Properties

Label 1710.2.q.a.449.2
Level $1710$
Weight $2$
Character 1710.449
Analytic conductor $13.654$
Analytic rank $0$
Dimension $16$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1710,2,Mod(179,1710)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1710, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 3, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1710.179");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1710 = 2 \cdot 3^{2} \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1710.q (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.6544187456\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{6})\)
Coefficient field: 16.0.162447943996702457856.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - x^{12} - 15x^{8} - 16x^{4} + 256 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{8}\cdot 3^{4} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 449.2
Root \(-0.140577 + 1.40721i\) of defining polynomial
Character \(\chi\) \(=\) 1710.449
Dual form 1710.2.q.a.179.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.866025 + 0.500000i) q^{2} +(0.500000 - 0.866025i) q^{4} +(-2.09077 - 0.792893i) q^{5} +2.01563i q^{7} +1.00000i q^{8} +(2.20711 - 0.358719i) q^{10} +6.31959i q^{11} +(2.12132 - 3.67423i) q^{13} +(-1.00781 - 1.74558i) q^{14} +(-0.500000 - 0.866025i) q^{16} +(1.42526 + 2.46863i) q^{17} +(-3.50000 - 2.59808i) q^{19} +(-1.73205 + 1.41421i) q^{20} +(-3.15980 - 5.47293i) q^{22} +(2.29129 - 3.96863i) q^{23} +(3.74264 + 3.31552i) q^{25} +4.24264i q^{26} +(1.74558 + 1.00781i) q^{28} +(-3.67423 + 6.36396i) q^{29} +(0.866025 + 0.500000i) q^{32} +(-2.46863 - 1.42526i) q^{34} +(1.59818 - 4.21421i) q^{35} -3.49117 q^{37} +(4.33013 + 0.500000i) q^{38} +(0.792893 - 2.09077i) q^{40} +(-4.24818 - 7.35807i) q^{41} +(7.73381 - 4.46512i) q^{43} +(5.47293 + 3.15980i) q^{44} +4.58258i q^{46} +(-2.85052 + 4.93725i) q^{47} +2.93725 q^{49} +(-4.89898 - 1.00000i) q^{50} +(-2.12132 - 3.67423i) q^{52} +(-12.0700 - 6.96863i) q^{53} +(5.01076 - 13.2128i) q^{55} -2.01563 q^{56} -7.34847i q^{58} +(-1.22474 - 2.12132i) q^{59} +(-7.46863 + 12.9360i) q^{61} -1.00000 q^{64} +(-7.34847 + 6.00000i) q^{65} +(-2.12132 + 3.67423i) q^{67} +2.85052 q^{68} +(0.723044 + 4.44870i) q^{70} +(3.67423 + 6.36396i) q^{71} +(-1.36985 + 0.790881i) q^{73} +(3.02344 - 1.74558i) q^{74} +(-4.00000 + 1.73205i) q^{76} -12.7379 q^{77} +(-6.00000 + 3.46410i) q^{79} +(0.358719 + 2.20711i) q^{80} +(7.35807 + 4.24818i) q^{82} -10.3923 q^{83} +(-1.02254 - 6.29141i) q^{85} +(-4.46512 + 7.73381i) q^{86} -6.31959 q^{88} +(-6.69767 + 11.6007i) q^{89} +(7.40588 + 4.27579i) q^{91} +(-2.29129 - 3.96863i) q^{92} -5.70105i q^{94} +(5.25770 + 8.20711i) q^{95} +(-2.12132 - 3.67423i) q^{97} +(-2.54374 + 1.46863i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 8 q^{4} + 24 q^{10} - 8 q^{16} - 56 q^{19} - 8 q^{25} + 24 q^{34} + 24 q^{40} - 80 q^{49} - 8 q^{55} - 56 q^{61} - 16 q^{64} - 24 q^{70} - 64 q^{76} - 96 q^{79} - 24 q^{85} - 72 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1710\mathbb{Z}\right)^\times\).

\(n\) \(191\) \(1027\) \(1351\)
\(\chi(n)\) \(-1\) \(-1\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.866025 + 0.500000i −0.612372 + 0.353553i
\(3\) 0 0
\(4\) 0.500000 0.866025i 0.250000 0.433013i
\(5\) −2.09077 0.792893i −0.935021 0.354593i
\(6\) 0 0
\(7\) 2.01563i 0.761835i 0.924609 + 0.380917i \(0.124392\pi\)
−0.924609 + 0.380917i \(0.875608\pi\)
\(8\) 1.00000i 0.353553i
\(9\) 0 0
\(10\) 2.20711 0.358719i 0.697948 0.113437i
\(11\) 6.31959i 1.90543i 0.303867 + 0.952714i \(0.401722\pi\)
−0.303867 + 0.952714i \(0.598278\pi\)
\(12\) 0 0
\(13\) 2.12132 3.67423i 0.588348 1.01905i −0.406100 0.913828i \(-0.633112\pi\)
0.994449 0.105221i \(-0.0335550\pi\)
\(14\) −1.00781 1.74558i −0.269349 0.466527i
\(15\) 0 0
\(16\) −0.500000 0.866025i −0.125000 0.216506i
\(17\) 1.42526 + 2.46863i 0.345677 + 0.598730i 0.985477 0.169812i \(-0.0543160\pi\)
−0.639800 + 0.768542i \(0.720983\pi\)
\(18\) 0 0
\(19\) −3.50000 2.59808i −0.802955 0.596040i
\(20\) −1.73205 + 1.41421i −0.387298 + 0.316228i
\(21\) 0 0
\(22\) −3.15980 5.47293i −0.673671 1.16683i
\(23\) 2.29129 3.96863i 0.477767 0.827516i −0.521909 0.853001i \(-0.674780\pi\)
0.999675 + 0.0254855i \(0.00811315\pi\)
\(24\) 0 0
\(25\) 3.74264 + 3.31552i 0.748528 + 0.663103i
\(26\) 4.24264i 0.832050i
\(27\) 0 0
\(28\) 1.74558 + 1.00781i 0.329884 + 0.190459i
\(29\) −3.67423 + 6.36396i −0.682288 + 1.18176i 0.291993 + 0.956421i \(0.405682\pi\)
−0.974281 + 0.225337i \(0.927652\pi\)
\(30\) 0 0
\(31\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(32\) 0.866025 + 0.500000i 0.153093 + 0.0883883i
\(33\) 0 0
\(34\) −2.46863 1.42526i −0.423366 0.244430i
\(35\) 1.59818 4.21421i 0.270141 0.712331i
\(36\) 0 0
\(37\) −3.49117 −0.573944 −0.286972 0.957939i \(-0.592649\pi\)
−0.286972 + 0.957939i \(0.592649\pi\)
\(38\) 4.33013 + 0.500000i 0.702439 + 0.0811107i
\(39\) 0 0
\(40\) 0.792893 2.09077i 0.125367 0.330580i
\(41\) −4.24818 7.35807i −0.663455 1.14914i −0.979702 0.200460i \(-0.935756\pi\)
0.316247 0.948677i \(-0.397577\pi\)
\(42\) 0 0
\(43\) 7.73381 4.46512i 1.17939 0.680924i 0.223520 0.974699i \(-0.428245\pi\)
0.955874 + 0.293776i \(0.0949119\pi\)
\(44\) 5.47293 + 3.15980i 0.825075 + 0.476357i
\(45\) 0 0
\(46\) 4.58258i 0.675664i
\(47\) −2.85052 + 4.93725i −0.415792 + 0.720173i −0.995511 0.0946437i \(-0.969829\pi\)
0.579719 + 0.814816i \(0.303162\pi\)
\(48\) 0 0
\(49\) 2.93725 0.419608
\(50\) −4.89898 1.00000i −0.692820 0.141421i
\(51\) 0 0
\(52\) −2.12132 3.67423i −0.294174 0.509525i
\(53\) −12.0700 6.96863i −1.65794 0.957215i −0.973662 0.227997i \(-0.926782\pi\)
−0.684282 0.729217i \(-0.739884\pi\)
\(54\) 0 0
\(55\) 5.01076 13.2128i 0.675651 1.78162i
\(56\) −2.01563 −0.269349
\(57\) 0 0
\(58\) 7.34847i 0.964901i
\(59\) −1.22474 2.12132i −0.159448 0.276172i 0.775222 0.631689i \(-0.217638\pi\)
−0.934670 + 0.355517i \(0.884305\pi\)
\(60\) 0 0
\(61\) −7.46863 + 12.9360i −0.956260 + 1.65629i −0.224801 + 0.974405i \(0.572173\pi\)
−0.731459 + 0.681886i \(0.761160\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) −1.00000 −0.125000
\(65\) −7.34847 + 6.00000i −0.911465 + 0.744208i
\(66\) 0 0
\(67\) −2.12132 + 3.67423i −0.259161 + 0.448879i −0.966017 0.258478i \(-0.916779\pi\)
0.706857 + 0.707357i \(0.250113\pi\)
\(68\) 2.85052 0.345677
\(69\) 0 0
\(70\) 0.723044 + 4.44870i 0.0864203 + 0.531721i
\(71\) 3.67423 + 6.36396i 0.436051 + 0.755263i 0.997381 0.0723293i \(-0.0230432\pi\)
−0.561329 + 0.827592i \(0.689710\pi\)
\(72\) 0 0
\(73\) −1.36985 + 0.790881i −0.160328 + 0.0925656i −0.578017 0.816024i \(-0.696173\pi\)
0.417689 + 0.908590i \(0.362840\pi\)
\(74\) 3.02344 1.74558i 0.351468 0.202920i
\(75\) 0 0
\(76\) −4.00000 + 1.73205i −0.458831 + 0.198680i
\(77\) −12.7379 −1.45162
\(78\) 0 0
\(79\) −6.00000 + 3.46410i −0.675053 + 0.389742i −0.797988 0.602673i \(-0.794102\pi\)
0.122936 + 0.992415i \(0.460769\pi\)
\(80\) 0.358719 + 2.20711i 0.0401061 + 0.246762i
\(81\) 0 0
\(82\) 7.35807 + 4.24818i 0.812563 + 0.469133i
\(83\) −10.3923 −1.14070 −0.570352 0.821401i \(-0.693193\pi\)
−0.570352 + 0.821401i \(0.693193\pi\)
\(84\) 0 0
\(85\) −1.02254 6.29141i −0.110910 0.682400i
\(86\) −4.46512 + 7.73381i −0.481486 + 0.833958i
\(87\) 0 0
\(88\) −6.31959 −0.673671
\(89\) −6.69767 + 11.6007i −0.709952 + 1.22967i 0.254923 + 0.966961i \(0.417950\pi\)
−0.964874 + 0.262711i \(0.915383\pi\)
\(90\) 0 0
\(91\) 7.40588 + 4.27579i 0.776347 + 0.448224i
\(92\) −2.29129 3.96863i −0.238883 0.413758i
\(93\) 0 0
\(94\) 5.70105i 0.588018i
\(95\) 5.25770 + 8.20711i 0.539429 + 0.842031i
\(96\) 0 0
\(97\) −2.12132 3.67423i −0.215387 0.373062i 0.738005 0.674795i \(-0.235768\pi\)
−0.953392 + 0.301733i \(0.902435\pi\)
\(98\) −2.54374 + 1.46863i −0.256956 + 0.148354i
\(99\) 0 0
\(100\) 4.74264 1.58346i 0.474264 0.158346i
\(101\) −2.44949 1.41421i −0.243733 0.140720i 0.373158 0.927768i \(-0.378275\pi\)
−0.616891 + 0.787048i \(0.711608\pi\)
\(102\) 0 0
\(103\) −11.9764 −1.18007 −0.590037 0.807376i \(-0.700887\pi\)
−0.590037 + 0.807376i \(0.700887\pi\)
\(104\) 3.67423 + 2.12132i 0.360288 + 0.208013i
\(105\) 0 0
\(106\) 13.9373 1.35371
\(107\) 10.9373i 1.05734i −0.848826 0.528672i \(-0.822690\pi\)
0.848826 0.528672i \(-0.177310\pi\)
\(108\) 0 0
\(109\) −7.40588 + 4.27579i −0.709355 + 0.409546i −0.810822 0.585293i \(-0.800980\pi\)
0.101467 + 0.994839i \(0.467646\pi\)
\(110\) 2.26696 + 13.9480i 0.216146 + 1.32989i
\(111\) 0 0
\(112\) 1.74558 1.00781i 0.164942 0.0952294i
\(113\) 10.9373i 1.02889i 0.857523 + 0.514445i \(0.172002\pi\)
−0.857523 + 0.514445i \(0.827998\pi\)
\(114\) 0 0
\(115\) −7.93725 + 6.48074i −0.740153 + 0.604332i
\(116\) 3.67423 + 6.36396i 0.341144 + 0.590879i
\(117\) 0 0
\(118\) 2.12132 + 1.22474i 0.195283 + 0.112747i
\(119\) −4.97583 + 2.87280i −0.456133 + 0.263349i
\(120\) 0 0
\(121\) −28.9373 −2.63066
\(122\) 14.9373i 1.35236i
\(123\) 0 0
\(124\) 0 0
\(125\) −5.19615 9.89949i −0.464758 0.885438i
\(126\) 0 0
\(127\) −5.98822 + 10.3719i −0.531369 + 0.920358i 0.467961 + 0.883749i \(0.344989\pi\)
−0.999330 + 0.0366087i \(0.988344\pi\)
\(128\) 0.866025 0.500000i 0.0765466 0.0441942i
\(129\) 0 0
\(130\) 3.36396 8.87039i 0.295039 0.777984i
\(131\) 18.9451 10.9380i 1.65524 0.955655i 0.680377 0.732862i \(-0.261816\pi\)
0.974866 0.222793i \(-0.0715173\pi\)
\(132\) 0 0
\(133\) 5.23675 7.05469i 0.454084 0.611719i
\(134\) 4.24264i 0.366508i
\(135\) 0 0
\(136\) −2.46863 + 1.42526i −0.211683 + 0.122215i
\(137\) 8.04668 13.9373i 0.687474 1.19074i −0.285178 0.958474i \(-0.592053\pi\)
0.972652 0.232266i \(-0.0746138\pi\)
\(138\) 0 0
\(139\) −2.00000 + 3.46410i −0.169638 + 0.293821i −0.938293 0.345843i \(-0.887593\pi\)
0.768655 + 0.639664i \(0.220926\pi\)
\(140\) −2.85052 3.49117i −0.240913 0.295057i
\(141\) 0 0
\(142\) −6.36396 3.67423i −0.534052 0.308335i
\(143\) 23.2197 + 13.4059i 1.94173 + 1.12106i
\(144\) 0 0
\(145\) 12.7279 10.3923i 1.05700 0.863034i
\(146\) 0.790881 1.36985i 0.0654537 0.113369i
\(147\) 0 0
\(148\) −1.74558 + 3.02344i −0.143486 + 0.248525i
\(149\) −7.27162 + 4.19827i −0.595714 + 0.343936i −0.767354 0.641224i \(-0.778427\pi\)
0.171639 + 0.985160i \(0.445094\pi\)
\(150\) 0 0
\(151\) 8.55157i 0.695917i −0.937510 0.347959i \(-0.886875\pi\)
0.937510 0.347959i \(-0.113125\pi\)
\(152\) 2.59808 3.50000i 0.210732 0.283887i
\(153\) 0 0
\(154\) 11.0314 6.36897i 0.888933 0.513226i
\(155\) 0 0
\(156\) 0 0
\(157\) −1.12721 + 0.650796i −0.0899613 + 0.0519392i −0.544306 0.838887i \(-0.683207\pi\)
0.454344 + 0.890826i \(0.349874\pi\)
\(158\) 3.46410 6.00000i 0.275589 0.477334i
\(159\) 0 0
\(160\) −1.41421 1.73205i −0.111803 0.136931i
\(161\) 7.99927 + 4.61838i 0.630430 + 0.363979i
\(162\) 0 0
\(163\) 12.9615i 1.01522i 0.861586 + 0.507611i \(0.169471\pi\)
−0.861586 + 0.507611i \(0.830529\pi\)
\(164\) −8.49637 −0.663455
\(165\) 0 0
\(166\) 9.00000 5.19615i 0.698535 0.403300i
\(167\) −3.51844 2.03137i −0.272265 0.157192i 0.357651 0.933855i \(-0.383578\pi\)
−0.629917 + 0.776663i \(0.716911\pi\)
\(168\) 0 0
\(169\) −2.50000 4.33013i −0.192308 0.333087i
\(170\) 4.03125 + 4.93725i 0.309183 + 0.378670i
\(171\) 0 0
\(172\) 8.93023i 0.680924i
\(173\) −6.87386 + 3.96863i −0.522610 + 0.301729i −0.738002 0.674799i \(-0.764230\pi\)
0.215392 + 0.976528i \(0.430897\pi\)
\(174\) 0 0
\(175\) −6.68284 + 7.54376i −0.505175 + 0.570255i
\(176\) 5.47293 3.15980i 0.412537 0.238179i
\(177\) 0 0
\(178\) 13.3953i 1.00402i
\(179\) −13.3953 −1.00122 −0.500608 0.865674i \(-0.666890\pi\)
−0.500608 + 0.865674i \(0.666890\pi\)
\(180\) 0 0
\(181\) −10.4059 6.00784i −0.773463 0.446559i 0.0606456 0.998159i \(-0.480684\pi\)
−0.834109 + 0.551600i \(0.814017\pi\)
\(182\) −8.55157 −0.633885
\(183\) 0 0
\(184\) 3.96863 + 2.29129i 0.292571 + 0.168916i
\(185\) 7.29923 + 2.76812i 0.536650 + 0.203516i
\(186\) 0 0
\(187\) −15.6007 + 9.00708i −1.14084 + 0.658663i
\(188\) 2.85052 + 4.93725i 0.207896 + 0.360086i
\(189\) 0 0
\(190\) −8.65685 4.47871i −0.628034 0.324920i
\(191\) 12.6392i 0.914539i 0.889328 + 0.457270i \(0.151173\pi\)
−0.889328 + 0.457270i \(0.848827\pi\)
\(192\) 0 0
\(193\) 6.36396 + 11.0227i 0.458088 + 0.793432i 0.998860 0.0477376i \(-0.0152011\pi\)
−0.540772 + 0.841169i \(0.681868\pi\)
\(194\) 3.67423 + 2.12132i 0.263795 + 0.152302i
\(195\) 0 0
\(196\) 1.46863 2.54374i 0.104902 0.181695i
\(197\) −15.5885 −1.11063 −0.555316 0.831640i \(-0.687403\pi\)
−0.555316 + 0.831640i \(0.687403\pi\)
\(198\) 0 0
\(199\) 10.4686 18.1322i 0.742101 1.28536i −0.209436 0.977822i \(-0.567163\pi\)
0.951537 0.307535i \(-0.0995040\pi\)
\(200\) −3.31552 + 3.74264i −0.234442 + 0.264645i
\(201\) 0 0
\(202\) 2.82843 0.199007
\(203\) −12.8274 7.40588i −0.900304 0.519791i
\(204\) 0 0
\(205\) 3.04781 + 18.7524i 0.212868 + 1.30972i
\(206\) 10.3719 5.98822i 0.722645 0.417219i
\(207\) 0 0
\(208\) −4.24264 −0.294174
\(209\) 16.4188 22.1186i 1.13571 1.52997i
\(210\) 0 0
\(211\) 11.9059 6.87386i 0.819635 0.473216i −0.0306558 0.999530i \(-0.509760\pi\)
0.850290 + 0.526314i \(0.176426\pi\)
\(212\) −12.0700 + 6.96863i −0.828972 + 0.478607i
\(213\) 0 0
\(214\) 5.46863 + 9.47194i 0.373828 + 0.647488i
\(215\) −19.7100 + 3.20345i −1.34421 + 0.218473i
\(216\) 0 0
\(217\) 0 0
\(218\) 4.27579 7.40588i 0.289593 0.501590i
\(219\) 0 0
\(220\) −8.93725 10.9459i −0.602550 0.737969i
\(221\) 12.0938 0.813514
\(222\) 0 0
\(223\) −10.2309 17.7204i −0.685109 1.18664i −0.973402 0.229102i \(-0.926421\pi\)
0.288293 0.957542i \(-0.406912\pi\)
\(224\) −1.00781 + 1.74558i −0.0673373 + 0.116632i
\(225\) 0 0
\(226\) −5.46863 9.47194i −0.363768 0.630064i
\(227\) 22.9373i 1.52240i −0.648518 0.761200i \(-0.724611\pi\)
0.648518 0.761200i \(-0.275389\pi\)
\(228\) 0 0
\(229\) 7.87451 0.520362 0.260181 0.965560i \(-0.416218\pi\)
0.260181 + 0.965560i \(0.416218\pi\)
\(230\) 3.63349 9.58111i 0.239585 0.631760i
\(231\) 0 0
\(232\) −6.36396 3.67423i −0.417815 0.241225i
\(233\) −7.43310 12.8745i −0.486959 0.843437i 0.512929 0.858431i \(-0.328560\pi\)
−0.999888 + 0.0149940i \(0.995227\pi\)
\(234\) 0 0
\(235\) 9.87451 8.06250i 0.644142 0.525940i
\(236\) −2.44949 −0.159448
\(237\) 0 0
\(238\) 2.87280 4.97583i 0.186216 0.322535i
\(239\) 4.33138i 0.280173i −0.990139 0.140087i \(-0.955262\pi\)
0.990139 0.140087i \(-0.0447381\pi\)
\(240\) 0 0
\(241\) 6.00000 + 3.46410i 0.386494 + 0.223142i 0.680640 0.732618i \(-0.261702\pi\)
−0.294146 + 0.955761i \(0.595035\pi\)
\(242\) 25.0604 14.4686i 1.61094 0.930079i
\(243\) 0 0
\(244\) 7.46863 + 12.9360i 0.478130 + 0.828145i
\(245\) −6.14112 2.32893i −0.392342 0.148790i
\(246\) 0 0
\(247\) −16.9706 + 7.34847i −1.07981 + 0.467572i
\(248\) 0 0
\(249\) 0 0
\(250\) 9.44975 + 5.97514i 0.597655 + 0.377901i
\(251\) 6.12372 + 3.53553i 0.386526 + 0.223161i 0.680654 0.732605i \(-0.261696\pi\)
−0.294128 + 0.955766i \(0.595029\pi\)
\(252\) 0 0
\(253\) 25.0801 + 14.4800i 1.57677 + 0.910350i
\(254\) 11.9764i 0.751469i
\(255\) 0 0
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) −18.9439 10.9373i −1.18169 0.682247i −0.225283 0.974293i \(-0.572331\pi\)
−0.956404 + 0.292046i \(0.905664\pi\)
\(258\) 0 0
\(259\) 7.03688i 0.437251i
\(260\) 1.52192 + 9.36396i 0.0943853 + 0.580728i
\(261\) 0 0
\(262\) −10.9380 + 18.9451i −0.675750 + 1.17043i
\(263\) 10.3380 + 17.9059i 0.637466 + 1.10412i 0.985987 + 0.166823i \(0.0533508\pi\)
−0.348521 + 0.937301i \(0.613316\pi\)
\(264\) 0 0
\(265\) 19.7103 + 24.1400i 1.21079 + 1.48291i
\(266\) −1.00781 + 8.72791i −0.0617930 + 0.535143i
\(267\) 0 0
\(268\) 2.12132 + 3.67423i 0.129580 + 0.224440i
\(269\) −1.22474 2.12132i −0.0746740 0.129339i 0.826270 0.563274i \(-0.190458\pi\)
−0.900944 + 0.433934i \(0.857125\pi\)
\(270\) 0 0
\(271\) 1.00000 + 1.73205i 0.0607457 + 0.105215i 0.894799 0.446469i \(-0.147319\pi\)
−0.834053 + 0.551684i \(0.813985\pi\)
\(272\) 1.42526 2.46863i 0.0864192 0.149682i
\(273\) 0 0
\(274\) 16.0934i 0.972235i
\(275\) −20.9527 + 23.6520i −1.26350 + 1.42627i
\(276\) 0 0
\(277\) 11.3797i 0.683741i 0.939747 + 0.341871i \(0.111060\pi\)
−0.939747 + 0.341871i \(0.888940\pi\)
\(278\) 4.00000i 0.239904i
\(279\) 0 0
\(280\) 4.21421 + 1.59818i 0.251847 + 0.0955093i
\(281\) 0.650796 1.12721i 0.0388233 0.0672439i −0.845961 0.533245i \(-0.820972\pi\)
0.884784 + 0.466001i \(0.154306\pi\)
\(282\) 0 0
\(283\) −6.98233 + 4.03125i −0.415057 + 0.239633i −0.692960 0.720976i \(-0.743694\pi\)
0.277904 + 0.960609i \(0.410360\pi\)
\(284\) 7.34847 0.436051
\(285\) 0 0
\(286\) −26.8118 −1.58541
\(287\) 14.8311 8.56275i 0.875453 0.505443i
\(288\) 0 0
\(289\) 4.43725 7.68555i 0.261015 0.452091i
\(290\) −5.82655 + 15.3640i −0.342147 + 0.902203i
\(291\) 0 0
\(292\) 1.58176i 0.0925656i
\(293\) 18.8745i 1.10266i 0.834287 + 0.551330i \(0.185880\pi\)
−0.834287 + 0.551330i \(0.814120\pi\)
\(294\) 0 0
\(295\) 0.878680 + 5.40629i 0.0511587 + 0.314766i
\(296\) 3.49117i 0.202920i
\(297\) 0 0
\(298\) 4.19827 7.27162i 0.243199 0.421234i
\(299\) −9.72111 16.8375i −0.562186 0.973735i
\(300\) 0 0
\(301\) 9.00000 + 15.5885i 0.518751 + 0.898504i
\(302\) 4.27579 + 7.40588i 0.246044 + 0.426161i
\(303\) 0 0
\(304\) −0.500000 + 4.33013i −0.0286770 + 0.248350i
\(305\) 25.8721 21.1245i 1.48143 1.20958i
\(306\) 0 0
\(307\) −5.61249 9.72111i −0.320321 0.554813i 0.660233 0.751061i \(-0.270458\pi\)
−0.980554 + 0.196248i \(0.937124\pi\)
\(308\) −6.36897 + 11.0314i −0.362906 + 0.628571i
\(309\) 0 0
\(310\) 0 0
\(311\) 14.1421i 0.801927i −0.916094 0.400963i \(-0.868675\pi\)
0.916094 0.400963i \(-0.131325\pi\)
\(312\) 0 0
\(313\) 11.9764 + 6.91460i 0.676949 + 0.390837i 0.798704 0.601724i \(-0.205519\pi\)
−0.121756 + 0.992560i \(0.538852\pi\)
\(314\) 0.650796 1.12721i 0.0367266 0.0636123i
\(315\) 0 0
\(316\) 6.92820i 0.389742i
\(317\) 24.8974 + 14.3745i 1.39838 + 0.807353i 0.994223 0.107338i \(-0.0342328\pi\)
0.404154 + 0.914691i \(0.367566\pi\)
\(318\) 0 0
\(319\) −40.2176 23.2197i −2.25176 1.30005i
\(320\) 2.09077 + 0.792893i 0.116878 + 0.0443241i
\(321\) 0 0
\(322\) −9.23676 −0.514744
\(323\) 1.42526 12.3431i 0.0793037 0.686790i
\(324\) 0 0
\(325\) 20.1213 6.71807i 1.11613 0.372651i
\(326\) −6.48074 11.2250i −0.358935 0.621694i
\(327\) 0 0
\(328\) 7.35807 4.24818i 0.406281 0.234567i
\(329\) −9.95165 5.74559i −0.548652 0.316765i
\(330\) 0 0
\(331\) 22.5167i 1.23763i 0.785538 + 0.618814i \(0.212386\pi\)
−0.785538 + 0.618814i \(0.787614\pi\)
\(332\) −5.19615 + 9.00000i −0.285176 + 0.493939i
\(333\) 0 0
\(334\) 4.06275 0.222304
\(335\) 7.34847 6.00000i 0.401490 0.327815i
\(336\) 0 0
\(337\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(338\) 4.33013 + 2.50000i 0.235528 + 0.135982i
\(339\) 0 0
\(340\) −5.95979 2.26016i −0.323215 0.122574i
\(341\) 0 0
\(342\) 0 0
\(343\) 20.0298i 1.08151i
\(344\) 4.46512 + 7.73381i 0.240743 + 0.416979i
\(345\) 0 0
\(346\) 3.96863 6.87386i 0.213355 0.369541i
\(347\) −1.73205 3.00000i −0.0929814 0.161048i 0.815783 0.578358i \(-0.196306\pi\)
−0.908764 + 0.417310i \(0.862973\pi\)
\(348\) 0 0
\(349\) −32.9373 −1.76309 −0.881545 0.472099i \(-0.843496\pi\)
−0.881545 + 0.472099i \(0.843496\pi\)
\(350\) 2.01563 9.87451i 0.107740 0.527815i
\(351\) 0 0
\(352\) −3.15980 + 5.47293i −0.168418 + 0.291708i
\(353\) 30.5633 1.62672 0.813361 0.581759i \(-0.197635\pi\)
0.813361 + 0.581759i \(0.197635\pi\)
\(354\) 0 0
\(355\) −2.63604 16.2189i −0.139906 0.860808i
\(356\) 6.69767 + 11.6007i 0.354976 + 0.614836i
\(357\) 0 0
\(358\) 11.6007 6.69767i 0.613117 0.353983i
\(359\) 6.12372 3.53553i 0.323198 0.186598i −0.329619 0.944114i \(-0.606920\pi\)
0.652817 + 0.757516i \(0.273587\pi\)
\(360\) 0 0
\(361\) 5.50000 + 18.1865i 0.289474 + 0.957186i
\(362\) 12.0157 0.631530
\(363\) 0 0
\(364\) 7.40588 4.27579i 0.388174 0.224112i
\(365\) 3.49112 0.567409i 0.182733 0.0296995i
\(366\) 0 0
\(367\) −17.5889 10.1550i −0.918135 0.530085i −0.0350953 0.999384i \(-0.511173\pi\)
−0.883040 + 0.469299i \(0.844507\pi\)
\(368\) −4.58258 −0.238883
\(369\) 0 0
\(370\) −7.70538 + 1.25235i −0.400583 + 0.0651065i
\(371\) 14.0461 24.3286i 0.729239 1.26308i
\(372\) 0 0
\(373\) 14.7161 0.761973 0.380986 0.924581i \(-0.375584\pi\)
0.380986 + 0.924581i \(0.375584\pi\)
\(374\) 9.00708 15.6007i 0.465745 0.806694i
\(375\) 0 0
\(376\) −4.93725 2.85052i −0.254619 0.147005i
\(377\) 15.5885 + 27.0000i 0.802846 + 1.39057i
\(378\) 0 0
\(379\) 20.5673i 1.05647i 0.849099 + 0.528234i \(0.177146\pi\)
−0.849099 + 0.528234i \(0.822854\pi\)
\(380\) 9.73641 0.449747i 0.499467 0.0230716i
\(381\) 0 0
\(382\) −6.31959 10.9459i −0.323338 0.560039i
\(383\) 3.35542 1.93725i 0.171454 0.0989891i −0.411817 0.911266i \(-0.635106\pi\)
0.583271 + 0.812277i \(0.301772\pi\)
\(384\) 0 0
\(385\) 26.6321 + 10.0998i 1.35730 + 0.514735i
\(386\) −11.0227 6.36396i −0.561041 0.323917i
\(387\) 0 0
\(388\) −4.24264 −0.215387
\(389\) 13.4722 + 7.77817i 0.683067 + 0.394369i 0.801010 0.598651i \(-0.204296\pi\)
−0.117942 + 0.993020i \(0.537630\pi\)
\(390\) 0 0
\(391\) 13.0627 0.660611
\(392\) 2.93725i 0.148354i
\(393\) 0 0
\(394\) 13.5000 7.79423i 0.680120 0.392668i
\(395\) 15.2913 2.48528i 0.769388 0.125048i
\(396\) 0 0
\(397\) −22.2073 + 12.8214i −1.11455 + 0.643487i −0.940005 0.341161i \(-0.889180\pi\)
−0.174548 + 0.984649i \(0.555846\pi\)
\(398\) 20.9373i 1.04949i
\(399\) 0 0
\(400\) 1.00000 4.89898i 0.0500000 0.244949i
\(401\) −14.6201 25.3227i −0.730092 1.26456i −0.956843 0.290604i \(-0.906144\pi\)
0.226751 0.973953i \(-0.427190\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) −2.44949 + 1.41421i −0.121867 + 0.0703598i
\(405\) 0 0
\(406\) 14.8118 0.735095
\(407\) 22.0627i 1.09361i
\(408\) 0 0
\(409\) 25.5000 + 14.7224i 1.26089 + 0.727977i 0.973247 0.229759i \(-0.0737939\pi\)
0.287646 + 0.957737i \(0.407127\pi\)
\(410\) −12.0157 14.7161i −0.593412 0.726778i
\(411\) 0 0
\(412\) −5.98822 + 10.3719i −0.295019 + 0.510987i
\(413\) 4.27579 2.46863i 0.210398 0.121473i
\(414\) 0 0
\(415\) 21.7279 + 8.23999i 1.06658 + 0.404485i
\(416\) 3.67423 2.12132i 0.180144 0.104006i
\(417\) 0 0
\(418\) −3.15980 + 27.3646i −0.154551 + 1.33845i
\(419\) 11.8877i 0.580753i 0.956913 + 0.290376i \(0.0937805\pi\)
−0.956913 + 0.290376i \(0.906220\pi\)
\(420\) 0 0
\(421\) −7.59412 + 4.38447i −0.370115 + 0.213686i −0.673509 0.739179i \(-0.735214\pi\)
0.303394 + 0.952865i \(0.401880\pi\)
\(422\) −6.87386 + 11.9059i −0.334614 + 0.579569i
\(423\) 0 0
\(424\) 6.96863 12.0700i 0.338426 0.586172i
\(425\) −2.85052 + 13.9647i −0.138271 + 0.677386i
\(426\) 0 0
\(427\) −26.0742 15.0540i −1.26182 0.728512i
\(428\) −9.47194 5.46863i −0.457843 0.264336i
\(429\) 0 0
\(430\) 15.4676 12.6293i 0.745915 0.609037i
\(431\) −8.57321 + 14.8492i −0.412957 + 0.715263i −0.995212 0.0977438i \(-0.968837\pi\)
0.582254 + 0.813007i \(0.302171\pi\)
\(432\) 0 0
\(433\) 13.3463 23.1165i 0.641382 1.11091i −0.343743 0.939064i \(-0.611695\pi\)
0.985125 0.171842i \(-0.0549719\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 8.55157i 0.409546i
\(437\) −18.3303 + 7.93725i −0.876857 + 0.379690i
\(438\) 0 0
\(439\) 28.4059 16.4001i 1.35574 0.782736i 0.366692 0.930342i \(-0.380490\pi\)
0.989046 + 0.147606i \(0.0471568\pi\)
\(440\) 13.2128 + 5.01076i 0.629896 + 0.238879i
\(441\) 0 0
\(442\) −10.4735 + 6.04688i −0.498173 + 0.287621i
\(443\) 12.9360 22.4059i 0.614610 1.06454i −0.375843 0.926683i \(-0.622647\pi\)
0.990453 0.137852i \(-0.0440199\pi\)
\(444\) 0 0
\(445\) 23.2014 18.9439i 1.09985 0.898026i
\(446\) 17.7204 + 10.2309i 0.839084 + 0.484445i
\(447\) 0 0
\(448\) 2.01563i 0.0952294i
\(449\) −20.7438 −0.978961 −0.489481 0.872014i \(-0.662814\pi\)
−0.489481 + 0.872014i \(0.662814\pi\)
\(450\) 0 0
\(451\) 46.5000 26.8468i 2.18960 1.26417i
\(452\) 9.47194 + 5.46863i 0.445523 + 0.257223i
\(453\) 0 0
\(454\) 11.4686 + 19.8642i 0.538249 + 0.932275i
\(455\) −12.0938 14.8118i −0.566964 0.694386i
\(456\) 0 0
\(457\) 39.0381i 1.82613i 0.407817 + 0.913064i \(0.366290\pi\)
−0.407817 + 0.913064i \(0.633710\pi\)
\(458\) −6.81952 + 3.93725i −0.318655 + 0.183976i
\(459\) 0 0
\(460\) 1.64386 + 10.1142i 0.0766453 + 0.471579i
\(461\) −8.49637 + 4.90538i −0.395715 + 0.228466i −0.684634 0.728887i \(-0.740038\pi\)
0.288918 + 0.957354i \(0.406704\pi\)
\(462\) 0 0
\(463\) 36.1548i 1.68026i 0.542389 + 0.840128i \(0.317520\pi\)
−0.542389 + 0.840128i \(0.682480\pi\)
\(464\) 7.34847 0.341144
\(465\) 0 0
\(466\) 12.8745 + 7.43310i 0.596400 + 0.344332i
\(467\) 23.6351 1.09370 0.546852 0.837229i \(-0.315826\pi\)
0.546852 + 0.837229i \(0.315826\pi\)
\(468\) 0 0
\(469\) −7.40588 4.27579i −0.341972 0.197438i
\(470\) −4.52032 + 11.9196i −0.208507 + 0.549809i
\(471\) 0 0
\(472\) 2.12132 1.22474i 0.0976417 0.0563735i
\(473\) 28.2177 + 48.8745i 1.29745 + 2.24725i
\(474\) 0 0
\(475\) −4.48528 21.3280i −0.205799 0.978594i
\(476\) 5.74559i 0.263349i
\(477\) 0 0
\(478\) 2.16569 + 3.75108i 0.0990563 + 0.171571i
\(479\) 30.6186 + 17.6777i 1.39900 + 0.807713i 0.994288 0.106731i \(-0.0340382\pi\)
0.404713 + 0.914444i \(0.367372\pi\)
\(480\) 0 0
\(481\) −7.40588 + 12.8274i −0.337679 + 0.584877i
\(482\) −6.92820 −0.315571
\(483\) 0 0
\(484\) −14.4686 + 25.0604i −0.657665 + 1.13911i
\(485\) 1.52192 + 9.36396i 0.0691067 + 0.425196i
\(486\) 0 0
\(487\) 6.23086 0.282347 0.141174 0.989985i \(-0.454912\pi\)
0.141174 + 0.989985i \(0.454912\pi\)
\(488\) −12.9360 7.46863i −0.585587 0.338089i
\(489\) 0 0
\(490\) 6.48283 1.05365i 0.292865 0.0475991i
\(491\) −4.17134 + 2.40832i −0.188250 + 0.108686i −0.591163 0.806552i \(-0.701331\pi\)
0.402913 + 0.915238i \(0.367998\pi\)
\(492\) 0 0
\(493\) −20.9470 −0.943405
\(494\) 11.0227 14.8492i 0.495935 0.668099i
\(495\) 0 0
\(496\) 0 0
\(497\) −12.8274 + 7.40588i −0.575386 + 0.332199i
\(498\) 0 0
\(499\) 7.43725 + 12.8817i 0.332937 + 0.576664i 0.983086 0.183142i \(-0.0586269\pi\)
−0.650149 + 0.759807i \(0.725294\pi\)
\(500\) −11.1713 0.449747i −0.499595 0.0201133i
\(501\) 0 0
\(502\) −7.07107 −0.315597
\(503\) 6.56708 11.3745i 0.292811 0.507164i −0.681662 0.731667i \(-0.738743\pi\)
0.974473 + 0.224503i \(0.0720759\pi\)
\(504\) 0 0
\(505\) 4.00000 + 4.89898i 0.177998 + 0.218002i
\(506\) −28.9600 −1.28743
\(507\) 0 0
\(508\) 5.98822 + 10.3719i 0.265684 + 0.460179i
\(509\) −1.30159 + 2.25442i −0.0576921 + 0.0999256i −0.893429 0.449204i \(-0.851707\pi\)
0.835737 + 0.549130i \(0.185041\pi\)
\(510\) 0 0
\(511\) −1.59412 2.76110i −0.0705197 0.122144i
\(512\) 1.00000i 0.0441942i
\(513\) 0 0
\(514\) 21.8745 0.964843
\(515\) 25.0400 + 9.49604i 1.10339 + 0.418446i
\(516\) 0 0
\(517\) −31.2014 18.0142i −1.37224 0.792262i
\(518\) 3.51844 + 6.09412i 0.154591 + 0.267760i
\(519\) 0 0
\(520\) −6.00000 7.34847i −0.263117 0.322252i
\(521\) 24.3412 1.06641 0.533204 0.845987i \(-0.320988\pi\)
0.533204 + 0.845987i \(0.320988\pi\)
\(522\) 0 0
\(523\) 2.87280 4.97583i 0.125619 0.217578i −0.796356 0.604828i \(-0.793242\pi\)
0.921975 + 0.387250i \(0.126575\pi\)
\(524\) 21.8759i 0.955655i
\(525\) 0 0
\(526\) −17.9059 10.3380i −0.780734 0.450757i
\(527\) 0 0
\(528\) 0 0
\(529\) 1.00000 + 1.73205i 0.0434783 + 0.0753066i
\(530\) −29.1396 11.0508i −1.26574 0.480014i
\(531\) 0 0
\(532\) −3.49117 8.06250i −0.151361 0.349554i
\(533\) −36.0470 −1.56137
\(534\) 0 0
\(535\) −8.67207 + 22.8673i −0.374926 + 0.988639i
\(536\) −3.67423 2.12132i −0.158703 0.0916271i
\(537\) 0 0
\(538\) 2.12132 + 1.22474i 0.0914566 + 0.0528025i
\(539\) 18.5622i 0.799533i
\(540\) 0 0
\(541\) 1.00000 1.73205i 0.0429934 0.0744667i −0.843728 0.536771i \(-0.819644\pi\)
0.886721 + 0.462304i \(0.152977\pi\)
\(542\) −1.73205 1.00000i −0.0743980 0.0429537i
\(543\) 0 0
\(544\) 2.85052i 0.122215i
\(545\) 18.8742 3.06762i 0.808484 0.131402i
\(546\) 0 0
\(547\) 11.9764 20.7438i 0.512076 0.886941i −0.487826 0.872941i \(-0.662210\pi\)
0.999902 0.0140006i \(-0.00445669\pi\)
\(548\) −8.04668 13.9373i −0.343737 0.595370i
\(549\) 0 0
\(550\) 6.31959 30.9596i 0.269468 1.32012i
\(551\) 29.3939 12.7279i 1.25222 0.542228i
\(552\) 0 0
\(553\) −6.98233 12.0938i −0.296919 0.514279i
\(554\) −5.68986 9.85513i −0.241739 0.418704i
\(555\) 0 0
\(556\) 2.00000 + 3.46410i 0.0848189 + 0.146911i
\(557\) 7.99234 13.8431i 0.338646 0.586552i −0.645532 0.763733i \(-0.723364\pi\)
0.984178 + 0.177181i \(0.0566977\pi\)
\(558\) 0 0
\(559\) 37.8878i 1.60248i
\(560\) −4.44870 + 0.723044i −0.187992 + 0.0305542i
\(561\) 0 0
\(562\) 1.30159i 0.0549044i
\(563\) 3.87451i 0.163291i 0.996661 + 0.0816455i \(0.0260175\pi\)
−0.996661 + 0.0816455i \(0.973982\pi\)
\(564\) 0 0
\(565\) 8.67207 22.8673i 0.364837 0.962034i
\(566\) 4.03125 6.98233i 0.169446 0.293489i
\(567\) 0 0
\(568\) −6.36396 + 3.67423i −0.267026 + 0.154167i
\(569\) −37.8902 −1.58844 −0.794221 0.607629i \(-0.792121\pi\)
−0.794221 + 0.607629i \(0.792121\pi\)
\(570\) 0 0
\(571\) 4.00000 0.167395 0.0836974 0.996491i \(-0.473327\pi\)
0.0836974 + 0.996491i \(0.473327\pi\)
\(572\) 23.2197 13.4059i 0.970863 0.560528i
\(573\) 0 0
\(574\) −8.56275 + 14.8311i −0.357402 + 0.619039i
\(575\) 21.7335 7.25635i 0.906350 0.302611i
\(576\) 0 0
\(577\) 0.714033i 0.0297256i −0.999890 0.0148628i \(-0.995269\pi\)
0.999890 0.0148628i \(-0.00473115\pi\)
\(578\) 8.87451i 0.369131i
\(579\) 0 0
\(580\) −2.63604 16.2189i −0.109456 0.673451i
\(581\) 20.9470i 0.869028i
\(582\) 0 0
\(583\) 44.0389 76.2776i 1.82390 3.15909i
\(584\) −0.790881 1.36985i −0.0327269 0.0566846i
\(585\) 0 0
\(586\) −9.43725 16.3458i −0.389849 0.675239i
\(587\) −15.4798 26.8118i −0.638919 1.10664i −0.985670 0.168683i \(-0.946049\pi\)
0.346752 0.937957i \(-0.387285\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) −3.46410 4.24264i −0.142615 0.174667i
\(591\) 0 0
\(592\) 1.74558 + 3.02344i 0.0717430 + 0.124263i
\(593\) −18.6371 + 32.2804i −0.765334 + 1.32560i 0.174736 + 0.984615i \(0.444093\pi\)
−0.940070 + 0.340981i \(0.889241\pi\)
\(594\) 0 0
\(595\) 12.6811 2.06106i 0.519876 0.0844950i
\(596\) 8.39655i 0.343936i
\(597\) 0 0
\(598\) 16.8375 + 9.72111i 0.688535 + 0.397526i
\(599\) −13.4722 + 23.3345i −0.550459 + 0.953423i 0.447782 + 0.894143i \(0.352214\pi\)
−0.998241 + 0.0592803i \(0.981119\pi\)
\(600\) 0 0
\(601\) 7.03688i 0.287040i 0.989647 + 0.143520i \(0.0458422\pi\)
−0.989647 + 0.143520i \(0.954158\pi\)
\(602\) −15.5885 9.00000i −0.635338 0.366813i
\(603\) 0 0
\(604\) −7.40588 4.27579i −0.301341 0.173979i
\(605\) 60.5012 + 22.9442i 2.45972 + 0.932812i
\(606\) 0 0
\(607\) −2.25442 −0.0915043 −0.0457521 0.998953i \(-0.514568\pi\)
−0.0457521 + 0.998953i \(0.514568\pi\)
\(608\) −1.73205 4.00000i −0.0702439 0.162221i
\(609\) 0 0
\(610\) −11.8436 + 31.2304i −0.479535 + 1.26448i
\(611\) 12.0938 + 20.9470i 0.489261 + 0.847425i
\(612\) 0 0
\(613\) 6.12133 3.53415i 0.247238 0.142743i −0.371261 0.928529i \(-0.621074\pi\)
0.618499 + 0.785786i \(0.287741\pi\)
\(614\) 9.72111 + 5.61249i 0.392312 + 0.226502i
\(615\) 0 0
\(616\) 12.7379i 0.513226i
\(617\) 17.8254 30.8745i 0.717624 1.24296i −0.244315 0.969696i \(-0.578563\pi\)
0.961939 0.273265i \(-0.0881036\pi\)
\(618\) 0 0
\(619\) −25.8118 −1.03746 −0.518731 0.854937i \(-0.673595\pi\)
−0.518731 + 0.854937i \(0.673595\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 7.07107 + 12.2474i 0.283524 + 0.491078i
\(623\) −23.3827 13.5000i −0.936808 0.540866i
\(624\) 0 0
\(625\) 3.01472 + 24.8176i 0.120589 + 0.992703i
\(626\) −13.8292 −0.552726
\(627\) 0 0
\(628\) 1.30159i 0.0519392i
\(629\) −4.97583 8.61839i −0.198399 0.343638i
\(630\) 0 0
\(631\) 13.5314 23.4370i 0.538675 0.933013i −0.460300 0.887763i \(-0.652258\pi\)
0.998976 0.0452500i \(-0.0144084\pi\)
\(632\) −3.46410 6.00000i −0.137795 0.238667i
\(633\) 0 0
\(634\) −28.7490 −1.14177
\(635\) 20.7438 16.9373i 0.823193 0.672134i
\(636\) 0 0
\(637\) 6.23086 10.7922i 0.246876 0.427601i
\(638\) 46.4393 1.83855
\(639\) 0 0
\(640\) −2.20711 + 0.358719i −0.0872436 + 0.0141796i
\(641\) 12.1706 + 21.0801i 0.480710 + 0.832614i 0.999755 0.0221329i \(-0.00704571\pi\)
−0.519045 + 0.854747i \(0.673712\pi\)
\(642\) 0 0
\(643\) −14.0978 + 8.13935i −0.555962 + 0.320985i −0.751523 0.659707i \(-0.770680\pi\)
0.195561 + 0.980691i \(0.437347\pi\)
\(644\) 7.99927 4.61838i 0.315215 0.181990i
\(645\) 0 0
\(646\) 4.93725 + 11.4021i 0.194254 + 0.448610i
\(647\) −17.8254 −0.700789 −0.350394 0.936602i \(-0.613952\pi\)
−0.350394 + 0.936602i \(0.613952\pi\)
\(648\) 0 0
\(649\) 13.4059 7.73989i 0.526227 0.303817i
\(650\) −14.0665 + 15.8787i −0.551735 + 0.622813i
\(651\) 0 0
\(652\) 11.2250 + 6.48074i 0.439604 + 0.253805i
\(653\) −11.1146 −0.434946 −0.217473 0.976066i \(-0.569781\pi\)
−0.217473 + 0.976066i \(0.569781\pi\)
\(654\) 0 0
\(655\) −48.2825 + 7.84733i −1.88655 + 0.306620i
\(656\) −4.24818 + 7.35807i −0.165864 + 0.287284i
\(657\) 0 0
\(658\) 11.4912 0.447973
\(659\) −7.99927 + 13.8551i −0.311607 + 0.539719i −0.978710 0.205246i \(-0.934201\pi\)
0.667103 + 0.744965i \(0.267534\pi\)
\(660\) 0 0
\(661\) 14.8118 + 8.55157i 0.576111 + 0.332618i 0.759586 0.650407i \(-0.225401\pi\)
−0.183475 + 0.983024i \(0.558735\pi\)
\(662\) −11.2583 19.5000i −0.437567 0.757889i
\(663\) 0 0
\(664\) 10.3923i 0.403300i
\(665\) −16.5425 + 10.5976i −0.641489 + 0.410955i
\(666\) 0 0
\(667\) 16.8375 + 29.1633i 0.651949 + 1.12921i
\(668\) −3.51844 + 2.03137i −0.136133 + 0.0785962i
\(669\) 0 0
\(670\) −3.36396 + 8.87039i −0.129961 + 0.342693i
\(671\) −81.7505 47.1987i −3.15594 1.82208i
\(672\) 0 0
\(673\) −23.9529 −0.923316 −0.461658 0.887058i \(-0.652745\pi\)
−0.461658 + 0.887058i \(0.652745\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) −5.00000 −0.192308
\(677\) 18.8745i 0.725406i −0.931905 0.362703i \(-0.881854\pi\)
0.931905 0.362703i \(-0.118146\pi\)
\(678\) 0 0
\(679\) 7.40588 4.27579i 0.284212 0.164090i
\(680\) 6.29141 1.02254i 0.241265 0.0392126i
\(681\) 0 0
\(682\) 0 0
\(683\) 48.6863i 1.86293i 0.363833 + 0.931464i \(0.381468\pi\)
−0.363833 + 0.931464i \(0.618532\pi\)
\(684\) 0 0
\(685\) −27.8745 + 22.7594i −1.06503 + 0.869594i
\(686\) −10.0149 17.3463i −0.382370 0.662285i
\(687\) 0 0
\(688\) −7.73381 4.46512i −0.294849 0.170231i
\(689\) −51.2087 + 29.5654i −1.95090 + 1.12635i
\(690\) 0 0
\(691\) −17.0000 −0.646710 −0.323355 0.946278i \(-0.604811\pi\)
−0.323355 + 0.946278i \(0.604811\pi\)
\(692\) 7.93725i 0.301729i
\(693\) 0 0
\(694\) 3.00000 + 1.73205i 0.113878 + 0.0657477i
\(695\) 6.92820 5.65685i 0.262802 0.214577i
\(696\) 0 0
\(697\) 12.1096 20.9744i 0.458682 0.794460i
\(698\) 28.5245 16.4686i 1.07967 0.623347i
\(699\) 0 0
\(700\) 3.19167 + 9.55939i 0.120634 + 0.361311i
\(701\) −37.7365 + 21.7872i −1.42529 + 0.822891i −0.996744 0.0806288i \(-0.974307\pi\)
−0.428546 + 0.903520i \(0.640974\pi\)
\(702\) 0 0
\(703\) 12.2191 + 9.07031i 0.460851 + 0.342093i
\(704\) 6.31959i 0.238179i
\(705\) 0 0
\(706\) −26.4686 + 15.2817i −0.996160 + 0.575133i
\(707\) 2.85052 4.93725i 0.107205 0.185685i
\(708\) 0 0
\(709\) 3.40588 5.89916i 0.127911 0.221548i −0.794956 0.606667i \(-0.792506\pi\)
0.922867 + 0.385119i \(0.125840\pi\)
\(710\) 10.3923 + 12.7279i 0.390016 + 0.477670i
\(711\) 0 0
\(712\) −11.6007 6.69767i −0.434755 0.251006i
\(713\) 0 0
\(714\) 0 0
\(715\) −37.9176 46.4393i −1.41804 1.73673i
\(716\) −6.69767 + 11.6007i −0.250304 + 0.433539i
\(717\) 0 0
\(718\) −3.53553 + 6.12372i −0.131945 + 0.228535i
\(719\) 27.9386 16.1304i 1.04193 0.601561i 0.121553 0.992585i \(-0.461213\pi\)
0.920380 + 0.391024i \(0.127879\pi\)
\(720\) 0 0
\(721\) 24.1400i 0.899022i
\(722\) −13.8564 13.0000i −0.515682 0.483810i
\(723\) 0 0
\(724\) −10.4059 + 6.00784i −0.386732 + 0.223280i
\(725\) −34.8511 + 11.6360i −1.29434 + 0.432152i
\(726\) 0 0
\(727\) −12.5948 + 7.27162i −0.467116 + 0.269690i −0.715032 0.699092i \(-0.753588\pi\)
0.247916 + 0.968782i \(0.420254\pi\)
\(728\) −4.27579 + 7.40588i −0.158471 + 0.274480i
\(729\) 0 0
\(730\) −2.73969 + 2.23695i −0.101401 + 0.0827932i
\(731\) 22.0454 + 12.7279i 0.815379 + 0.470759i
\(732\) 0 0
\(733\) 7.78233i 0.287447i −0.989618 0.143724i \(-0.954092\pi\)
0.989618 0.143724i \(-0.0459076\pi\)
\(734\) 20.3100 0.749654
\(735\) 0 0
\(736\) 3.96863 2.29129i 0.146286 0.0844580i
\(737\) −23.2197 13.4059i −0.855307 0.493812i
\(738\) 0 0
\(739\) 21.3118 + 36.9131i 0.783966 + 1.35787i 0.929615 + 0.368532i \(0.120140\pi\)
−0.145649 + 0.989336i \(0.546527\pi\)
\(740\) 6.04688 4.93725i 0.222288 0.181497i
\(741\) 0 0
\(742\) 28.0923i 1.03130i
\(743\) 26.7381 15.4373i 0.980926 0.566338i 0.0783765 0.996924i \(-0.475026\pi\)
0.902550 + 0.430586i \(0.141693\pi\)
\(744\) 0 0
\(745\) 18.5321 3.01200i 0.678963 0.110351i
\(746\) −12.7445 + 7.35807i −0.466611 + 0.269398i
\(747\) 0 0
\(748\) 18.0142i 0.658663i
\(749\) 22.0454 0.805522
\(750\) 0 0
\(751\) −21.0000 12.1244i −0.766301 0.442424i 0.0652526 0.997869i \(-0.479215\pi\)
−0.831553 + 0.555445i \(0.812548\pi\)
\(752\) 5.70105 0.207896
\(753\) 0 0
\(754\) −27.0000 15.5885i −0.983282 0.567698i
\(755\) −6.78049 + 17.8794i −0.246767 + 0.650697i
\(756\) 0 0
\(757\) 13.7220 7.92242i 0.498736 0.287945i −0.229456 0.973319i \(-0.573695\pi\)
0.728191 + 0.685374i \(0.240361\pi\)
\(758\) −10.2836 17.8118i −0.373518 0.646952i
\(759\) 0 0
\(760\) −8.20711 + 5.25770i −0.297703 + 0.190717i
\(761\) 21.7872i 0.789786i 0.918727 + 0.394893i \(0.129218\pi\)
−0.918727 + 0.394893i \(0.870782\pi\)
\(762\) 0 0
\(763\) −8.61839 14.9275i −0.312007 0.540411i
\(764\) 10.9459 + 6.31959i 0.396007 + 0.228635i
\(765\) 0 0
\(766\) −1.93725 + 3.35542i −0.0699958 + 0.121236i
\(767\) −10.3923 −0.375244
\(768\) 0 0
\(769\) −15.9373 + 27.6041i −0.574712 + 0.995431i 0.421361 + 0.906893i \(0.361553\pi\)
−0.996073 + 0.0885374i \(0.971781\pi\)
\(770\) −28.1140 + 4.56934i −1.01316 + 0.164668i
\(771\) 0 0
\(772\) 12.7279 0.458088
\(773\) −31.9343 18.4373i −1.14860 0.663142i −0.200051 0.979786i \(-0.564111\pi\)
−0.948545 + 0.316644i \(0.897444\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 3.67423 2.12132i 0.131897 0.0761510i
\(777\) 0 0
\(778\) −15.5563 −0.557722
\(779\) −4.24818 + 36.7903i −0.152207 + 1.31815i
\(780\) 0 0
\(781\) −40.2176 + 23.2197i −1.43910 + 0.830865i
\(782\) −11.3127 + 6.53137i −0.404540 + 0.233561i
\(783\) 0 0
\(784\) −1.46863 2.54374i −0.0524510 0.0908477i
\(785\) 2.87275 0.466907i 0.102533 0.0166646i
\(786\) 0 0
\(787\) −14.2309 −0.507276 −0.253638 0.967299i \(-0.581627\pi\)
−0.253638 + 0.967299i \(0.581627\pi\)
\(788\) −7.79423 + 13.5000i −0.277658 + 0.480918i
\(789\) 0 0
\(790\) −12.0000 + 9.79796i −0.426941 + 0.348596i
\(791\) −22.0454 −0.783844
\(792\) 0 0
\(793\) 31.6867 + 54.8830i 1.12523 + 1.94895i
\(794\) 12.8214 22.2073i 0.455014 0.788108i
\(795\) 0 0
\(796\) −10.4686 18.1322i −0.371051 0.642679i
\(797\) 25.9373i 0.918745i −0.888244 0.459372i \(-0.848074\pi\)
0.888244 0.459372i \(-0.151926\pi\)
\(798\) 0 0
\(799\) −16.2510 −0.574918
\(800\) 1.58346 + 4.74264i 0.0559839 + 0.167678i
\(801\) 0 0
\(802\) 25.3227 + 14.6201i 0.894177 + 0.516253i
\(803\) −4.99804 8.65687i −0.176377 0.305494i
\(804\) 0 0
\(805\) −13.0627 15.9985i −0.460401 0.563874i
\(806\) 0 0
\(807\) 0 0
\(808\) 1.41421 2.44949i 0.0497519 0.0861727i
\(809\) 47.8171i 1.68116i 0.541689 + 0.840579i \(0.317785\pi\)
−0.541689 + 0.840579i \(0.682215\pi\)
\(810\) 0 0
\(811\) 11.9059 + 6.87386i 0.418072 + 0.241374i 0.694252 0.719732i \(-0.255735\pi\)
−0.276180 + 0.961106i \(0.589069\pi\)
\(812\) −12.8274 + 7.40588i −0.450152 + 0.259895i
\(813\) 0 0
\(814\) 11.0314 + 19.1069i 0.386649 + 0.669696i
\(815\) 10.2771 27.0995i 0.359990 0.949253i
\(816\) 0 0
\(817\) −38.6690 4.46512i −1.35286 0.156215i
\(818\) −29.4449 −1.02952
\(819\) 0 0
\(820\) 17.7639 + 6.73671i 0.620344 + 0.235256i
\(821\) −3.59739 2.07695i −0.125550 0.0724861i 0.435910 0.899990i \(-0.356427\pi\)
−0.561460 + 0.827504i \(0.689760\pi\)
\(822\) 0 0
\(823\) −13.7220 7.92242i −0.478320 0.276158i 0.241396 0.970427i \(-0.422395\pi\)
−0.719716 + 0.694269i \(0.755728\pi\)
\(824\) 11.9764i 0.417219i
\(825\) 0 0
\(826\) −2.46863 + 4.27579i −0.0858945 + 0.148774i
\(827\) −16.5088 9.53137i −0.574068 0.331438i 0.184704 0.982794i \(-0.440867\pi\)
−0.758772 + 0.651356i \(0.774201\pi\)
\(828\) 0 0
\(829\) 3.24674i 0.112764i 0.998409 + 0.0563820i \(0.0179565\pi\)
−0.998409 + 0.0563820i \(0.982044\pi\)
\(830\) −22.9369 + 3.72792i −0.796152 + 0.129398i
\(831\) 0 0
\(832\) −2.12132 + 3.67423i −0.0735436 + 0.127381i
\(833\) 4.18636 + 7.25098i 0.145049 + 0.251232i
\(834\) 0 0
\(835\) 5.74559 + 7.03688i 0.198834 + 0.243521i
\(836\) −10.9459 25.2784i −0.378570 0.874271i
\(837\) 0 0
\(838\) −5.94386 10.2951i −0.205327 0.355637i
\(839\) 24.4949 + 42.4264i 0.845658 + 1.46472i 0.885049 + 0.465498i \(0.154125\pi\)
−0.0393910 + 0.999224i \(0.512542\pi\)
\(840\) 0 0
\(841\) −12.5000 21.6506i −0.431034 0.746574i
\(842\) 4.38447 7.59412i 0.151099 0.261711i
\(843\) 0 0
\(844\) 13.7477i 0.473216i
\(845\) 1.79360 + 11.0355i 0.0617016 + 0.379634i
\(846\) 0 0
\(847\) 58.3267i 2.00413i
\(848\) 13.9373i 0.478607i
\(849\) 0 0
\(850\) −4.51370 13.5190i −0.154819 0.463698i
\(851\) −7.99927 + 13.8551i −0.274211 + 0.474948i
\(852\) 0 0
\(853\) −17.5889 + 10.1550i −0.602234 + 0.347700i −0.769920 0.638141i \(-0.779704\pi\)
0.167686 + 0.985840i \(0.446370\pi\)
\(854\) 30.1079 1.03027
\(855\) 0 0
\(856\) 10.9373 0.373828
\(857\) 34.5323 19.9373i 1.17960 0.681044i 0.223680 0.974663i \(-0.428193\pi\)
0.955923 + 0.293619i \(0.0948597\pi\)
\(858\) 0 0
\(859\) 11.9686 20.7303i 0.408364 0.707308i −0.586342 0.810063i \(-0.699433\pi\)
0.994707 + 0.102756i \(0.0327660\pi\)
\(860\) −7.08072 + 18.6711i −0.241451 + 0.636678i
\(861\) 0 0
\(862\) 17.1464i 0.584010i
\(863\) 41.8118i 1.42329i −0.702540 0.711644i \(-0.747951\pi\)
0.702540 0.711644i \(-0.252049\pi\)
\(864\) 0 0
\(865\) 17.5184 2.84725i 0.595642 0.0968093i
\(866\) 26.6926i 0.907051i
\(867\) 0 0
\(868\) 0 0
\(869\) −21.8917 37.9176i −0.742625 1.28627i
\(870\) 0 0
\(871\) 9.00000 + 15.5885i 0.304953 + 0.528195i
\(872\) −4.27579 7.40588i −0.144796 0.250795i
\(873\) 0 0
\(874\) 11.9059 16.0390i 0.402722 0.542528i
\(875\) 19.9537 10.4735i 0.674557 0.354069i
\(876\) 0 0
\(877\) 2.49706 + 4.32503i 0.0843197 + 0.146046i 0.905101 0.425196i \(-0.139795\pi\)
−0.820781 + 0.571242i \(0.806462\pi\)
\(878\) −16.4001 + 28.4059i −0.553478 + 0.958652i
\(879\) 0 0
\(880\) −13.9480 + 2.26696i −0.470188 + 0.0764192i
\(881\) 16.3078i 0.549425i 0.961526 + 0.274712i \(0.0885826\pi\)
−0.961526 + 0.274712i \(0.911417\pi\)
\(882\) 0 0
\(883\) −2.87280 1.65861i −0.0966773 0.0558166i 0.450882 0.892584i \(-0.351110\pi\)
−0.547559 + 0.836767i \(0.684443\pi\)
\(884\) 6.04688 10.4735i 0.203378 0.352262i
\(885\) 0 0
\(886\) 25.8721i 0.869190i
\(887\) −39.7285 22.9373i −1.33395 0.770158i −0.348049 0.937476i \(-0.613156\pi\)
−0.985903 + 0.167319i \(0.946489\pi\)
\(888\) 0 0
\(889\) −20.9059 12.0700i −0.701161 0.404815i
\(890\) −10.6211 + 28.0066i −0.356019 + 0.938783i
\(891\) 0 0
\(892\) −20.4617 −0.685109
\(893\) 22.8042 9.87451i 0.763113 0.330438i
\(894\) 0 0
\(895\) 28.0066 + 10.6211i 0.936157 + 0.355024i
\(896\) 1.00781 + 1.74558i 0.0336687 + 0.0583158i
\(897\) 0 0
\(898\) 17.9647 10.3719i 0.599489 0.346115i
\(899\) 0 0
\(900\) 0 0
\(901\) 39.7285i 1.32355i
\(902\) −26.8468 + 46.5000i −0.893900 + 1.54828i
\(903\) 0 0
\(904\) −10.9373 −0.363768
\(905\) 16.9927 + 20.8118i 0.564858 + 0.691806i
\(906\) 0 0
\(907\) −17.7220 30.6955i −0.588451 1.01923i −0.994436 0.105347i \(-0.966405\pi\)
0.405985 0.913880i \(-0.366929\pi\)
\(908\) −19.8642 11.4686i −0.659218 0.380600i
\(909\) 0 0
\(910\) 17.8794 + 6.78049i 0.592696 + 0.224771i
\(911\) 33.9855 1.12599 0.562994 0.826461i \(-0.309649\pi\)
0.562994 + 0.826461i \(0.309649\pi\)
\(912\) 0 0
\(913\) 65.6751i 2.17353i
\(914\) −19.5191 33.8080i −0.645633 1.11827i
\(915\) 0 0
\(916\) 3.93725 6.81952i 0.130091 0.225323i
\(917\) 22.0469 + 38.1863i 0.728051 + 1.26102i
\(918\) 0 0
\(919\) −12.8118 −0.422621 −0.211311 0.977419i \(-0.567773\pi\)
−0.211311 + 0.977419i \(0.567773\pi\)
\(920\) −6.48074 7.93725i −0.213664 0.261684i
\(921\) 0 0
\(922\) 4.90538 8.49637i 0.161550 0.279813i
\(923\) 31.1769 1.02620
\(924\) 0 0
\(925\) −13.0662 11.5750i −0.429613 0.380584i
\(926\) −18.0774 31.3110i −0.594060 1.02894i
\(927\) 0 0
\(928\) −6.36396 + 3.67423i −0.208907 + 0.120613i
\(929\) 2.94659 1.70121i 0.0966745 0.0558150i −0.450883 0.892583i \(-0.648891\pi\)
0.547558 + 0.836768i \(0.315558\pi\)
\(930\) 0 0
\(931\) −10.2804 7.63121i −0.336926 0.250103i
\(932\) −14.8662 −0.486959
\(933\) 0 0
\(934\) −20.4686 + 11.8176i −0.669754 + 0.386683i
\(935\) 39.7592 6.46203i 1.30026 0.211331i
\(936\) 0 0
\(937\) 36.0624 + 20.8207i 1.17811 + 0.680181i 0.955576 0.294744i \(-0.0952343\pi\)
0.222532 + 0.974925i \(0.428568\pi\)
\(938\) 8.55157 0.279219
\(939\) 0 0
\(940\) −2.04508 12.5828i −0.0667031 0.410407i
\(941\) −6.12372 + 10.6066i −0.199628 + 0.345765i −0.948408 0.317053i \(-0.897307\pi\)
0.748780 + 0.662819i \(0.230640\pi\)
\(942\) 0 0
\(943\) −38.9352 −1.26791
\(944\) −1.22474 + 2.12132i −0.0398621 + 0.0690431i
\(945\) 0 0
\(946\) −48.8745 28.2177i −1.58905 0.917437i
\(947\) 4.88936 + 8.46863i 0.158883 + 0.275193i 0.934466 0.356052i \(-0.115877\pi\)
−0.775583 + 0.631245i \(0.782544\pi\)
\(948\) 0 0
\(949\) 6.71084i 0.217843i
\(950\) 14.5484 + 16.2279i 0.472011 + 0.526503i
\(951\) 0 0
\(952\) −2.87280 4.97583i −0.0931078 0.161267i
\(953\) −29.3362 + 16.9373i −0.950292 + 0.548651i −0.893172 0.449716i \(-0.851525\pi\)
−0.0571205 + 0.998367i \(0.518192\pi\)
\(954\) 0 0
\(955\) 10.0215 26.4256i 0.324289 0.855113i
\(956\) −3.75108 2.16569i −0.121319 0.0700434i
\(957\) 0 0
\(958\) −35.3553 −1.14228
\(959\) 28.0923 + 16.2191i 0.907147 + 0.523742i
\(960\) 0 0
\(961\) 31.0000 1.00000
\(962\) 14.8118i 0.477550i
\(963\) 0 0
\(964\) 6.00000 3.46410i 0.193247 0.111571i
\(965\) −4.56575 28.0919i −0.146977 0.904310i
\(966\) 0 0
\(967\) 7.86691 4.54196i 0.252983 0.146060i −0.368146 0.929768i \(-0.620008\pi\)
0.621129 + 0.783708i \(0.286674\pi\)
\(968\) 28.9373i 0.930079i
\(969\) 0 0
\(970\) −6.00000 7.34847i −0.192648 0.235945i
\(971\) −13.4722 23.3345i −0.432343 0.748841i 0.564731 0.825275i \(-0.308980\pi\)
−0.997075 + 0.0764343i \(0.975646\pi\)
\(972\) 0 0
\(973\) −6.98233 4.03125i −0.223843 0.129236i
\(974\) −5.39608 + 3.11543i −0.172902 + 0.0998248i
\(975\) 0 0
\(976\) 14.9373 0.478130
\(977\) 40.9373i 1.30970i 0.755759 + 0.654849i \(0.227268\pi\)
−0.755759 + 0.654849i \(0.772732\pi\)
\(978\) 0 0
\(979\) −73.3118 42.3266i −2.34305 1.35276i
\(980\) −5.08747 + 4.15390i −0.162513 + 0.132692i
\(981\) 0 0
\(982\) 2.40832 4.17134i 0.0768526 0.133113i
\(983\) 9.63496 5.56275i 0.307307 0.177424i −0.338414 0.940997i \(-0.609890\pi\)
0.645721 + 0.763573i \(0.276557\pi\)
\(984\) 0 0
\(985\) 32.5919 + 12.3600i 1.03846 + 0.393822i
\(986\) 18.1406 10.4735i 0.577715 0.333544i
\(987\) 0 0
\(988\) −2.12132 + 18.3712i −0.0674882 + 0.584465i
\(989\) 40.9235i 1.30129i
\(990\) 0 0
\(991\) 16.5941 9.58062i 0.527130 0.304338i −0.212717 0.977114i \(-0.568231\pi\)
0.739847 + 0.672775i \(0.234898\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 7.40588 12.8274i 0.234900 0.406859i
\(995\) −36.2644 + 29.6097i −1.14966 + 0.938692i
\(996\) 0 0
\(997\) 36.7903 + 21.2409i 1.16516 + 0.672707i 0.952536 0.304427i \(-0.0984650\pi\)
0.212626 + 0.977134i \(0.431798\pi\)
\(998\) −12.8817 7.43725i −0.407763 0.235422i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1710.2.q.a.449.2 yes 16
3.2 odd 2 inner 1710.2.q.a.449.8 yes 16
5.4 even 2 inner 1710.2.q.a.449.5 yes 16
15.14 odd 2 inner 1710.2.q.a.449.3 yes 16
19.8 odd 6 inner 1710.2.q.a.179.4 yes 16
57.8 even 6 inner 1710.2.q.a.179.6 yes 16
95.84 odd 6 inner 1710.2.q.a.179.7 yes 16
285.179 even 6 inner 1710.2.q.a.179.1 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1710.2.q.a.179.1 16 285.179 even 6 inner
1710.2.q.a.179.4 yes 16 19.8 odd 6 inner
1710.2.q.a.179.6 yes 16 57.8 even 6 inner
1710.2.q.a.179.7 yes 16 95.84 odd 6 inner
1710.2.q.a.449.2 yes 16 1.1 even 1 trivial
1710.2.q.a.449.3 yes 16 15.14 odd 2 inner
1710.2.q.a.449.5 yes 16 5.4 even 2 inner
1710.2.q.a.449.8 yes 16 3.2 odd 2 inner