Properties

Label 176.4.m.d.113.2
Level $176$
Weight $4$
Character 176.113
Analytic conductor $10.384$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [176,4,Mod(49,176)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(176, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([0, 0, 4]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("176.49");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 176 = 2^{4} \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 176.m (of order \(5\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.3843361610\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(3\) over \(\Q(\zeta_{5})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - x^{11} + 70 x^{10} - 84 x^{9} + 2459 x^{8} - 8514 x^{7} + 54995 x^{6} - 432951 x^{5} + \cdots + 40896025 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: no (minimal twist has level 44)
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 113.2
Root \(1.50918 - 1.09648i\) of defining polynomial
Character \(\chi\) \(=\) 176.113
Dual form 176.4.m.d.81.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.576456 + 1.77415i) q^{3} +(14.9139 + 10.8356i) q^{5} +(-9.02047 + 27.7622i) q^{7} +(19.0282 - 13.8248i) q^{9} +(-5.54276 - 36.0594i) q^{11} +(-63.1228 + 45.8614i) q^{13} +(-10.6267 + 32.7057i) q^{15} +(-23.1093 - 16.7899i) q^{17} +(13.4717 + 41.4615i) q^{19} -54.4541 q^{21} +104.563 q^{23} +(66.3872 + 204.319i) q^{25} +(76.2440 + 55.3945i) q^{27} +(13.1435 - 40.4515i) q^{29} +(-51.0435 + 37.0853i) q^{31} +(60.7796 - 30.6203i) q^{33} +(-435.349 + 316.300i) q^{35} +(-98.0877 + 301.883i) q^{37} +(-117.752 - 85.5522i) q^{39} +(-21.1199 - 65.0003i) q^{41} +227.116 q^{43} +433.583 q^{45} +(3.32926 + 10.2464i) q^{47} +(-411.875 - 299.245i) q^{49} +(16.4663 - 50.6779i) q^{51} +(402.111 - 292.151i) q^{53} +(308.060 - 597.844i) q^{55} +(-65.7931 + 47.8015i) q^{57} +(130.834 - 402.665i) q^{59} +(154.010 + 111.895i) q^{61} +(212.162 + 652.968i) q^{63} -1438.34 q^{65} +386.223 q^{67} +(60.2760 + 185.511i) q^{69} +(-559.414 - 406.438i) q^{71} +(98.3036 - 302.547i) q^{73} +(-324.223 + 235.562i) q^{75} +(1051.08 + 171.393i) q^{77} +(130.828 - 95.0523i) q^{79} +(141.912 - 436.760i) q^{81} +(318.845 + 231.654i) q^{83} +(-162.721 - 500.804i) q^{85} +79.3436 q^{87} +108.129 q^{89} +(-703.814 - 2166.12i) q^{91} +(-95.2193 - 69.1808i) q^{93} +(-248.344 + 764.325i) q^{95} +(549.111 - 398.952i) q^{97} +(-603.981 - 609.516i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 4 q^{3} - 4 q^{5} - 6 q^{7} + 47 q^{9} - 39 q^{11} - 10 q^{13} - 74 q^{15} - 56 q^{17} + 141 q^{19} - 304 q^{21} + 388 q^{23} - 203 q^{25} + 331 q^{27} + 772 q^{29} - 882 q^{31} + 981 q^{33} - 412 q^{35}+ \cdots - 3563 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/176\mathbb{Z}\right)^\times\).

\(n\) \(111\) \(133\) \(145\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{4}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.576456 + 1.77415i 0.110939 + 0.341435i 0.991078 0.133280i \(-0.0425510\pi\)
−0.880139 + 0.474715i \(0.842551\pi\)
\(4\) 0 0
\(5\) 14.9139 + 10.8356i 1.33394 + 0.969163i 0.999644 + 0.0266942i \(0.00849804\pi\)
0.334295 + 0.942469i \(0.391502\pi\)
\(6\) 0 0
\(7\) −9.02047 + 27.7622i −0.487060 + 1.49902i 0.341916 + 0.939731i \(0.388924\pi\)
−0.828976 + 0.559285i \(0.811076\pi\)
\(8\) 0 0
\(9\) 19.0282 13.8248i 0.704746 0.512028i
\(10\) 0 0
\(11\) −5.54276 36.0594i −0.151928 0.988392i
\(12\) 0 0
\(13\) −63.1228 + 45.8614i −1.34670 + 0.978435i −0.347532 + 0.937668i \(0.612980\pi\)
−0.999169 + 0.0407672i \(0.987020\pi\)
\(14\) 0 0
\(15\) −10.6267 + 32.7057i −0.182921 + 0.562972i
\(16\) 0 0
\(17\) −23.1093 16.7899i −0.329695 0.239538i 0.410606 0.911813i \(-0.365317\pi\)
−0.740301 + 0.672275i \(0.765317\pi\)
\(18\) 0 0
\(19\) 13.4717 + 41.4615i 0.162664 + 0.500628i 0.998857 0.0478081i \(-0.0152236\pi\)
−0.836193 + 0.548436i \(0.815224\pi\)
\(20\) 0 0
\(21\) −54.4541 −0.565851
\(22\) 0 0
\(23\) 104.563 0.947952 0.473976 0.880538i \(-0.342818\pi\)
0.473976 + 0.880538i \(0.342818\pi\)
\(24\) 0 0
\(25\) 66.3872 + 204.319i 0.531098 + 1.63455i
\(26\) 0 0
\(27\) 76.2440 + 55.3945i 0.543451 + 0.394840i
\(28\) 0 0
\(29\) 13.1435 40.4515i 0.0841615 0.259022i −0.900116 0.435650i \(-0.856519\pi\)
0.984278 + 0.176627i \(0.0565187\pi\)
\(30\) 0 0
\(31\) −51.0435 + 37.0853i −0.295732 + 0.214862i −0.725750 0.687958i \(-0.758507\pi\)
0.430018 + 0.902820i \(0.358507\pi\)
\(32\) 0 0
\(33\) 60.7796 30.6203i 0.320617 0.161525i
\(34\) 0 0
\(35\) −435.349 + 316.300i −2.10250 + 1.52755i
\(36\) 0 0
\(37\) −98.0877 + 301.883i −0.435825 + 1.34133i 0.456414 + 0.889768i \(0.349134\pi\)
−0.892239 + 0.451564i \(0.850866\pi\)
\(38\) 0 0
\(39\) −117.752 85.5522i −0.483474 0.351264i
\(40\) 0 0
\(41\) −21.1199 65.0003i −0.0804481 0.247594i 0.902741 0.430185i \(-0.141552\pi\)
−0.983189 + 0.182591i \(0.941552\pi\)
\(42\) 0 0
\(43\) 227.116 0.805463 0.402731 0.915318i \(-0.368061\pi\)
0.402731 + 0.915318i \(0.368061\pi\)
\(44\) 0 0
\(45\) 433.583 1.43633
\(46\) 0 0
\(47\) 3.32926 + 10.2464i 0.0103324 + 0.0317999i 0.956090 0.293074i \(-0.0946782\pi\)
−0.945757 + 0.324874i \(0.894678\pi\)
\(48\) 0 0
\(49\) −411.875 299.245i −1.20080 0.872434i
\(50\) 0 0
\(51\) 16.4663 50.6779i 0.0452105 0.139144i
\(52\) 0 0
\(53\) 402.111 292.151i 1.04215 0.757170i 0.0714497 0.997444i \(-0.477237\pi\)
0.970705 + 0.240274i \(0.0772375\pi\)
\(54\) 0 0
\(55\) 308.060 597.844i 0.755250 1.46570i
\(56\) 0 0
\(57\) −65.7931 + 47.8015i −0.152886 + 0.111078i
\(58\) 0 0
\(59\) 130.834 402.665i 0.288697 0.888517i −0.696570 0.717489i \(-0.745291\pi\)
0.985266 0.171028i \(-0.0547088\pi\)
\(60\) 0 0
\(61\) 154.010 + 111.895i 0.323262 + 0.234864i 0.737566 0.675275i \(-0.235975\pi\)
−0.414304 + 0.910139i \(0.635975\pi\)
\(62\) 0 0
\(63\) 212.162 + 652.968i 0.424285 + 1.30581i
\(64\) 0 0
\(65\) −1438.34 −2.74468
\(66\) 0 0
\(67\) 386.223 0.704248 0.352124 0.935953i \(-0.385459\pi\)
0.352124 + 0.935953i \(0.385459\pi\)
\(68\) 0 0
\(69\) 60.2760 + 185.511i 0.105165 + 0.323664i
\(70\) 0 0
\(71\) −559.414 406.438i −0.935074 0.679371i 0.0121559 0.999926i \(-0.496131\pi\)
−0.947230 + 0.320555i \(0.896131\pi\)
\(72\) 0 0
\(73\) 98.3036 302.547i 0.157610 0.485075i −0.840806 0.541337i \(-0.817918\pi\)
0.998416 + 0.0562620i \(0.0179182\pi\)
\(74\) 0 0
\(75\) −324.223 + 235.562i −0.499174 + 0.362671i
\(76\) 0 0
\(77\) 1051.08 + 171.393i 1.55561 + 0.253664i
\(78\) 0 0
\(79\) 130.828 95.0523i 0.186321 0.135370i −0.490715 0.871320i \(-0.663264\pi\)
0.677035 + 0.735950i \(0.263264\pi\)
\(80\) 0 0
\(81\) 141.912 436.760i 0.194667 0.599123i
\(82\) 0 0
\(83\) 318.845 + 231.654i 0.421660 + 0.306354i 0.778305 0.627886i \(-0.216080\pi\)
−0.356645 + 0.934240i \(0.616080\pi\)
\(84\) 0 0
\(85\) −162.721 500.804i −0.207642 0.639057i
\(86\) 0 0
\(87\) 79.3436 0.0977762
\(88\) 0 0
\(89\) 108.129 0.128782 0.0643912 0.997925i \(-0.479489\pi\)
0.0643912 + 0.997925i \(0.479489\pi\)
\(90\) 0 0
\(91\) −703.814 2166.12i −0.810766 2.49528i
\(92\) 0 0
\(93\) −95.2193 69.1808i −0.106170 0.0771368i
\(94\) 0 0
\(95\) −248.344 + 764.325i −0.268206 + 0.825454i
\(96\) 0 0
\(97\) 549.111 398.952i 0.574781 0.417603i −0.262058 0.965052i \(-0.584401\pi\)
0.836839 + 0.547449i \(0.184401\pi\)
\(98\) 0 0
\(99\) −603.981 609.516i −0.613155 0.618774i
\(100\) 0 0
\(101\) 913.347 663.585i 0.899816 0.653755i −0.0386027 0.999255i \(-0.512291\pi\)
0.938419 + 0.345500i \(0.112291\pi\)
\(102\) 0 0
\(103\) 30.3811 93.5035i 0.0290635 0.0894483i −0.935473 0.353399i \(-0.885026\pi\)
0.964536 + 0.263951i \(0.0850257\pi\)
\(104\) 0 0
\(105\) −812.122 590.041i −0.754810 0.548401i
\(106\) 0 0
\(107\) 168.311 + 518.006i 0.152067 + 0.468015i 0.997852 0.0655096i \(-0.0208673\pi\)
−0.845785 + 0.533524i \(0.820867\pi\)
\(108\) 0 0
\(109\) 367.085 0.322572 0.161286 0.986908i \(-0.448436\pi\)
0.161286 + 0.986908i \(0.448436\pi\)
\(110\) 0 0
\(111\) −592.129 −0.506328
\(112\) 0 0
\(113\) −172.032 529.461i −0.143216 0.440774i 0.853561 0.520993i \(-0.174438\pi\)
−0.996777 + 0.0802186i \(0.974438\pi\)
\(114\) 0 0
\(115\) 1559.44 + 1133.00i 1.26451 + 0.918720i
\(116\) 0 0
\(117\) −567.087 + 1745.31i −0.448096 + 1.37910i
\(118\) 0 0
\(119\) 674.579 490.110i 0.519652 0.377549i
\(120\) 0 0
\(121\) −1269.56 + 399.737i −0.953836 + 0.300328i
\(122\) 0 0
\(123\) 103.146 74.9397i 0.0756124 0.0549356i
\(124\) 0 0
\(125\) −511.745 + 1574.99i −0.366175 + 1.12697i
\(126\) 0 0
\(127\) −1050.67 763.356i −0.734109 0.533362i 0.156751 0.987638i \(-0.449898\pi\)
−0.890861 + 0.454276i \(0.849898\pi\)
\(128\) 0 0
\(129\) 130.923 + 402.938i 0.0893573 + 0.275013i
\(130\) 0 0
\(131\) 1110.64 0.740738 0.370369 0.928885i \(-0.379231\pi\)
0.370369 + 0.928885i \(0.379231\pi\)
\(132\) 0 0
\(133\) −1272.58 −0.829675
\(134\) 0 0
\(135\) 536.863 + 1652.29i 0.342265 + 1.05338i
\(136\) 0 0
\(137\) 960.004 + 697.484i 0.598676 + 0.434964i 0.845409 0.534120i \(-0.179357\pi\)
−0.246732 + 0.969084i \(0.579357\pi\)
\(138\) 0 0
\(139\) −895.798 + 2756.98i −0.546623 + 1.68233i 0.170476 + 0.985362i \(0.445469\pi\)
−0.717099 + 0.696971i \(0.754531\pi\)
\(140\) 0 0
\(141\) −16.2595 + 11.8132i −0.00971133 + 0.00705570i
\(142\) 0 0
\(143\) 2003.61 + 2021.97i 1.17168 + 1.18242i
\(144\) 0 0
\(145\) 634.335 460.871i 0.363301 0.263954i
\(146\) 0 0
\(147\) 293.477 903.230i 0.164664 0.506784i
\(148\) 0 0
\(149\) 2376.18 + 1726.40i 1.30647 + 0.949208i 0.999996 0.00267076i \(-0.000850130\pi\)
0.306476 + 0.951878i \(0.400850\pi\)
\(150\) 0 0
\(151\) −944.489 2906.84i −0.509016 1.56659i −0.793913 0.608032i \(-0.791959\pi\)
0.284897 0.958558i \(-0.408041\pi\)
\(152\) 0 0
\(153\) −671.842 −0.355002
\(154\) 0 0
\(155\) −1163.10 −0.602724
\(156\) 0 0
\(157\) −487.141 1499.27i −0.247631 0.762130i −0.995193 0.0979375i \(-0.968775\pi\)
0.747561 0.664193i \(-0.231225\pi\)
\(158\) 0 0
\(159\) 750.119 + 544.993i 0.374140 + 0.271829i
\(160\) 0 0
\(161\) −943.208 + 2902.90i −0.461709 + 1.42100i
\(162\) 0 0
\(163\) −2290.77 + 1664.34i −1.10078 + 0.799761i −0.981187 0.193062i \(-0.938158\pi\)
−0.119590 + 0.992823i \(0.538158\pi\)
\(164\) 0 0
\(165\) 1238.25 + 201.913i 0.584227 + 0.0952662i
\(166\) 0 0
\(167\) 1008.58 732.774i 0.467341 0.339543i −0.329063 0.944308i \(-0.606733\pi\)
0.796404 + 0.604765i \(0.206733\pi\)
\(168\) 0 0
\(169\) 1202.31 3700.32i 0.547250 1.68426i
\(170\) 0 0
\(171\) 829.536 + 602.693i 0.370972 + 0.269527i
\(172\) 0 0
\(173\) −605.621 1863.91i −0.266153 0.819136i −0.991425 0.130674i \(-0.958286\pi\)
0.725272 0.688462i \(-0.241714\pi\)
\(174\) 0 0
\(175\) −6271.17 −2.70889
\(176\) 0 0
\(177\) 789.808 0.335399
\(178\) 0 0
\(179\) −197.434 607.639i −0.0824408 0.253727i 0.901337 0.433119i \(-0.142587\pi\)
−0.983778 + 0.179392i \(0.942587\pi\)
\(180\) 0 0
\(181\) 2545.77 + 1849.61i 1.04544 + 0.759559i 0.971341 0.237691i \(-0.0763907\pi\)
0.0741029 + 0.997251i \(0.476391\pi\)
\(182\) 0 0
\(183\) −109.738 + 337.740i −0.0443284 + 0.136429i
\(184\) 0 0
\(185\) −4733.94 + 3439.41i −1.88133 + 1.36687i
\(186\) 0 0
\(187\) −477.343 + 926.367i −0.186667 + 0.362260i
\(188\) 0 0
\(189\) −2225.63 + 1617.01i −0.856564 + 0.622330i
\(190\) 0 0
\(191\) −544.897 + 1677.02i −0.206426 + 0.635313i 0.793226 + 0.608927i \(0.208400\pi\)
−0.999652 + 0.0263861i \(0.991600\pi\)
\(192\) 0 0
\(193\) −3375.40 2452.37i −1.25889 0.914639i −0.260190 0.965558i \(-0.583785\pi\)
−0.998703 + 0.0509185i \(0.983785\pi\)
\(194\) 0 0
\(195\) −829.140 2551.83i −0.304492 0.937130i
\(196\) 0 0
\(197\) 2892.24 1.04601 0.523005 0.852330i \(-0.324811\pi\)
0.523005 + 0.852330i \(0.324811\pi\)
\(198\) 0 0
\(199\) 4281.26 1.52508 0.762539 0.646943i \(-0.223953\pi\)
0.762539 + 0.646943i \(0.223953\pi\)
\(200\) 0 0
\(201\) 222.641 + 685.217i 0.0781286 + 0.240455i
\(202\) 0 0
\(203\) 1004.46 + 729.783i 0.347287 + 0.252319i
\(204\) 0 0
\(205\) 389.336 1198.25i 0.132646 0.408242i
\(206\) 0 0
\(207\) 1989.64 1445.56i 0.668066 0.485378i
\(208\) 0 0
\(209\) 1420.41 715.591i 0.470103 0.236835i
\(210\) 0 0
\(211\) 2222.99 1615.09i 0.725293 0.526956i −0.162778 0.986663i \(-0.552045\pi\)
0.888071 + 0.459707i \(0.152045\pi\)
\(212\) 0 0
\(213\) 398.604 1226.78i 0.128225 0.394636i
\(214\) 0 0
\(215\) 3387.18 + 2460.93i 1.07444 + 0.780624i
\(216\) 0 0
\(217\) −569.131 1751.61i −0.178042 0.547957i
\(218\) 0 0
\(219\) 593.432 0.183107
\(220\) 0 0
\(221\) 2228.73 0.678373
\(222\) 0 0
\(223\) 268.699 + 826.970i 0.0806880 + 0.248332i 0.983260 0.182206i \(-0.0583238\pi\)
−0.902572 + 0.430538i \(0.858324\pi\)
\(224\) 0 0
\(225\) 4087.88 + 2970.02i 1.21122 + 0.880006i
\(226\) 0 0
\(227\) 882.731 2716.77i 0.258101 0.794353i −0.735102 0.677957i \(-0.762866\pi\)
0.993203 0.116397i \(-0.0371344\pi\)
\(228\) 0 0
\(229\) −4269.92 + 3102.28i −1.23216 + 0.895215i −0.997050 0.0767540i \(-0.975544\pi\)
−0.235108 + 0.971969i \(0.575544\pi\)
\(230\) 0 0
\(231\) 301.826 + 1963.58i 0.0859684 + 0.559282i
\(232\) 0 0
\(233\) −740.566 + 538.052i −0.208223 + 0.151283i −0.687010 0.726648i \(-0.741077\pi\)
0.478786 + 0.877932i \(0.341077\pi\)
\(234\) 0 0
\(235\) −61.3736 + 188.888i −0.0170365 + 0.0524329i
\(236\) 0 0
\(237\) 244.054 + 177.315i 0.0668903 + 0.0485986i
\(238\) 0 0
\(239\) −1955.53 6018.51i −0.529259 1.62889i −0.755737 0.654876i \(-0.772721\pi\)
0.226477 0.974016i \(-0.427279\pi\)
\(240\) 0 0
\(241\) −540.257 −0.144403 −0.0722013 0.997390i \(-0.523002\pi\)
−0.0722013 + 0.997390i \(0.523002\pi\)
\(242\) 0 0
\(243\) 3401.24 0.897900
\(244\) 0 0
\(245\) −2900.17 8925.81i −0.756266 2.32755i
\(246\) 0 0
\(247\) −2751.85 1999.34i −0.708891 0.515039i
\(248\) 0 0
\(249\) −227.190 + 699.218i −0.0578215 + 0.177956i
\(250\) 0 0
\(251\) −4314.83 + 3134.91i −1.08506 + 0.788341i −0.978558 0.205972i \(-0.933965\pi\)
−0.106500 + 0.994313i \(0.533965\pi\)
\(252\) 0 0
\(253\) −579.568 3770.48i −0.144020 0.936948i
\(254\) 0 0
\(255\) 794.700 577.383i 0.195161 0.141793i
\(256\) 0 0
\(257\) 425.852 1310.64i 0.103362 0.318114i −0.885981 0.463722i \(-0.846514\pi\)
0.989342 + 0.145608i \(0.0465137\pi\)
\(258\) 0 0
\(259\) −7496.12 5446.25i −1.79840 1.30662i
\(260\) 0 0
\(261\) −309.136 951.422i −0.0733143 0.225638i
\(262\) 0 0
\(263\) −7490.14 −1.75613 −0.878064 0.478543i \(-0.841165\pi\)
−0.878064 + 0.478543i \(0.841165\pi\)
\(264\) 0 0
\(265\) 9162.66 2.12399
\(266\) 0 0
\(267\) 62.3316 + 191.837i 0.0142870 + 0.0439709i
\(268\) 0 0
\(269\) −5898.73 4285.68i −1.33700 0.971384i −0.999549 0.0300390i \(-0.990437\pi\)
−0.337446 0.941345i \(-0.609563\pi\)
\(270\) 0 0
\(271\) 241.614 743.610i 0.0541586 0.166683i −0.920319 0.391170i \(-0.872071\pi\)
0.974477 + 0.224487i \(0.0720705\pi\)
\(272\) 0 0
\(273\) 3437.30 2497.34i 0.762031 0.553648i
\(274\) 0 0
\(275\) 6999.64 3526.37i 1.53489 0.773266i
\(276\) 0 0
\(277\) 465.219 338.001i 0.100911 0.0733160i −0.536186 0.844100i \(-0.680135\pi\)
0.637096 + 0.770784i \(0.280135\pi\)
\(278\) 0 0
\(279\) −458.569 + 1411.33i −0.0984007 + 0.302846i
\(280\) 0 0
\(281\) 4532.66 + 3293.17i 0.962262 + 0.699125i 0.953675 0.300839i \(-0.0972665\pi\)
0.00858736 + 0.999963i \(0.497267\pi\)
\(282\) 0 0
\(283\) 277.501 + 854.061i 0.0582888 + 0.179395i 0.975962 0.217942i \(-0.0699345\pi\)
−0.917673 + 0.397337i \(0.869934\pi\)
\(284\) 0 0
\(285\) −1499.19 −0.311594
\(286\) 0 0
\(287\) 1995.06 0.410330
\(288\) 0 0
\(289\) −1266.06 3896.54i −0.257696 0.793108i
\(290\) 0 0
\(291\) 1024.34 + 744.226i 0.206350 + 0.149922i
\(292\) 0 0
\(293\) −2484.65 + 7646.98i −0.495410 + 1.52471i 0.320907 + 0.947111i \(0.396012\pi\)
−0.816317 + 0.577604i \(0.803988\pi\)
\(294\) 0 0
\(295\) 6314.34 4587.64i 1.24622 0.905433i
\(296\) 0 0
\(297\) 1574.89 3056.35i 0.307691 0.597129i
\(298\) 0 0
\(299\) −6600.31 + 4795.41i −1.27661 + 0.927510i
\(300\) 0 0
\(301\) −2048.69 + 6305.23i −0.392308 + 1.20740i
\(302\) 0 0
\(303\) 1703.80 + 1237.89i 0.323040 + 0.234702i
\(304\) 0 0
\(305\) 1084.44 + 3337.58i 0.203591 + 0.626587i
\(306\) 0 0
\(307\) 5491.51 1.02090 0.510451 0.859907i \(-0.329478\pi\)
0.510451 + 0.859907i \(0.329478\pi\)
\(308\) 0 0
\(309\) 183.403 0.0337651
\(310\) 0 0
\(311\) −987.327 3038.68i −0.180020 0.554044i 0.819807 0.572640i \(-0.194081\pi\)
−0.999827 + 0.0185954i \(0.994081\pi\)
\(312\) 0 0
\(313\) 2522.04 + 1832.37i 0.455445 + 0.330900i 0.791742 0.610856i \(-0.209175\pi\)
−0.336297 + 0.941756i \(0.609175\pi\)
\(314\) 0 0
\(315\) −3911.12 + 12037.2i −0.699577 + 2.15308i
\(316\) 0 0
\(317\) −194.378 + 141.224i −0.0344396 + 0.0250219i −0.604872 0.796323i \(-0.706776\pi\)
0.570432 + 0.821345i \(0.306776\pi\)
\(318\) 0 0
\(319\) −1531.51 249.733i −0.268802 0.0438318i
\(320\) 0 0
\(321\) −821.997 + 597.216i −0.142927 + 0.103842i
\(322\) 0 0
\(323\) 384.813 1184.33i 0.0662897 0.204019i
\(324\) 0 0
\(325\) −13560.9 9852.56i −2.31453 1.68161i
\(326\) 0 0
\(327\) 211.608 + 651.264i 0.0357858 + 0.110138i
\(328\) 0 0
\(329\) −314.494 −0.0527010
\(330\) 0 0
\(331\) 9405.79 1.56190 0.780950 0.624594i \(-0.214735\pi\)
0.780950 + 0.624594i \(0.214735\pi\)
\(332\) 0 0
\(333\) 2307.03 + 7100.31i 0.379653 + 1.16845i
\(334\) 0 0
\(335\) 5760.08 + 4184.95i 0.939424 + 0.682531i
\(336\) 0 0
\(337\) −1449.42 + 4460.85i −0.234288 + 0.721063i 0.762928 + 0.646484i \(0.223761\pi\)
−0.997215 + 0.0745790i \(0.976239\pi\)
\(338\) 0 0
\(339\) 840.174 610.422i 0.134608 0.0977981i
\(340\) 0 0
\(341\) 1620.19 + 1635.04i 0.257298 + 0.259656i
\(342\) 0 0
\(343\) 3922.74 2850.04i 0.617516 0.448652i
\(344\) 0 0
\(345\) −1111.16 + 3419.81i −0.173400 + 0.533670i
\(346\) 0 0
\(347\) −4334.77 3149.39i −0.670612 0.487228i 0.199618 0.979874i \(-0.436030\pi\)
−0.870230 + 0.492645i \(0.836030\pi\)
\(348\) 0 0
\(349\) −305.037 938.808i −0.0467859 0.143992i 0.924935 0.380126i \(-0.124120\pi\)
−0.971720 + 0.236134i \(0.924120\pi\)
\(350\) 0 0
\(351\) −7353.20 −1.11819
\(352\) 0 0
\(353\) −130.359 −0.0196552 −0.00982762 0.999952i \(-0.503128\pi\)
−0.00982762 + 0.999952i \(0.503128\pi\)
\(354\) 0 0
\(355\) −3939.05 12123.1i −0.588910 1.81248i
\(356\) 0 0
\(357\) 1258.39 + 914.277i 0.186558 + 0.135543i
\(358\) 0 0
\(359\) −2852.55 + 8779.23i −0.419364 + 1.29067i 0.488925 + 0.872326i \(0.337389\pi\)
−0.908289 + 0.418343i \(0.862611\pi\)
\(360\) 0 0
\(361\) 4011.48 2914.51i 0.584849 0.424917i
\(362\) 0 0
\(363\) −1441.04 2021.95i −0.208360 0.292355i
\(364\) 0 0
\(365\) 4744.36 3446.98i 0.680360 0.494310i
\(366\) 0 0
\(367\) −2625.81 + 8081.41i −0.373477 + 1.14944i 0.571023 + 0.820934i \(0.306547\pi\)
−0.944500 + 0.328510i \(0.893453\pi\)
\(368\) 0 0
\(369\) −1300.49 944.859i −0.183471 0.133299i
\(370\) 0 0
\(371\) 4483.50 + 13798.8i 0.627418 + 1.93099i
\(372\) 0 0
\(373\) −12810.7 −1.77832 −0.889160 0.457597i \(-0.848710\pi\)
−0.889160 + 0.457597i \(0.848710\pi\)
\(374\) 0 0
\(375\) −3089.27 −0.425411
\(376\) 0 0
\(377\) 1025.51 + 3156.19i 0.140096 + 0.431172i
\(378\) 0 0
\(379\) −5475.79 3978.39i −0.742143 0.539199i 0.151238 0.988497i \(-0.451674\pi\)
−0.893382 + 0.449299i \(0.851674\pi\)
\(380\) 0 0
\(381\) 748.643 2304.09i 0.100667 0.309821i
\(382\) 0 0
\(383\) −9385.29 + 6818.81i −1.25213 + 0.909726i −0.998344 0.0575338i \(-0.981676\pi\)
−0.253787 + 0.967260i \(0.581676\pi\)
\(384\) 0 0
\(385\) 13818.6 + 13945.2i 1.82925 + 1.84601i
\(386\) 0 0
\(387\) 4321.60 3139.83i 0.567647 0.412420i
\(388\) 0 0
\(389\) 983.756 3027.69i 0.128222 0.394627i −0.866252 0.499607i \(-0.833478\pi\)
0.994474 + 0.104980i \(0.0334778\pi\)
\(390\) 0 0
\(391\) −2416.37 1755.60i −0.312535 0.227070i
\(392\) 0 0
\(393\) 640.233 + 1970.43i 0.0821768 + 0.252914i
\(394\) 0 0
\(395\) 2981.10 0.379736
\(396\) 0 0
\(397\) 4412.72 0.557854 0.278927 0.960312i \(-0.410021\pi\)
0.278927 + 0.960312i \(0.410021\pi\)
\(398\) 0 0
\(399\) −733.588 2257.75i −0.0920434 0.283280i
\(400\) 0 0
\(401\) −3050.01 2215.96i −0.379826 0.275959i 0.381448 0.924390i \(-0.375426\pi\)
−0.761274 + 0.648431i \(0.775426\pi\)
\(402\) 0 0
\(403\) 1521.23 4681.85i 0.188034 0.578709i
\(404\) 0 0
\(405\) 6849.01 4976.10i 0.840321 0.610529i
\(406\) 0 0
\(407\) 11429.4 + 1863.72i 1.39197 + 0.226980i
\(408\) 0 0
\(409\) −5154.89 + 3745.25i −0.623210 + 0.452789i −0.854041 0.520205i \(-0.825856\pi\)
0.230831 + 0.972994i \(0.425856\pi\)
\(410\) 0 0
\(411\) −684.040 + 2105.26i −0.0820954 + 0.252664i
\(412\) 0 0
\(413\) 9998.66 + 7264.45i 1.19129 + 0.865522i
\(414\) 0 0
\(415\) 2245.11 + 6909.74i 0.265562 + 0.817315i
\(416\) 0 0
\(417\) −5407.69 −0.635050
\(418\) 0 0
\(419\) −2107.98 −0.245779 −0.122890 0.992420i \(-0.539216\pi\)
−0.122890 + 0.992420i \(0.539216\pi\)
\(420\) 0 0
\(421\) −2548.58 7843.73i −0.295036 0.908029i −0.983209 0.182482i \(-0.941587\pi\)
0.688173 0.725547i \(-0.258413\pi\)
\(422\) 0 0
\(423\) 205.004 + 148.944i 0.0235642 + 0.0171204i
\(424\) 0 0
\(425\) 1896.32 5836.29i 0.216436 0.666121i
\(426\) 0 0
\(427\) −4495.69 + 3266.31i −0.509512 + 0.370182i
\(428\) 0 0
\(429\) −2432.28 + 4720.28i −0.273734 + 0.531229i
\(430\) 0 0
\(431\) −10459.3 + 7599.12i −1.16892 + 0.849273i −0.990880 0.134749i \(-0.956977\pi\)
−0.178045 + 0.984022i \(0.556977\pi\)
\(432\) 0 0
\(433\) −2413.49 + 7427.96i −0.267864 + 0.824400i 0.723156 + 0.690685i \(0.242691\pi\)
−0.991020 + 0.133715i \(0.957309\pi\)
\(434\) 0 0
\(435\) 1183.32 + 859.733i 0.130427 + 0.0947610i
\(436\) 0 0
\(437\) 1408.64 + 4335.34i 0.154197 + 0.474571i
\(438\) 0 0
\(439\) 17491.4 1.90163 0.950817 0.309752i \(-0.100246\pi\)
0.950817 + 0.309752i \(0.100246\pi\)
\(440\) 0 0
\(441\) −11974.2 −1.29297
\(442\) 0 0
\(443\) −794.117 2444.04i −0.0851685 0.262122i 0.899399 0.437130i \(-0.144005\pi\)
−0.984567 + 0.175008i \(0.944005\pi\)
\(444\) 0 0
\(445\) 1612.62 + 1171.64i 0.171788 + 0.124811i
\(446\) 0 0
\(447\) −1693.12 + 5210.89i −0.179154 + 0.551380i
\(448\) 0 0
\(449\) −4334.56 + 3149.24i −0.455591 + 0.331007i −0.791799 0.610781i \(-0.790855\pi\)
0.336208 + 0.941788i \(0.390855\pi\)
\(450\) 0 0
\(451\) −2226.81 + 1121.85i −0.232497 + 0.117131i
\(452\) 0 0
\(453\) 4612.71 3351.33i 0.478419 0.347592i
\(454\) 0 0
\(455\) 12974.5 39931.4i 1.33682 4.11432i
\(456\) 0 0
\(457\) −3912.81 2842.82i −0.400511 0.290988i 0.369238 0.929335i \(-0.379619\pi\)
−0.769749 + 0.638347i \(0.779619\pi\)
\(458\) 0 0
\(459\) −831.877 2560.25i −0.0845941 0.260354i
\(460\) 0 0
\(461\) −18173.0 −1.83601 −0.918007 0.396564i \(-0.870203\pi\)
−0.918007 + 0.396564i \(0.870203\pi\)
\(462\) 0 0
\(463\) −13451.4 −1.35019 −0.675095 0.737731i \(-0.735897\pi\)
−0.675095 + 0.737731i \(0.735897\pi\)
\(464\) 0 0
\(465\) −670.475 2063.51i −0.0668657 0.205791i
\(466\) 0 0
\(467\) 13010.5 + 9452.69i 1.28920 + 0.936656i 0.999789 0.0205495i \(-0.00654158\pi\)
0.289408 + 0.957206i \(0.406542\pi\)
\(468\) 0 0
\(469\) −3483.91 + 10722.4i −0.343011 + 1.05568i
\(470\) 0 0
\(471\) 2379.11 1728.52i 0.232746 0.169100i
\(472\) 0 0
\(473\) −1258.85 8189.66i −0.122372 0.796112i
\(474\) 0 0
\(475\) −7577.02 + 5505.03i −0.731911 + 0.531764i
\(476\) 0 0
\(477\) 3612.52 11118.2i 0.346763 1.06723i
\(478\) 0 0
\(479\) 2651.17 + 1926.19i 0.252892 + 0.183737i 0.707008 0.707206i \(-0.250045\pi\)
−0.454116 + 0.890943i \(0.650045\pi\)
\(480\) 0 0
\(481\) −7653.20 23554.1i −0.725480 2.23280i
\(482\) 0 0
\(483\) −5693.89 −0.536399
\(484\) 0 0
\(485\) 12512.3 1.17145
\(486\) 0 0
\(487\) −498.075 1532.92i −0.0463448 0.142635i 0.925206 0.379464i \(-0.123892\pi\)
−0.971551 + 0.236830i \(0.923892\pi\)
\(488\) 0 0
\(489\) −4273.31 3104.74i −0.395186 0.287119i
\(490\) 0 0
\(491\) 3326.22 10237.0i 0.305723 0.940919i −0.673683 0.739020i \(-0.735289\pi\)
0.979406 0.201899i \(-0.0647112\pi\)
\(492\) 0 0
\(493\) −982.911 + 714.126i −0.0897932 + 0.0652386i
\(494\) 0 0
\(495\) −2403.25 15634.7i −0.218218 1.41965i
\(496\) 0 0
\(497\) 16329.8 11864.3i 1.47382 1.07080i
\(498\) 0 0
\(499\) −4149.15 + 12769.8i −0.372228 + 1.14560i 0.573103 + 0.819484i \(0.305740\pi\)
−0.945330 + 0.326115i \(0.894260\pi\)
\(500\) 0 0
\(501\) 1881.45 + 1366.95i 0.167779 + 0.121898i
\(502\) 0 0
\(503\) −5840.89 17976.4i −0.517758 1.59350i −0.778207 0.628008i \(-0.783870\pi\)
0.260448 0.965488i \(-0.416130\pi\)
\(504\) 0 0
\(505\) 20811.9 1.83389
\(506\) 0 0
\(507\) 7258.01 0.635778
\(508\) 0 0
\(509\) 3253.27 + 10012.5i 0.283298 + 0.871902i 0.986904 + 0.161311i \(0.0515722\pi\)
−0.703606 + 0.710591i \(0.748428\pi\)
\(510\) 0 0
\(511\) 7512.62 + 5458.24i 0.650369 + 0.472521i
\(512\) 0 0
\(513\) −1269.61 + 3907.45i −0.109268 + 0.336292i
\(514\) 0 0
\(515\) 1466.26 1065.30i 0.125459 0.0911513i
\(516\) 0 0
\(517\) 351.026 176.845i 0.0298610 0.0150437i
\(518\) 0 0
\(519\) 2957.74 2148.93i 0.250155 0.181748i
\(520\) 0 0
\(521\) −573.594 + 1765.34i −0.0482334 + 0.148447i −0.972272 0.233851i \(-0.924867\pi\)
0.924039 + 0.382298i \(0.124867\pi\)
\(522\) 0 0
\(523\) −1578.10 1146.56i −0.131941 0.0958611i 0.519857 0.854253i \(-0.325985\pi\)
−0.651799 + 0.758392i \(0.725985\pi\)
\(524\) 0 0
\(525\) −3615.06 11126.0i −0.300522 0.924911i
\(526\) 0 0
\(527\) 1802.24 0.148969
\(528\) 0 0
\(529\) −1233.57 −0.101386
\(530\) 0 0
\(531\) −3077.22 9470.72i −0.251488 0.774000i
\(532\) 0 0
\(533\) 4314.15 + 3134.41i 0.350594 + 0.254721i
\(534\) 0 0
\(535\) −3102.73 + 9549.23i −0.250734 + 0.771681i
\(536\) 0 0
\(537\) 964.230 700.554i 0.0774853 0.0562964i
\(538\) 0 0
\(539\) −8507.66 + 16510.6i −0.679872 + 1.31941i
\(540\) 0 0
\(541\) −70.7645 + 51.4135i −0.00562367 + 0.00408584i −0.590594 0.806969i \(-0.701106\pi\)
0.584970 + 0.811055i \(0.301106\pi\)
\(542\) 0 0
\(543\) −1813.96 + 5582.79i −0.143360 + 0.441216i
\(544\) 0 0
\(545\) 5474.66 + 3977.57i 0.430291 + 0.312625i
\(546\) 0 0
\(547\) −4171.58 12838.8i −0.326077 1.00356i −0.970952 0.239274i \(-0.923091\pi\)
0.644875 0.764288i \(-0.276909\pi\)
\(548\) 0 0
\(549\) 4477.45 0.348075
\(550\) 0 0
\(551\) 1854.24 0.143364
\(552\) 0 0
\(553\) 1458.72 + 4489.49i 0.112172 + 0.345231i
\(554\) 0 0
\(555\) −8830.94 6416.05i −0.675410 0.490714i
\(556\) 0 0
\(557\) 2141.73 6591.58i 0.162923 0.501426i −0.835954 0.548799i \(-0.815085\pi\)
0.998877 + 0.0473735i \(0.0150851\pi\)
\(558\) 0 0
\(559\) −14336.2 + 10415.9i −1.08472 + 0.788093i
\(560\) 0 0
\(561\) −1918.68 312.867i −0.144397 0.0235459i
\(562\) 0 0
\(563\) 12283.7 8924.65i 0.919534 0.668080i −0.0238741 0.999715i \(-0.507600\pi\)
0.943408 + 0.331635i \(0.107600\pi\)
\(564\) 0 0
\(565\) 3171.34 9760.38i 0.236140 0.726765i
\(566\) 0 0
\(567\) 10845.3 + 7879.57i 0.803280 + 0.583617i
\(568\) 0 0
\(569\) −2671.84 8223.09i −0.196853 0.605852i −0.999950 0.0100035i \(-0.996816\pi\)
0.803097 0.595849i \(-0.203184\pi\)
\(570\) 0 0
\(571\) −306.105 −0.0224345 −0.0112172 0.999937i \(-0.503571\pi\)
−0.0112172 + 0.999937i \(0.503571\pi\)
\(572\) 0 0
\(573\) −3289.39 −0.239819
\(574\) 0 0
\(575\) 6941.65 + 21364.2i 0.503455 + 1.54948i
\(576\) 0 0
\(577\) 12018.4 + 8731.90i 0.867130 + 0.630007i 0.929815 0.368026i \(-0.119966\pi\)
−0.0626853 + 0.998033i \(0.519966\pi\)
\(578\) 0 0
\(579\) 2405.10 7402.14i 0.172630 0.531300i
\(580\) 0 0
\(581\) −9307.36 + 6762.19i −0.664603 + 0.482862i
\(582\) 0 0
\(583\) −12763.6 12880.5i −0.906712 0.915022i
\(584\) 0 0
\(585\) −27369.0 + 19884.7i −1.93430 + 1.40535i
\(586\) 0 0
\(587\) −379.264 + 1167.26i −0.0266677 + 0.0820746i −0.963505 0.267692i \(-0.913739\pi\)
0.936837 + 0.349766i \(0.113739\pi\)
\(588\) 0 0
\(589\) −2225.25 1616.74i −0.155671 0.113101i
\(590\) 0 0
\(591\) 1667.25 + 5131.28i 0.116043 + 0.357145i
\(592\) 0 0
\(593\) −14255.5 −0.987189 −0.493594 0.869692i \(-0.664317\pi\)
−0.493594 + 0.869692i \(0.664317\pi\)
\(594\) 0 0
\(595\) 15371.2 1.05909
\(596\) 0 0
\(597\) 2467.96 + 7595.59i 0.169191 + 0.520715i
\(598\) 0 0
\(599\) −12643.3 9185.92i −0.862426 0.626589i 0.0661182 0.997812i \(-0.478939\pi\)
−0.928544 + 0.371223i \(0.878939\pi\)
\(600\) 0 0
\(601\) 7972.25 24536.1i 0.541090 1.66530i −0.189020 0.981973i \(-0.560531\pi\)
0.730110 0.683330i \(-0.239469\pi\)
\(602\) 0 0
\(603\) 7349.11 5339.44i 0.496316 0.360595i
\(604\) 0 0
\(605\) −23265.4 7794.73i −1.56343 0.523803i
\(606\) 0 0
\(607\) 17691.2 12853.4i 1.18297 0.859479i 0.190468 0.981693i \(-0.439000\pi\)
0.992504 + 0.122215i \(0.0389996\pi\)
\(608\) 0 0
\(609\) −715.717 + 2202.75i −0.0476228 + 0.146568i
\(610\) 0 0
\(611\) −680.067 494.098i −0.0450288 0.0327153i
\(612\) 0 0
\(613\) 7044.02 + 21679.3i 0.464120 + 1.42841i 0.860086 + 0.510148i \(0.170410\pi\)
−0.395967 + 0.918265i \(0.629590\pi\)
\(614\) 0 0
\(615\) 2350.32 0.154104
\(616\) 0 0
\(617\) −16843.3 −1.09901 −0.549504 0.835491i \(-0.685183\pi\)
−0.549504 + 0.835491i \(0.685183\pi\)
\(618\) 0 0
\(619\) 5621.76 + 17302.0i 0.365037 + 1.12347i 0.949958 + 0.312378i \(0.101125\pi\)
−0.584921 + 0.811090i \(0.698875\pi\)
\(620\) 0 0
\(621\) 7972.31 + 5792.22i 0.515165 + 0.374289i
\(622\) 0 0
\(623\) −975.374 + 3001.89i −0.0627247 + 0.193047i
\(624\) 0 0
\(625\) −2972.52 + 2159.66i −0.190241 + 0.138218i
\(626\) 0 0
\(627\) 2088.37 + 2107.51i 0.133016 + 0.134236i
\(628\) 0 0
\(629\) 7335.31 5329.41i 0.464989 0.337834i
\(630\) 0 0
\(631\) −4988.01 + 15351.5i −0.314690 + 0.968516i 0.661192 + 0.750217i \(0.270051\pi\)
−0.975882 + 0.218299i \(0.929949\pi\)
\(632\) 0 0
\(633\) 4146.87 + 3012.88i 0.260385 + 0.189181i
\(634\) 0 0
\(635\) −7398.17 22769.2i −0.462342 1.42294i
\(636\) 0 0
\(637\) 39722.5 2.47074
\(638\) 0 0
\(639\) −16263.5 −1.00685
\(640\) 0 0
\(641\) −6301.60 19394.3i −0.388297 1.19506i −0.934060 0.357116i \(-0.883760\pi\)
0.545763 0.837939i \(-0.316240\pi\)
\(642\) 0 0
\(643\) 9208.86 + 6690.63i 0.564793 + 0.410346i 0.833210 0.552957i \(-0.186500\pi\)
−0.268417 + 0.963303i \(0.586500\pi\)
\(644\) 0 0
\(645\) −2413.50 + 7427.99i −0.147336 + 0.453453i
\(646\) 0 0
\(647\) 10915.7 7930.73i 0.663278 0.481900i −0.204490 0.978869i \(-0.565554\pi\)
0.867768 + 0.496969i \(0.165554\pi\)
\(648\) 0 0
\(649\) −15245.0 2485.91i −0.922064 0.150355i
\(650\) 0 0
\(651\) 2779.53 2019.45i 0.167340 0.121580i
\(652\) 0 0
\(653\) −2631.59 + 8099.21i −0.157706 + 0.485370i −0.998425 0.0561021i \(-0.982133\pi\)
0.840719 + 0.541472i \(0.182133\pi\)
\(654\) 0 0
\(655\) 16563.9 + 12034.4i 0.988099 + 0.717896i
\(656\) 0 0
\(657\) −2312.11 7115.94i −0.137297 0.422556i
\(658\) 0 0
\(659\) −29637.1 −1.75189 −0.875946 0.482409i \(-0.839762\pi\)
−0.875946 + 0.482409i \(0.839762\pi\)
\(660\) 0 0
\(661\) 7113.07 0.418557 0.209279 0.977856i \(-0.432888\pi\)
0.209279 + 0.977856i \(0.432888\pi\)
\(662\) 0 0
\(663\) 1284.76 + 3954.10i 0.0752580 + 0.231620i
\(664\) 0 0
\(665\) −18979.1 13789.1i −1.10674 0.804090i
\(666\) 0 0
\(667\) 1374.32 4229.73i 0.0797811 0.245541i
\(668\) 0 0
\(669\) −1312.28 + 953.425i −0.0758379 + 0.0550994i
\(670\) 0 0
\(671\) 3181.22 6173.72i 0.183025 0.355192i
\(672\) 0 0
\(673\) −9566.47 + 6950.45i −0.547935 + 0.398098i −0.827024 0.562167i \(-0.809968\pi\)
0.279088 + 0.960265i \(0.409968\pi\)
\(674\) 0 0
\(675\) −6256.51 + 19255.6i −0.356760 + 1.09800i
\(676\) 0 0
\(677\) 19761.7 + 14357.7i 1.12187 + 0.815083i 0.984491 0.175436i \(-0.0561335\pi\)
0.137375 + 0.990519i \(0.456133\pi\)
\(678\) 0 0
\(679\) 6122.54 + 18843.2i 0.346041 + 1.06500i
\(680\) 0 0
\(681\) 5328.81 0.299854
\(682\) 0 0
\(683\) −21680.4 −1.21461 −0.607304 0.794469i \(-0.707749\pi\)
−0.607304 + 0.794469i \(0.707749\pi\)
\(684\) 0 0
\(685\) 6759.75 + 20804.4i 0.377047 + 1.16043i
\(686\) 0 0
\(687\) −7965.33 5787.15i −0.442353 0.321388i
\(688\) 0 0
\(689\) −11983.9 + 36882.7i −0.662629 + 2.03936i
\(690\) 0 0
\(691\) 5707.55 4146.78i 0.314219 0.228294i −0.419485 0.907762i \(-0.637789\pi\)
0.733705 + 0.679468i \(0.237789\pi\)
\(692\) 0 0
\(693\) 22369.7 11269.7i 1.22619 0.617749i
\(694\) 0 0
\(695\) −43233.3 + 31410.8i −2.35962 + 1.71436i
\(696\) 0 0
\(697\) −603.282 + 1856.71i −0.0327847 + 0.100901i
\(698\) 0 0
\(699\) −1381.49 1003.71i −0.0747535 0.0543116i
\(700\) 0 0
\(701\) 9684.94 + 29807.2i 0.521819 + 1.60599i 0.770522 + 0.637414i \(0.219996\pi\)
−0.248703 + 0.968580i \(0.580004\pi\)
\(702\) 0 0
\(703\) −13837.9 −0.742400
\(704\) 0 0
\(705\) −370.495 −0.0197924
\(706\) 0 0
\(707\) 10183.7 + 31342.3i 0.541724 + 1.66726i
\(708\) 0 0
\(709\) −3823.80 2778.15i −0.202547 0.147159i 0.481888 0.876233i \(-0.339951\pi\)
−0.684435 + 0.729074i \(0.739951\pi\)
\(710\) 0 0
\(711\) 1175.34 3617.34i 0.0619956 0.190803i
\(712\) 0 0
\(713\) −5337.27 + 3877.75i −0.280340 + 0.203679i
\(714\) 0 0
\(715\) 7972.37 + 51865.6i 0.416993 + 2.71282i
\(716\) 0 0
\(717\) 9550.46 6938.82i 0.497446 0.361415i
\(718\) 0 0
\(719\) 8402.15 25859.2i 0.435810 1.34129i −0.456444 0.889752i \(-0.650877\pi\)
0.892254 0.451533i \(-0.149123\pi\)
\(720\) 0 0
\(721\) 2321.81 + 1686.89i 0.119929 + 0.0871333i
\(722\) 0 0
\(723\) −311.435 958.497i −0.0160199 0.0493042i
\(724\) 0 0
\(725\) 9137.55 0.468083
\(726\) 0 0
\(727\) 14387.6 0.733986 0.366993 0.930224i \(-0.380387\pi\)
0.366993 + 0.930224i \(0.380387\pi\)
\(728\) 0 0
\(729\) −1870.96 5758.22i −0.0950546 0.292548i
\(730\) 0 0
\(731\) −5248.49 3813.25i −0.265557 0.192939i
\(732\) 0 0
\(733\) 9206.38 28334.3i 0.463909 1.42777i −0.396440 0.918061i \(-0.629754\pi\)
0.860349 0.509705i \(-0.170246\pi\)
\(734\) 0 0
\(735\) 14163.9 10290.7i 0.710807 0.516432i
\(736\) 0 0
\(737\) −2140.74 13927.0i −0.106995 0.696073i
\(738\) 0 0
\(739\) 18153.6 13189.4i 0.903641 0.656534i −0.0357574 0.999361i \(-0.511384\pi\)
0.939399 + 0.342827i \(0.111384\pi\)
\(740\) 0 0
\(741\) 1960.80 6034.73i 0.0972090 0.299178i
\(742\) 0 0
\(743\) 5660.31 + 4112.45i 0.279484 + 0.203057i 0.718692 0.695328i \(-0.244741\pi\)
−0.439208 + 0.898385i \(0.644741\pi\)
\(744\) 0 0
\(745\) 16731.6 + 51494.6i 0.822817 + 2.53237i
\(746\) 0 0
\(747\) 9269.60 0.454025
\(748\) 0 0
\(749\) −15899.2 −0.775627
\(750\) 0 0
\(751\) −8967.71 27599.8i −0.435734 1.34105i −0.892333 0.451379i \(-0.850932\pi\)
0.456599 0.889673i \(-0.349068\pi\)
\(752\) 0 0
\(753\) −8049.11 5848.02i −0.389543 0.283019i
\(754\) 0 0
\(755\) 17411.2 53586.3i 0.839285 2.58305i
\(756\) 0 0
\(757\) −12090.7 + 8784.44i −0.580509 + 0.421765i −0.838908 0.544274i \(-0.816805\pi\)
0.258398 + 0.966038i \(0.416805\pi\)
\(758\) 0 0
\(759\) 6355.30 3201.76i 0.303930 0.153118i
\(760\) 0 0
\(761\) 12571.8 9133.92i 0.598852 0.435091i −0.246619 0.969112i \(-0.579320\pi\)
0.845471 + 0.534021i \(0.179320\pi\)
\(762\) 0 0
\(763\) −3311.28 + 10191.1i −0.157112 + 0.483541i
\(764\) 0 0
\(765\) −10019.8 7279.80i −0.473550 0.344054i
\(766\) 0 0
\(767\) 10208.2 + 31417.5i 0.480568 + 1.47904i
\(768\) 0 0
\(769\) 1512.44 0.0709233 0.0354616 0.999371i \(-0.488710\pi\)
0.0354616 + 0.999371i \(0.488710\pi\)
\(770\) 0 0
\(771\) 2570.75 0.120082
\(772\) 0 0
\(773\) −12574.3 38699.8i −0.585081 1.80069i −0.598945 0.800790i \(-0.704413\pi\)
0.0138643 0.999904i \(-0.495587\pi\)
\(774\) 0 0
\(775\) −10965.9 7967.16i −0.508265 0.369276i
\(776\) 0 0
\(777\) 5341.28 16438.8i 0.246612 0.758993i
\(778\) 0 0
\(779\) 2410.49 1751.32i 0.110866 0.0805491i
\(780\) 0 0
\(781\) −11555.2 + 22424.9i −0.529421 + 1.02743i
\(782\) 0 0
\(783\) 3242.90 2356.11i 0.148010 0.107536i
\(784\) 0 0
\(785\) 8980.24 27638.3i 0.408304 1.25663i
\(786\) 0 0
\(787\) −27079.9 19674.7i −1.22655 0.891140i −0.229923 0.973209i \(-0.573847\pi\)
−0.996627 + 0.0820688i \(0.973847\pi\)
\(788\) 0 0
\(789\) −4317.74 13288.6i −0.194823 0.599604i
\(790\) 0 0
\(791\) 16250.8 0.730482
\(792\) 0 0
\(793\) −14853.2 −0.665136
\(794\) 0 0
\(795\) 5281.87 + 16255.9i 0.235634 + 0.725205i
\(796\) 0 0
\(797\) −15215.6 11054.8i −0.676240 0.491317i 0.195868 0.980630i \(-0.437248\pi\)
−0.872108 + 0.489313i \(0.837248\pi\)
\(798\) 0 0
\(799\) 95.0991 292.685i 0.00421072 0.0129593i
\(800\) 0 0
\(801\) 2057.49 1494.86i 0.0907590 0.0659403i
\(802\) 0 0
\(803\) −11454.5 1867.82i −0.503390 0.0820845i
\(804\) 0 0
\(805\) −45521.4 + 33073.2i −1.99307 + 1.44805i
\(806\) 0 0
\(807\) 4203.07 12935.7i 0.183340 0.564262i
\(808\) 0 0
\(809\) −24141.4 17539.8i −1.04916 0.762256i −0.0771041 0.997023i \(-0.524567\pi\)
−0.972052 + 0.234767i \(0.924567\pi\)
\(810\) 0 0
\(811\) 6559.41 + 20187.8i 0.284010 + 0.874092i 0.986694 + 0.162590i \(0.0519848\pi\)
−0.702684 + 0.711502i \(0.748015\pi\)
\(812\) 0 0
\(813\) 1458.56 0.0629198
\(814\) 0 0
\(815\) −52198.3 −2.24347
\(816\) 0 0
\(817\) 3059.63 + 9416.58i 0.131020 + 0.403237i
\(818\) 0 0
\(819\) −43338.3 31487.1i −1.84904 1.34341i
\(820\) 0 0
\(821\) 1212.55 3731.84i 0.0515447 0.158638i −0.921971 0.387260i \(-0.873422\pi\)
0.973515 + 0.228621i \(0.0734217\pi\)
\(822\) 0 0
\(823\) 16307.8 11848.3i 0.690708 0.501829i −0.186185 0.982515i \(-0.559612\pi\)
0.876893 + 0.480686i \(0.159612\pi\)
\(824\) 0 0
\(825\) 10291.3 + 10385.6i 0.434299 + 0.438279i
\(826\) 0 0
\(827\) 31618.0 22971.9i 1.32946 0.965912i 0.329703 0.944085i \(-0.393051\pi\)
0.999762 0.0218277i \(-0.00694852\pi\)
\(828\) 0 0
\(829\) −5841.62 + 17978.7i −0.244738 + 0.753226i 0.750941 + 0.660369i \(0.229600\pi\)
−0.995679 + 0.0928575i \(0.970400\pi\)
\(830\) 0 0
\(831\) 867.843 + 630.525i 0.0362276 + 0.0263209i
\(832\) 0 0
\(833\) 4493.85 + 13830.7i 0.186918 + 0.575275i
\(834\) 0 0
\(835\) 22981.8 0.952477
\(836\) 0 0
\(837\) −5946.09 −0.245552
\(838\) 0 0
\(839\) 417.741 + 1285.67i 0.0171895 + 0.0529039i 0.959283 0.282446i \(-0.0911456\pi\)
−0.942094 + 0.335349i \(0.891146\pi\)
\(840\) 0 0
\(841\) 18267.5 + 13272.1i 0.749008 + 0.544186i
\(842\) 0 0
\(843\) −3229.70 + 9939.98i −0.131953 + 0.406111i
\(844\) 0 0
\(845\) 58026.2 42158.5i 2.36232 1.71633i
\(846\) 0 0
\(847\) 354.435 38851.4i 0.0143784 1.57609i
\(848\) 0 0
\(849\) −1355.26 + 984.658i −0.0547851 + 0.0398037i
\(850\) 0 0
\(851\) −10256.4 + 31565.8i −0.413141 + 1.27152i
\(852\) 0 0
\(853\) −27556.6 20021.0i −1.10612 0.803643i −0.124071 0.992273i \(-0.539595\pi\)
−0.982048 + 0.188630i \(0.939595\pi\)
\(854\) 0 0
\(855\) 5841.08 + 17977.0i 0.233638 + 0.719065i
\(856\) 0 0
\(857\) 40085.5 1.59778 0.798888 0.601480i \(-0.205422\pi\)
0.798888 + 0.601480i \(0.205422\pi\)
\(858\) 0 0
\(859\) 20827.3 0.827261 0.413631 0.910445i \(-0.364261\pi\)
0.413631 + 0.910445i \(0.364261\pi\)
\(860\) 0 0
\(861\) 1150.07 + 3539.54i 0.0455216 + 0.140101i
\(862\) 0 0
\(863\) 32530.0 + 23634.4i 1.28312 + 0.932242i 0.999643 0.0267360i \(-0.00851135\pi\)
0.283479 + 0.958978i \(0.408511\pi\)
\(864\) 0 0
\(865\) 11164.4 34360.4i 0.438844 1.35062i
\(866\) 0 0
\(867\) 6183.21 4492.37i 0.242206 0.175973i
\(868\) 0 0
\(869\) −4152.67 4190.73i −0.162106 0.163591i
\(870\) 0 0
\(871\) −24379.5 + 17712.7i −0.948412 + 0.689061i
\(872\) 0 0
\(873\) 4933.14 15182.7i 0.191250 0.588608i
\(874\) 0 0
\(875\) −39108.9 28414.3i −1.51100 1.09780i
\(876\) 0 0
\(877\) 2172.95 + 6687.64i 0.0836661 + 0.257498i 0.984135 0.177423i \(-0.0567762\pi\)
−0.900469 + 0.434921i \(0.856776\pi\)
\(878\) 0 0
\(879\) −14999.2 −0.575552
\(880\) 0 0
\(881\) 30396.7 1.16242 0.581209 0.813754i \(-0.302580\pi\)
0.581209 + 0.813754i \(0.302580\pi\)
\(882\) 0 0
\(883\) 582.341 + 1792.26i 0.0221940 + 0.0683063i 0.961540 0.274665i \(-0.0885668\pi\)
−0.939346 + 0.342971i \(0.888567\pi\)
\(884\) 0 0
\(885\) 11779.1 + 8558.02i 0.447401 + 0.325056i
\(886\) 0 0
\(887\) −442.860 + 1362.98i −0.0167641 + 0.0515947i −0.959089 0.283106i \(-0.908635\pi\)
0.942325 + 0.334701i \(0.108635\pi\)
\(888\) 0 0
\(889\) 30670.0 22283.0i 1.15707 0.840662i
\(890\) 0 0
\(891\) −16535.9 2696.40i −0.621743 0.101384i
\(892\) 0 0
\(893\) −379.981 + 276.073i −0.0142392 + 0.0103454i
\(894\) 0 0
\(895\) 3639.61 11201.6i 0.135931 0.418354i
\(896\) 0 0
\(897\) −12312.6 8945.60i −0.458310 0.332982i
\(898\) 0 0
\(899\) 829.265 + 2552.22i 0.0307648 + 0.0946843i
\(900\) 0 0
\(901\) −14197.7 −0.524964
\(902\) 0 0
\(903\) −12367.4 −0.455772
\(904\) 0 0
\(905\) 17925.7 + 55169.7i 0.658421 + 2.02641i
\(906\) 0 0
\(907\) −22216.3 16141.1i −0.813319 0.590911i 0.101472 0.994838i \(-0.467645\pi\)
−0.914791 + 0.403927i \(0.867645\pi\)
\(908\) 0 0
\(909\) 8205.40 25253.6i 0.299401 0.921462i
\(910\) 0 0
\(911\) 37947.6 27570.5i 1.38009 1.00269i 0.383215 0.923659i \(-0.374817\pi\)
0.996872 0.0790330i \(-0.0251833\pi\)
\(912\) 0 0
\(913\) 6586.03 12781.4i 0.238736 0.463309i
\(914\) 0 0
\(915\) −5296.23 + 3847.93i −0.191353 + 0.139026i
\(916\) 0 0
\(917\) −10018.5 + 30833.6i −0.360784 + 1.11038i
\(918\) 0 0
\(919\) 27166.7 + 19737.7i 0.975131 + 0.708474i 0.956615 0.291354i \(-0.0941059\pi\)
0.0185159 + 0.999829i \(0.494106\pi\)
\(920\) 0 0
\(921\) 3165.61 + 9742.76i 0.113258 + 0.348572i
\(922\) 0 0
\(923\) 53951.6 1.92399
\(924\) 0 0
\(925\) −68192.1 −2.42394
\(926\) 0 0
\(927\) −714.567 2199.21i −0.0253177 0.0779197i
\(928\) 0 0
\(929\) −15803.6 11482.0i −0.558127 0.405503i 0.272646 0.962114i \(-0.412101\pi\)
−0.830773 + 0.556612i \(0.812101\pi\)
\(930\) 0 0
\(931\) 6858.50 21108.3i 0.241438 0.743068i
\(932\) 0 0
\(933\) 4821.92 3503.33i 0.169199 0.122930i
\(934\) 0 0
\(935\) −17156.8 + 8643.46i −0.600092 + 0.302322i
\(936\) 0 0
\(937\) 42555.5 30918.4i 1.48370 1.07797i 0.507361 0.861734i \(-0.330621\pi\)
0.976341 0.216239i \(-0.0693789\pi\)
\(938\) 0 0
\(939\) −1797.05 + 5530.76i −0.0624543 + 0.192215i
\(940\) 0 0
\(941\) 28258.3 + 20530.8i 0.978951 + 0.711250i 0.957474 0.288520i \(-0.0931631\pi\)
0.0214772 + 0.999769i \(0.493163\pi\)
\(942\) 0 0
\(943\) −2208.36 6796.63i −0.0762610 0.234707i
\(944\) 0 0
\(945\) −50714.0 −1.74574
\(946\) 0 0
\(947\) −4206.50 −0.144343 −0.0721715 0.997392i \(-0.522993\pi\)
−0.0721715 + 0.997392i \(0.522993\pi\)
\(948\) 0 0
\(949\) 7670.04 + 23606.0i 0.262361 + 0.807463i
\(950\) 0 0
\(951\) −362.603 263.447i −0.0123640 0.00898301i
\(952\) 0 0
\(953\) −226.324 + 696.553i −0.00769291 + 0.0236763i −0.954829 0.297155i \(-0.903962\pi\)
0.947136 + 0.320831i \(0.103962\pi\)
\(954\) 0 0
\(955\) −26298.0 + 19106.6i −0.891082 + 0.647409i
\(956\) 0 0
\(957\) −439.783 2861.08i −0.0148549 0.0966412i
\(958\) 0 0
\(959\) −28023.3 + 20360.1i −0.943609 + 0.685572i
\(960\) 0 0
\(961\) −7975.80 + 24547.0i −0.267725 + 0.823973i
\(962\) 0 0
\(963\) 10364.0 + 7529.85i 0.346806 + 0.251969i
\(964\) 0 0
\(965\) −23767.4 73148.7i −0.792851 2.44014i
\(966\) 0 0
\(967\) 6877.86 0.228725 0.114363 0.993439i \(-0.463517\pi\)
0.114363 + 0.993439i \(0.463517\pi\)
\(968\) 0 0
\(969\) 2323.01 0.0770133
\(970\) 0 0
\(971\) −11642.4 35831.6i −0.384781 1.18423i −0.936639 0.350295i \(-0.886081\pi\)
0.551859 0.833938i \(-0.313919\pi\)
\(972\) 0 0
\(973\) −68459.3 49738.6i −2.25560 1.63879i
\(974\) 0 0
\(975\) 9662.66 29738.6i 0.317388 0.976818i
\(976\) 0 0
\(977\) −25728.6 + 18692.9i −0.842508 + 0.612118i −0.923070 0.384632i \(-0.874328\pi\)
0.0805620 + 0.996750i \(0.474328\pi\)
\(978\) 0 0
\(979\) −599.333 3899.06i −0.0195656 0.127288i
\(980\) 0 0
\(981\) 6984.95 5074.86i 0.227332 0.165166i
\(982\) 0 0
\(983\) 10041.4 30904.2i 0.325809 1.00274i −0.645265 0.763959i \(-0.723253\pi\)
0.971074 0.238779i \(-0.0767470\pi\)
\(984\) 0 0
\(985\) 43134.6 + 31339.1i 1.39531 + 1.01375i
\(986\) 0 0
\(987\) −181.292 557.960i −0.00584660 0.0179940i
\(988\) 0 0
\(989\) 23748.0 0.763540
\(990\) 0 0
\(991\) −3024.29 −0.0969423 −0.0484712 0.998825i \(-0.515435\pi\)
−0.0484712 + 0.998825i \(0.515435\pi\)
\(992\) 0 0
\(993\) 5422.02 + 16687.3i 0.173276 + 0.533288i
\(994\) 0 0
\(995\) 63850.2 + 46389.9i 2.03436 + 1.47805i
\(996\) 0 0
\(997\) −3247.69 + 9995.35i −0.103165 + 0.317509i −0.989295 0.145927i \(-0.953383\pi\)
0.886131 + 0.463436i \(0.153383\pi\)
\(998\) 0 0
\(999\) −24201.3 + 17583.2i −0.766461 + 0.556866i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 176.4.m.d.113.2 12
4.3 odd 2 44.4.e.a.25.2 12
11.2 odd 10 1936.4.a.bs.1.4 6
11.4 even 5 inner 176.4.m.d.81.2 12
11.9 even 5 1936.4.a.br.1.4 6
12.11 even 2 396.4.j.d.289.1 12
44.15 odd 10 44.4.e.a.37.2 yes 12
44.31 odd 10 484.4.a.i.1.3 6
44.35 even 10 484.4.a.h.1.3 6
132.59 even 10 396.4.j.d.37.1 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
44.4.e.a.25.2 12 4.3 odd 2
44.4.e.a.37.2 yes 12 44.15 odd 10
176.4.m.d.81.2 12 11.4 even 5 inner
176.4.m.d.113.2 12 1.1 even 1 trivial
396.4.j.d.37.1 12 132.59 even 10
396.4.j.d.289.1 12 12.11 even 2
484.4.a.h.1.3 6 44.35 even 10
484.4.a.i.1.3 6 44.31 odd 10
1936.4.a.br.1.4 6 11.9 even 5
1936.4.a.bs.1.4 6 11.2 odd 10