Properties

Label 176.6.a.j.1.1
Level 176176
Weight 66
Character 176.1
Self dual yes
Analytic conductor 28.22828.228
Analytic rank 11
Dimension 33
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [176,6,Mod(1,176)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(176, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("176.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: N N == 176=2411 176 = 2^{4} \cdot 11
Weight: k k == 6 6
Character orbit: [χ][\chi] == 176.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 28.227552287128.2275522871
Analytic rank: 11
Dimension: 33
Coefficient field: 3.3.1784453.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x3368x2705 x^{3} - 368x - 2705 Copy content Toggle raw display
Coefficient ring: Z[a1,,a5]\Z[a_1, \ldots, a_{5}]
Coefficient ring index: 22 2^{2}
Twist minimal: no (minimal twist has level 88)
Fricke sign: +1+1
Sato-Tate group: SU(2)\mathrm{SU}(2)

Embedding invariants

Embedding label 1.1
Root 10.4642-10.4642 of defining polynomial
Character χ\chi == 176.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q25.3952q32.46146q536.9338q7+401.918q9121.000q11+816.111q13+62.5093q15+382.011q17+1397.89q19+937.941q21377.087q233118.94q254035.75q27+4821.96q296199.66q31+3072.82q33+90.9110q353441.50q3720725.3q395808.45q418703.19q43989.304q452281.27q4715442.9q499701.25q5128337.3q53+297.837q5535499.7q57+35539.9q5948370.5q6114844.3q632008.82q65+48310.7q67+9576.20q6966892.9q71+80865.0q73+79206.2q75+4468.99q77+58924.1q79+4822.76q81+15396.9q83940.304q85122455.q8746488.8q8930142.1q91+157442.q933440.84q95158298.q9748632.0q99+O(q100)q-25.3952 q^{3} -2.46146 q^{5} -36.9338 q^{7} +401.918 q^{9} -121.000 q^{11} +816.111 q^{13} +62.5093 q^{15} +382.011 q^{17} +1397.89 q^{19} +937.941 q^{21} -377.087 q^{23} -3118.94 q^{25} -4035.75 q^{27} +4821.96 q^{29} -6199.66 q^{31} +3072.82 q^{33} +90.9110 q^{35} -3441.50 q^{37} -20725.3 q^{39} -5808.45 q^{41} -8703.19 q^{43} -989.304 q^{45} -2281.27 q^{47} -15442.9 q^{49} -9701.25 q^{51} -28337.3 q^{53} +297.837 q^{55} -35499.7 q^{57} +35539.9 q^{59} -48370.5 q^{61} -14844.3 q^{63} -2008.82 q^{65} +48310.7 q^{67} +9576.20 q^{69} -66892.9 q^{71} +80865.0 q^{73} +79206.2 q^{75} +4468.99 q^{77} +58924.1 q^{79} +4822.76 q^{81} +15396.9 q^{83} -940.304 q^{85} -122455. q^{87} -46488.8 q^{89} -30142.1 q^{91} +157442. q^{93} -3440.84 q^{95} -158298. q^{97} -48632.0 q^{99} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 3q14q3+56q5112q7+145q9363q11+450q13994q15+1274q172416q19+2064q214042q23+4103q256398q27+2086q2910034q31+17545q99+O(q100) 3 q - 14 q^{3} + 56 q^{5} - 112 q^{7} + 145 q^{9} - 363 q^{11} + 450 q^{13} - 994 q^{15} + 1274 q^{17} - 2416 q^{19} + 2064 q^{21} - 4042 q^{23} + 4103 q^{25} - 6398 q^{27} + 2086 q^{29} - 10034 q^{31}+ \cdots - 17545 q^{99}+O(q^{100}) Copy content Toggle raw display

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 0 0
33 −25.3952 −1.62910 −0.814552 0.580090i 0.803017π-0.803017\pi
−0.814552 + 0.580090i 0.803017π0.803017\pi
44 0 0
55 −2.46146 −0.0440319 −0.0220160 0.999758i 0.507008π-0.507008\pi
−0.0220160 + 0.999758i 0.507008π0.507008\pi
66 0 0
77 −36.9338 −0.284891 −0.142445 0.989803i 0.545497π-0.545497\pi
−0.142445 + 0.989803i 0.545497π0.545497\pi
88 0 0
99 401.918 1.65398
1010 0 0
1111 −121.000 −0.301511
1212 0 0
1313 816.111 1.33934 0.669670 0.742659i 0.266436π-0.266436\pi
0.669670 + 0.742659i 0.266436π0.266436\pi
1414 0 0
1515 62.5093 0.0717326
1616 0 0
1717 382.011 0.320593 0.160296 0.987069i 0.448755π-0.448755\pi
0.160296 + 0.987069i 0.448755π0.448755\pi
1818 0 0
1919 1397.89 0.888358 0.444179 0.895938i 0.353495π-0.353495\pi
0.444179 + 0.895938i 0.353495π0.353495\pi
2020 0 0
2121 937.941 0.464117
2222 0 0
2323 −377.087 −0.148635 −0.0743176 0.997235i 0.523678π-0.523678\pi
−0.0743176 + 0.997235i 0.523678π0.523678\pi
2424 0 0
2525 −3118.94 −0.998061
2626 0 0
2727 −4035.75 −1.06540
2828 0 0
2929 4821.96 1.06470 0.532352 0.846523i 0.321308π-0.321308\pi
0.532352 + 0.846523i 0.321308π0.321308\pi
3030 0 0
3131 −6199.66 −1.15868 −0.579340 0.815086i 0.696690π-0.696690\pi
−0.579340 + 0.815086i 0.696690π0.696690\pi
3232 0 0
3333 3072.82 0.491194
3434 0 0
3535 90.9110 0.0125443
3636 0 0
3737 −3441.50 −0.413279 −0.206639 0.978417i 0.566253π-0.566253\pi
−0.206639 + 0.978417i 0.566253π0.566253\pi
3838 0 0
3939 −20725.3 −2.18192
4040 0 0
4141 −5808.45 −0.539636 −0.269818 0.962911i 0.586963π-0.586963\pi
−0.269818 + 0.962911i 0.586963π0.586963\pi
4242 0 0
4343 −8703.19 −0.717807 −0.358903 0.933375i 0.616849π-0.616849\pi
−0.358903 + 0.933375i 0.616849π0.616849\pi
4444 0 0
4545 −989.304 −0.0728280
4646 0 0
4747 −2281.27 −0.150637 −0.0753186 0.997160i 0.523997π-0.523997\pi
−0.0753186 + 0.997160i 0.523997π0.523997\pi
4848 0 0
4949 −15442.9 −0.918837
5050 0 0
5151 −9701.25 −0.522279
5252 0 0
5353 −28337.3 −1.38570 −0.692850 0.721081i 0.743645π-0.743645\pi
−0.692850 + 0.721081i 0.743645π0.743645\pi
5454 0 0
5555 297.837 0.0132761
5656 0 0
5757 −35499.7 −1.44723
5858 0 0
5959 35539.9 1.32919 0.664593 0.747206i 0.268605π-0.268605\pi
0.664593 + 0.747206i 0.268605π0.268605\pi
6060 0 0
6161 −48370.5 −1.66439 −0.832196 0.554481i 0.812917π-0.812917\pi
−0.832196 + 0.554481i 0.812917π0.812917\pi
6262 0 0
6363 −14844.3 −0.471204
6464 0 0
6565 −2008.82 −0.0589737
6666 0 0
6767 48310.7 1.31479 0.657395 0.753546i 0.271658π-0.271658\pi
0.657395 + 0.753546i 0.271658π0.271658\pi
6868 0 0
6969 9576.20 0.242142
7070 0 0
7171 −66892.9 −1.57483 −0.787416 0.616423i 0.788581π-0.788581\pi
−0.787416 + 0.616423i 0.788581π0.788581\pi
7272 0 0
7373 80865.0 1.77604 0.888022 0.459802i 0.152080π-0.152080\pi
0.888022 + 0.459802i 0.152080π0.152080\pi
7474 0 0
7575 79206.2 1.62595
7676 0 0
7777 4468.99 0.0858978
7878 0 0
7979 58924.1 1.06225 0.531123 0.847295i 0.321770π-0.321770\pi
0.531123 + 0.847295i 0.321770π0.321770\pi
8080 0 0
8181 4822.76 0.0816738
8282 0 0
8383 15396.9 0.245323 0.122662 0.992449i 0.460857π-0.460857\pi
0.122662 + 0.992449i 0.460857π0.460857\pi
8484 0 0
8585 −940.304 −0.0141163
8686 0 0
8787 −122455. −1.73451
8888 0 0
8989 −46488.8 −0.622118 −0.311059 0.950391i 0.600684π-0.600684\pi
−0.311059 + 0.950391i 0.600684π0.600684\pi
9090 0 0
9191 −30142.1 −0.381566
9292 0 0
9393 157442. 1.88761
9494 0 0
9595 −3440.84 −0.0391161
9696 0 0
9797 −158298. −1.70823 −0.854113 0.520088i 0.825899π-0.825899\pi
−0.854113 + 0.520088i 0.825899π0.825899\pi
9898 0 0
9999 −48632.0 −0.498694
100100 0 0
101101 42922.8 0.418683 0.209341 0.977843i 0.432868π-0.432868\pi
0.209341 + 0.977843i 0.432868π0.432868\pi
102102 0 0
103103 −26872.7 −0.249585 −0.124792 0.992183i 0.539826π-0.539826\pi
−0.124792 + 0.992183i 0.539826π0.539826\pi
104104 0 0
105105 −2308.70 −0.0204360
106106 0 0
107107 52819.1 0.445996 0.222998 0.974819i 0.428416π-0.428416\pi
0.222998 + 0.974819i 0.428416π0.428416\pi
108108 0 0
109109 −22677.6 −0.182823 −0.0914115 0.995813i 0.529138π-0.529138\pi
−0.0914115 + 0.995813i 0.529138π0.529138\pi
110110 0 0
111111 87397.6 0.673274
112112 0 0
113113 −111227. −0.819437 −0.409719 0.912212i 0.634373π-0.634373\pi
−0.409719 + 0.912212i 0.634373π0.634373\pi
114114 0 0
115115 928.183 0.00654469
116116 0 0
117117 328009. 2.21524
118118 0 0
119119 −14109.1 −0.0913339
120120 0 0
121121 14641.0 0.0909091
122122 0 0
123123 147507. 0.879123
124124 0 0
125125 15369.2 0.0879785
126126 0 0
127127 −58642.3 −0.322628 −0.161314 0.986903i 0.551573π-0.551573\pi
−0.161314 + 0.986903i 0.551573π0.551573\pi
128128 0 0
129129 221020. 1.16938
130130 0 0
131131 −330826. −1.68431 −0.842154 0.539237i 0.818713π-0.818713\pi
−0.842154 + 0.539237i 0.818713π0.818713\pi
132132 0 0
133133 −51629.3 −0.253085
134134 0 0
135135 9933.83 0.0469118
136136 0 0
137137 7944.43 0.0361627 0.0180814 0.999837i 0.494244π-0.494244\pi
0.0180814 + 0.999837i 0.494244π0.494244\pi
138138 0 0
139139 −322874. −1.41741 −0.708707 0.705503i 0.750721π-0.750721\pi
−0.708707 + 0.705503i 0.750721π0.750721\pi
140140 0 0
141141 57933.4 0.245404
142142 0 0
143143 −98749.4 −0.403826
144144 0 0
145145 −11869.1 −0.0468810
146146 0 0
147147 392176. 1.49688
148148 0 0
149149 392580. 1.44865 0.724323 0.689461i 0.242153π-0.242153\pi
0.724323 + 0.689461i 0.242153π0.242153\pi
150150 0 0
151151 367134. 1.31033 0.655167 0.755484i 0.272598π-0.272598\pi
0.655167 + 0.755484i 0.272598π0.272598\pi
152152 0 0
153153 153537. 0.530254
154154 0 0
155155 15260.2 0.0510189
156156 0 0
157157 −442244. −1.43190 −0.715950 0.698151i 0.754006π-0.754006\pi
−0.715950 + 0.698151i 0.754006π0.754006\pi
158158 0 0
159159 719633. 2.25745
160160 0 0
161161 13927.2 0.0423448
162162 0 0
163163 −5132.92 −0.0151320 −0.00756598 0.999971i 0.502408π-0.502408\pi
−0.00756598 + 0.999971i 0.502408π0.502408\pi
164164 0 0
165165 −7563.63 −0.0216282
166166 0 0
167167 295614. 0.820226 0.410113 0.912035i 0.365489π-0.365489\pi
0.410113 + 0.912035i 0.365489π0.365489\pi
168168 0 0
169169 294744. 0.793831
170170 0 0
171171 561836. 1.46933
172172 0 0
173173 492410. 1.25087 0.625435 0.780276i 0.284922π-0.284922\pi
0.625435 + 0.780276i 0.284922π0.284922\pi
174174 0 0
175175 115194. 0.284339
176176 0 0
177177 −902543. −2.16538
178178 0 0
179179 −629780. −1.46912 −0.734559 0.678545i 0.762611π-0.762611\pi
−0.734559 + 0.678545i 0.762611π0.762611\pi
180180 0 0
181181 −267374. −0.606629 −0.303314 0.952891i 0.598093π-0.598093\pi
−0.303314 + 0.952891i 0.598093π0.598093\pi
182182 0 0
183183 1.22838e6 2.71147
184184 0 0
185185 8471.10 0.0181974
186186 0 0
187187 −46223.3 −0.0966623
188188 0 0
189189 149055. 0.303524
190190 0 0
191191 −801769. −1.59025 −0.795125 0.606445i 0.792595π-0.792595\pi
−0.795125 + 0.606445i 0.792595π0.792595\pi
192192 0 0
193193 −903981. −1.74689 −0.873446 0.486921i 0.838120π-0.838120\pi
−0.873446 + 0.486921i 0.838120π0.838120\pi
194194 0 0
195195 51014.5 0.0960743
196196 0 0
197197 27824.7 0.0510816 0.0255408 0.999674i 0.491869π-0.491869\pi
0.0255408 + 0.999674i 0.491869π0.491869\pi
198198 0 0
199199 −875292. −1.56682 −0.783412 0.621502i 0.786523π-0.786523\pi
−0.783412 + 0.621502i 0.786523π0.786523\pi
200200 0 0
201201 −1.22686e6 −2.14193
202202 0 0
203203 −178093. −0.303324
204204 0 0
205205 14297.3 0.0237612
206206 0 0
207207 −151558. −0.245840
208208 0 0
209209 −169144. −0.267850
210210 0 0
211211 −556951. −0.861213 −0.430606 0.902540i 0.641700π-0.641700\pi
−0.430606 + 0.902540i 0.641700π0.641700\pi
212212 0 0
213213 1.69876e6 2.56556
214214 0 0
215215 21422.6 0.0316064
216216 0 0
217217 228977. 0.330098
218218 0 0
219219 −2.05359e6 −2.89336
220220 0 0
221221 311763. 0.429382
222222 0 0
223223 −880406. −1.18555 −0.592777 0.805367i 0.701968π-0.701968\pi
−0.592777 + 0.805367i 0.701968π0.701968\pi
224224 0 0
225225 −1.25356e6 −1.65077
226226 0 0
227227 536468. 0.691001 0.345501 0.938419i 0.387709π-0.387709\pi
0.345501 + 0.938419i 0.387709π0.387709\pi
228228 0 0
229229 456255. 0.574935 0.287468 0.957790i 0.407187π-0.407187\pi
0.287468 + 0.957790i 0.407187π0.407187\pi
230230 0 0
231231 −113491. −0.139937
232232 0 0
233233 731816. 0.883104 0.441552 0.897236i 0.354428π-0.354428\pi
0.441552 + 0.897236i 0.354428π0.354428\pi
234234 0 0
235235 5615.26 0.00663285
236236 0 0
237237 −1.49639e6 −1.73051
238238 0 0
239239 −685553. −0.776330 −0.388165 0.921590i 0.626891π-0.626891\pi
−0.388165 + 0.921590i 0.626891π0.626891\pi
240240 0 0
241241 −1.16895e6 −1.29644 −0.648219 0.761454i 0.724486π-0.724486\pi
−0.648219 + 0.761454i 0.724486π0.724486\pi
242242 0 0
243243 858212. 0.932349
244244 0 0
245245 38012.1 0.0404582
246246 0 0
247247 1.14083e6 1.18981
248248 0 0
249249 −391009. −0.399657
250250 0 0
251251 −1.62769e6 −1.63075 −0.815375 0.578933i 0.803469π-0.803469\pi
−0.815375 + 0.578933i 0.803469π0.803469\pi
252252 0 0
253253 45627.5 0.0448152
254254 0 0
255255 23879.2 0.0229969
256256 0 0
257257 866219. 0.818078 0.409039 0.912517i 0.365864π-0.365864\pi
0.409039 + 0.912517i 0.365864π0.365864\pi
258258 0 0
259259 127107. 0.117739
260260 0 0
261261 1.93803e6 1.76100
262262 0 0
263263 −1.36434e6 −1.21628 −0.608139 0.793831i 0.708084π-0.708084\pi
−0.608139 + 0.793831i 0.708084π0.708084\pi
264264 0 0
265265 69751.2 0.0610151
266266 0 0
267267 1.18059e6 1.01350
268268 0 0
269269 −1.62684e6 −1.37077 −0.685386 0.728180i 0.740366π-0.740366\pi
−0.685386 + 0.728180i 0.740366π0.740366\pi
270270 0 0
271271 1.32521e6 1.09613 0.548066 0.836435i 0.315364π-0.315364\pi
0.548066 + 0.836435i 0.315364π0.315364\pi
272272 0 0
273273 765464. 0.621610
274274 0 0
275275 377392. 0.300927
276276 0 0
277277 49591.7 0.0388338 0.0194169 0.999811i 0.493819π-0.493819\pi
0.0194169 + 0.999811i 0.493819π0.493819\pi
278278 0 0
279279 −2.49175e6 −1.91644
280280 0 0
281281 1.18685e6 0.896667 0.448334 0.893866i 0.352018π-0.352018\pi
0.448334 + 0.893866i 0.352018π0.352018\pi
282282 0 0
283283 307811. 0.228464 0.114232 0.993454i 0.463559π-0.463559\pi
0.114232 + 0.993454i 0.463559π0.463559\pi
284284 0 0
285285 87381.0 0.0637243
286286 0 0
287287 214528. 0.153737
288288 0 0
289289 −1.27392e6 −0.897220
290290 0 0
291291 4.02001e6 2.78288
292292 0 0
293293 1.91593e6 1.30380 0.651898 0.758307i 0.273973π-0.273973\pi
0.651898 + 0.758307i 0.273973π0.273973\pi
294294 0 0
295295 −87479.9 −0.0585266
296296 0 0
297297 488325. 0.321232
298298 0 0
299299 −307745. −0.199073
300300 0 0
301301 321442. 0.204497
302302 0 0
303303 −1.09004e6 −0.682078
304304 0 0
305305 119062. 0.0732864
306306 0 0
307307 −1.59722e6 −0.967206 −0.483603 0.875288i 0.660672π-0.660672\pi
−0.483603 + 0.875288i 0.660672π0.660672\pi
308308 0 0
309309 682438. 0.406600
310310 0 0
311311 2.41343e6 1.41492 0.707462 0.706751i 0.249840π-0.249840\pi
0.707462 + 0.706751i 0.249840π0.249840\pi
312312 0 0
313313 −314389. −0.181387 −0.0906935 0.995879i 0.528908π-0.528908\pi
−0.0906935 + 0.995879i 0.528908π0.528908\pi
314314 0 0
315315 36538.7 0.0207480
316316 0 0
317317 1.75459e6 0.980681 0.490341 0.871531i 0.336872π-0.336872\pi
0.490341 + 0.871531i 0.336872π0.336872\pi
318318 0 0
319319 −583458. −0.321020
320320 0 0
321321 −1.34135e6 −0.726575
322322 0 0
323323 534008. 0.284801
324324 0 0
325325 −2.54540e6 −1.33674
326326 0 0
327327 575903. 0.297838
328328 0 0
329329 84256.0 0.0429152
330330 0 0
331331 2.42629e6 1.21723 0.608614 0.793466i 0.291726π-0.291726\pi
0.608614 + 0.793466i 0.291726π0.291726\pi
332332 0 0
333333 −1.38320e6 −0.683555
334334 0 0
335335 −118915. −0.0578928
336336 0 0
337337 −781584. −0.374888 −0.187444 0.982275i 0.560020π-0.560020\pi
−0.187444 + 0.982275i 0.560020π0.560020\pi
338338 0 0
339339 2.82464e6 1.33495
340340 0 0
341341 750159. 0.349355
342342 0 0
343343 1.19111e6 0.546659
344344 0 0
345345 −23571.4 −0.0106620
346346 0 0
347347 2.27802e6 1.01562 0.507812 0.861468i 0.330454π-0.330454\pi
0.507812 + 0.861468i 0.330454π0.330454\pi
348348 0 0
349349 −1.81344e6 −0.796964 −0.398482 0.917176i 0.630463π-0.630463\pi
−0.398482 + 0.917176i 0.630463π0.630463\pi
350350 0 0
351351 −3.29362e6 −1.42694
352352 0 0
353353 −4.19809e6 −1.79314 −0.896572 0.442897i 0.853951π-0.853951\pi
−0.896572 + 0.442897i 0.853951π0.853951\pi
354354 0 0
355355 164654. 0.0693428
356356 0 0
357357 358304. 0.148792
358358 0 0
359359 −947065. −0.387832 −0.193916 0.981018i 0.562119π-0.562119\pi
−0.193916 + 0.981018i 0.562119π0.562119\pi
360360 0 0
361361 −522009. −0.210819
362362 0 0
363363 −371812. −0.148100
364364 0 0
365365 −199046. −0.0782026
366366 0 0
367367 −815817. −0.316175 −0.158088 0.987425i 0.550533π-0.550533\pi
−0.158088 + 0.987425i 0.550533π0.550533\pi
368368 0 0
369369 −2.33452e6 −0.892547
370370 0 0
371371 1.04660e6 0.394773
372372 0 0
373373 3.21610e6 1.19690 0.598450 0.801160i 0.295783π-0.295783\pi
0.598450 + 0.801160i 0.295783π0.295783\pi
374374 0 0
375375 −390304. −0.143326
376376 0 0
377377 3.93526e6 1.42600
378378 0 0
379379 −867175. −0.310105 −0.155052 0.987906i 0.549555π-0.549555\pi
−0.155052 + 0.987906i 0.549555π0.549555\pi
380380 0 0
381381 1.48924e6 0.525595
382382 0 0
383383 5.49995e6 1.91585 0.957925 0.287019i 0.0926641π-0.0926641\pi
0.957925 + 0.287019i 0.0926641π0.0926641\pi
384384 0 0
385385 −11000.2 −0.00378225
386386 0 0
387387 −3.49797e6 −1.18724
388388 0 0
389389 2.66553e6 0.893118 0.446559 0.894754i 0.352649π-0.352649\pi
0.446559 + 0.894754i 0.352649π0.352649\pi
390390 0 0
391391 −144051. −0.0476513
392392 0 0
393393 8.40140e6 2.74391
394394 0 0
395395 −145039. −0.0467727
396396 0 0
397397 −2.66718e6 −0.849329 −0.424665 0.905351i 0.639608π-0.639608\pi
−0.424665 + 0.905351i 0.639608π0.639608\pi
398398 0 0
399399 1.31114e6 0.412302
400400 0 0
401401 4.43714e6 1.37798 0.688988 0.724772i 0.258055π-0.258055\pi
0.688988 + 0.724772i 0.258055π0.258055\pi
402402 0 0
403403 −5.05961e6 −1.55187
404404 0 0
405405 −11871.0 −0.00359625
406406 0 0
407407 416421. 0.124608
408408 0 0
409409 −4.42419e6 −1.30775 −0.653877 0.756601i 0.726858π-0.726858\pi
−0.653877 + 0.756601i 0.726858π0.726858\pi
410410 0 0
411411 −201751. −0.0589129
412412 0 0
413413 −1.31262e6 −0.378673
414414 0 0
415415 −37898.9 −0.0108021
416416 0 0
417417 8.19947e6 2.30911
418418 0 0
419419 −4.31614e6 −1.20105 −0.600524 0.799607i 0.705041π-0.705041\pi
−0.600524 + 0.799607i 0.705041π0.705041\pi
420420 0 0
421421 3.16156e6 0.869353 0.434677 0.900587i 0.356863π-0.356863\pi
0.434677 + 0.900587i 0.356863π0.356863\pi
422422 0 0
423423 −916883. −0.249151
424424 0 0
425425 −1.19147e6 −0.319971
426426 0 0
427427 1.78650e6 0.474170
428428 0 0
429429 2.50776e6 0.657875
430430 0 0
431431 3.95469e6 1.02546 0.512731 0.858549i 0.328634π-0.328634\pi
0.512731 + 0.858549i 0.328634π0.328634\pi
432432 0 0
433433 −934155. −0.239441 −0.119721 0.992808i 0.538200π-0.538200\pi
−0.119721 + 0.992808i 0.538200π0.538200\pi
434434 0 0
435435 301418. 0.0763740
436436 0 0
437437 −527125. −0.132041
438438 0 0
439439 −133074. −0.0329557 −0.0164779 0.999864i 0.505245π-0.505245\pi
−0.0164779 + 0.999864i 0.505245π0.505245\pi
440440 0 0
441441 −6.20677e6 −1.51974
442442 0 0
443443 918705. 0.222416 0.111208 0.993797i 0.464528π-0.464528\pi
0.111208 + 0.993797i 0.464528π0.464528\pi
444444 0 0
445445 114430. 0.0273931
446446 0 0
447447 −9.96965e6 −2.36000
448448 0 0
449449 2.33313e6 0.546163 0.273081 0.961991i 0.411957π-0.411957\pi
0.273081 + 0.961991i 0.411957π0.411957\pi
450450 0 0
451451 702822. 0.162706
452452 0 0
453453 −9.32345e6 −2.13467
454454 0 0
455455 74193.4 0.0168011
456456 0 0
457457 6.72738e6 1.50680 0.753400 0.657562i 0.228412π-0.228412\pi
0.753400 + 0.657562i 0.228412π0.228412\pi
458458 0 0
459459 −1.54170e6 −0.341561
460460 0 0
461461 −3.00613e6 −0.658802 −0.329401 0.944190i 0.606847π-0.606847\pi
−0.329401 + 0.944190i 0.606847π0.606847\pi
462462 0 0
463463 2.96527e6 0.642852 0.321426 0.946935i 0.395838π-0.395838\pi
0.321426 + 0.946935i 0.395838π0.395838\pi
464464 0 0
465465 −387537. −0.0831152
466466 0 0
467467 2.58822e6 0.549173 0.274586 0.961562i 0.411459π-0.411459\pi
0.274586 + 0.961562i 0.411459π0.411459\pi
468468 0 0
469469 −1.78430e6 −0.374572
470470 0 0
471471 1.12309e7 2.33272
472472 0 0
473473 1.05309e6 0.216427
474474 0 0
475475 −4.35993e6 −0.886636
476476 0 0
477477 −1.13893e7 −2.29192
478478 0 0
479479 −859744. −0.171210 −0.0856052 0.996329i 0.527282π-0.527282\pi
−0.0856052 + 0.996329i 0.527282π0.527282\pi
480480 0 0
481481 −2.80864e6 −0.553520
482482 0 0
483483 −353685. −0.0689841
484484 0 0
485485 389643. 0.0752165
486486 0 0
487487 1.82420e6 0.348539 0.174269 0.984698i 0.444244π-0.444244\pi
0.174269 + 0.984698i 0.444244π0.444244\pi
488488 0 0
489489 130352. 0.0246516
490490 0 0
491491 −5.09714e6 −0.954164 −0.477082 0.878859i 0.658306π-0.658306\pi
−0.477082 + 0.878859i 0.658306π0.658306\pi
492492 0 0
493493 1.84204e6 0.341336
494494 0 0
495495 119706. 0.0219585
496496 0 0
497497 2.47061e6 0.448655
498498 0 0
499499 −1.07238e7 −1.92796 −0.963980 0.265975i 0.914306π-0.914306\pi
−0.963980 + 0.265975i 0.914306π0.914306\pi
500500 0 0
501501 −7.50718e6 −1.33623
502502 0 0
503503 6.61070e6 1.16500 0.582502 0.812829i 0.302074π-0.302074\pi
0.582502 + 0.812829i 0.302074π0.302074\pi
504504 0 0
505505 −105653. −0.0184354
506506 0 0
507507 −7.48509e6 −1.29323
508508 0 0
509509 241509. 0.0413179 0.0206589 0.999787i 0.493424π-0.493424\pi
0.0206589 + 0.999787i 0.493424π0.493424\pi
510510 0 0
511511 −2.98665e6 −0.505978
512512 0 0
513513 −5.64152e6 −0.946461
514514 0 0
515515 66146.0 0.0109897
516516 0 0
517517 276034. 0.0454188
518518 0 0
519519 −1.25049e7 −2.03780
520520 0 0
521521 −6.03899e6 −0.974698 −0.487349 0.873207i 0.662036π-0.662036\pi
−0.487349 + 0.873207i 0.662036π0.662036\pi
522522 0 0
523523 −1.02194e7 −1.63369 −0.816847 0.576854i 0.804280π-0.804280\pi
−0.816847 + 0.576854i 0.804280π0.804280\pi
524524 0 0
525525 −2.92538e6 −0.463217
526526 0 0
527527 −2.36834e6 −0.371464
528528 0 0
529529 −6.29415e6 −0.977908
530530 0 0
531531 1.42841e7 2.19845
532532 0 0
533533 −4.74034e6 −0.722756
534534 0 0
535535 −130012. −0.0196381
536536 0 0
537537 1.59934e7 2.39335
538538 0 0
539539 1.86859e6 0.277040
540540 0 0
541541 −2.77400e6 −0.407487 −0.203744 0.979024i 0.565311π-0.565311\pi
−0.203744 + 0.979024i 0.565311π0.565311\pi
542542 0 0
543543 6.79003e6 0.988261
544544 0 0
545545 55820.0 0.00805005
546546 0 0
547547 −597638. −0.0854024 −0.0427012 0.999088i 0.513596π-0.513596\pi
−0.0427012 + 0.999088i 0.513596π0.513596\pi
548548 0 0
549549 −1.94409e7 −2.75287
550550 0 0
551551 6.74056e6 0.945839
552552 0 0
553553 −2.17629e6 −0.302624
554554 0 0
555555 −215126. −0.0296455
556556 0 0
557557 2.44709e6 0.334204 0.167102 0.985940i 0.446559π-0.446559\pi
0.167102 + 0.985940i 0.446559π0.446559\pi
558558 0 0
559559 −7.10277e6 −0.961387
560560 0 0
561561 1.17385e6 0.157473
562562 0 0
563563 6.74672e6 0.897061 0.448530 0.893768i 0.351948π-0.351948\pi
0.448530 + 0.893768i 0.351948π0.351948\pi
564564 0 0
565565 273782. 0.0360814
566566 0 0
567567 −178123. −0.0232681
568568 0 0
569569 −1.93041e6 −0.249959 −0.124980 0.992159i 0.539887π-0.539887\pi
−0.124980 + 0.992159i 0.539887π0.539887\pi
570570 0 0
571571 1.05760e6 0.135748 0.0678739 0.997694i 0.478378π-0.478378\pi
0.0678739 + 0.997694i 0.478378π0.478378\pi
572572 0 0
573573 2.03611e7 2.59068
574574 0 0
575575 1.17611e6 0.148347
576576 0 0
577577 1.29491e7 1.61920 0.809602 0.586979i 0.199683π-0.199683\pi
0.809602 + 0.586979i 0.199683π0.199683\pi
578578 0 0
579579 2.29568e7 2.84587
580580 0 0
581581 −568667. −0.0698904
582582 0 0
583583 3.42882e6 0.417804
584584 0 0
585585 −807381. −0.0975414
586586 0 0
587587 −7.35799e6 −0.881382 −0.440691 0.897659i 0.645267π-0.645267\pi
−0.440691 + 0.897659i 0.645267π0.645267\pi
588588 0 0
589589 −8.66643e6 −1.02932
590590 0 0
591591 −706614. −0.0832173
592592 0 0
593593 −230604. −0.0269296 −0.0134648 0.999909i 0.504286π-0.504286\pi
−0.0134648 + 0.999909i 0.504286π0.504286\pi
594594 0 0
595595 34729.0 0.00402161
596596 0 0
597597 2.22282e7 2.55252
598598 0 0
599599 1.22697e7 1.39723 0.698614 0.715499i 0.253800π-0.253800\pi
0.698614 + 0.715499i 0.253800π0.253800\pi
600600 0 0
601601 −5.66439e6 −0.639686 −0.319843 0.947471i 0.603630π-0.603630\pi
−0.319843 + 0.947471i 0.603630π0.603630\pi
602602 0 0
603603 1.94169e7 2.17464
604604 0 0
605605 −36038.2 −0.00400290
606606 0 0
607607 −1.43205e7 −1.57756 −0.788780 0.614676i 0.789287π-0.789287\pi
−0.788780 + 0.614676i 0.789287π0.789287\pi
608608 0 0
609609 4.52272e6 0.494147
610610 0 0
611611 −1.86177e6 −0.201754
612612 0 0
613613 −723067. −0.0777191 −0.0388595 0.999245i 0.512372π-0.512372\pi
−0.0388595 + 0.999245i 0.512372π0.512372\pi
614614 0 0
615615 −363082. −0.0387095
616616 0 0
617617 −900971. −0.0952791 −0.0476396 0.998865i 0.515170π-0.515170\pi
−0.0476396 + 0.998865i 0.515170π0.515170\pi
618618 0 0
619619 −1.04107e7 −1.09207 −0.546037 0.837761i 0.683864π-0.683864\pi
−0.546037 + 0.837761i 0.683864π0.683864\pi
620620 0 0
621621 1.52183e6 0.158357
622622 0 0
623623 1.71700e6 0.177236
624624 0 0
625625 9.70886e6 0.994187
626626 0 0
627627 4.29546e6 0.436356
628628 0 0
629629 −1.31469e6 −0.132494
630630 0 0
631631 2.63321e6 0.263277 0.131638 0.991298i 0.457976π-0.457976\pi
0.131638 + 0.991298i 0.457976π0.457976\pi
632632 0 0
633633 1.41439e7 1.40301
634634 0 0
635635 144346. 0.0142059
636636 0 0
637637 −1.26031e7 −1.23064
638638 0 0
639639 −2.68854e7 −2.60474
640640 0 0
641641 1.15325e7 1.10861 0.554304 0.832314i 0.312985π-0.312985\pi
0.554304 + 0.832314i 0.312985π0.312985\pi
642642 0 0
643643 −3.88676e6 −0.370732 −0.185366 0.982670i 0.559347π-0.559347\pi
−0.185366 + 0.982670i 0.559347π0.559347\pi
644644 0 0
645645 −544031. −0.0514901
646646 0 0
647647 −9.17393e6 −0.861579 −0.430789 0.902453i 0.641765π-0.641765\pi
−0.430789 + 0.902453i 0.641765π0.641765\pi
648648 0 0
649649 −4.30032e6 −0.400765
650650 0 0
651651 −5.81492e6 −0.537763
652652 0 0
653653 9.62692e6 0.883496 0.441748 0.897139i 0.354359π-0.354359\pi
0.441748 + 0.897139i 0.354359π0.354359\pi
654654 0 0
655655 814315. 0.0741633
656656 0 0
657657 3.25011e7 2.93754
658658 0 0
659659 1.20253e7 1.07865 0.539327 0.842096i 0.318679π-0.318679\pi
0.539327 + 0.842096i 0.318679π0.318679\pi
660660 0 0
661661 5.52924e6 0.492223 0.246111 0.969242i 0.420847π-0.420847\pi
0.246111 + 0.969242i 0.420847π0.420847\pi
662662 0 0
663663 −7.91730e6 −0.699509
664664 0 0
665665 127083. 0.0111438
666666 0 0
667667 −1.81830e6 −0.158252
668668 0 0
669669 2.23581e7 1.93139
670670 0 0
671671 5.85283e6 0.501833
672672 0 0
673673 4.66768e6 0.397249 0.198625 0.980076i 0.436353π-0.436353\pi
0.198625 + 0.980076i 0.436353π0.436353\pi
674674 0 0
675675 1.25873e7 1.06334
676676 0 0
677677 −1.48229e7 −1.24297 −0.621487 0.783425i 0.713471π-0.713471\pi
−0.621487 + 0.783425i 0.713471π0.713471\pi
678678 0 0
679679 5.84653e6 0.486658
680680 0 0
681681 −1.36237e7 −1.12571
682682 0 0
683683 1.69744e6 0.139234 0.0696168 0.997574i 0.477822π-0.477822\pi
0.0696168 + 0.997574i 0.477822π0.477822\pi
684684 0 0
685685 −19554.9 −0.00159231
686686 0 0
687687 −1.15867e7 −0.936629
688688 0 0
689689 −2.31264e7 −1.85592
690690 0 0
691691 8.43993e6 0.672425 0.336213 0.941786i 0.390854π-0.390854\pi
0.336213 + 0.941786i 0.390854π0.390854\pi
692692 0 0
693693 1.79616e6 0.142073
694694 0 0
695695 794742. 0.0624114
696696 0 0
697697 −2.21889e6 −0.173003
698698 0 0
699699 −1.85846e7 −1.43867
700700 0 0
701701 −1.84917e7 −1.42128 −0.710642 0.703554i 0.751595π-0.751595\pi
−0.710642 + 0.703554i 0.751595π0.751595\pi
702702 0 0
703703 −4.81082e6 −0.367140
704704 0 0
705705 −142601. −0.0108056
706706 0 0
707707 −1.58530e6 −0.119279
708708 0 0
709709 −2.05168e7 −1.53283 −0.766415 0.642346i 0.777961π-0.777961\pi
−0.766415 + 0.642346i 0.777961π0.777961\pi
710710 0 0
711711 2.36826e7 1.75693
712712 0 0
713713 2.33781e6 0.172221
714714 0 0
715715 243068. 0.0177812
716716 0 0
717717 1.74098e7 1.26472
718718 0 0
719719 4.89582e6 0.353186 0.176593 0.984284i 0.443492π-0.443492\pi
0.176593 + 0.984284i 0.443492π0.443492\pi
720720 0 0
721721 992510. 0.0711044
722722 0 0
723723 2.96856e7 2.11203
724724 0 0
725725 −1.50394e7 −1.06264
726726 0 0
727727 −8.08996e6 −0.567689 −0.283844 0.958870i 0.591610π-0.591610\pi
−0.283844 + 0.958870i 0.591610π0.591610\pi
728728 0 0
729729 −2.29664e7 −1.60057
730730 0 0
731731 −3.32471e6 −0.230123
732732 0 0
733733 2.08651e7 1.43437 0.717183 0.696885i 0.245431π-0.245431\pi
0.717183 + 0.696885i 0.245431π0.245431\pi
734734 0 0
735735 −965325. −0.0659106
736736 0 0
737737 −5.84560e6 −0.396424
738738 0 0
739739 8.45704e6 0.569649 0.284825 0.958580i 0.408065π-0.408065\pi
0.284825 + 0.958580i 0.408065π0.408065\pi
740740 0 0
741741 −2.89717e7 −1.93833
742742 0 0
743743 −4.50054e6 −0.299083 −0.149542 0.988755i 0.547780π-0.547780\pi
−0.149542 + 0.988755i 0.547780π0.547780\pi
744744 0 0
745745 −966319. −0.0637867
746746 0 0
747747 6.18830e6 0.405760
748748 0 0
749749 −1.95081e6 −0.127060
750750 0 0
751751 −1.42022e7 −0.918871 −0.459435 0.888211i 0.651948π-0.651948\pi
−0.459435 + 0.888211i 0.651948π0.651948\pi
752752 0 0
753753 4.13356e7 2.65666
754754 0 0
755755 −903685. −0.0576965
756756 0 0
757757 −4.47342e6 −0.283727 −0.141863 0.989886i 0.545309π-0.545309\pi
−0.141863 + 0.989886i 0.545309π0.545309\pi
758758 0 0
759759 −1.15872e6 −0.0730086
760760 0 0
761761 −1.78407e7 −1.11673 −0.558366 0.829594i 0.688572π-0.688572\pi
−0.558366 + 0.829594i 0.688572π0.688572\pi
762762 0 0
763763 837569. 0.0520846
764764 0 0
765765 −377925. −0.0233481
766766 0 0
767767 2.90045e7 1.78023
768768 0 0
769769 −1.22169e7 −0.744984 −0.372492 0.928036i 0.621497π-0.621497\pi
−0.372492 + 0.928036i 0.621497π0.621497\pi
770770 0 0
771771 −2.19978e7 −1.33273
772772 0 0
773773 −1.31589e7 −0.792083 −0.396041 0.918233i 0.629616π-0.629616\pi
−0.396041 + 0.918233i 0.629616π0.629616\pi
774774 0 0
775775 1.93364e7 1.15643
776776 0 0
777777 −3.22792e6 −0.191810
778778 0 0
779779 −8.11956e6 −0.479390
780780 0 0
781781 8.09404e6 0.474829
782782 0 0
783783 −1.94602e7 −1.13434
784784 0 0
785785 1.08857e6 0.0630493
786786 0 0
787787 −1.18114e7 −0.679773 −0.339887 0.940466i 0.610389π-0.610389\pi
−0.339887 + 0.940466i 0.610389π0.610389\pi
788788 0 0
789789 3.46477e7 1.98144
790790 0 0
791791 4.10805e6 0.233450
792792 0 0
793793 −3.94757e7 −2.22919
794794 0 0
795795 −1.77135e6 −0.0993999
796796 0 0
797797 3.15545e7 1.75961 0.879804 0.475336i 0.157673π-0.157673\pi
0.879804 + 0.475336i 0.157673π0.157673\pi
798798 0 0
799799 −871470. −0.0482932
800800 0 0
801801 −1.86846e7 −1.02897
802802 0 0
803803 −9.78467e6 −0.535497
804804 0 0
805805 −34281.3 −0.00186452
806806 0 0
807807 4.13141e7 2.23313
808808 0 0
809809 3.43127e7 1.84324 0.921622 0.388088i 0.126864π-0.126864\pi
0.921622 + 0.388088i 0.126864π0.126864\pi
810810 0 0
811811 1.57834e7 0.842651 0.421325 0.906910i 0.361565π-0.361565\pi
0.421325 + 0.906910i 0.361565π0.361565\pi
812812 0 0
813813 −3.36541e7 −1.78571
814814 0 0
815815 12634.5 0.000666289 0
816816 0 0
817817 −1.21661e7 −0.637670
818818 0 0
819819 −1.21146e7 −0.631103
820820 0 0
821821 3.27662e7 1.69655 0.848277 0.529553i 0.177640π-0.177640\pi
0.848277 + 0.529553i 0.177640π0.177640\pi
822822 0 0
823823 −316695. −0.0162983 −0.00814913 0.999967i 0.502594π-0.502594\pi
−0.00814913 + 0.999967i 0.502594π0.502594\pi
824824 0 0
825825 −9.58395e6 −0.490241
826826 0 0
827827 −268265. −0.0136395 −0.00681977 0.999977i 0.502171π-0.502171\pi
−0.00681977 + 0.999977i 0.502171π0.502171\pi
828828 0 0
829829 3.25083e7 1.64289 0.821443 0.570291i 0.193170π-0.193170\pi
0.821443 + 0.570291i 0.193170π0.193170\pi
830830 0 0
831831 −1.25939e6 −0.0632642
832832 0 0
833833 −5.89935e6 −0.294572
834834 0 0
835835 −727641. −0.0361161
836836 0 0
837837 2.50203e7 1.23446
838838 0 0
839839 −1.67263e7 −0.820343 −0.410172 0.912008i 0.634531π-0.634531\pi
−0.410172 + 0.912008i 0.634531π0.634531\pi
840840 0 0
841841 2.74019e6 0.133595
842842 0 0
843843 −3.01404e7 −1.46076
844844 0 0
845845 −725500. −0.0349539
846846 0 0
847847 −540747. −0.0258992
848848 0 0
849849 −7.81694e6 −0.372192
850850 0 0
851851 1.29774e6 0.0614277
852852 0 0
853853 −4.62988e6 −0.217870 −0.108935 0.994049i 0.534744π-0.534744\pi
−0.108935 + 0.994049i 0.534744π0.534744\pi
854854 0 0
855855 −1.38294e6 −0.0646974
856856 0 0
857857 −5.74853e6 −0.267365 −0.133682 0.991024i 0.542680π-0.542680\pi
−0.133682 + 0.991024i 0.542680π0.542680\pi
858858 0 0
859859 −1.56347e7 −0.722948 −0.361474 0.932382i 0.617726π-0.617726\pi
−0.361474 + 0.932382i 0.617726π0.617726\pi
860860 0 0
861861 −5.44799e6 −0.250454
862862 0 0
863863 −6.87214e6 −0.314098 −0.157049 0.987591i 0.550198π-0.550198\pi
−0.157049 + 0.987591i 0.550198π0.550198\pi
864864 0 0
865865 −1.21205e6 −0.0550782
866866 0 0
867867 3.23516e7 1.46167
868868 0 0
869869 −7.12981e6 −0.320279
870870 0 0
871871 3.94269e7 1.76095
872872 0 0
873873 −6.36226e7 −2.82537
874874 0 0
875875 −567643. −0.0250643
876876 0 0
877877 −2.66074e7 −1.16816 −0.584082 0.811695i 0.698545π-0.698545\pi
−0.584082 + 0.811695i 0.698545π0.698545\pi
878878 0 0
879879 −4.86554e7 −2.12402
880880 0 0
881881 −3.06349e7 −1.32977 −0.664886 0.746945i 0.731520π-0.731520\pi
−0.664886 + 0.746945i 0.731520π0.731520\pi
882882 0 0
883883 −3.43836e7 −1.48405 −0.742027 0.670369i 0.766136π-0.766136\pi
−0.742027 + 0.670369i 0.766136π0.766136\pi
884884 0 0
885885 2.22157e6 0.0953460
886886 0 0
887887 −4.68639e6 −0.200000 −0.0999998 0.994987i 0.531884π-0.531884\pi
−0.0999998 + 0.994987i 0.531884π0.531884\pi
888888 0 0
889889 2.16588e6 0.0919138
890890 0 0
891891 −583553. −0.0246256
892892 0 0
893893 −3.18896e6 −0.133820
894894 0 0
895895 1.55018e6 0.0646881
896896 0 0
897897 7.81524e6 0.324311
898898 0 0
899899 −2.98946e7 −1.23365
900900 0 0
901901 −1.08252e7 −0.444245
902902 0 0
903903 −8.16309e6 −0.333146
904904 0 0
905905 658130. 0.0267110
906906 0 0
907907 −1.65093e7 −0.666364 −0.333182 0.942862i 0.608122π-0.608122\pi
−0.333182 + 0.942862i 0.608122π0.608122\pi
908908 0 0
909909 1.72514e7 0.692493
910910 0 0
911911 1.04813e7 0.418425 0.209213 0.977870i 0.432910π-0.432910\pi
0.209213 + 0.977870i 0.432910π0.432910\pi
912912 0 0
913913 −1.86303e6 −0.0739678
914914 0 0
915915 −3.02360e6 −0.119391
916916 0 0
917917 1.22187e7 0.479844
918918 0 0
919919 2.17428e6 0.0849234 0.0424617 0.999098i 0.486480π-0.486480\pi
0.0424617 + 0.999098i 0.486480π0.486480\pi
920920 0 0
921921 4.05618e7 1.57568
922922 0 0
923923 −5.45920e7 −2.10923
924924 0 0
925925 1.07338e7 0.412477
926926 0 0
927927 −1.08006e7 −0.412809
928928 0 0
929929 4.11976e7 1.56615 0.783073 0.621929i 0.213651π-0.213651\pi
0.783073 + 0.621929i 0.213651π0.213651\pi
930930 0 0
931931 −2.15874e7 −0.816257
932932 0 0
933933 −6.12895e7 −2.30506
934934 0 0
935935 113777. 0.00425623
936936 0 0
937937 −932491. −0.0346973 −0.0173486 0.999850i 0.505523π-0.505523\pi
−0.0173486 + 0.999850i 0.505523π0.505523\pi
938938 0 0
939939 7.98398e6 0.295498
940940 0 0
941941 −2.61944e7 −0.964350 −0.482175 0.876075i 0.660153π-0.660153\pi
−0.482175 + 0.876075i 0.660153π0.660153\pi
942942 0 0
943943 2.19029e6 0.0802088
944944 0 0
945945 −366894. −0.0133647
946946 0 0
947947 3.25549e7 1.17962 0.589809 0.807542i 0.299203π-0.299203\pi
0.589809 + 0.807542i 0.299203π0.299203\pi
948948 0 0
949949 6.59948e7 2.37873
950950 0 0
951951 −4.45583e7 −1.59763
952952 0 0
953953 3.34686e7 1.19373 0.596865 0.802342i 0.296413π-0.296413\pi
0.596865 + 0.802342i 0.296413π0.296413\pi
954954 0 0
955955 1.97352e6 0.0700218
956956 0 0
957957 1.48170e7 0.522976
958958 0 0
959959 −293418. −0.0103024
960960 0 0
961961 9.80667e6 0.342541
962962 0 0
963963 2.12289e7 0.737670
964964 0 0
965965 2.22511e6 0.0769190
966966 0 0
967967 2.92544e7 1.00606 0.503031 0.864268i 0.332218π-0.332218\pi
0.503031 + 0.864268i 0.332218π0.332218\pi
968968 0 0
969969 −1.35613e7 −0.463971
970970 0 0
971971 79377.9 0.00270179 0.00135090 0.999999i 0.499570π-0.499570\pi
0.00135090 + 0.999999i 0.499570π0.499570\pi
972972 0 0
973973 1.19250e7 0.403808
974974 0 0
975975 6.46411e7 2.17769
976976 0 0
977977 1.24149e7 0.416110 0.208055 0.978117i 0.433287π-0.433287\pi
0.208055 + 0.978117i 0.433287π0.433287\pi
978978 0 0
979979 5.62514e6 0.187576
980980 0 0
981981 −9.11453e6 −0.302386
982982 0 0
983983 −3.03404e7 −1.00147 −0.500734 0.865601i 0.666937π-0.666937\pi
−0.500734 + 0.865601i 0.666937π0.666937\pi
984984 0 0
985985 −68489.3 −0.00224922
986986 0 0
987987 −2.13970e6 −0.0699133
988988 0 0
989989 3.28186e6 0.106691
990990 0 0
991991 3.86025e7 1.24862 0.624311 0.781176i 0.285380π-0.285380\pi
0.624311 + 0.781176i 0.285380π0.285380\pi
992992 0 0
993993 −6.16161e7 −1.98299
994994 0 0
995995 2.15450e6 0.0689903
996996 0 0
997997 5.17340e7 1.64831 0.824154 0.566366i 0.191651π-0.191651\pi
0.824154 + 0.566366i 0.191651π0.191651\pi
998998 0 0
999999 1.38890e7 0.440309
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 176.6.a.j.1.1 3
4.3 odd 2 88.6.a.b.1.3 3
8.3 odd 2 704.6.a.r.1.1 3
8.5 even 2 704.6.a.s.1.3 3
12.11 even 2 792.6.a.f.1.2 3
44.43 even 2 968.6.a.c.1.3 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
88.6.a.b.1.3 3 4.3 odd 2
176.6.a.j.1.1 3 1.1 even 1 trivial
704.6.a.r.1.1 3 8.3 odd 2
704.6.a.s.1.3 3 8.5 even 2
792.6.a.f.1.2 3 12.11 even 2
968.6.a.c.1.3 3 44.43 even 2