / 55\!\cdots\!36 Copy content Toggle raw display
β7\beta_{7}== (14 ⁣ ⁣11ν19++58 ⁣ ⁣44)/11 ⁣ ⁣72 ( 14\!\cdots\!11 \nu^{19} + \cdots + 58\!\cdots\!44 ) / 11\!\cdots\!72 Copy content Toggle raw display
β8\beta_{8}== (37 ⁣ ⁣76ν19++78 ⁣ ⁣96)/27 ⁣ ⁣18 ( - 37\!\cdots\!76 \nu^{19} + \cdots + 78\!\cdots\!96 ) / 27\!\cdots\!18 Copy content Toggle raw display
β9\beta_{9}== (81 ⁣ ⁣29ν19+44 ⁣ ⁣84)/55 ⁣ ⁣36 ( - 81\!\cdots\!29 \nu^{19} + \cdots - 44\!\cdots\!84 ) / 55\!\cdots\!36 Copy content Toggle raw display
β10\beta_{10}== (22 ⁣ ⁣16ν19++33 ⁣ ⁣04)/12 ⁣ ⁣36 ( - 22\!\cdots\!16 \nu^{19} + \cdots + 33\!\cdots\!04 ) / 12\!\cdots\!36 Copy content Toggle raw display
β11\beta_{11}== (39 ⁣ ⁣85ν19+26 ⁣ ⁣92)/11 ⁣ ⁣72 ( - 39\!\cdots\!85 \nu^{19} + \cdots - 26\!\cdots\!92 ) / 11\!\cdots\!72 Copy content Toggle raw display
β12\beta_{12}== (21 ⁣ ⁣23ν19+28 ⁣ ⁣60)/55 ⁣ ⁣36 ( 21\!\cdots\!23 \nu^{19} + \cdots - 28\!\cdots\!60 ) / 55\!\cdots\!36 Copy content Toggle raw display
β13\beta_{13}== (21 ⁣ ⁣69ν19++25 ⁣ ⁣96)/55 ⁣ ⁣36 ( - 21\!\cdots\!69 \nu^{19} + \cdots + 25\!\cdots\!96 ) / 55\!\cdots\!36 Copy content Toggle raw display
β14\beta_{14}== (44 ⁣ ⁣85ν19++12 ⁣ ⁣60)/11 ⁣ ⁣72 ( 44\!\cdots\!85 \nu^{19} + \cdots + 12\!\cdots\!60 ) / 11\!\cdots\!72 Copy content Toggle raw display
β15\beta_{15}== (30 ⁣ ⁣00ν19+90 ⁣ ⁣64)/55 ⁣ ⁣36 ( 30\!\cdots\!00 \nu^{19} + \cdots - 90\!\cdots\!64 ) / 55\!\cdots\!36 Copy content Toggle raw display
β16\beta_{16}== (32 ⁣ ⁣00ν19++16 ⁣ ⁣80)/55 ⁣ ⁣36 ( - 32\!\cdots\!00 \nu^{19} + \cdots + 16\!\cdots\!80 ) / 55\!\cdots\!36 Copy content Toggle raw display
β17\beta_{17}== (19 ⁣ ⁣96ν19++12 ⁣ ⁣12)/27 ⁣ ⁣18 ( - 19\!\cdots\!96 \nu^{19} + \cdots + 12\!\cdots\!12 ) / 27\!\cdots\!18 Copy content Toggle raw display
β18\beta_{18}== (21 ⁣ ⁣80ν19++66 ⁣ ⁣68)/27 ⁣ ⁣18 ( 21\!\cdots\!80 \nu^{19} + \cdots + 66\!\cdots\!68 ) / 27\!\cdots\!18 Copy content Toggle raw display
β19\beta_{19}== (57 ⁣ ⁣19ν19++71 ⁣ ⁣96)/55 ⁣ ⁣36 ( - 57\!\cdots\!19 \nu^{19} + \cdots + 71\!\cdots\!96 ) / 55\!\cdots\!36 Copy content Toggle raw display
ν\nu== (β16+β15+β14+β11)/2 ( \beta_{16} + \beta_{15} + \beta_{14} + \beta_{11} ) / 2 Copy content Toggle raw display
ν2\nu^{2}== (β19β17+4β10β9β6+8β5+β3β2+4)/2 ( \beta_{19} - \beta_{17} + 4\beta_{10} - \beta_{9} - \beta_{6} + 8\beta_{5} + \beta_{3} - \beta_{2} + 4 ) / 2 Copy content Toggle raw display
ν3\nu^{3}== (2β16+5β15+10β142β135β12+11β11+3β10++1)/2 ( 2 \beta_{16} + 5 \beta_{15} + 10 \beta_{14} - 2 \beta_{13} - 5 \beta_{12} + 11 \beta_{11} + 3 \beta_{10} + \cdots + 1 ) / 2 Copy content Toggle raw display
ν4\nu^{4}== (16β19+12β1812β17+4β144β134β12++6β1)/2 ( 16 \beta_{19} + 12 \beta_{18} - 12 \beta_{17} + 4 \beta_{14} - 4 \beta_{13} - 4 \beta_{12} + \cdots + 6 \beta_1 ) / 2 Copy content Toggle raw display
ν5\nu^{5}== (7β19+7β183β1774β1634β15+34β14127β13+32)/2 ( 7 \beta_{19} + 7 \beta_{18} - 3 \beta_{17} - 74 \beta_{16} - 34 \beta_{15} + 34 \beta_{14} - 127 \beta_{13} + \cdots - 32 ) / 2 Copy content Toggle raw display
ν6\nu^{6}== (155β19+217β18119β16105β1510β14160β13+770)/2 ( 155 \beta_{19} + 217 \beta_{18} - 119 \beta_{16} - 105 \beta_{15} - 10 \beta_{14} - 160 \beta_{13} + \cdots - 770 ) / 2 Copy content Toggle raw display
ν7\nu^{7}== (85β19+204β18+85β171936β161719β151016β14+1615)/2 ( 85 \beta_{19} + 204 \beta_{18} + 85 \beta_{17} - 1936 \beta_{16} - 1719 \beta_{15} - 1016 \beta_{14} + \cdots - 1615 ) / 2 Copy content Toggle raw display
ν8\nu^{8}== (2091β18+2091β173213β163213β152472β142472β13+15198)/2 ( 2091 \beta_{18} + 2091 \beta_{17} - 3213 \beta_{16} - 3213 \beta_{15} - 2472 \beta_{14} - 2472 \beta_{13} + \cdots - 15198 ) / 2 Copy content Toggle raw display
ν9\nu^{9}== (1751β19+1751β18+4223β1723928β1626880β15+29058)/2 ( - 1751 \beta_{19} + 1751 \beta_{18} + 4223 \beta_{17} - 23928 \beta_{16} - 26880 \beta_{15} + \cdots - 29058 ) / 2 Copy content Toggle raw display
ν10\nu^{10}== (28971β19+40959β1736490β1644936β1557594β14+152110)/2 ( - 28971 \beta_{19} + 40959 \beta_{17} - 36490 \beta_{16} - 44936 \beta_{15} - 57594 \beta_{14} + \cdots - 152110 ) / 2 Copy content Toggle raw display
ν11\nu^{11}== (76720β1931784β18+76720β1799769β16198670β15+203811)/2 ( - 76720 \beta_{19} - 31784 \beta_{18} + 76720 \beta_{17} - 99769 \beta_{16} - 198670 \beta_{15} + \cdots - 203811 ) / 2 Copy content Toggle raw display
ν12\nu^{12}== (579460β19409761β18+409761β17+108504β16108504β15+973170β1)/2 ( - 579460 \beta_{19} - 409761 \beta_{18} + 409761 \beta_{17} + 108504 \beta_{16} - 108504 \beta_{15} + \cdots - 973170 \beta_1 ) / 2 Copy content Toggle raw display
ν13\nu^{13}== (1305657β191305657β18+540837β17+2851151β16+1452169β15++3331860)/2 ( - 1305657 \beta_{19} - 1305657 \beta_{18} + 540837 \beta_{17} + 2851151 \beta_{16} + 1452169 \beta_{15} + \cdots + 3331860 ) / 2 Copy content Toggle raw display
ν14\nu^{14}== (5894213β198335603β18+12537223β16+9925909β15+1846494β14++31996842)/2 ( - 5894213 \beta_{19} - 8335603 \beta_{18} + 12537223 \beta_{16} + 9925909 \beta_{15} + 1846494 \beta_{14} + \cdots + 31996842 ) / 2 Copy content Toggle raw display
ν15\nu^{15}== (8865233β1921402456β188865233β17+80056861β16++128586181)/2 ( - 8865233 \beta_{19} - 21402456 \beta_{18} - 8865233 \beta_{17} + 80056861 \beta_{16} + \cdots + 128586181 ) / 2 Copy content Toggle raw display
ν16\nu^{16}== (85951074β1885951074β17+253671703β16+253671703β15++667647854)/2 ( - 85951074 \beta_{18} - 85951074 \beta_{17} + 253671703 \beta_{16} + 253671703 \beta_{15} + \cdots + 667647854 ) / 2 Copy content Toggle raw display
ν17\nu^{17}== (141969696β19141969696β18342744864β17+1059472869β16++2025632800)/2 ( 141969696 \beta_{19} - 141969696 \beta_{18} - 342744864 \beta_{17} + 1059472869 \beta_{16} + \cdots + 2025632800 ) / 2 Copy content Toggle raw display
ν18\nu^{18}== (1266976935β191791775503β17+2481169810β16+3166659538β15++7022575476)/2 ( 1266976935 \beta_{19} - 1791775503 \beta_{17} + 2481169810 \beta_{16} + 3166659538 \beta_{15} + \cdots + 7022575476 ) / 2 Copy content Toggle raw display
ν19\nu^{19}== (5405826548β19+2239167010β185405826548β17+4742172932β16++13087434199)/2 ( 5405826548 \beta_{19} + 2239167010 \beta_{18} - 5405826548 \beta_{17} + 4742172932 \beta_{16} + \cdots + 13087434199 ) / 2 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/1710Z)×\left(\mathbb{Z}/1710\mathbb{Z}\right)^\times.

nn 191191 10271027 13511351
χ(n)\chi(n) 1-1 β10\beta_{10} 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
647.1
0.232147 0.560453i
−0.185128 + 0.446939i
0.618697 1.49367i
0.153903 0.371555i
−0.526726 + 1.27163i
−3.06999 1.27163i
0.897013 + 0.371555i
3.60603 + 1.49367i
−1.07901 0.446939i
1.35305 + 0.560453i
0.232147 + 0.560453i
−0.185128 0.446939i
0.618697 + 1.49367i
0.153903 + 0.371555i
−0.526726 1.27163i
−3.06999 + 1.27163i
0.897013 0.371555i
3.60603 1.49367i
−1.07901 + 0.446939i
1.35305 0.560453i
−0.707107 + 0.707107i 0 1.00000i −2.03893 + 0.918023i 0 −1.07805 1.07805i 0.707107 + 0.707107i 0 0.792601 2.09088i
647.2 −0.707107 + 0.707107i 0 1.00000i −1.06972 + 1.96359i 0 3.58826 + 3.58826i 0.707107 + 0.707107i 0 −0.632067 2.14488i
647.3 −0.707107 + 0.707107i 0 1.00000i −0.975056 2.01228i 0 −3.02518 3.02518i 0.707107 + 0.707107i 0 2.11236 + 0.733428i
647.4 −0.707107 + 0.707107i 0 1.00000i 1.16531 1.90842i 0 2.34049 + 2.34049i 0.707107 + 0.707107i 0 0.525458 + 2.17345i
647.5 −0.707107 + 0.707107i 0 1.00000i 2.21129 + 0.331972i 0 −1.82552 1.82552i 0.707107 + 0.707107i 0 −1.79836 + 1.32888i
647.6 0.707107 0.707107i 0 1.00000i −2.21129 0.331972i 0 −1.82552 1.82552i −0.707107 0.707107i 0 −1.79836 + 1.32888i
647.7 0.707107 0.707107i 0 1.00000i −1.16531 + 1.90842i 0 2.34049 + 2.34049i −0.707107 0.707107i 0 0.525458 + 2.17345i
647.8 0.707107 0.707107i 0 1.00000i 0.975056 + 2.01228i 0 −3.02518 3.02518i −0.707107 0.707107i 0 2.11236 + 0.733428i
647.9 0.707107 0.707107i 0 1.00000i 1.06972 1.96359i 0 3.58826 + 3.58826i −0.707107 0.707107i 0 −0.632067 2.14488i
647.10 0.707107 0.707107i 0 1.00000i 2.03893 0.918023i 0 −1.07805 1.07805i −0.707107 0.707107i 0 0.792601 2.09088i
1673.1 −0.707107 0.707107i 0 1.00000i −2.03893 0.918023i 0 −1.07805 + 1.07805i 0.707107 0.707107i 0 0.792601 + 2.09088i
1673.2 −0.707107 0.707107i 0 1.00000i −1.06972 1.96359i 0 3.58826 3.58826i 0.707107 0.707107i 0 −0.632067 + 2.14488i
1673.3 −0.707107 0.707107i 0 1.00000i −0.975056 + 2.01228i 0 −3.02518 + 3.02518i 0.707107 0.707107i 0 2.11236 0.733428i
1673.4 −0.707107 0.707107i 0 1.00000i 1.16531 + 1.90842i 0 2.34049 2.34049i 0.707107 0.707107i 0 0.525458 2.17345i
1673.5 −0.707107 0.707107i 0 1.00000i 2.21129 0.331972i 0 −1.82552 + 1.82552i 0.707107 0.707107i 0 −1.79836 1.32888i
1673.6 0.707107 + 0.707107i 0 1.00000i −2.21129 + 0.331972i 0 −1.82552 + 1.82552i −0.707107 + 0.707107i 0 −1.79836 1.32888i
1673.7 0.707107 + 0.707107i 0 1.00000i −1.16531 1.90842i 0 2.34049 2.34049i −0.707107 + 0.707107i 0 0.525458 2.17345i
1673.8 0.707107 + 0.707107i 0 1.00000i 0.975056 2.01228i 0 −3.02518 + 3.02518i −0.707107 + 0.707107i 0 2.11236 0.733428i
1673.9 0.707107 + 0.707107i 0 1.00000i 1.06972 + 1.96359i 0 3.58826 3.58826i −0.707107 + 0.707107i 0 −0.632067 + 2.14488i
1673.10 0.707107 + 0.707107i 0 1.00000i 2.03893 + 0.918023i 0 −1.07805 + 1.07805i −0.707107 + 0.707107i 0 0.792601 + 2.09088i
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 647.10
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner
5.c odd 4 1 inner
15.e even 4 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1710.2.n.i 20
3.b odd 2 1 inner 1710.2.n.i 20
5.c odd 4 1 inner 1710.2.n.i 20
15.e even 4 1 inner 1710.2.n.i 20
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1710.2.n.i 20 1.a even 1 1 trivial
1710.2.n.i 20 3.b odd 2 1 inner
1710.2.n.i 20 5.c odd 4 1 inner
1710.2.n.i 20 15.e even 4 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(1710,[χ])S_{2}^{\mathrm{new}}(1710, [\chi]):

T710+32T77+584T76+624T75+512T74+5760T73+48400T72+88000T7+80000 T_{7}^{10} + 32T_{7}^{7} + 584T_{7}^{6} + 624T_{7}^{5} + 512T_{7}^{4} + 5760T_{7}^{3} + 48400T_{7}^{2} + 88000T_{7} + 80000 Copy content Toggle raw display
T1720+2288T1716+1179008T1712+165189632T178+6196826112T174+68719476736 T_{17}^{20} + 2288T_{17}^{16} + 1179008T_{17}^{12} + 165189632T_{17}^{8} + 6196826112T_{17}^{4} + 68719476736 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 (T4+1)5 (T^{4} + 1)^{5} Copy content Toggle raw display
33 T20 T^{20} Copy content Toggle raw display
55 T20+13T16++9765625 T^{20} + 13 T^{16} + \cdots + 9765625 Copy content Toggle raw display
77 (T10+32T7++80000)2 (T^{10} + 32 T^{7} + \cdots + 80000)^{2} Copy content Toggle raw display
1111 (T10+64T8++128)2 (T^{10} + 64 T^{8} + \cdots + 128)^{2} Copy content Toggle raw display
1313 (T10+6T9++128)2 (T^{10} + 6 T^{9} + \cdots + 128)^{2} Copy content Toggle raw display
1717 T20++68719476736 T^{20} + \cdots + 68719476736 Copy content Toggle raw display
1919 (T2+1)10 (T^{2} + 1)^{10} Copy content Toggle raw display
2323 T20++4294967296 T^{20} + \cdots + 4294967296 Copy content Toggle raw display
2929 (T10218T8+21727232)2 (T^{10} - 218 T^{8} + \cdots - 21727232)^{2} Copy content Toggle raw display
3131 (T54T456T3+64)4 (T^{5} - 4 T^{4} - 56 T^{3} + \cdots - 64)^{4} Copy content Toggle raw display
3737 (T10+6T9++128)2 (T^{10} + 6 T^{9} + \cdots + 128)^{2} Copy content Toggle raw display
4141 (T10+226T8++123008)2 (T^{10} + 226 T^{8} + \cdots + 123008)^{2} Copy content Toggle raw display
4343 (T10+248T7++76880000)2 (T^{10} + 248 T^{7} + \cdots + 76880000)^{2} Copy content Toggle raw display
4747 T20++10 ⁣ ⁣56 T^{20} + \cdots + 10\!\cdots\!56 Copy content Toggle raw display
5353 T20++68719476736 T^{20} + \cdots + 68719476736 Copy content Toggle raw display
5959 (T10104T8+8192)2 (T^{10} - 104 T^{8} + \cdots - 8192)^{2} Copy content Toggle raw display
6161 (T5+4T4++8896)4 (T^{5} + 4 T^{4} + \cdots + 8896)^{4} Copy content Toggle raw display
6767 T20 T^{20} Copy content Toggle raw display
7171 (T10+512T8++22151168)2 (T^{10} + 512 T^{8} + \cdots + 22151168)^{2} Copy content Toggle raw display
7373 (T1010T9++4921113632)2 (T^{10} - 10 T^{9} + \cdots + 4921113632)^{2} Copy content Toggle raw display
7979 (T10+640T8++904806400)2 (T^{10} + 640 T^{8} + \cdots + 904806400)^{2} Copy content Toggle raw display
8383 T20+47248T16++16777216 T^{20} + 47248 T^{16} + \cdots + 16777216 Copy content Toggle raw display
8989 (T10578T8+4739484800)2 (T^{10} - 578 T^{8} + \cdots - 4739484800)^{2} Copy content Toggle raw display
9797 (T10+10T9++1073512448)2 (T^{10} + 10 T^{9} + \cdots + 1073512448)^{2} Copy content Toggle raw display
show more
show less