Properties

Label 396.4.j.d.289.1
Level $396$
Weight $4$
Character 396.289
Analytic conductor $23.365$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [396,4,Mod(37,396)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(396, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([0, 0, 2]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("396.37");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 396 = 2^{2} \cdot 3^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 396.j (of order \(5\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(23.3647563623\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(3\) over \(\Q(\zeta_{5})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - x^{11} + 70 x^{10} - 84 x^{9} + 2459 x^{8} - 8514 x^{7} + 54995 x^{6} - 432951 x^{5} + \cdots + 40896025 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: no (minimal twist has level 44)
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 289.1
Root \(1.50918 + 1.09648i\) of defining polynomial
Character \(\chi\) \(=\) 396.289
Dual form 396.4.j.d.37.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-14.9139 - 10.8356i) q^{5} +(9.02047 - 27.7622i) q^{7} +(-5.54276 - 36.0594i) q^{11} +(-63.1228 + 45.8614i) q^{13} +(23.1093 + 16.7899i) q^{17} +(-13.4717 - 41.4615i) q^{19} +104.563 q^{23} +(66.3872 + 204.319i) q^{25} +(-13.1435 + 40.4515i) q^{29} +(51.0435 - 37.0853i) q^{31} +(-435.349 + 316.300i) q^{35} +(-98.0877 + 301.883i) q^{37} +(21.1199 + 65.0003i) q^{41} -227.116 q^{43} +(3.32926 + 10.2464i) q^{47} +(-411.875 - 299.245i) q^{49} +(-402.111 + 292.151i) q^{53} +(-308.060 + 597.844i) q^{55} +(130.834 - 402.665i) q^{59} +(154.010 + 111.895i) q^{61} +1438.34 q^{65} -386.223 q^{67} +(-559.414 - 406.438i) q^{71} +(98.3036 - 302.547i) q^{73} +(-1051.08 - 171.393i) q^{77} +(-130.828 + 95.0523i) q^{79} +(318.845 + 231.654i) q^{83} +(-162.721 - 500.804i) q^{85} -108.129 q^{89} +(703.814 + 2166.12i) q^{91} +(-248.344 + 764.325i) q^{95} +(549.111 - 398.952i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 4 q^{5} + 6 q^{7} - 39 q^{11} - 10 q^{13} + 56 q^{17} - 141 q^{19} + 388 q^{23} - 203 q^{25} - 772 q^{29} + 882 q^{31} - 412 q^{35} - 192 q^{37} + 180 q^{41} - 2330 q^{43} - 196 q^{47} - 973 q^{49}+ \cdots + 2651 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/396\mathbb{Z}\right)^\times\).

\(n\) \(145\) \(199\) \(353\)
\(\chi(n)\) \(e\left(\frac{4}{5}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −14.9139 10.8356i −1.33394 0.969163i −0.999644 0.0266942i \(-0.991502\pi\)
−0.334295 0.942469i \(-0.608498\pi\)
\(6\) 0 0
\(7\) 9.02047 27.7622i 0.487060 1.49902i −0.341916 0.939731i \(-0.611076\pi\)
0.828976 0.559285i \(-0.188924\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −5.54276 36.0594i −0.151928 0.988392i
\(12\) 0 0
\(13\) −63.1228 + 45.8614i −1.34670 + 0.978435i −0.347532 + 0.937668i \(0.612980\pi\)
−0.999169 + 0.0407672i \(0.987020\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 23.1093 + 16.7899i 0.329695 + 0.239538i 0.740301 0.672275i \(-0.234683\pi\)
−0.410606 + 0.911813i \(0.634683\pi\)
\(18\) 0 0
\(19\) −13.4717 41.4615i −0.162664 0.500628i 0.836193 0.548436i \(-0.184776\pi\)
−0.998857 + 0.0478081i \(0.984776\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 104.563 0.947952 0.473976 0.880538i \(-0.342818\pi\)
0.473976 + 0.880538i \(0.342818\pi\)
\(24\) 0 0
\(25\) 66.3872 + 204.319i 0.531098 + 1.63455i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −13.1435 + 40.4515i −0.0841615 + 0.259022i −0.984278 0.176627i \(-0.943481\pi\)
0.900116 + 0.435650i \(0.143481\pi\)
\(30\) 0 0
\(31\) 51.0435 37.0853i 0.295732 0.214862i −0.430018 0.902820i \(-0.641493\pi\)
0.725750 + 0.687958i \(0.241493\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −435.349 + 316.300i −2.10250 + 1.52755i
\(36\) 0 0
\(37\) −98.0877 + 301.883i −0.435825 + 1.34133i 0.456414 + 0.889768i \(0.349134\pi\)
−0.892239 + 0.451564i \(0.850866\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 21.1199 + 65.0003i 0.0804481 + 0.247594i 0.983189 0.182591i \(-0.0584484\pi\)
−0.902741 + 0.430185i \(0.858448\pi\)
\(42\) 0 0
\(43\) −227.116 −0.805463 −0.402731 0.915318i \(-0.631939\pi\)
−0.402731 + 0.915318i \(0.631939\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 3.32926 + 10.2464i 0.0103324 + 0.0317999i 0.956090 0.293074i \(-0.0946782\pi\)
−0.945757 + 0.324874i \(0.894678\pi\)
\(48\) 0 0
\(49\) −411.875 299.245i −1.20080 0.872434i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −402.111 + 292.151i −1.04215 + 0.757170i −0.970705 0.240274i \(-0.922763\pi\)
−0.0714497 + 0.997444i \(0.522763\pi\)
\(54\) 0 0
\(55\) −308.060 + 597.844i −0.755250 + 1.46570i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 130.834 402.665i 0.288697 0.888517i −0.696570 0.717489i \(-0.745291\pi\)
0.985266 0.171028i \(-0.0547088\pi\)
\(60\) 0 0
\(61\) 154.010 + 111.895i 0.323262 + 0.234864i 0.737566 0.675275i \(-0.235975\pi\)
−0.414304 + 0.910139i \(0.635975\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 1438.34 2.74468
\(66\) 0 0
\(67\) −386.223 −0.704248 −0.352124 0.935953i \(-0.614541\pi\)
−0.352124 + 0.935953i \(0.614541\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −559.414 406.438i −0.935074 0.679371i 0.0121559 0.999926i \(-0.496131\pi\)
−0.947230 + 0.320555i \(0.896131\pi\)
\(72\) 0 0
\(73\) 98.3036 302.547i 0.157610 0.485075i −0.840806 0.541337i \(-0.817918\pi\)
0.998416 + 0.0562620i \(0.0179182\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −1051.08 171.393i −1.55561 0.253664i
\(78\) 0 0
\(79\) −130.828 + 95.0523i −0.186321 + 0.135370i −0.677035 0.735950i \(-0.736736\pi\)
0.490715 + 0.871320i \(0.336736\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 318.845 + 231.654i 0.421660 + 0.306354i 0.778305 0.627886i \(-0.216080\pi\)
−0.356645 + 0.934240i \(0.616080\pi\)
\(84\) 0 0
\(85\) −162.721 500.804i −0.207642 0.639057i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −108.129 −0.128782 −0.0643912 0.997925i \(-0.520511\pi\)
−0.0643912 + 0.997925i \(0.520511\pi\)
\(90\) 0 0
\(91\) 703.814 + 2166.12i 0.810766 + 2.49528i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −248.344 + 764.325i −0.268206 + 0.825454i
\(96\) 0 0
\(97\) 549.111 398.952i 0.574781 0.417603i −0.262058 0.965052i \(-0.584401\pi\)
0.836839 + 0.547449i \(0.184401\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −913.347 + 663.585i −0.899816 + 0.653755i −0.938419 0.345500i \(-0.887709\pi\)
0.0386027 + 0.999255i \(0.487709\pi\)
\(102\) 0 0
\(103\) −30.3811 + 93.5035i −0.0290635 + 0.0894483i −0.964536 0.263951i \(-0.914974\pi\)
0.935473 + 0.353399i \(0.114974\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 168.311 + 518.006i 0.152067 + 0.468015i 0.997852 0.0655096i \(-0.0208673\pi\)
−0.845785 + 0.533524i \(0.820867\pi\)
\(108\) 0 0
\(109\) 367.085 0.322572 0.161286 0.986908i \(-0.448436\pi\)
0.161286 + 0.986908i \(0.448436\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 172.032 + 529.461i 0.143216 + 0.440774i 0.996777 0.0802186i \(-0.0255618\pi\)
−0.853561 + 0.520993i \(0.825562\pi\)
\(114\) 0 0
\(115\) −1559.44 1133.00i −1.26451 0.918720i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 674.579 490.110i 0.519652 0.377549i
\(120\) 0 0
\(121\) −1269.56 + 399.737i −0.953836 + 0.300328i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 511.745 1574.99i 0.366175 1.12697i
\(126\) 0 0
\(127\) 1050.67 + 763.356i 0.734109 + 0.533362i 0.890861 0.454276i \(-0.150102\pi\)
−0.156751 + 0.987638i \(0.550102\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 1110.64 0.740738 0.370369 0.928885i \(-0.379231\pi\)
0.370369 + 0.928885i \(0.379231\pi\)
\(132\) 0 0
\(133\) −1272.58 −0.829675
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −960.004 697.484i −0.598676 0.434964i 0.246732 0.969084i \(-0.420643\pi\)
−0.845409 + 0.534120i \(0.820643\pi\)
\(138\) 0 0
\(139\) 895.798 2756.98i 0.546623 1.68233i −0.170476 0.985362i \(-0.554531\pi\)
0.717099 0.696971i \(-0.245469\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 2003.61 + 2021.97i 1.17168 + 1.18242i
\(144\) 0 0
\(145\) 634.335 460.871i 0.363301 0.263954i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −2376.18 1726.40i −1.30647 0.949208i −0.306476 0.951878i \(-0.599150\pi\)
−0.999996 + 0.00267076i \(0.999150\pi\)
\(150\) 0 0
\(151\) 944.489 + 2906.84i 0.509016 + 1.56659i 0.793913 + 0.608032i \(0.208041\pi\)
−0.284897 + 0.958558i \(0.591959\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −1163.10 −0.602724
\(156\) 0 0
\(157\) −487.141 1499.27i −0.247631 0.762130i −0.995193 0.0979375i \(-0.968775\pi\)
0.747561 0.664193i \(-0.231225\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 943.208 2902.90i 0.461709 1.42100i
\(162\) 0 0
\(163\) 2290.77 1664.34i 1.10078 0.799761i 0.119590 0.992823i \(-0.461842\pi\)
0.981187 + 0.193062i \(0.0618419\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 1008.58 732.774i 0.467341 0.339543i −0.329063 0.944308i \(-0.606733\pi\)
0.796404 + 0.604765i \(0.206733\pi\)
\(168\) 0 0
\(169\) 1202.31 3700.32i 0.547250 1.68426i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 605.621 + 1863.91i 0.266153 + 0.819136i 0.991425 + 0.130674i \(0.0417140\pi\)
−0.725272 + 0.688462i \(0.758286\pi\)
\(174\) 0 0
\(175\) 6271.17 2.70889
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −197.434 607.639i −0.0824408 0.253727i 0.901337 0.433119i \(-0.142587\pi\)
−0.983778 + 0.179392i \(0.942587\pi\)
\(180\) 0 0
\(181\) 2545.77 + 1849.61i 1.04544 + 0.759559i 0.971341 0.237691i \(-0.0763907\pi\)
0.0741029 + 0.997251i \(0.476391\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 4733.94 3439.41i 1.88133 1.36687i
\(186\) 0 0
\(187\) 477.343 926.367i 0.186667 0.362260i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −544.897 + 1677.02i −0.206426 + 0.635313i 0.793226 + 0.608927i \(0.208400\pi\)
−0.999652 + 0.0263861i \(0.991600\pi\)
\(192\) 0 0
\(193\) −3375.40 2452.37i −1.25889 0.914639i −0.260190 0.965558i \(-0.583785\pi\)
−0.998703 + 0.0509185i \(0.983785\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −2892.24 −1.04601 −0.523005 0.852330i \(-0.675189\pi\)
−0.523005 + 0.852330i \(0.675189\pi\)
\(198\) 0 0
\(199\) −4281.26 −1.52508 −0.762539 0.646943i \(-0.776047\pi\)
−0.762539 + 0.646943i \(0.776047\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 1004.46 + 729.783i 0.347287 + 0.252319i
\(204\) 0 0
\(205\) 389.336 1198.25i 0.132646 0.408242i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −1420.41 + 715.591i −0.470103 + 0.236835i
\(210\) 0 0
\(211\) −2222.99 + 1615.09i −0.725293 + 0.526956i −0.888071 0.459707i \(-0.847955\pi\)
0.162778 + 0.986663i \(0.447955\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 3387.18 + 2460.93i 1.07444 + 0.780624i
\(216\) 0 0
\(217\) −569.131 1751.61i −0.178042 0.547957i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −2228.73 −0.678373
\(222\) 0 0
\(223\) −268.699 826.970i −0.0806880 0.248332i 0.902572 0.430538i \(-0.141676\pi\)
−0.983260 + 0.182206i \(0.941676\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 882.731 2716.77i 0.258101 0.794353i −0.735102 0.677957i \(-0.762866\pi\)
0.993203 0.116397i \(-0.0371344\pi\)
\(228\) 0 0
\(229\) −4269.92 + 3102.28i −1.23216 + 0.895215i −0.997050 0.0767540i \(-0.975544\pi\)
−0.235108 + 0.971969i \(0.575544\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 740.566 538.052i 0.208223 0.151283i −0.478786 0.877932i \(-0.658923\pi\)
0.687010 + 0.726648i \(0.258923\pi\)
\(234\) 0 0
\(235\) 61.3736 188.888i 0.0170365 0.0524329i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −1955.53 6018.51i −0.529259 1.62889i −0.755737 0.654876i \(-0.772721\pi\)
0.226477 0.974016i \(-0.427279\pi\)
\(240\) 0 0
\(241\) −540.257 −0.144403 −0.0722013 0.997390i \(-0.523002\pi\)
−0.0722013 + 0.997390i \(0.523002\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 2900.17 + 8925.81i 0.756266 + 2.32755i
\(246\) 0 0
\(247\) 2751.85 + 1999.34i 0.708891 + 0.515039i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −4314.83 + 3134.91i −1.08506 + 0.788341i −0.978558 0.205972i \(-0.933965\pi\)
−0.106500 + 0.994313i \(0.533965\pi\)
\(252\) 0 0
\(253\) −579.568 3770.48i −0.144020 0.936948i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −425.852 + 1310.64i −0.103362 + 0.318114i −0.989342 0.145608i \(-0.953486\pi\)
0.885981 + 0.463722i \(0.153486\pi\)
\(258\) 0 0
\(259\) 7496.12 + 5446.25i 1.79840 + 1.30662i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −7490.14 −1.75613 −0.878064 0.478543i \(-0.841165\pi\)
−0.878064 + 0.478543i \(0.841165\pi\)
\(264\) 0 0
\(265\) 9162.66 2.12399
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 5898.73 + 4285.68i 1.33700 + 0.971384i 0.999549 + 0.0300390i \(0.00956315\pi\)
0.337446 + 0.941345i \(0.390437\pi\)
\(270\) 0 0
\(271\) −241.614 + 743.610i −0.0541586 + 0.166683i −0.974477 0.224487i \(-0.927929\pi\)
0.920319 + 0.391170i \(0.127929\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 6999.64 3526.37i 1.53489 0.773266i
\(276\) 0 0
\(277\) 465.219 338.001i 0.100911 0.0733160i −0.536186 0.844100i \(-0.680135\pi\)
0.637096 + 0.770784i \(0.280135\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −4532.66 3293.17i −0.962262 0.699125i −0.00858736 0.999963i \(-0.502733\pi\)
−0.953675 + 0.300839i \(0.902733\pi\)
\(282\) 0 0
\(283\) −277.501 854.061i −0.0582888 0.179395i 0.917673 0.397337i \(-0.130066\pi\)
−0.975962 + 0.217942i \(0.930066\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 1995.06 0.410330
\(288\) 0 0
\(289\) −1266.06 3896.54i −0.257696 0.793108i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 2484.65 7646.98i 0.495410 1.52471i −0.320907 0.947111i \(-0.603988\pi\)
0.816317 0.577604i \(-0.196012\pi\)
\(294\) 0 0
\(295\) −6314.34 + 4587.64i −1.24622 + 0.905433i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −6600.31 + 4795.41i −1.27661 + 0.927510i
\(300\) 0 0
\(301\) −2048.69 + 6305.23i −0.392308 + 1.20740i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −1084.44 3337.58i −0.203591 0.626587i
\(306\) 0 0
\(307\) −5491.51 −1.02090 −0.510451 0.859907i \(-0.670522\pi\)
−0.510451 + 0.859907i \(0.670522\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −987.327 3038.68i −0.180020 0.554044i 0.819807 0.572640i \(-0.194081\pi\)
−0.999827 + 0.0185954i \(0.994081\pi\)
\(312\) 0 0
\(313\) 2522.04 + 1832.37i 0.455445 + 0.330900i 0.791742 0.610856i \(-0.209175\pi\)
−0.336297 + 0.941756i \(0.609175\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 194.378 141.224i 0.0344396 0.0250219i −0.570432 0.821345i \(-0.693224\pi\)
0.604872 + 0.796323i \(0.293224\pi\)
\(318\) 0 0
\(319\) 1531.51 + 249.733i 0.268802 + 0.0438318i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 384.813 1184.33i 0.0662897 0.204019i
\(324\) 0 0
\(325\) −13560.9 9852.56i −2.31453 1.68161i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 314.494 0.0527010
\(330\) 0 0
\(331\) −9405.79 −1.56190 −0.780950 0.624594i \(-0.785265\pi\)
−0.780950 + 0.624594i \(0.785265\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 5760.08 + 4184.95i 0.939424 + 0.682531i
\(336\) 0 0
\(337\) −1449.42 + 4460.85i −0.234288 + 0.721063i 0.762928 + 0.646484i \(0.223761\pi\)
−0.997215 + 0.0745790i \(0.976239\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −1620.19 1635.04i −0.257298 0.259656i
\(342\) 0 0
\(343\) −3922.74 + 2850.04i −0.617516 + 0.448652i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −4334.77 3149.39i −0.670612 0.487228i 0.199618 0.979874i \(-0.436030\pi\)
−0.870230 + 0.492645i \(0.836030\pi\)
\(348\) 0 0
\(349\) −305.037 938.808i −0.0467859 0.143992i 0.924935 0.380126i \(-0.124120\pi\)
−0.971720 + 0.236134i \(0.924120\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 130.359 0.0196552 0.00982762 0.999952i \(-0.496872\pi\)
0.00982762 + 0.999952i \(0.496872\pi\)
\(354\) 0 0
\(355\) 3939.05 + 12123.1i 0.588910 + 1.81248i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −2852.55 + 8779.23i −0.419364 + 1.29067i 0.488925 + 0.872326i \(0.337389\pi\)
−0.908289 + 0.418343i \(0.862611\pi\)
\(360\) 0 0
\(361\) 4011.48 2914.51i 0.584849 0.424917i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −4744.36 + 3446.98i −0.680360 + 0.494310i
\(366\) 0 0
\(367\) 2625.81 8081.41i 0.373477 1.14944i −0.571023 0.820934i \(-0.693453\pi\)
0.944500 0.328510i \(-0.106547\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 4483.50 + 13798.8i 0.627418 + 1.93099i
\(372\) 0 0
\(373\) −12810.7 −1.77832 −0.889160 0.457597i \(-0.848710\pi\)
−0.889160 + 0.457597i \(0.848710\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −1025.51 3156.19i −0.140096 0.431172i
\(378\) 0 0
\(379\) 5475.79 + 3978.39i 0.742143 + 0.539199i 0.893382 0.449299i \(-0.148326\pi\)
−0.151238 + 0.988497i \(0.548326\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −9385.29 + 6818.81i −1.25213 + 0.909726i −0.998344 0.0575338i \(-0.981676\pi\)
−0.253787 + 0.967260i \(0.581676\pi\)
\(384\) 0 0
\(385\) 13818.6 + 13945.2i 1.82925 + 1.84601i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −983.756 + 3027.69i −0.128222 + 0.394627i −0.994474 0.104980i \(-0.966522\pi\)
0.866252 + 0.499607i \(0.166522\pi\)
\(390\) 0 0
\(391\) 2416.37 + 1755.60i 0.312535 + 0.227070i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 2981.10 0.379736
\(396\) 0 0
\(397\) 4412.72 0.557854 0.278927 0.960312i \(-0.410021\pi\)
0.278927 + 0.960312i \(0.410021\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 3050.01 + 2215.96i 0.379826 + 0.275959i 0.761274 0.648431i \(-0.224574\pi\)
−0.381448 + 0.924390i \(0.624574\pi\)
\(402\) 0 0
\(403\) −1521.23 + 4681.85i −0.188034 + 0.578709i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 11429.4 + 1863.72i 1.39197 + 0.226980i
\(408\) 0 0
\(409\) −5154.89 + 3745.25i −0.623210 + 0.452789i −0.854041 0.520205i \(-0.825856\pi\)
0.230831 + 0.972994i \(0.425856\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −9998.66 7264.45i −1.19129 0.865522i
\(414\) 0 0
\(415\) −2245.11 6909.74i −0.265562 0.817315i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −2107.98 −0.245779 −0.122890 0.992420i \(-0.539216\pi\)
−0.122890 + 0.992420i \(0.539216\pi\)
\(420\) 0 0
\(421\) −2548.58 7843.73i −0.295036 0.908029i −0.983209 0.182482i \(-0.941587\pi\)
0.688173 0.725547i \(-0.258413\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −1896.32 + 5836.29i −0.216436 + 0.666121i
\(426\) 0 0
\(427\) 4495.69 3266.31i 0.509512 0.370182i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −10459.3 + 7599.12i −1.16892 + 0.849273i −0.990880 0.134749i \(-0.956977\pi\)
−0.178045 + 0.984022i \(0.556977\pi\)
\(432\) 0 0
\(433\) −2413.49 + 7427.96i −0.267864 + 0.824400i 0.723156 + 0.690685i \(0.242691\pi\)
−0.991020 + 0.133715i \(0.957309\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −1408.64 4335.34i −0.154197 0.474571i
\(438\) 0 0
\(439\) −17491.4 −1.90163 −0.950817 0.309752i \(-0.899754\pi\)
−0.950817 + 0.309752i \(0.899754\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −794.117 2444.04i −0.0851685 0.262122i 0.899399 0.437130i \(-0.144005\pi\)
−0.984567 + 0.175008i \(0.944005\pi\)
\(444\) 0 0
\(445\) 1612.62 + 1171.64i 0.171788 + 0.124811i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 4334.56 3149.24i 0.455591 0.331007i −0.336208 0.941788i \(-0.609145\pi\)
0.791799 + 0.610781i \(0.209145\pi\)
\(450\) 0 0
\(451\) 2226.81 1121.85i 0.232497 0.117131i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 12974.5 39931.4i 1.33682 4.11432i
\(456\) 0 0
\(457\) −3912.81 2842.82i −0.400511 0.290988i 0.369238 0.929335i \(-0.379619\pi\)
−0.769749 + 0.638347i \(0.779619\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 18173.0 1.83601 0.918007 0.396564i \(-0.129797\pi\)
0.918007 + 0.396564i \(0.129797\pi\)
\(462\) 0 0
\(463\) 13451.4 1.35019 0.675095 0.737731i \(-0.264103\pi\)
0.675095 + 0.737731i \(0.264103\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 13010.5 + 9452.69i 1.28920 + 0.936656i 0.999789 0.0205495i \(-0.00654158\pi\)
0.289408 + 0.957206i \(0.406542\pi\)
\(468\) 0 0
\(469\) −3483.91 + 10722.4i −0.343011 + 1.05568i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 1258.85 + 8189.66i 0.122372 + 0.796112i
\(474\) 0 0
\(475\) 7577.02 5505.03i 0.731911 0.531764i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 2651.17 + 1926.19i 0.252892 + 0.183737i 0.707008 0.707206i \(-0.250045\pi\)
−0.454116 + 0.890943i \(0.650045\pi\)
\(480\) 0 0
\(481\) −7653.20 23554.1i −0.725480 2.23280i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −12512.3 −1.17145
\(486\) 0 0
\(487\) 498.075 + 1532.92i 0.0463448 + 0.142635i 0.971551 0.236830i \(-0.0761083\pi\)
−0.925206 + 0.379464i \(0.876108\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 3326.22 10237.0i 0.305723 0.940919i −0.673683 0.739020i \(-0.735289\pi\)
0.979406 0.201899i \(-0.0647112\pi\)
\(492\) 0 0
\(493\) −982.911 + 714.126i −0.0897932 + 0.0652386i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −16329.8 + 11864.3i −1.47382 + 1.07080i
\(498\) 0 0
\(499\) 4149.15 12769.8i 0.372228 1.14560i −0.573103 0.819484i \(-0.694260\pi\)
0.945330 0.326115i \(-0.105740\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −5840.89 17976.4i −0.517758 1.59350i −0.778207 0.628008i \(-0.783870\pi\)
0.260448 0.965488i \(-0.416130\pi\)
\(504\) 0 0
\(505\) 20811.9 1.83389
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −3253.27 10012.5i −0.283298 0.871902i −0.986904 0.161311i \(-0.948428\pi\)
0.703606 0.710591i \(-0.251572\pi\)
\(510\) 0 0
\(511\) −7512.62 5458.24i −0.650369 0.472521i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 1466.26 1065.30i 0.125459 0.0911513i
\(516\) 0 0
\(517\) 351.026 176.845i 0.0298610 0.0150437i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 573.594 1765.34i 0.0482334 0.148447i −0.924039 0.382298i \(-0.875133\pi\)
0.972272 + 0.233851i \(0.0751328\pi\)
\(522\) 0 0
\(523\) 1578.10 + 1146.56i 0.131941 + 0.0958611i 0.651799 0.758392i \(-0.274015\pi\)
−0.519857 + 0.854253i \(0.674015\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 1802.24 0.148969
\(528\) 0 0
\(529\) −1233.57 −0.101386
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −4314.15 3134.41i −0.350594 0.254721i
\(534\) 0 0
\(535\) 3102.73 9549.23i 0.250734 0.771681i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −8507.66 + 16510.6i −0.679872 + 1.31941i
\(540\) 0 0
\(541\) −70.7645 + 51.4135i −0.00562367 + 0.00408584i −0.590594 0.806969i \(-0.701106\pi\)
0.584970 + 0.811055i \(0.301106\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −5474.66 3977.57i −0.430291 0.312625i
\(546\) 0 0
\(547\) 4171.58 + 12838.8i 0.326077 + 1.00356i 0.970952 + 0.239274i \(0.0769093\pi\)
−0.644875 + 0.764288i \(0.723091\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 1854.24 0.143364
\(552\) 0 0
\(553\) 1458.72 + 4489.49i 0.112172 + 0.345231i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −2141.73 + 6591.58i −0.162923 + 0.501426i −0.998877 0.0473735i \(-0.984915\pi\)
0.835954 + 0.548799i \(0.184915\pi\)
\(558\) 0 0
\(559\) 14336.2 10415.9i 1.08472 0.788093i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 12283.7 8924.65i 0.919534 0.668080i −0.0238741 0.999715i \(-0.507600\pi\)
0.943408 + 0.331635i \(0.107600\pi\)
\(564\) 0 0
\(565\) 3171.34 9760.38i 0.236140 0.726765i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 2671.84 + 8223.09i 0.196853 + 0.605852i 0.999950 + 0.0100035i \(0.00318427\pi\)
−0.803097 + 0.595849i \(0.796816\pi\)
\(570\) 0 0
\(571\) 306.105 0.0224345 0.0112172 0.999937i \(-0.496429\pi\)
0.0112172 + 0.999937i \(0.496429\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 6941.65 + 21364.2i 0.503455 + 1.54948i
\(576\) 0 0
\(577\) 12018.4 + 8731.90i 0.867130 + 0.630007i 0.929815 0.368026i \(-0.119966\pi\)
−0.0626853 + 0.998033i \(0.519966\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 9307.36 6762.19i 0.664603 0.482862i
\(582\) 0 0
\(583\) 12763.6 + 12880.5i 0.906712 + 0.915022i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −379.264 + 1167.26i −0.0266677 + 0.0820746i −0.963505 0.267692i \(-0.913739\pi\)
0.936837 + 0.349766i \(0.113739\pi\)
\(588\) 0 0
\(589\) −2225.25 1616.74i −0.155671 0.113101i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 14255.5 0.987189 0.493594 0.869692i \(-0.335683\pi\)
0.493594 + 0.869692i \(0.335683\pi\)
\(594\) 0 0
\(595\) −15371.2 −1.05909
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −12643.3 9185.92i −0.862426 0.626589i 0.0661182 0.997812i \(-0.478939\pi\)
−0.928544 + 0.371223i \(0.878939\pi\)
\(600\) 0 0
\(601\) 7972.25 24536.1i 0.541090 1.66530i −0.189020 0.981973i \(-0.560531\pi\)
0.730110 0.683330i \(-0.239469\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 23265.4 + 7794.73i 1.56343 + 0.523803i
\(606\) 0 0
\(607\) −17691.2 + 12853.4i −1.18297 + 0.859479i −0.992504 0.122215i \(-0.961000\pi\)
−0.190468 + 0.981693i \(0.561000\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −680.067 494.098i −0.0450288 0.0327153i
\(612\) 0 0
\(613\) 7044.02 + 21679.3i 0.464120 + 1.42841i 0.860086 + 0.510148i \(0.170410\pi\)
−0.395967 + 0.918265i \(0.629590\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 16843.3 1.09901 0.549504 0.835491i \(-0.314817\pi\)
0.549504 + 0.835491i \(0.314817\pi\)
\(618\) 0 0
\(619\) −5621.76 17302.0i −0.365037 1.12347i −0.949958 0.312378i \(-0.898875\pi\)
0.584921 0.811090i \(-0.301125\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −975.374 + 3001.89i −0.0627247 + 0.193047i
\(624\) 0 0
\(625\) −2972.52 + 2159.66i −0.190241 + 0.138218i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −7335.31 + 5329.41i −0.464989 + 0.337834i
\(630\) 0 0
\(631\) 4988.01 15351.5i 0.314690 0.968516i −0.661192 0.750217i \(-0.729949\pi\)
0.975882 0.218299i \(-0.0700510\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −7398.17 22769.2i −0.462342 1.42294i
\(636\) 0 0
\(637\) 39722.5 2.47074
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 6301.60 + 19394.3i 0.388297 + 1.19506i 0.934060 + 0.357116i \(0.116240\pi\)
−0.545763 + 0.837939i \(0.683760\pi\)
\(642\) 0 0
\(643\) −9208.86 6690.63i −0.564793 0.410346i 0.268417 0.963303i \(-0.413500\pi\)
−0.833210 + 0.552957i \(0.813500\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 10915.7 7930.73i 0.663278 0.481900i −0.204490 0.978869i \(-0.565554\pi\)
0.867768 + 0.496969i \(0.165554\pi\)
\(648\) 0 0
\(649\) −15245.0 2485.91i −0.922064 0.150355i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 2631.59 8099.21i 0.157706 0.485370i −0.840719 0.541472i \(-0.817867\pi\)
0.998425 + 0.0561021i \(0.0178672\pi\)
\(654\) 0 0
\(655\) −16563.9 12034.4i −0.988099 0.717896i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −29637.1 −1.75189 −0.875946 0.482409i \(-0.839762\pi\)
−0.875946 + 0.482409i \(0.839762\pi\)
\(660\) 0 0
\(661\) 7113.07 0.418557 0.209279 0.977856i \(-0.432888\pi\)
0.209279 + 0.977856i \(0.432888\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 18979.1 + 13789.1i 1.10674 + 0.804090i
\(666\) 0 0
\(667\) −1374.32 + 4229.73i −0.0797811 + 0.245541i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 3181.22 6173.72i 0.183025 0.355192i
\(672\) 0 0
\(673\) −9566.47 + 6950.45i −0.547935 + 0.398098i −0.827024 0.562167i \(-0.809968\pi\)
0.279088 + 0.960265i \(0.409968\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −19761.7 14357.7i −1.12187 0.815083i −0.137375 0.990519i \(-0.543867\pi\)
−0.984491 + 0.175436i \(0.943867\pi\)
\(678\) 0 0
\(679\) −6122.54 18843.2i −0.346041 1.06500i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −21680.4 −1.21461 −0.607304 0.794469i \(-0.707749\pi\)
−0.607304 + 0.794469i \(0.707749\pi\)
\(684\) 0 0
\(685\) 6759.75 + 20804.4i 0.377047 + 1.16043i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 11983.9 36882.7i 0.662629 2.03936i
\(690\) 0 0
\(691\) −5707.55 + 4146.78i −0.314219 + 0.228294i −0.733705 0.679468i \(-0.762211\pi\)
0.419485 + 0.907762i \(0.362211\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −43233.3 + 31410.8i −2.35962 + 1.71436i
\(696\) 0 0
\(697\) −603.282 + 1856.71i −0.0327847 + 0.100901i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −9684.94 29807.2i −0.521819 1.60599i −0.770522 0.637414i \(-0.780004\pi\)
0.248703 0.968580i \(-0.419996\pi\)
\(702\) 0 0
\(703\) 13837.9 0.742400
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 10183.7 + 31342.3i 0.541724 + 1.66726i
\(708\) 0 0
\(709\) −3823.80 2778.15i −0.202547 0.147159i 0.481888 0.876233i \(-0.339951\pi\)
−0.684435 + 0.729074i \(0.739951\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 5337.27 3877.75i 0.280340 0.203679i
\(714\) 0 0
\(715\) −7972.37 51865.6i −0.416993 2.71282i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 8402.15 25859.2i 0.435810 1.34129i −0.456444 0.889752i \(-0.650877\pi\)
0.892254 0.451533i \(-0.149123\pi\)
\(720\) 0 0
\(721\) 2321.81 + 1686.89i 0.119929 + 0.0871333i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −9137.55 −0.468083
\(726\) 0 0
\(727\) −14387.6 −0.733986 −0.366993 0.930224i \(-0.619613\pi\)
−0.366993 + 0.930224i \(0.619613\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −5248.49 3813.25i −0.265557 0.192939i
\(732\) 0 0
\(733\) 9206.38 28334.3i 0.463909 1.42777i −0.396440 0.918061i \(-0.629754\pi\)
0.860349 0.509705i \(-0.170246\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 2140.74 + 13927.0i 0.106995 + 0.696073i
\(738\) 0 0
\(739\) −18153.6 + 13189.4i −0.903641 + 0.656534i −0.939399 0.342827i \(-0.888616\pi\)
0.0357574 + 0.999361i \(0.488616\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 5660.31 + 4112.45i 0.279484 + 0.203057i 0.718692 0.695328i \(-0.244741\pi\)
−0.439208 + 0.898385i \(0.644741\pi\)
\(744\) 0 0
\(745\) 16731.6 + 51494.6i 0.822817 + 2.53237i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 15899.2 0.775627
\(750\) 0 0
\(751\) 8967.71 + 27599.8i 0.435734 + 1.34105i 0.892333 + 0.451379i \(0.149068\pi\)
−0.456599 + 0.889673i \(0.650932\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 17411.2 53586.3i 0.839285 2.58305i
\(756\) 0 0
\(757\) −12090.7 + 8784.44i −0.580509 + 0.421765i −0.838908 0.544274i \(-0.816805\pi\)
0.258398 + 0.966038i \(0.416805\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −12571.8 + 9133.92i −0.598852 + 0.435091i −0.845471 0.534021i \(-0.820680\pi\)
0.246619 + 0.969112i \(0.420680\pi\)
\(762\) 0 0
\(763\) 3311.28 10191.1i 0.157112 0.483541i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 10208.2 + 31417.5i 0.480568 + 1.47904i
\(768\) 0 0
\(769\) 1512.44 0.0709233 0.0354616 0.999371i \(-0.488710\pi\)
0.0354616 + 0.999371i \(0.488710\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 12574.3 + 38699.8i 0.585081 + 1.80069i 0.598945 + 0.800790i \(0.295587\pi\)
−0.0138643 + 0.999904i \(0.504413\pi\)
\(774\) 0 0
\(775\) 10965.9 + 7967.16i 0.508265 + 0.369276i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 2410.49 1751.32i 0.110866 0.0805491i
\(780\) 0 0
\(781\) −11555.2 + 22424.9i −0.529421 + 1.02743i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −8980.24 + 27638.3i −0.408304 + 1.25663i
\(786\) 0 0
\(787\) 27079.9 + 19674.7i 1.22655 + 0.891140i 0.996627 0.0820688i \(-0.0261527\pi\)
0.229923 + 0.973209i \(0.426153\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 16250.8 0.730482
\(792\) 0 0
\(793\) −14853.2 −0.665136
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 15215.6 + 11054.8i 0.676240 + 0.491317i 0.872108 0.489313i \(-0.162752\pi\)
−0.195868 + 0.980630i \(0.562752\pi\)
\(798\) 0 0
\(799\) −95.0991 + 292.685i −0.00421072 + 0.0129593i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −11454.5 1867.82i −0.503390 0.0820845i
\(804\) 0 0
\(805\) −45521.4 + 33073.2i −1.99307 + 1.44805i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 24141.4 + 17539.8i 1.04916 + 0.762256i 0.972052 0.234767i \(-0.0754326\pi\)
0.0771041 + 0.997023i \(0.475433\pi\)
\(810\) 0 0
\(811\) −6559.41 20187.8i −0.284010 0.874092i −0.986694 0.162590i \(-0.948015\pi\)
0.702684 0.711502i \(-0.251985\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −52198.3 −2.24347
\(816\) 0 0
\(817\) 3059.63 + 9416.58i 0.131020 + 0.403237i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −1212.55 + 3731.84i −0.0515447 + 0.158638i −0.973515 0.228621i \(-0.926578\pi\)
0.921971 + 0.387260i \(0.126578\pi\)
\(822\) 0 0
\(823\) −16307.8 + 11848.3i −0.690708 + 0.501829i −0.876893 0.480686i \(-0.840388\pi\)
0.186185 + 0.982515i \(0.440388\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 31618.0 22971.9i 1.32946 0.965912i 0.329703 0.944085i \(-0.393051\pi\)
0.999762 0.0218277i \(-0.00694852\pi\)
\(828\) 0 0
\(829\) −5841.62 + 17978.7i −0.244738 + 0.753226i 0.750941 + 0.660369i \(0.229600\pi\)
−0.995679 + 0.0928575i \(0.970400\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −4493.85 13830.7i −0.186918 0.575275i
\(834\) 0 0
\(835\) −22981.8 −0.952477
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 417.741 + 1285.67i 0.0171895 + 0.0529039i 0.959283 0.282446i \(-0.0911456\pi\)
−0.942094 + 0.335349i \(0.891146\pi\)
\(840\) 0 0
\(841\) 18267.5 + 13272.1i 0.749008 + 0.544186i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −58026.2 + 42158.5i −2.36232 + 1.71633i
\(846\) 0 0
\(847\) −354.435 + 38851.4i −0.0143784 + 1.57609i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −10256.4 + 31565.8i −0.413141 + 1.27152i
\(852\) 0 0
\(853\) −27556.6 20021.0i −1.10612 0.803643i −0.124071 0.992273i \(-0.539595\pi\)
−0.982048 + 0.188630i \(0.939595\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −40085.5 −1.59778 −0.798888 0.601480i \(-0.794578\pi\)
−0.798888 + 0.601480i \(0.794578\pi\)
\(858\) 0 0
\(859\) −20827.3 −0.827261 −0.413631 0.910445i \(-0.635739\pi\)
−0.413631 + 0.910445i \(0.635739\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 32530.0 + 23634.4i 1.28312 + 0.932242i 0.999643 0.0267360i \(-0.00851135\pi\)
0.283479 + 0.958978i \(0.408511\pi\)
\(864\) 0 0
\(865\) 11164.4 34360.4i 0.438844 1.35062i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 4152.67 + 4190.73i 0.162106 + 0.163591i
\(870\) 0 0
\(871\) 24379.5 17712.7i 0.948412 0.689061i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −39108.9 28414.3i −1.51100 1.09780i
\(876\) 0 0
\(877\) 2172.95 + 6687.64i 0.0836661 + 0.257498i 0.984135 0.177423i \(-0.0567762\pi\)
−0.900469 + 0.434921i \(0.856776\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −30396.7 −1.16242 −0.581209 0.813754i \(-0.697420\pi\)
−0.581209 + 0.813754i \(0.697420\pi\)
\(882\) 0 0
\(883\) −582.341 1792.26i −0.0221940 0.0683063i 0.939346 0.342971i \(-0.111433\pi\)
−0.961540 + 0.274665i \(0.911433\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −442.860 + 1362.98i −0.0167641 + 0.0515947i −0.959089 0.283106i \(-0.908635\pi\)
0.942325 + 0.334701i \(0.108635\pi\)
\(888\) 0 0
\(889\) 30670.0 22283.0i 1.15707 0.840662i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 379.981 276.073i 0.0142392 0.0103454i
\(894\) 0 0
\(895\) −3639.61 + 11201.6i −0.135931 + 0.418354i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 829.265 + 2552.22i 0.0307648 + 0.0946843i
\(900\) 0 0
\(901\) −14197.7 −0.524964
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −17925.7 55169.7i −0.658421 2.02641i
\(906\) 0 0
\(907\) 22216.3 + 16141.1i 0.813319 + 0.590911i 0.914791 0.403927i \(-0.132355\pi\)
−0.101472 + 0.994838i \(0.532355\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 37947.6 27570.5i 1.38009 1.00269i 0.383215 0.923659i \(-0.374817\pi\)
0.996872 0.0790330i \(-0.0251833\pi\)
\(912\) 0 0
\(913\) 6586.03 12781.4i 0.238736 0.463309i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 10018.5 30833.6i 0.360784 1.11038i
\(918\) 0 0
\(919\) −27166.7 19737.7i −0.975131 0.708474i −0.0185159 0.999829i \(-0.505894\pi\)
−0.956615 + 0.291354i \(0.905894\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 53951.6 1.92399
\(924\) 0 0
\(925\) −68192.1 −2.42394
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 15803.6 + 11482.0i 0.558127 + 0.405503i 0.830773 0.556612i \(-0.187899\pi\)
−0.272646 + 0.962114i \(0.587899\pi\)
\(930\) 0 0
\(931\) −6858.50 + 21108.3i −0.241438 + 0.743068i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −17156.8 + 8643.46i −0.600092 + 0.302322i
\(936\) 0 0
\(937\) 42555.5 30918.4i 1.48370 1.07797i 0.507361 0.861734i \(-0.330621\pi\)
0.976341 0.216239i \(-0.0693789\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −28258.3 20530.8i −0.978951 0.711250i −0.0214772 0.999769i \(-0.506837\pi\)
−0.957474 + 0.288520i \(0.906837\pi\)
\(942\) 0 0
\(943\) 2208.36 + 6796.63i 0.0762610 + 0.234707i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −4206.50 −0.144343 −0.0721715 0.997392i \(-0.522993\pi\)
−0.0721715 + 0.997392i \(0.522993\pi\)
\(948\) 0 0
\(949\) 7670.04 + 23606.0i 0.262361 + 0.807463i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 226.324 696.553i 0.00769291 0.0236763i −0.947136 0.320831i \(-0.896038\pi\)
0.954829 + 0.297155i \(0.0960378\pi\)
\(954\) 0 0
\(955\) 26298.0 19106.6i 0.891082 0.647409i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −28023.3 + 20360.1i −0.943609 + 0.685572i
\(960\) 0 0
\(961\) −7975.80 + 24547.0i −0.267725 + 0.823973i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 23767.4 + 73148.7i 0.792851 + 2.44014i
\(966\) 0 0
\(967\) −6877.86 −0.228725 −0.114363 0.993439i \(-0.536483\pi\)
−0.114363 + 0.993439i \(0.536483\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −11642.4 35831.6i −0.384781 1.18423i −0.936639 0.350295i \(-0.886081\pi\)
0.551859 0.833938i \(-0.313919\pi\)
\(972\) 0 0
\(973\) −68459.3 49738.6i −2.25560 1.63879i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 25728.6 18692.9i 0.842508 0.612118i −0.0805620 0.996750i \(-0.525672\pi\)
0.923070 + 0.384632i \(0.125672\pi\)
\(978\) 0 0
\(979\) 599.333 + 3899.06i 0.0195656 + 0.127288i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 10041.4 30904.2i 0.325809 1.00274i −0.645265 0.763959i \(-0.723253\pi\)
0.971074 0.238779i \(-0.0767470\pi\)
\(984\) 0 0
\(985\) 43134.6 + 31339.1i 1.39531 + 1.01375i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −23748.0 −0.763540
\(990\) 0 0
\(991\) 3024.29 0.0969423 0.0484712 0.998825i \(-0.484565\pi\)
0.0484712 + 0.998825i \(0.484565\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 63850.2 + 46389.9i 2.03436 + 1.47805i
\(996\) 0 0
\(997\) −3247.69 + 9995.35i −0.103165 + 0.317509i −0.989295 0.145927i \(-0.953383\pi\)
0.886131 + 0.463436i \(0.153383\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 396.4.j.d.289.1 12
3.2 odd 2 44.4.e.a.25.2 12
11.4 even 5 inner 396.4.j.d.37.1 12
12.11 even 2 176.4.m.d.113.2 12
33.2 even 10 484.4.a.h.1.3 6
33.20 odd 10 484.4.a.i.1.3 6
33.26 odd 10 44.4.e.a.37.2 yes 12
132.35 odd 10 1936.4.a.bs.1.4 6
132.59 even 10 176.4.m.d.81.2 12
132.119 even 10 1936.4.a.br.1.4 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
44.4.e.a.25.2 12 3.2 odd 2
44.4.e.a.37.2 yes 12 33.26 odd 10
176.4.m.d.81.2 12 132.59 even 10
176.4.m.d.113.2 12 12.11 even 2
396.4.j.d.37.1 12 11.4 even 5 inner
396.4.j.d.289.1 12 1.1 even 1 trivial
484.4.a.h.1.3 6 33.2 even 10
484.4.a.i.1.3 6 33.20 odd 10
1936.4.a.br.1.4 6 132.119 even 10
1936.4.a.bs.1.4 6 132.35 odd 10