Properties

Label 1936.4.a.bs.1.4
Level $1936$
Weight $4$
Character 1936.1
Self dual yes
Analytic conductor $114.228$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1936,4,Mod(1,1936)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1936, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1936.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1936 = 2^{4} \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1936.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(114.227697771\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 3x^{5} - 82x^{4} + 161x^{3} + 1730x^{2} - 2271x - 5931 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2}\cdot 11 \)
Twist minimal: no (minimal twist has level 44)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(2.86545\) of defining polynomial
Character \(\chi\) \(=\) 1936.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.86545 q^{3} -18.4346 q^{5} +29.1909 q^{7} -23.5201 q^{9} -78.0240 q^{13} -34.3888 q^{15} -28.5646 q^{17} -43.5952 q^{19} +54.4541 q^{21} +104.563 q^{23} +214.833 q^{25} -94.2428 q^{27} -42.5332 q^{29} +63.0933 q^{31} -538.121 q^{35} -317.419 q^{37} -145.550 q^{39} +68.3454 q^{41} -227.116 q^{43} +433.583 q^{45} +10.7737 q^{47} +509.106 q^{49} -53.2859 q^{51} -497.037 q^{53} -81.3248 q^{57} +423.387 q^{59} +190.367 q^{61} -686.572 q^{63} +1438.34 q^{65} +386.223 q^{67} +195.057 q^{69} +691.474 q^{71} -318.117 q^{73} +400.761 q^{75} +161.713 q^{79} +459.237 q^{81} +394.114 q^{83} +526.577 q^{85} -79.3436 q^{87} +108.129 q^{89} -2277.59 q^{91} +117.697 q^{93} +803.659 q^{95} -678.738 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 3 q^{3} - 12 q^{5} + 8 q^{7} + 11 q^{9} + 80 q^{13} + 98 q^{15} + 113 q^{17} - 53 q^{19} + 152 q^{21} + 194 q^{23} + 476 q^{25} - 72 q^{27} + 374 q^{29} - 16 q^{31} - 1044 q^{35} - 456 q^{37} - 592 q^{39}+ \cdots + 683 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.86545 0.359006 0.179503 0.983757i \(-0.442551\pi\)
0.179503 + 0.983757i \(0.442551\pi\)
\(4\) 0 0
\(5\) −18.4346 −1.64884 −0.824419 0.565980i \(-0.808498\pi\)
−0.824419 + 0.565980i \(0.808498\pi\)
\(6\) 0 0
\(7\) 29.1909 1.57616 0.788079 0.615574i \(-0.211076\pi\)
0.788079 + 0.615574i \(0.211076\pi\)
\(8\) 0 0
\(9\) −23.5201 −0.871114
\(10\) 0 0
\(11\) 0 0
\(12\) 0 0
\(13\) −78.0240 −1.66461 −0.832307 0.554315i \(-0.812980\pi\)
−0.832307 + 0.554315i \(0.812980\pi\)
\(14\) 0 0
\(15\) −34.3888 −0.591943
\(16\) 0 0
\(17\) −28.5646 −0.407526 −0.203763 0.979020i \(-0.565317\pi\)
−0.203763 + 0.979020i \(0.565317\pi\)
\(18\) 0 0
\(19\) −43.5952 −0.526391 −0.263195 0.964743i \(-0.584776\pi\)
−0.263195 + 0.964743i \(0.584776\pi\)
\(20\) 0 0
\(21\) 54.4541 0.565851
\(22\) 0 0
\(23\) 104.563 0.947952 0.473976 0.880538i \(-0.342818\pi\)
0.473976 + 0.880538i \(0.342818\pi\)
\(24\) 0 0
\(25\) 214.833 1.71867
\(26\) 0 0
\(27\) −94.2428 −0.671742
\(28\) 0 0
\(29\) −42.5332 −0.272352 −0.136176 0.990685i \(-0.543481\pi\)
−0.136176 + 0.990685i \(0.543481\pi\)
\(30\) 0 0
\(31\) 63.0933 0.365545 0.182772 0.983155i \(-0.441493\pi\)
0.182772 + 0.983155i \(0.441493\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −538.121 −2.59883
\(36\) 0 0
\(37\) −317.419 −1.41036 −0.705180 0.709029i \(-0.749134\pi\)
−0.705180 + 0.709029i \(0.749134\pi\)
\(38\) 0 0
\(39\) −145.550 −0.597607
\(40\) 0 0
\(41\) 68.3454 0.260336 0.130168 0.991492i \(-0.458448\pi\)
0.130168 + 0.991492i \(0.458448\pi\)
\(42\) 0 0
\(43\) −227.116 −0.805463 −0.402731 0.915318i \(-0.631939\pi\)
−0.402731 + 0.915318i \(0.631939\pi\)
\(44\) 0 0
\(45\) 433.583 1.43633
\(46\) 0 0
\(47\) 10.7737 0.0334364 0.0167182 0.999860i \(-0.494678\pi\)
0.0167182 + 0.999860i \(0.494678\pi\)
\(48\) 0 0
\(49\) 509.106 1.48427
\(50\) 0 0
\(51\) −53.2859 −0.146304
\(52\) 0 0
\(53\) −497.037 −1.28817 −0.644087 0.764952i \(-0.722763\pi\)
−0.644087 + 0.764952i \(0.722763\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) −81.3248 −0.188978
\(58\) 0 0
\(59\) 423.387 0.934242 0.467121 0.884193i \(-0.345291\pi\)
0.467121 + 0.884193i \(0.345291\pi\)
\(60\) 0 0
\(61\) 190.367 0.399574 0.199787 0.979839i \(-0.435975\pi\)
0.199787 + 0.979839i \(0.435975\pi\)
\(62\) 0 0
\(63\) −686.572 −1.37301
\(64\) 0 0
\(65\) 1438.34 2.74468
\(66\) 0 0
\(67\) 386.223 0.704248 0.352124 0.935953i \(-0.385459\pi\)
0.352124 + 0.935953i \(0.385459\pi\)
\(68\) 0 0
\(69\) 195.057 0.340321
\(70\) 0 0
\(71\) 691.474 1.15581 0.577907 0.816102i \(-0.303869\pi\)
0.577907 + 0.816102i \(0.303869\pi\)
\(72\) 0 0
\(73\) −318.117 −0.510038 −0.255019 0.966936i \(-0.582082\pi\)
−0.255019 + 0.966936i \(0.582082\pi\)
\(74\) 0 0
\(75\) 400.761 0.617013
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 161.713 0.230305 0.115152 0.993348i \(-0.463264\pi\)
0.115152 + 0.993348i \(0.463264\pi\)
\(80\) 0 0
\(81\) 459.237 0.629955
\(82\) 0 0
\(83\) 394.114 0.521201 0.260600 0.965447i \(-0.416080\pi\)
0.260600 + 0.965447i \(0.416080\pi\)
\(84\) 0 0
\(85\) 526.577 0.671944
\(86\) 0 0
\(87\) −79.3436 −0.0977762
\(88\) 0 0
\(89\) 108.129 0.128782 0.0643912 0.997925i \(-0.479489\pi\)
0.0643912 + 0.997925i \(0.479489\pi\)
\(90\) 0 0
\(91\) −2277.59 −2.62369
\(92\) 0 0
\(93\) 117.697 0.131233
\(94\) 0 0
\(95\) 803.659 0.867934
\(96\) 0 0
\(97\) −678.738 −0.710469 −0.355234 0.934777i \(-0.615599\pi\)
−0.355234 + 0.934777i \(0.615599\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 1128.96 1.11223 0.556117 0.831104i \(-0.312291\pi\)
0.556117 + 0.831104i \(0.312291\pi\)
\(102\) 0 0
\(103\) 98.3154 0.0940515 0.0470258 0.998894i \(-0.485026\pi\)
0.0470258 + 0.998894i \(0.485026\pi\)
\(104\) 0 0
\(105\) −1003.84 −0.932996
\(106\) 0 0
\(107\) −544.664 −0.492100 −0.246050 0.969257i \(-0.579133\pi\)
−0.246050 + 0.969257i \(0.579133\pi\)
\(108\) 0 0
\(109\) −367.085 −0.322572 −0.161286 0.986908i \(-0.551564\pi\)
−0.161286 + 0.986908i \(0.551564\pi\)
\(110\) 0 0
\(111\) −592.129 −0.506328
\(112\) 0 0
\(113\) −556.708 −0.463457 −0.231729 0.972780i \(-0.574438\pi\)
−0.231729 + 0.972780i \(0.574438\pi\)
\(114\) 0 0
\(115\) −1927.58 −1.56302
\(116\) 0 0
\(117\) 1835.13 1.45007
\(118\) 0 0
\(119\) −833.826 −0.642325
\(120\) 0 0
\(121\) 0 0
\(122\) 0 0
\(123\) 127.495 0.0934621
\(124\) 0 0
\(125\) −1656.04 −1.18497
\(126\) 0 0
\(127\) −1298.70 −0.907409 −0.453704 0.891152i \(-0.649898\pi\)
−0.453704 + 0.891152i \(0.649898\pi\)
\(128\) 0 0
\(129\) −423.674 −0.289166
\(130\) 0 0
\(131\) −1110.64 −0.740738 −0.370369 0.928885i \(-0.620769\pi\)
−0.370369 + 0.928885i \(0.620769\pi\)
\(132\) 0 0
\(133\) −1272.58 −0.829675
\(134\) 0 0
\(135\) 1737.33 1.10759
\(136\) 0 0
\(137\) −1186.63 −0.740005 −0.370002 0.929031i \(-0.620643\pi\)
−0.370002 + 0.929031i \(0.620643\pi\)
\(138\) 0 0
\(139\) 2898.86 1.76891 0.884455 0.466626i \(-0.154531\pi\)
0.884455 + 0.466626i \(0.154531\pi\)
\(140\) 0 0
\(141\) 20.0979 0.0120039
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 784.081 0.449065
\(146\) 0 0
\(147\) 949.713 0.532864
\(148\) 0 0
\(149\) 2937.12 1.61489 0.807444 0.589944i \(-0.200850\pi\)
0.807444 + 0.589944i \(0.200850\pi\)
\(150\) 0 0
\(151\) 3056.43 1.64721 0.823605 0.567164i \(-0.191959\pi\)
0.823605 + 0.567164i \(0.191959\pi\)
\(152\) 0 0
\(153\) 671.842 0.355002
\(154\) 0 0
\(155\) −1163.10 −0.602724
\(156\) 0 0
\(157\) −1576.42 −0.801351 −0.400676 0.916220i \(-0.631225\pi\)
−0.400676 + 0.916220i \(0.631225\pi\)
\(158\) 0 0
\(159\) −927.198 −0.462463
\(160\) 0 0
\(161\) 3052.28 1.49412
\(162\) 0 0
\(163\) 2831.54 1.36064 0.680318 0.732917i \(-0.261842\pi\)
0.680318 + 0.732917i \(0.261842\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 1246.67 0.577666 0.288833 0.957380i \(-0.406733\pi\)
0.288833 + 0.957380i \(0.406733\pi\)
\(168\) 0 0
\(169\) 3890.75 1.77094
\(170\) 0 0
\(171\) 1025.36 0.458547
\(172\) 0 0
\(173\) 1959.83 0.861291 0.430645 0.902521i \(-0.358286\pi\)
0.430645 + 0.902521i \(0.358286\pi\)
\(174\) 0 0
\(175\) 6271.17 2.70889
\(176\) 0 0
\(177\) 789.808 0.335399
\(178\) 0 0
\(179\) −638.909 −0.266784 −0.133392 0.991063i \(-0.542587\pi\)
−0.133392 + 0.991063i \(0.542587\pi\)
\(180\) 0 0
\(181\) −3146.74 −1.29224 −0.646120 0.763236i \(-0.723609\pi\)
−0.646120 + 0.763236i \(0.723609\pi\)
\(182\) 0 0
\(183\) 355.121 0.143450
\(184\) 0 0
\(185\) 5851.48 2.32545
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) −2751.03 −1.05877
\(190\) 0 0
\(191\) −1763.32 −0.668008 −0.334004 0.942572i \(-0.608400\pi\)
−0.334004 + 0.942572i \(0.608400\pi\)
\(192\) 0 0
\(193\) −4172.22 −1.55608 −0.778038 0.628217i \(-0.783785\pi\)
−0.778038 + 0.628217i \(0.783785\pi\)
\(194\) 0 0
\(195\) 2683.15 0.985357
\(196\) 0 0
\(197\) −2892.24 −1.04601 −0.523005 0.852330i \(-0.675189\pi\)
−0.523005 + 0.852330i \(0.675189\pi\)
\(198\) 0 0
\(199\) 4281.26 1.52508 0.762539 0.646943i \(-0.223953\pi\)
0.762539 + 0.646943i \(0.223953\pi\)
\(200\) 0 0
\(201\) 720.480 0.252830
\(202\) 0 0
\(203\) −1241.58 −0.429270
\(204\) 0 0
\(205\) −1259.92 −0.429251
\(206\) 0 0
\(207\) −2459.33 −0.825775
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 2747.76 0.896511 0.448256 0.893905i \(-0.352045\pi\)
0.448256 + 0.893905i \(0.352045\pi\)
\(212\) 0 0
\(213\) 1289.91 0.414945
\(214\) 0 0
\(215\) 4186.79 1.32808
\(216\) 0 0
\(217\) 1841.75 0.576156
\(218\) 0 0
\(219\) −593.432 −0.183107
\(220\) 0 0
\(221\) 2228.73 0.678373
\(222\) 0 0
\(223\) 869.528 0.261112 0.130556 0.991441i \(-0.458324\pi\)
0.130556 + 0.991441i \(0.458324\pi\)
\(224\) 0 0
\(225\) −5052.90 −1.49716
\(226\) 0 0
\(227\) −2856.58 −0.835233 −0.417616 0.908623i \(-0.637134\pi\)
−0.417616 + 0.908623i \(0.637134\pi\)
\(228\) 0 0
\(229\) 5277.91 1.52303 0.761516 0.648147i \(-0.224456\pi\)
0.761516 + 0.648147i \(0.224456\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −915.390 −0.257378 −0.128689 0.991685i \(-0.541077\pi\)
−0.128689 + 0.991685i \(0.541077\pi\)
\(234\) 0 0
\(235\) −198.609 −0.0551312
\(236\) 0 0
\(237\) 301.667 0.0826809
\(238\) 0 0
\(239\) 6328.24 1.71272 0.856359 0.516381i \(-0.172721\pi\)
0.856359 + 0.516381i \(0.172721\pi\)
\(240\) 0 0
\(241\) 540.257 0.144403 0.0722013 0.997390i \(-0.476998\pi\)
0.0722013 + 0.997390i \(0.476998\pi\)
\(242\) 0 0
\(243\) 3401.24 0.897900
\(244\) 0 0
\(245\) −9385.15 −2.44733
\(246\) 0 0
\(247\) 3401.47 0.876238
\(248\) 0 0
\(249\) 735.201 0.187114
\(250\) 0 0
\(251\) 5333.42 1.34121 0.670603 0.741816i \(-0.266035\pi\)
0.670603 + 0.741816i \(0.266035\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 982.303 0.241232
\(256\) 0 0
\(257\) 1378.09 0.334485 0.167242 0.985916i \(-0.446514\pi\)
0.167242 + 0.985916i \(0.446514\pi\)
\(258\) 0 0
\(259\) −9265.72 −2.22295
\(260\) 0 0
\(261\) 1000.38 0.237250
\(262\) 0 0
\(263\) 7490.14 1.75613 0.878064 0.478543i \(-0.158835\pi\)
0.878064 + 0.478543i \(0.158835\pi\)
\(264\) 0 0
\(265\) 9162.66 2.12399
\(266\) 0 0
\(267\) 201.709 0.0462337
\(268\) 0 0
\(269\) 7291.23 1.65262 0.826308 0.563218i \(-0.190437\pi\)
0.826308 + 0.563218i \(0.190437\pi\)
\(270\) 0 0
\(271\) −781.878 −0.175261 −0.0876305 0.996153i \(-0.527929\pi\)
−0.0876305 + 0.996153i \(0.527929\pi\)
\(272\) 0 0
\(273\) −4248.73 −0.941923
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 575.042 0.124733 0.0623663 0.998053i \(-0.480135\pi\)
0.0623663 + 0.998053i \(0.480135\pi\)
\(278\) 0 0
\(279\) −1483.96 −0.318431
\(280\) 0 0
\(281\) 5602.67 1.18942 0.594711 0.803940i \(-0.297267\pi\)
0.594711 + 0.803940i \(0.297267\pi\)
\(282\) 0 0
\(283\) −898.013 −0.188627 −0.0943133 0.995543i \(-0.530066\pi\)
−0.0943133 + 0.995543i \(0.530066\pi\)
\(284\) 0 0
\(285\) 1499.19 0.311594
\(286\) 0 0
\(287\) 1995.06 0.410330
\(288\) 0 0
\(289\) −4097.06 −0.833923
\(290\) 0 0
\(291\) −1266.15 −0.255063
\(292\) 0 0
\(293\) 8040.51 1.60318 0.801590 0.597874i \(-0.203988\pi\)
0.801590 + 0.597874i \(0.203988\pi\)
\(294\) 0 0
\(295\) −7804.96 −1.54041
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −8158.43 −1.57797
\(300\) 0 0
\(301\) −6629.72 −1.26954
\(302\) 0 0
\(303\) 2106.02 0.399299
\(304\) 0 0
\(305\) −3509.34 −0.658833
\(306\) 0 0
\(307\) −5491.51 −1.02090 −0.510451 0.859907i \(-0.670522\pi\)
−0.510451 + 0.859907i \(0.670522\pi\)
\(308\) 0 0
\(309\) 183.403 0.0337651
\(310\) 0 0
\(311\) −3195.06 −0.582557 −0.291278 0.956638i \(-0.594081\pi\)
−0.291278 + 0.956638i \(0.594081\pi\)
\(312\) 0 0
\(313\) −3117.41 −0.562961 −0.281480 0.959567i \(-0.590825\pi\)
−0.281480 + 0.959567i \(0.590825\pi\)
\(314\) 0 0
\(315\) 12656.7 2.26388
\(316\) 0 0
\(317\) 240.265 0.0425697 0.0212849 0.999773i \(-0.493224\pi\)
0.0212849 + 0.999773i \(0.493224\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) −1016.04 −0.176667
\(322\) 0 0
\(323\) 1245.28 0.214518
\(324\) 0 0
\(325\) −16762.2 −2.86092
\(326\) 0 0
\(327\) −684.779 −0.115805
\(328\) 0 0
\(329\) 314.494 0.0527010
\(330\) 0 0
\(331\) 9405.79 1.56190 0.780950 0.624594i \(-0.214735\pi\)
0.780950 + 0.624594i \(0.214735\pi\)
\(332\) 0 0
\(333\) 7465.71 1.22858
\(334\) 0 0
\(335\) −7119.85 −1.16119
\(336\) 0 0
\(337\) 4690.42 0.758170 0.379085 0.925362i \(-0.376239\pi\)
0.379085 + 0.925362i \(0.376239\pi\)
\(338\) 0 0
\(339\) −1038.51 −0.166384
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 4848.78 0.763292
\(344\) 0 0
\(345\) −3595.80 −0.561134
\(346\) 0 0
\(347\) −5358.07 −0.828922 −0.414461 0.910067i \(-0.636030\pi\)
−0.414461 + 0.910067i \(0.636030\pi\)
\(348\) 0 0
\(349\) 987.122 0.151402 0.0757012 0.997131i \(-0.475880\pi\)
0.0757012 + 0.997131i \(0.475880\pi\)
\(350\) 0 0
\(351\) 7353.20 1.11819
\(352\) 0 0
\(353\) −130.359 −0.0196552 −0.00982762 0.999952i \(-0.503128\pi\)
−0.00982762 + 0.999952i \(0.503128\pi\)
\(354\) 0 0
\(355\) −12747.0 −1.90575
\(356\) 0 0
\(357\) −1555.46 −0.230599
\(358\) 0 0
\(359\) 9231.03 1.35709 0.678545 0.734559i \(-0.262611\pi\)
0.678545 + 0.734559i \(0.262611\pi\)
\(360\) 0 0
\(361\) −4958.46 −0.722913
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 5864.35 0.840971
\(366\) 0 0
\(367\) −8497.29 −1.20860 −0.604299 0.796758i \(-0.706547\pi\)
−0.604299 + 0.796758i \(0.706547\pi\)
\(368\) 0 0
\(369\) −1607.49 −0.226782
\(370\) 0 0
\(371\) −14508.9 −2.03037
\(372\) 0 0
\(373\) 12810.7 1.77832 0.889160 0.457597i \(-0.151290\pi\)
0.889160 + 0.457597i \(0.151290\pi\)
\(374\) 0 0
\(375\) −3089.27 −0.425411
\(376\) 0 0
\(377\) 3318.61 0.453361
\(378\) 0 0
\(379\) 6768.45 0.917340 0.458670 0.888607i \(-0.348326\pi\)
0.458670 + 0.888607i \(0.348326\pi\)
\(380\) 0 0
\(381\) −2422.66 −0.325766
\(382\) 0 0
\(383\) 11600.9 1.54772 0.773859 0.633357i \(-0.218324\pi\)
0.773859 + 0.633357i \(0.218324\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 5341.79 0.701650
\(388\) 0 0
\(389\) 3183.50 0.414936 0.207468 0.978242i \(-0.433478\pi\)
0.207468 + 0.978242i \(0.433478\pi\)
\(390\) 0 0
\(391\) −2986.80 −0.386315
\(392\) 0 0
\(393\) −2071.84 −0.265930
\(394\) 0 0
\(395\) −2981.10 −0.379736
\(396\) 0 0
\(397\) 4412.72 0.557854 0.278927 0.960312i \(-0.410021\pi\)
0.278927 + 0.960312i \(0.410021\pi\)
\(398\) 0 0
\(399\) −2373.94 −0.297859
\(400\) 0 0
\(401\) 3770.02 0.469490 0.234745 0.972057i \(-0.424574\pi\)
0.234745 + 0.972057i \(0.424574\pi\)
\(402\) 0 0
\(403\) −4922.79 −0.608491
\(404\) 0 0
\(405\) −8465.84 −1.03869
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) −6371.80 −0.770331 −0.385165 0.922848i \(-0.625856\pi\)
−0.385165 + 0.922848i \(0.625856\pi\)
\(410\) 0 0
\(411\) −2213.60 −0.265666
\(412\) 0 0
\(413\) 12359.0 1.47251
\(414\) 0 0
\(415\) −7265.33 −0.859375
\(416\) 0 0
\(417\) 5407.69 0.635050
\(418\) 0 0
\(419\) −2107.98 −0.245779 −0.122890 0.992420i \(-0.539216\pi\)
−0.122890 + 0.992420i \(0.539216\pi\)
\(420\) 0 0
\(421\) −8247.39 −0.954758 −0.477379 0.878697i \(-0.658413\pi\)
−0.477379 + 0.878697i \(0.658413\pi\)
\(422\) 0 0
\(423\) −253.399 −0.0291269
\(424\) 0 0
\(425\) −6136.64 −0.700401
\(426\) 0 0
\(427\) 5556.98 0.629792
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −12928.4 −1.44487 −0.722435 0.691439i \(-0.756977\pi\)
−0.722435 + 0.691439i \(0.756977\pi\)
\(432\) 0 0
\(433\) −7810.22 −0.866825 −0.433413 0.901196i \(-0.642691\pi\)
−0.433413 + 0.901196i \(0.642691\pi\)
\(434\) 0 0
\(435\) 1462.67 0.161217
\(436\) 0 0
\(437\) −4558.45 −0.498994
\(438\) 0 0
\(439\) −17491.4 −1.90163 −0.950817 0.309752i \(-0.899754\pi\)
−0.950817 + 0.309752i \(0.899754\pi\)
\(440\) 0 0
\(441\) −11974.2 −1.29297
\(442\) 0 0
\(443\) −2569.82 −0.275611 −0.137806 0.990459i \(-0.544005\pi\)
−0.137806 + 0.990459i \(0.544005\pi\)
\(444\) 0 0
\(445\) −1993.31 −0.212342
\(446\) 0 0
\(447\) 5479.06 0.579755
\(448\) 0 0
\(449\) 5357.81 0.563142 0.281571 0.959540i \(-0.409145\pi\)
0.281571 + 0.959540i \(0.409145\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) 5701.62 0.591359
\(454\) 0 0
\(455\) 41986.4 4.32605
\(456\) 0 0
\(457\) −4836.50 −0.495059 −0.247529 0.968880i \(-0.579619\pi\)
−0.247529 + 0.968880i \(0.579619\pi\)
\(458\) 0 0
\(459\) 2692.01 0.273752
\(460\) 0 0
\(461\) 18173.0 1.83601 0.918007 0.396564i \(-0.129797\pi\)
0.918007 + 0.396564i \(0.129797\pi\)
\(462\) 0 0
\(463\) −13451.4 −1.35019 −0.675095 0.737731i \(-0.735897\pi\)
−0.675095 + 0.737731i \(0.735897\pi\)
\(464\) 0 0
\(465\) −2169.70 −0.216382
\(466\) 0 0
\(467\) −16081.9 −1.59353 −0.796767 0.604286i \(-0.793458\pi\)
−0.796767 + 0.604286i \(0.793458\pi\)
\(468\) 0 0
\(469\) 11274.2 1.11001
\(470\) 0 0
\(471\) −2940.74 −0.287690
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) −9365.71 −0.904691
\(476\) 0 0
\(477\) 11690.3 1.12215
\(478\) 0 0
\(479\) 3277.03 0.312592 0.156296 0.987710i \(-0.450045\pi\)
0.156296 + 0.987710i \(0.450045\pi\)
\(480\) 0 0
\(481\) 24766.3 2.34770
\(482\) 0 0
\(483\) 5693.89 0.536399
\(484\) 0 0
\(485\) 12512.3 1.17145
\(486\) 0 0
\(487\) −1611.80 −0.149975 −0.0749875 0.997184i \(-0.523892\pi\)
−0.0749875 + 0.997184i \(0.523892\pi\)
\(488\) 0 0
\(489\) 5282.11 0.488477
\(490\) 0 0
\(491\) −10763.9 −0.989341 −0.494670 0.869081i \(-0.664711\pi\)
−0.494670 + 0.869081i \(0.664711\pi\)
\(492\) 0 0
\(493\) 1214.94 0.110991
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 20184.7 1.82175
\(498\) 0 0
\(499\) −13426.9 −1.20455 −0.602277 0.798287i \(-0.705740\pi\)
−0.602277 + 0.798287i \(0.705740\pi\)
\(500\) 0 0
\(501\) 2325.60 0.207386
\(502\) 0 0
\(503\) 18901.5 1.67550 0.837751 0.546053i \(-0.183870\pi\)
0.837751 + 0.546053i \(0.183870\pi\)
\(504\) 0 0
\(505\) −20811.9 −1.83389
\(506\) 0 0
\(507\) 7258.01 0.635778
\(508\) 0 0
\(509\) 10527.8 0.916772 0.458386 0.888753i \(-0.348428\pi\)
0.458386 + 0.888753i \(0.348428\pi\)
\(510\) 0 0
\(511\) −9286.11 −0.803901
\(512\) 0 0
\(513\) 4108.53 0.353599
\(514\) 0 0
\(515\) −1812.40 −0.155076
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 3655.97 0.309209
\(520\) 0 0
\(521\) −1856.19 −0.156086 −0.0780432 0.996950i \(-0.524867\pi\)
−0.0780432 + 0.996950i \(0.524867\pi\)
\(522\) 0 0
\(523\) −1950.64 −0.163089 −0.0815443 0.996670i \(-0.525985\pi\)
−0.0815443 + 0.996670i \(0.525985\pi\)
\(524\) 0 0
\(525\) 11698.6 0.972509
\(526\) 0 0
\(527\) −1802.24 −0.148969
\(528\) 0 0
\(529\) −1233.57 −0.101386
\(530\) 0 0
\(531\) −9958.10 −0.813832
\(532\) 0 0
\(533\) −5332.58 −0.433358
\(534\) 0 0
\(535\) 10040.7 0.811393
\(536\) 0 0
\(537\) −1191.85 −0.0957771
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −87.4698 −0.00695124 −0.00347562 0.999994i \(-0.501106\pi\)
−0.00347562 + 0.999994i \(0.501106\pi\)
\(542\) 0 0
\(543\) −5870.09 −0.463922
\(544\) 0 0
\(545\) 6767.05 0.531869
\(546\) 0 0
\(547\) 13499.5 1.05521 0.527604 0.849491i \(-0.323091\pi\)
0.527604 + 0.849491i \(0.323091\pi\)
\(548\) 0 0
\(549\) −4477.45 −0.348075
\(550\) 0 0
\(551\) 1854.24 0.143364
\(552\) 0 0
\(553\) 4720.53 0.362997
\(554\) 0 0
\(555\) 10915.6 0.834853
\(556\) 0 0
\(557\) −6930.80 −0.527230 −0.263615 0.964628i \(-0.584915\pi\)
−0.263615 + 0.964628i \(0.584915\pi\)
\(558\) 0 0
\(559\) 17720.5 1.34078
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 15183.5 1.13661 0.568303 0.822819i \(-0.307600\pi\)
0.568303 + 0.822819i \(0.307600\pi\)
\(564\) 0 0
\(565\) 10262.7 0.764166
\(566\) 0 0
\(567\) 13405.5 0.992908
\(568\) 0 0
\(569\) 8646.27 0.637031 0.318515 0.947918i \(-0.396816\pi\)
0.318515 + 0.947918i \(0.396816\pi\)
\(570\) 0 0
\(571\) 306.105 0.0224345 0.0112172 0.999937i \(-0.496429\pi\)
0.0112172 + 0.999937i \(0.496429\pi\)
\(572\) 0 0
\(573\) −3289.39 −0.239819
\(574\) 0 0
\(575\) 22463.6 1.62922
\(576\) 0 0
\(577\) −14855.6 −1.07183 −0.535916 0.844271i \(-0.680034\pi\)
−0.535916 + 0.844271i \(0.680034\pi\)
\(578\) 0 0
\(579\) −7783.07 −0.558641
\(580\) 0 0
\(581\) 11504.5 0.821494
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) −33829.9 −2.39093
\(586\) 0 0
\(587\) −1227.33 −0.0862983 −0.0431492 0.999069i \(-0.513739\pi\)
−0.0431492 + 0.999069i \(0.513739\pi\)
\(588\) 0 0
\(589\) −2750.57 −0.192419
\(590\) 0 0
\(591\) −5395.34 −0.375524
\(592\) 0 0
\(593\) 14255.5 0.987189 0.493594 0.869692i \(-0.335683\pi\)
0.493594 + 0.869692i \(0.335683\pi\)
\(594\) 0 0
\(595\) 15371.2 1.05909
\(596\) 0 0
\(597\) 7986.48 0.547512
\(598\) 0 0
\(599\) 15628.0 1.06602 0.533008 0.846110i \(-0.321061\pi\)
0.533008 + 0.846110i \(0.321061\pi\)
\(600\) 0 0
\(601\) −25798.8 −1.75100 −0.875502 0.483215i \(-0.839469\pi\)
−0.875502 + 0.483215i \(0.839469\pi\)
\(602\) 0 0
\(603\) −9084.00 −0.613481
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 21867.5 1.46223 0.731116 0.682253i \(-0.239000\pi\)
0.731116 + 0.682253i \(0.239000\pi\)
\(608\) 0 0
\(609\) −2316.11 −0.154111
\(610\) 0 0
\(611\) −840.610 −0.0556586
\(612\) 0 0
\(613\) −22794.9 −1.50192 −0.750961 0.660346i \(-0.770410\pi\)
−0.750961 + 0.660346i \(0.770410\pi\)
\(614\) 0 0
\(615\) −2350.32 −0.154104
\(616\) 0 0
\(617\) −16843.3 −1.09901 −0.549504 0.835491i \(-0.685183\pi\)
−0.549504 + 0.835491i \(0.685183\pi\)
\(618\) 0 0
\(619\) 18192.4 1.18128 0.590642 0.806934i \(-0.298875\pi\)
0.590642 + 0.806934i \(0.298875\pi\)
\(620\) 0 0
\(621\) −9854.31 −0.636779
\(622\) 0 0
\(623\) 3156.38 0.202982
\(624\) 0 0
\(625\) 3674.24 0.235151
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 9066.94 0.574758
\(630\) 0 0
\(631\) −16141.5 −1.01836 −0.509179 0.860661i \(-0.670051\pi\)
−0.509179 + 0.860661i \(0.670051\pi\)
\(632\) 0 0
\(633\) 5125.82 0.321853
\(634\) 0 0
\(635\) 23941.0 1.49617
\(636\) 0 0
\(637\) −39722.5 −2.47074
\(638\) 0 0
\(639\) −16263.5 −1.00685
\(640\) 0 0
\(641\) −20392.4 −1.25656 −0.628278 0.777989i \(-0.716240\pi\)
−0.628278 + 0.777989i \(0.716240\pi\)
\(642\) 0 0
\(643\) −11382.8 −0.698123 −0.349061 0.937100i \(-0.613500\pi\)
−0.349061 + 0.937100i \(0.613500\pi\)
\(644\) 0 0
\(645\) 7810.25 0.476788
\(646\) 0 0
\(647\) −13492.6 −0.819857 −0.409928 0.912118i \(-0.634446\pi\)
−0.409928 + 0.912118i \(0.634446\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 3435.69 0.206844
\(652\) 0 0
\(653\) −8516.01 −0.510348 −0.255174 0.966895i \(-0.582133\pi\)
−0.255174 + 0.966895i \(0.582133\pi\)
\(654\) 0 0
\(655\) 20474.1 1.22136
\(656\) 0 0
\(657\) 7482.14 0.444302
\(658\) 0 0
\(659\) 29637.1 1.75189 0.875946 0.482409i \(-0.160238\pi\)
0.875946 + 0.482409i \(0.160238\pi\)
\(660\) 0 0
\(661\) 7113.07 0.418557 0.209279 0.977856i \(-0.432888\pi\)
0.209279 + 0.977856i \(0.432888\pi\)
\(662\) 0 0
\(663\) 4157.58 0.243540
\(664\) 0 0
\(665\) 23459.5 1.36800
\(666\) 0 0
\(667\) −4447.40 −0.258177
\(668\) 0 0
\(669\) 1622.06 0.0937408
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) −11824.8 −0.677285 −0.338643 0.940915i \(-0.609968\pi\)
−0.338643 + 0.940915i \(0.609968\pi\)
\(674\) 0 0
\(675\) −20246.5 −1.15450
\(676\) 0 0
\(677\) 24426.8 1.38670 0.693351 0.720600i \(-0.256133\pi\)
0.693351 + 0.720600i \(0.256133\pi\)
\(678\) 0 0
\(679\) −19813.0 −1.11981
\(680\) 0 0
\(681\) −5328.81 −0.299854
\(682\) 0 0
\(683\) −21680.4 −1.21461 −0.607304 0.794469i \(-0.707749\pi\)
−0.607304 + 0.794469i \(0.707749\pi\)
\(684\) 0 0
\(685\) 21875.0 1.22015
\(686\) 0 0
\(687\) 9845.69 0.546778
\(688\) 0 0
\(689\) 38780.8 2.14431
\(690\) 0 0
\(691\) −7054.92 −0.388397 −0.194198 0.980962i \(-0.562211\pi\)
−0.194198 + 0.980962i \(0.562211\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −53439.3 −2.91665
\(696\) 0 0
\(697\) −1952.26 −0.106093
\(698\) 0 0
\(699\) −1707.61 −0.0924005
\(700\) 0 0
\(701\) −31341.1 −1.68864 −0.844321 0.535838i \(-0.819996\pi\)
−0.844321 + 0.535838i \(0.819996\pi\)
\(702\) 0 0
\(703\) 13837.9 0.742400
\(704\) 0 0
\(705\) −370.495 −0.0197924
\(706\) 0 0
\(707\) 32955.3 1.75306
\(708\) 0 0
\(709\) 4726.48 0.250362 0.125181 0.992134i \(-0.460049\pi\)
0.125181 + 0.992134i \(0.460049\pi\)
\(710\) 0 0
\(711\) −3803.49 −0.200622
\(712\) 0 0
\(713\) 6597.23 0.346519
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 11805.0 0.614877
\(718\) 0 0
\(719\) 27189.9 1.41031 0.705155 0.709053i \(-0.250877\pi\)
0.705155 + 0.709053i \(0.250877\pi\)
\(720\) 0 0
\(721\) 2869.91 0.148240
\(722\) 0 0
\(723\) 1007.82 0.0518415
\(724\) 0 0
\(725\) −9137.55 −0.468083
\(726\) 0 0
\(727\) 14387.6 0.733986 0.366993 0.930224i \(-0.380387\pi\)
0.366993 + 0.930224i \(0.380387\pi\)
\(728\) 0 0
\(729\) −6054.55 −0.307603
\(730\) 0 0
\(731\) 6487.49 0.328247
\(732\) 0 0
\(733\) −29792.5 −1.50124 −0.750621 0.660733i \(-0.770246\pi\)
−0.750621 + 0.660733i \(0.770246\pi\)
\(734\) 0 0
\(735\) −17507.5 −0.878606
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 22439.1 1.11696 0.558481 0.829517i \(-0.311384\pi\)
0.558481 + 0.829517i \(0.311384\pi\)
\(740\) 0 0
\(741\) 6345.29 0.314575
\(742\) 0 0
\(743\) 6996.52 0.345461 0.172731 0.984969i \(-0.444741\pi\)
0.172731 + 0.984969i \(0.444741\pi\)
\(744\) 0 0
\(745\) −54144.6 −2.66269
\(746\) 0 0
\(747\) −9269.60 −0.454025
\(748\) 0 0
\(749\) −15899.2 −0.775627
\(750\) 0 0
\(751\) −29020.1 −1.41006 −0.705032 0.709175i \(-0.749068\pi\)
−0.705032 + 0.709175i \(0.749068\pi\)
\(752\) 0 0
\(753\) 9949.24 0.481501
\(754\) 0 0
\(755\) −56344.0 −2.71598
\(756\) 0 0
\(757\) 14945.0 0.717549 0.358775 0.933424i \(-0.383195\pi\)
0.358775 + 0.933424i \(0.383195\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 15539.6 0.740221 0.370111 0.928988i \(-0.379320\pi\)
0.370111 + 0.928988i \(0.379320\pi\)
\(762\) 0 0
\(763\) −10715.5 −0.508425
\(764\) 0 0
\(765\) −12385.1 −0.585340
\(766\) 0 0
\(767\) −33034.4 −1.55515
\(768\) 0 0
\(769\) −1512.44 −0.0709233 −0.0354616 0.999371i \(-0.511290\pi\)
−0.0354616 + 0.999371i \(0.511290\pi\)
\(770\) 0 0
\(771\) 2570.75 0.120082
\(772\) 0 0
\(773\) −40691.4 −1.89336 −0.946681 0.322173i \(-0.895587\pi\)
−0.946681 + 0.322173i \(0.895587\pi\)
\(774\) 0 0
\(775\) 13554.6 0.628250
\(776\) 0 0
\(777\) −17284.7 −0.798053
\(778\) 0 0
\(779\) −2979.53 −0.137038
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 4008.45 0.182950
\(784\) 0 0
\(785\) 29060.7 1.32130
\(786\) 0 0
\(787\) −33472.6 −1.51610 −0.758049 0.652197i \(-0.773847\pi\)
−0.758049 + 0.652197i \(0.773847\pi\)
\(788\) 0 0
\(789\) 13972.5 0.630461
\(790\) 0 0
\(791\) −16250.8 −0.730482
\(792\) 0 0
\(793\) −14853.2 −0.665136
\(794\) 0 0
\(795\) 17092.5 0.762526
\(796\) 0 0
\(797\) 18807.5 0.835879 0.417939 0.908475i \(-0.362752\pi\)
0.417939 + 0.908475i \(0.362752\pi\)
\(798\) 0 0
\(799\) −307.747 −0.0136262
\(800\) 0 0
\(801\) −2543.20 −0.112184
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) −56267.6 −2.46357
\(806\) 0 0
\(807\) 13601.4 0.593300
\(808\) 0 0
\(809\) −29840.4 −1.29683 −0.648414 0.761288i \(-0.724567\pi\)
−0.648414 + 0.761288i \(0.724567\pi\)
\(810\) 0 0
\(811\) −21226.7 −0.919075 −0.459538 0.888158i \(-0.651985\pi\)
−0.459538 + 0.888158i \(0.651985\pi\)
\(812\) 0 0
\(813\) −1458.56 −0.0629198
\(814\) 0 0
\(815\) −52198.3 −2.24347
\(816\) 0 0
\(817\) 9901.18 0.423988
\(818\) 0 0
\(819\) 53569.1 2.28554
\(820\) 0 0
\(821\) −3923.89 −0.166802 −0.0834012 0.996516i \(-0.526578\pi\)
−0.0834012 + 0.996516i \(0.526578\pi\)
\(822\) 0 0
\(823\) −20157.5 −0.853762 −0.426881 0.904308i \(-0.640388\pi\)
−0.426881 + 0.904308i \(0.640388\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 39082.1 1.64331 0.821654 0.569986i \(-0.193051\pi\)
0.821654 + 0.569986i \(0.193051\pi\)
\(828\) 0 0
\(829\) −18903.9 −0.791989 −0.395995 0.918253i \(-0.629600\pi\)
−0.395995 + 0.918253i \(0.629600\pi\)
\(830\) 0 0
\(831\) 1072.71 0.0447798
\(832\) 0 0
\(833\) −14542.4 −0.604880
\(834\) 0 0
\(835\) −22981.8 −0.952477
\(836\) 0 0
\(837\) −5946.09 −0.245552
\(838\) 0 0
\(839\) 1351.84 0.0556264 0.0278132 0.999613i \(-0.491146\pi\)
0.0278132 + 0.999613i \(0.491146\pi\)
\(840\) 0 0
\(841\) −22579.9 −0.925824
\(842\) 0 0
\(843\) 10451.5 0.427010
\(844\) 0 0
\(845\) −71724.3 −2.91999
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) −1675.20 −0.0677181
\(850\) 0 0
\(851\) −33190.3 −1.33695
\(852\) 0 0
\(853\) −34061.8 −1.36724 −0.683619 0.729839i \(-0.739595\pi\)
−0.683619 + 0.729839i \(0.739595\pi\)
\(854\) 0 0
\(855\) −18902.1 −0.756069
\(856\) 0 0
\(857\) −40085.5 −1.59778 −0.798888 0.601480i \(-0.794578\pi\)
−0.798888 + 0.601480i \(0.794578\pi\)
\(858\) 0 0
\(859\) 20827.3 0.827261 0.413631 0.910445i \(-0.364261\pi\)
0.413631 + 0.910445i \(0.364261\pi\)
\(860\) 0 0
\(861\) 3721.69 0.147311
\(862\) 0 0
\(863\) −40209.3 −1.58603 −0.793013 0.609205i \(-0.791489\pi\)
−0.793013 + 0.609205i \(0.791489\pi\)
\(864\) 0 0
\(865\) −36128.7 −1.42013
\(866\) 0 0
\(867\) −7642.87 −0.299384
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) −30134.7 −1.17230
\(872\) 0 0
\(873\) 15964.0 0.618899
\(874\) 0 0
\(875\) −48341.3 −1.86770
\(876\) 0 0
\(877\) −7031.80 −0.270749 −0.135375 0.990794i \(-0.543224\pi\)
−0.135375 + 0.990794i \(0.543224\pi\)
\(878\) 0 0
\(879\) 14999.2 0.575552
\(880\) 0 0
\(881\) 30396.7 1.16242 0.581209 0.813754i \(-0.302580\pi\)
0.581209 + 0.813754i \(0.302580\pi\)
\(882\) 0 0
\(883\) 1884.50 0.0718215 0.0359107 0.999355i \(-0.488567\pi\)
0.0359107 + 0.999355i \(0.488567\pi\)
\(884\) 0 0
\(885\) −14559.8 −0.553018
\(886\) 0 0
\(887\) 1433.13 0.0542499 0.0271249 0.999632i \(-0.491365\pi\)
0.0271249 + 0.999632i \(0.491365\pi\)
\(888\) 0 0
\(889\) −37910.1 −1.43022
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −469.683 −0.0176006
\(894\) 0 0
\(895\) 11778.0 0.439883
\(896\) 0 0
\(897\) −15219.2 −0.566503
\(898\) 0 0
\(899\) −2683.56 −0.0995570
\(900\) 0 0
\(901\) 14197.7 0.524964
\(902\) 0 0
\(903\) −12367.4 −0.455772
\(904\) 0 0
\(905\) 58008.8 2.13069
\(906\) 0 0
\(907\) 27460.9 1.00532 0.502659 0.864485i \(-0.332355\pi\)
0.502659 + 0.864485i \(0.332355\pi\)
\(908\) 0 0
\(909\) −26553.2 −0.968883
\(910\) 0 0
\(911\) −46905.8 −1.70588 −0.852941 0.522008i \(-0.825183\pi\)
−0.852941 + 0.522008i \(0.825183\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) −6546.50 −0.236525
\(916\) 0 0
\(917\) −32420.4 −1.16752
\(918\) 0 0
\(919\) 33579.8 1.20533 0.602664 0.797995i \(-0.294106\pi\)
0.602664 + 0.797995i \(0.294106\pi\)
\(920\) 0 0
\(921\) −10244.1 −0.366510
\(922\) 0 0
\(923\) −53951.6 −1.92399
\(924\) 0 0
\(925\) −68192.1 −2.42394
\(926\) 0 0
\(927\) −2312.39 −0.0819297
\(928\) 0 0
\(929\) 19534.3 0.689883 0.344941 0.938624i \(-0.387899\pi\)
0.344941 + 0.938624i \(0.387899\pi\)
\(930\) 0 0
\(931\) −22194.6 −0.781308
\(932\) 0 0
\(933\) −5960.23 −0.209142
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 52601.5 1.83396 0.916978 0.398938i \(-0.130621\pi\)
0.916978 + 0.398938i \(0.130621\pi\)
\(938\) 0 0
\(939\) −5815.38 −0.202106
\(940\) 0 0
\(941\) 34929.1 1.21005 0.605025 0.796206i \(-0.293163\pi\)
0.605025 + 0.796206i \(0.293163\pi\)
\(942\) 0 0
\(943\) 7146.40 0.246786
\(944\) 0 0
\(945\) 50714.0 1.74574
\(946\) 0 0
\(947\) −4206.50 −0.144343 −0.0721715 0.997392i \(-0.522993\pi\)
−0.0721715 + 0.997392i \(0.522993\pi\)
\(948\) 0 0
\(949\) 24820.8 0.849017
\(950\) 0 0
\(951\) 448.202 0.0152828
\(952\) 0 0
\(953\) 732.399 0.0248948 0.0124474 0.999923i \(-0.496038\pi\)
0.0124474 + 0.999923i \(0.496038\pi\)
\(954\) 0 0
\(955\) 32506.1 1.10144
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −34638.7 −1.16636
\(960\) 0 0
\(961\) −25810.2 −0.866377
\(962\) 0 0
\(963\) 12810.6 0.428675
\(964\) 0 0
\(965\) 76913.1 2.56572
\(966\) 0 0
\(967\) −6877.86 −0.228725 −0.114363 0.993439i \(-0.536483\pi\)
−0.114363 + 0.993439i \(0.536483\pi\)
\(968\) 0 0
\(969\) 2323.01 0.0770133
\(970\) 0 0
\(971\) −37675.6 −1.24518 −0.622588 0.782550i \(-0.713919\pi\)
−0.622588 + 0.782550i \(0.713919\pi\)
\(972\) 0 0
\(973\) 84620.3 2.78808
\(974\) 0 0
\(975\) −31269.0 −1.02709
\(976\) 0 0
\(977\) 31802.3 1.04140 0.520699 0.853741i \(-0.325672\pi\)
0.520699 + 0.853741i \(0.325672\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 8633.87 0.280997
\(982\) 0 0
\(983\) 32494.6 1.05434 0.527170 0.849760i \(-0.323253\pi\)
0.527170 + 0.849760i \(0.323253\pi\)
\(984\) 0 0
\(985\) 53317.3 1.72470
\(986\) 0 0
\(987\) 586.674 0.0189200
\(988\) 0 0
\(989\) −23748.0 −0.763540
\(990\) 0 0
\(991\) −3024.29 −0.0969423 −0.0484712 0.998825i \(-0.515435\pi\)
−0.0484712 + 0.998825i \(0.515435\pi\)
\(992\) 0 0
\(993\) 17546.0 0.560732
\(994\) 0 0
\(995\) −78923.2 −2.51461
\(996\) 0 0
\(997\) 10509.7 0.333848 0.166924 0.985970i \(-0.446617\pi\)
0.166924 + 0.985970i \(0.446617\pi\)
\(998\) 0 0
\(999\) 29914.4 0.947397
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1936.4.a.bs.1.4 6
4.3 odd 2 484.4.a.h.1.3 6
11.2 odd 10 176.4.m.d.81.2 12
11.6 odd 10 176.4.m.d.113.2 12
11.10 odd 2 1936.4.a.br.1.4 6
44.35 even 10 44.4.e.a.37.2 yes 12
44.39 even 10 44.4.e.a.25.2 12
44.43 even 2 484.4.a.i.1.3 6
132.35 odd 10 396.4.j.d.37.1 12
132.83 odd 10 396.4.j.d.289.1 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
44.4.e.a.25.2 12 44.39 even 10
44.4.e.a.37.2 yes 12 44.35 even 10
176.4.m.d.81.2 12 11.2 odd 10
176.4.m.d.113.2 12 11.6 odd 10
396.4.j.d.37.1 12 132.35 odd 10
396.4.j.d.289.1 12 132.83 odd 10
484.4.a.h.1.3 6 4.3 odd 2
484.4.a.i.1.3 6 44.43 even 2
1936.4.a.br.1.4 6 11.10 odd 2
1936.4.a.bs.1.4 6 1.1 even 1 trivial