Properties

Label 176.6.a.j.1.1
Level $176$
Weight $6$
Character 176.1
Self dual yes
Analytic conductor $28.228$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [176,6,Mod(1,176)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(176, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("176.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 176 = 2^{4} \cdot 11 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 176.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(28.2275522871\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: 3.3.1784453.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - 368x - 2705 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 88)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-10.4642\) of defining polynomial
Character \(\chi\) \(=\) 176.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-25.3952 q^{3} -2.46146 q^{5} -36.9338 q^{7} +401.918 q^{9} -121.000 q^{11} +816.111 q^{13} +62.5093 q^{15} +382.011 q^{17} +1397.89 q^{19} +937.941 q^{21} -377.087 q^{23} -3118.94 q^{25} -4035.75 q^{27} +4821.96 q^{29} -6199.66 q^{31} +3072.82 q^{33} +90.9110 q^{35} -3441.50 q^{37} -20725.3 q^{39} -5808.45 q^{41} -8703.19 q^{43} -989.304 q^{45} -2281.27 q^{47} -15442.9 q^{49} -9701.25 q^{51} -28337.3 q^{53} +297.837 q^{55} -35499.7 q^{57} +35539.9 q^{59} -48370.5 q^{61} -14844.3 q^{63} -2008.82 q^{65} +48310.7 q^{67} +9576.20 q^{69} -66892.9 q^{71} +80865.0 q^{73} +79206.2 q^{75} +4468.99 q^{77} +58924.1 q^{79} +4822.76 q^{81} +15396.9 q^{83} -940.304 q^{85} -122455. q^{87} -46488.8 q^{89} -30142.1 q^{91} +157442. q^{93} -3440.84 q^{95} -158298. q^{97} -48632.0 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 14 q^{3} + 56 q^{5} - 112 q^{7} + 145 q^{9} - 363 q^{11} + 450 q^{13} - 994 q^{15} + 1274 q^{17} - 2416 q^{19} + 2064 q^{21} - 4042 q^{23} + 4103 q^{25} - 6398 q^{27} + 2086 q^{29} - 10034 q^{31}+ \cdots - 17545 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −25.3952 −1.62910 −0.814552 0.580090i \(-0.803017\pi\)
−0.814552 + 0.580090i \(0.803017\pi\)
\(4\) 0 0
\(5\) −2.46146 −0.0440319 −0.0220160 0.999758i \(-0.507008\pi\)
−0.0220160 + 0.999758i \(0.507008\pi\)
\(6\) 0 0
\(7\) −36.9338 −0.284891 −0.142445 0.989803i \(-0.545497\pi\)
−0.142445 + 0.989803i \(0.545497\pi\)
\(8\) 0 0
\(9\) 401.918 1.65398
\(10\) 0 0
\(11\) −121.000 −0.301511
\(12\) 0 0
\(13\) 816.111 1.33934 0.669670 0.742659i \(-0.266436\pi\)
0.669670 + 0.742659i \(0.266436\pi\)
\(14\) 0 0
\(15\) 62.5093 0.0717326
\(16\) 0 0
\(17\) 382.011 0.320593 0.160296 0.987069i \(-0.448755\pi\)
0.160296 + 0.987069i \(0.448755\pi\)
\(18\) 0 0
\(19\) 1397.89 0.888358 0.444179 0.895938i \(-0.353495\pi\)
0.444179 + 0.895938i \(0.353495\pi\)
\(20\) 0 0
\(21\) 937.941 0.464117
\(22\) 0 0
\(23\) −377.087 −0.148635 −0.0743176 0.997235i \(-0.523678\pi\)
−0.0743176 + 0.997235i \(0.523678\pi\)
\(24\) 0 0
\(25\) −3118.94 −0.998061
\(26\) 0 0
\(27\) −4035.75 −1.06540
\(28\) 0 0
\(29\) 4821.96 1.06470 0.532352 0.846523i \(-0.321308\pi\)
0.532352 + 0.846523i \(0.321308\pi\)
\(30\) 0 0
\(31\) −6199.66 −1.15868 −0.579340 0.815086i \(-0.696690\pi\)
−0.579340 + 0.815086i \(0.696690\pi\)
\(32\) 0 0
\(33\) 3072.82 0.491194
\(34\) 0 0
\(35\) 90.9110 0.0125443
\(36\) 0 0
\(37\) −3441.50 −0.413279 −0.206639 0.978417i \(-0.566253\pi\)
−0.206639 + 0.978417i \(0.566253\pi\)
\(38\) 0 0
\(39\) −20725.3 −2.18192
\(40\) 0 0
\(41\) −5808.45 −0.539636 −0.269818 0.962911i \(-0.586963\pi\)
−0.269818 + 0.962911i \(0.586963\pi\)
\(42\) 0 0
\(43\) −8703.19 −0.717807 −0.358903 0.933375i \(-0.616849\pi\)
−0.358903 + 0.933375i \(0.616849\pi\)
\(44\) 0 0
\(45\) −989.304 −0.0728280
\(46\) 0 0
\(47\) −2281.27 −0.150637 −0.0753186 0.997160i \(-0.523997\pi\)
−0.0753186 + 0.997160i \(0.523997\pi\)
\(48\) 0 0
\(49\) −15442.9 −0.918837
\(50\) 0 0
\(51\) −9701.25 −0.522279
\(52\) 0 0
\(53\) −28337.3 −1.38570 −0.692850 0.721081i \(-0.743645\pi\)
−0.692850 + 0.721081i \(0.743645\pi\)
\(54\) 0 0
\(55\) 297.837 0.0132761
\(56\) 0 0
\(57\) −35499.7 −1.44723
\(58\) 0 0
\(59\) 35539.9 1.32919 0.664593 0.747206i \(-0.268605\pi\)
0.664593 + 0.747206i \(0.268605\pi\)
\(60\) 0 0
\(61\) −48370.5 −1.66439 −0.832196 0.554481i \(-0.812917\pi\)
−0.832196 + 0.554481i \(0.812917\pi\)
\(62\) 0 0
\(63\) −14844.3 −0.471204
\(64\) 0 0
\(65\) −2008.82 −0.0589737
\(66\) 0 0
\(67\) 48310.7 1.31479 0.657395 0.753546i \(-0.271658\pi\)
0.657395 + 0.753546i \(0.271658\pi\)
\(68\) 0 0
\(69\) 9576.20 0.242142
\(70\) 0 0
\(71\) −66892.9 −1.57483 −0.787416 0.616423i \(-0.788581\pi\)
−0.787416 + 0.616423i \(0.788581\pi\)
\(72\) 0 0
\(73\) 80865.0 1.77604 0.888022 0.459802i \(-0.152080\pi\)
0.888022 + 0.459802i \(0.152080\pi\)
\(74\) 0 0
\(75\) 79206.2 1.62595
\(76\) 0 0
\(77\) 4468.99 0.0858978
\(78\) 0 0
\(79\) 58924.1 1.06225 0.531123 0.847295i \(-0.321770\pi\)
0.531123 + 0.847295i \(0.321770\pi\)
\(80\) 0 0
\(81\) 4822.76 0.0816738
\(82\) 0 0
\(83\) 15396.9 0.245323 0.122662 0.992449i \(-0.460857\pi\)
0.122662 + 0.992449i \(0.460857\pi\)
\(84\) 0 0
\(85\) −940.304 −0.0141163
\(86\) 0 0
\(87\) −122455. −1.73451
\(88\) 0 0
\(89\) −46488.8 −0.622118 −0.311059 0.950391i \(-0.600684\pi\)
−0.311059 + 0.950391i \(0.600684\pi\)
\(90\) 0 0
\(91\) −30142.1 −0.381566
\(92\) 0 0
\(93\) 157442. 1.88761
\(94\) 0 0
\(95\) −3440.84 −0.0391161
\(96\) 0 0
\(97\) −158298. −1.70823 −0.854113 0.520088i \(-0.825899\pi\)
−0.854113 + 0.520088i \(0.825899\pi\)
\(98\) 0 0
\(99\) −48632.0 −0.498694
\(100\) 0 0
\(101\) 42922.8 0.418683 0.209341 0.977843i \(-0.432868\pi\)
0.209341 + 0.977843i \(0.432868\pi\)
\(102\) 0 0
\(103\) −26872.7 −0.249585 −0.124792 0.992183i \(-0.539826\pi\)
−0.124792 + 0.992183i \(0.539826\pi\)
\(104\) 0 0
\(105\) −2308.70 −0.0204360
\(106\) 0 0
\(107\) 52819.1 0.445996 0.222998 0.974819i \(-0.428416\pi\)
0.222998 + 0.974819i \(0.428416\pi\)
\(108\) 0 0
\(109\) −22677.6 −0.182823 −0.0914115 0.995813i \(-0.529138\pi\)
−0.0914115 + 0.995813i \(0.529138\pi\)
\(110\) 0 0
\(111\) 87397.6 0.673274
\(112\) 0 0
\(113\) −111227. −0.819437 −0.409719 0.912212i \(-0.634373\pi\)
−0.409719 + 0.912212i \(0.634373\pi\)
\(114\) 0 0
\(115\) 928.183 0.00654469
\(116\) 0 0
\(117\) 328009. 2.21524
\(118\) 0 0
\(119\) −14109.1 −0.0913339
\(120\) 0 0
\(121\) 14641.0 0.0909091
\(122\) 0 0
\(123\) 147507. 0.879123
\(124\) 0 0
\(125\) 15369.2 0.0879785
\(126\) 0 0
\(127\) −58642.3 −0.322628 −0.161314 0.986903i \(-0.551573\pi\)
−0.161314 + 0.986903i \(0.551573\pi\)
\(128\) 0 0
\(129\) 221020. 1.16938
\(130\) 0 0
\(131\) −330826. −1.68431 −0.842154 0.539237i \(-0.818713\pi\)
−0.842154 + 0.539237i \(0.818713\pi\)
\(132\) 0 0
\(133\) −51629.3 −0.253085
\(134\) 0 0
\(135\) 9933.83 0.0469118
\(136\) 0 0
\(137\) 7944.43 0.0361627 0.0180814 0.999837i \(-0.494244\pi\)
0.0180814 + 0.999837i \(0.494244\pi\)
\(138\) 0 0
\(139\) −322874. −1.41741 −0.708707 0.705503i \(-0.750721\pi\)
−0.708707 + 0.705503i \(0.750721\pi\)
\(140\) 0 0
\(141\) 57933.4 0.245404
\(142\) 0 0
\(143\) −98749.4 −0.403826
\(144\) 0 0
\(145\) −11869.1 −0.0468810
\(146\) 0 0
\(147\) 392176. 1.49688
\(148\) 0 0
\(149\) 392580. 1.44865 0.724323 0.689461i \(-0.242153\pi\)
0.724323 + 0.689461i \(0.242153\pi\)
\(150\) 0 0
\(151\) 367134. 1.31033 0.655167 0.755484i \(-0.272598\pi\)
0.655167 + 0.755484i \(0.272598\pi\)
\(152\) 0 0
\(153\) 153537. 0.530254
\(154\) 0 0
\(155\) 15260.2 0.0510189
\(156\) 0 0
\(157\) −442244. −1.43190 −0.715950 0.698151i \(-0.754006\pi\)
−0.715950 + 0.698151i \(0.754006\pi\)
\(158\) 0 0
\(159\) 719633. 2.25745
\(160\) 0 0
\(161\) 13927.2 0.0423448
\(162\) 0 0
\(163\) −5132.92 −0.0151320 −0.00756598 0.999971i \(-0.502408\pi\)
−0.00756598 + 0.999971i \(0.502408\pi\)
\(164\) 0 0
\(165\) −7563.63 −0.0216282
\(166\) 0 0
\(167\) 295614. 0.820226 0.410113 0.912035i \(-0.365489\pi\)
0.410113 + 0.912035i \(0.365489\pi\)
\(168\) 0 0
\(169\) 294744. 0.793831
\(170\) 0 0
\(171\) 561836. 1.46933
\(172\) 0 0
\(173\) 492410. 1.25087 0.625435 0.780276i \(-0.284922\pi\)
0.625435 + 0.780276i \(0.284922\pi\)
\(174\) 0 0
\(175\) 115194. 0.284339
\(176\) 0 0
\(177\) −902543. −2.16538
\(178\) 0 0
\(179\) −629780. −1.46912 −0.734559 0.678545i \(-0.762611\pi\)
−0.734559 + 0.678545i \(0.762611\pi\)
\(180\) 0 0
\(181\) −267374. −0.606629 −0.303314 0.952891i \(-0.598093\pi\)
−0.303314 + 0.952891i \(0.598093\pi\)
\(182\) 0 0
\(183\) 1.22838e6 2.71147
\(184\) 0 0
\(185\) 8471.10 0.0181974
\(186\) 0 0
\(187\) −46223.3 −0.0966623
\(188\) 0 0
\(189\) 149055. 0.303524
\(190\) 0 0
\(191\) −801769. −1.59025 −0.795125 0.606445i \(-0.792595\pi\)
−0.795125 + 0.606445i \(0.792595\pi\)
\(192\) 0 0
\(193\) −903981. −1.74689 −0.873446 0.486921i \(-0.838120\pi\)
−0.873446 + 0.486921i \(0.838120\pi\)
\(194\) 0 0
\(195\) 51014.5 0.0960743
\(196\) 0 0
\(197\) 27824.7 0.0510816 0.0255408 0.999674i \(-0.491869\pi\)
0.0255408 + 0.999674i \(0.491869\pi\)
\(198\) 0 0
\(199\) −875292. −1.56682 −0.783412 0.621502i \(-0.786523\pi\)
−0.783412 + 0.621502i \(0.786523\pi\)
\(200\) 0 0
\(201\) −1.22686e6 −2.14193
\(202\) 0 0
\(203\) −178093. −0.303324
\(204\) 0 0
\(205\) 14297.3 0.0237612
\(206\) 0 0
\(207\) −151558. −0.245840
\(208\) 0 0
\(209\) −169144. −0.267850
\(210\) 0 0
\(211\) −556951. −0.861213 −0.430606 0.902540i \(-0.641700\pi\)
−0.430606 + 0.902540i \(0.641700\pi\)
\(212\) 0 0
\(213\) 1.69876e6 2.56556
\(214\) 0 0
\(215\) 21422.6 0.0316064
\(216\) 0 0
\(217\) 228977. 0.330098
\(218\) 0 0
\(219\) −2.05359e6 −2.89336
\(220\) 0 0
\(221\) 311763. 0.429382
\(222\) 0 0
\(223\) −880406. −1.18555 −0.592777 0.805367i \(-0.701968\pi\)
−0.592777 + 0.805367i \(0.701968\pi\)
\(224\) 0 0
\(225\) −1.25356e6 −1.65077
\(226\) 0 0
\(227\) 536468. 0.691001 0.345501 0.938419i \(-0.387709\pi\)
0.345501 + 0.938419i \(0.387709\pi\)
\(228\) 0 0
\(229\) 456255. 0.574935 0.287468 0.957790i \(-0.407187\pi\)
0.287468 + 0.957790i \(0.407187\pi\)
\(230\) 0 0
\(231\) −113491. −0.139937
\(232\) 0 0
\(233\) 731816. 0.883104 0.441552 0.897236i \(-0.354428\pi\)
0.441552 + 0.897236i \(0.354428\pi\)
\(234\) 0 0
\(235\) 5615.26 0.00663285
\(236\) 0 0
\(237\) −1.49639e6 −1.73051
\(238\) 0 0
\(239\) −685553. −0.776330 −0.388165 0.921590i \(-0.626891\pi\)
−0.388165 + 0.921590i \(0.626891\pi\)
\(240\) 0 0
\(241\) −1.16895e6 −1.29644 −0.648219 0.761454i \(-0.724486\pi\)
−0.648219 + 0.761454i \(0.724486\pi\)
\(242\) 0 0
\(243\) 858212. 0.932349
\(244\) 0 0
\(245\) 38012.1 0.0404582
\(246\) 0 0
\(247\) 1.14083e6 1.18981
\(248\) 0 0
\(249\) −391009. −0.399657
\(250\) 0 0
\(251\) −1.62769e6 −1.63075 −0.815375 0.578933i \(-0.803469\pi\)
−0.815375 + 0.578933i \(0.803469\pi\)
\(252\) 0 0
\(253\) 45627.5 0.0448152
\(254\) 0 0
\(255\) 23879.2 0.0229969
\(256\) 0 0
\(257\) 866219. 0.818078 0.409039 0.912517i \(-0.365864\pi\)
0.409039 + 0.912517i \(0.365864\pi\)
\(258\) 0 0
\(259\) 127107. 0.117739
\(260\) 0 0
\(261\) 1.93803e6 1.76100
\(262\) 0 0
\(263\) −1.36434e6 −1.21628 −0.608139 0.793831i \(-0.708084\pi\)
−0.608139 + 0.793831i \(0.708084\pi\)
\(264\) 0 0
\(265\) 69751.2 0.0610151
\(266\) 0 0
\(267\) 1.18059e6 1.01350
\(268\) 0 0
\(269\) −1.62684e6 −1.37077 −0.685386 0.728180i \(-0.740366\pi\)
−0.685386 + 0.728180i \(0.740366\pi\)
\(270\) 0 0
\(271\) 1.32521e6 1.09613 0.548066 0.836435i \(-0.315364\pi\)
0.548066 + 0.836435i \(0.315364\pi\)
\(272\) 0 0
\(273\) 765464. 0.621610
\(274\) 0 0
\(275\) 377392. 0.300927
\(276\) 0 0
\(277\) 49591.7 0.0388338 0.0194169 0.999811i \(-0.493819\pi\)
0.0194169 + 0.999811i \(0.493819\pi\)
\(278\) 0 0
\(279\) −2.49175e6 −1.91644
\(280\) 0 0
\(281\) 1.18685e6 0.896667 0.448334 0.893866i \(-0.352018\pi\)
0.448334 + 0.893866i \(0.352018\pi\)
\(282\) 0 0
\(283\) 307811. 0.228464 0.114232 0.993454i \(-0.463559\pi\)
0.114232 + 0.993454i \(0.463559\pi\)
\(284\) 0 0
\(285\) 87381.0 0.0637243
\(286\) 0 0
\(287\) 214528. 0.153737
\(288\) 0 0
\(289\) −1.27392e6 −0.897220
\(290\) 0 0
\(291\) 4.02001e6 2.78288
\(292\) 0 0
\(293\) 1.91593e6 1.30380 0.651898 0.758307i \(-0.273973\pi\)
0.651898 + 0.758307i \(0.273973\pi\)
\(294\) 0 0
\(295\) −87479.9 −0.0585266
\(296\) 0 0
\(297\) 488325. 0.321232
\(298\) 0 0
\(299\) −307745. −0.199073
\(300\) 0 0
\(301\) 321442. 0.204497
\(302\) 0 0
\(303\) −1.09004e6 −0.682078
\(304\) 0 0
\(305\) 119062. 0.0732864
\(306\) 0 0
\(307\) −1.59722e6 −0.967206 −0.483603 0.875288i \(-0.660672\pi\)
−0.483603 + 0.875288i \(0.660672\pi\)
\(308\) 0 0
\(309\) 682438. 0.406600
\(310\) 0 0
\(311\) 2.41343e6 1.41492 0.707462 0.706751i \(-0.249840\pi\)
0.707462 + 0.706751i \(0.249840\pi\)
\(312\) 0 0
\(313\) −314389. −0.181387 −0.0906935 0.995879i \(-0.528908\pi\)
−0.0906935 + 0.995879i \(0.528908\pi\)
\(314\) 0 0
\(315\) 36538.7 0.0207480
\(316\) 0 0
\(317\) 1.75459e6 0.980681 0.490341 0.871531i \(-0.336872\pi\)
0.490341 + 0.871531i \(0.336872\pi\)
\(318\) 0 0
\(319\) −583458. −0.321020
\(320\) 0 0
\(321\) −1.34135e6 −0.726575
\(322\) 0 0
\(323\) 534008. 0.284801
\(324\) 0 0
\(325\) −2.54540e6 −1.33674
\(326\) 0 0
\(327\) 575903. 0.297838
\(328\) 0 0
\(329\) 84256.0 0.0429152
\(330\) 0 0
\(331\) 2.42629e6 1.21723 0.608614 0.793466i \(-0.291726\pi\)
0.608614 + 0.793466i \(0.291726\pi\)
\(332\) 0 0
\(333\) −1.38320e6 −0.683555
\(334\) 0 0
\(335\) −118915. −0.0578928
\(336\) 0 0
\(337\) −781584. −0.374888 −0.187444 0.982275i \(-0.560020\pi\)
−0.187444 + 0.982275i \(0.560020\pi\)
\(338\) 0 0
\(339\) 2.82464e6 1.33495
\(340\) 0 0
\(341\) 750159. 0.349355
\(342\) 0 0
\(343\) 1.19111e6 0.546659
\(344\) 0 0
\(345\) −23571.4 −0.0106620
\(346\) 0 0
\(347\) 2.27802e6 1.01562 0.507812 0.861468i \(-0.330454\pi\)
0.507812 + 0.861468i \(0.330454\pi\)
\(348\) 0 0
\(349\) −1.81344e6 −0.796964 −0.398482 0.917176i \(-0.630463\pi\)
−0.398482 + 0.917176i \(0.630463\pi\)
\(350\) 0 0
\(351\) −3.29362e6 −1.42694
\(352\) 0 0
\(353\) −4.19809e6 −1.79314 −0.896572 0.442897i \(-0.853951\pi\)
−0.896572 + 0.442897i \(0.853951\pi\)
\(354\) 0 0
\(355\) 164654. 0.0693428
\(356\) 0 0
\(357\) 358304. 0.148792
\(358\) 0 0
\(359\) −947065. −0.387832 −0.193916 0.981018i \(-0.562119\pi\)
−0.193916 + 0.981018i \(0.562119\pi\)
\(360\) 0 0
\(361\) −522009. −0.210819
\(362\) 0 0
\(363\) −371812. −0.148100
\(364\) 0 0
\(365\) −199046. −0.0782026
\(366\) 0 0
\(367\) −815817. −0.316175 −0.158088 0.987425i \(-0.550533\pi\)
−0.158088 + 0.987425i \(0.550533\pi\)
\(368\) 0 0
\(369\) −2.33452e6 −0.892547
\(370\) 0 0
\(371\) 1.04660e6 0.394773
\(372\) 0 0
\(373\) 3.21610e6 1.19690 0.598450 0.801160i \(-0.295783\pi\)
0.598450 + 0.801160i \(0.295783\pi\)
\(374\) 0 0
\(375\) −390304. −0.143326
\(376\) 0 0
\(377\) 3.93526e6 1.42600
\(378\) 0 0
\(379\) −867175. −0.310105 −0.155052 0.987906i \(-0.549555\pi\)
−0.155052 + 0.987906i \(0.549555\pi\)
\(380\) 0 0
\(381\) 1.48924e6 0.525595
\(382\) 0 0
\(383\) 5.49995e6 1.91585 0.957925 0.287019i \(-0.0926641\pi\)
0.957925 + 0.287019i \(0.0926641\pi\)
\(384\) 0 0
\(385\) −11000.2 −0.00378225
\(386\) 0 0
\(387\) −3.49797e6 −1.18724
\(388\) 0 0
\(389\) 2.66553e6 0.893118 0.446559 0.894754i \(-0.352649\pi\)
0.446559 + 0.894754i \(0.352649\pi\)
\(390\) 0 0
\(391\) −144051. −0.0476513
\(392\) 0 0
\(393\) 8.40140e6 2.74391
\(394\) 0 0
\(395\) −145039. −0.0467727
\(396\) 0 0
\(397\) −2.66718e6 −0.849329 −0.424665 0.905351i \(-0.639608\pi\)
−0.424665 + 0.905351i \(0.639608\pi\)
\(398\) 0 0
\(399\) 1.31114e6 0.412302
\(400\) 0 0
\(401\) 4.43714e6 1.37798 0.688988 0.724772i \(-0.258055\pi\)
0.688988 + 0.724772i \(0.258055\pi\)
\(402\) 0 0
\(403\) −5.05961e6 −1.55187
\(404\) 0 0
\(405\) −11871.0 −0.00359625
\(406\) 0 0
\(407\) 416421. 0.124608
\(408\) 0 0
\(409\) −4.42419e6 −1.30775 −0.653877 0.756601i \(-0.726858\pi\)
−0.653877 + 0.756601i \(0.726858\pi\)
\(410\) 0 0
\(411\) −201751. −0.0589129
\(412\) 0 0
\(413\) −1.31262e6 −0.378673
\(414\) 0 0
\(415\) −37898.9 −0.0108021
\(416\) 0 0
\(417\) 8.19947e6 2.30911
\(418\) 0 0
\(419\) −4.31614e6 −1.20105 −0.600524 0.799607i \(-0.705041\pi\)
−0.600524 + 0.799607i \(0.705041\pi\)
\(420\) 0 0
\(421\) 3.16156e6 0.869353 0.434677 0.900587i \(-0.356863\pi\)
0.434677 + 0.900587i \(0.356863\pi\)
\(422\) 0 0
\(423\) −916883. −0.249151
\(424\) 0 0
\(425\) −1.19147e6 −0.319971
\(426\) 0 0
\(427\) 1.78650e6 0.474170
\(428\) 0 0
\(429\) 2.50776e6 0.657875
\(430\) 0 0
\(431\) 3.95469e6 1.02546 0.512731 0.858549i \(-0.328634\pi\)
0.512731 + 0.858549i \(0.328634\pi\)
\(432\) 0 0
\(433\) −934155. −0.239441 −0.119721 0.992808i \(-0.538200\pi\)
−0.119721 + 0.992808i \(0.538200\pi\)
\(434\) 0 0
\(435\) 301418. 0.0763740
\(436\) 0 0
\(437\) −527125. −0.132041
\(438\) 0 0
\(439\) −133074. −0.0329557 −0.0164779 0.999864i \(-0.505245\pi\)
−0.0164779 + 0.999864i \(0.505245\pi\)
\(440\) 0 0
\(441\) −6.20677e6 −1.51974
\(442\) 0 0
\(443\) 918705. 0.222416 0.111208 0.993797i \(-0.464528\pi\)
0.111208 + 0.993797i \(0.464528\pi\)
\(444\) 0 0
\(445\) 114430. 0.0273931
\(446\) 0 0
\(447\) −9.96965e6 −2.36000
\(448\) 0 0
\(449\) 2.33313e6 0.546163 0.273081 0.961991i \(-0.411957\pi\)
0.273081 + 0.961991i \(0.411957\pi\)
\(450\) 0 0
\(451\) 702822. 0.162706
\(452\) 0 0
\(453\) −9.32345e6 −2.13467
\(454\) 0 0
\(455\) 74193.4 0.0168011
\(456\) 0 0
\(457\) 6.72738e6 1.50680 0.753400 0.657562i \(-0.228412\pi\)
0.753400 + 0.657562i \(0.228412\pi\)
\(458\) 0 0
\(459\) −1.54170e6 −0.341561
\(460\) 0 0
\(461\) −3.00613e6 −0.658802 −0.329401 0.944190i \(-0.606847\pi\)
−0.329401 + 0.944190i \(0.606847\pi\)
\(462\) 0 0
\(463\) 2.96527e6 0.642852 0.321426 0.946935i \(-0.395838\pi\)
0.321426 + 0.946935i \(0.395838\pi\)
\(464\) 0 0
\(465\) −387537. −0.0831152
\(466\) 0 0
\(467\) 2.58822e6 0.549173 0.274586 0.961562i \(-0.411459\pi\)
0.274586 + 0.961562i \(0.411459\pi\)
\(468\) 0 0
\(469\) −1.78430e6 −0.374572
\(470\) 0 0
\(471\) 1.12309e7 2.33272
\(472\) 0 0
\(473\) 1.05309e6 0.216427
\(474\) 0 0
\(475\) −4.35993e6 −0.886636
\(476\) 0 0
\(477\) −1.13893e7 −2.29192
\(478\) 0 0
\(479\) −859744. −0.171210 −0.0856052 0.996329i \(-0.527282\pi\)
−0.0856052 + 0.996329i \(0.527282\pi\)
\(480\) 0 0
\(481\) −2.80864e6 −0.553520
\(482\) 0 0
\(483\) −353685. −0.0689841
\(484\) 0 0
\(485\) 389643. 0.0752165
\(486\) 0 0
\(487\) 1.82420e6 0.348539 0.174269 0.984698i \(-0.444244\pi\)
0.174269 + 0.984698i \(0.444244\pi\)
\(488\) 0 0
\(489\) 130352. 0.0246516
\(490\) 0 0
\(491\) −5.09714e6 −0.954164 −0.477082 0.878859i \(-0.658306\pi\)
−0.477082 + 0.878859i \(0.658306\pi\)
\(492\) 0 0
\(493\) 1.84204e6 0.341336
\(494\) 0 0
\(495\) 119706. 0.0219585
\(496\) 0 0
\(497\) 2.47061e6 0.448655
\(498\) 0 0
\(499\) −1.07238e7 −1.92796 −0.963980 0.265975i \(-0.914306\pi\)
−0.963980 + 0.265975i \(0.914306\pi\)
\(500\) 0 0
\(501\) −7.50718e6 −1.33623
\(502\) 0 0
\(503\) 6.61070e6 1.16500 0.582502 0.812829i \(-0.302074\pi\)
0.582502 + 0.812829i \(0.302074\pi\)
\(504\) 0 0
\(505\) −105653. −0.0184354
\(506\) 0 0
\(507\) −7.48509e6 −1.29323
\(508\) 0 0
\(509\) 241509. 0.0413179 0.0206589 0.999787i \(-0.493424\pi\)
0.0206589 + 0.999787i \(0.493424\pi\)
\(510\) 0 0
\(511\) −2.98665e6 −0.505978
\(512\) 0 0
\(513\) −5.64152e6 −0.946461
\(514\) 0 0
\(515\) 66146.0 0.0109897
\(516\) 0 0
\(517\) 276034. 0.0454188
\(518\) 0 0
\(519\) −1.25049e7 −2.03780
\(520\) 0 0
\(521\) −6.03899e6 −0.974698 −0.487349 0.873207i \(-0.662036\pi\)
−0.487349 + 0.873207i \(0.662036\pi\)
\(522\) 0 0
\(523\) −1.02194e7 −1.63369 −0.816847 0.576854i \(-0.804280\pi\)
−0.816847 + 0.576854i \(0.804280\pi\)
\(524\) 0 0
\(525\) −2.92538e6 −0.463217
\(526\) 0 0
\(527\) −2.36834e6 −0.371464
\(528\) 0 0
\(529\) −6.29415e6 −0.977908
\(530\) 0 0
\(531\) 1.42841e7 2.19845
\(532\) 0 0
\(533\) −4.74034e6 −0.722756
\(534\) 0 0
\(535\) −130012. −0.0196381
\(536\) 0 0
\(537\) 1.59934e7 2.39335
\(538\) 0 0
\(539\) 1.86859e6 0.277040
\(540\) 0 0
\(541\) −2.77400e6 −0.407487 −0.203744 0.979024i \(-0.565311\pi\)
−0.203744 + 0.979024i \(0.565311\pi\)
\(542\) 0 0
\(543\) 6.79003e6 0.988261
\(544\) 0 0
\(545\) 55820.0 0.00805005
\(546\) 0 0
\(547\) −597638. −0.0854024 −0.0427012 0.999088i \(-0.513596\pi\)
−0.0427012 + 0.999088i \(0.513596\pi\)
\(548\) 0 0
\(549\) −1.94409e7 −2.75287
\(550\) 0 0
\(551\) 6.74056e6 0.945839
\(552\) 0 0
\(553\) −2.17629e6 −0.302624
\(554\) 0 0
\(555\) −215126. −0.0296455
\(556\) 0 0
\(557\) 2.44709e6 0.334204 0.167102 0.985940i \(-0.446559\pi\)
0.167102 + 0.985940i \(0.446559\pi\)
\(558\) 0 0
\(559\) −7.10277e6 −0.961387
\(560\) 0 0
\(561\) 1.17385e6 0.157473
\(562\) 0 0
\(563\) 6.74672e6 0.897061 0.448530 0.893768i \(-0.351948\pi\)
0.448530 + 0.893768i \(0.351948\pi\)
\(564\) 0 0
\(565\) 273782. 0.0360814
\(566\) 0 0
\(567\) −178123. −0.0232681
\(568\) 0 0
\(569\) −1.93041e6 −0.249959 −0.124980 0.992159i \(-0.539887\pi\)
−0.124980 + 0.992159i \(0.539887\pi\)
\(570\) 0 0
\(571\) 1.05760e6 0.135748 0.0678739 0.997694i \(-0.478378\pi\)
0.0678739 + 0.997694i \(0.478378\pi\)
\(572\) 0 0
\(573\) 2.03611e7 2.59068
\(574\) 0 0
\(575\) 1.17611e6 0.148347
\(576\) 0 0
\(577\) 1.29491e7 1.61920 0.809602 0.586979i \(-0.199683\pi\)
0.809602 + 0.586979i \(0.199683\pi\)
\(578\) 0 0
\(579\) 2.29568e7 2.84587
\(580\) 0 0
\(581\) −568667. −0.0698904
\(582\) 0 0
\(583\) 3.42882e6 0.417804
\(584\) 0 0
\(585\) −807381. −0.0975414
\(586\) 0 0
\(587\) −7.35799e6 −0.881382 −0.440691 0.897659i \(-0.645267\pi\)
−0.440691 + 0.897659i \(0.645267\pi\)
\(588\) 0 0
\(589\) −8.66643e6 −1.02932
\(590\) 0 0
\(591\) −706614. −0.0832173
\(592\) 0 0
\(593\) −230604. −0.0269296 −0.0134648 0.999909i \(-0.504286\pi\)
−0.0134648 + 0.999909i \(0.504286\pi\)
\(594\) 0 0
\(595\) 34729.0 0.00402161
\(596\) 0 0
\(597\) 2.22282e7 2.55252
\(598\) 0 0
\(599\) 1.22697e7 1.39723 0.698614 0.715499i \(-0.253800\pi\)
0.698614 + 0.715499i \(0.253800\pi\)
\(600\) 0 0
\(601\) −5.66439e6 −0.639686 −0.319843 0.947471i \(-0.603630\pi\)
−0.319843 + 0.947471i \(0.603630\pi\)
\(602\) 0 0
\(603\) 1.94169e7 2.17464
\(604\) 0 0
\(605\) −36038.2 −0.00400290
\(606\) 0 0
\(607\) −1.43205e7 −1.57756 −0.788780 0.614676i \(-0.789287\pi\)
−0.788780 + 0.614676i \(0.789287\pi\)
\(608\) 0 0
\(609\) 4.52272e6 0.494147
\(610\) 0 0
\(611\) −1.86177e6 −0.201754
\(612\) 0 0
\(613\) −723067. −0.0777191 −0.0388595 0.999245i \(-0.512372\pi\)
−0.0388595 + 0.999245i \(0.512372\pi\)
\(614\) 0 0
\(615\) −363082. −0.0387095
\(616\) 0 0
\(617\) −900971. −0.0952791 −0.0476396 0.998865i \(-0.515170\pi\)
−0.0476396 + 0.998865i \(0.515170\pi\)
\(618\) 0 0
\(619\) −1.04107e7 −1.09207 −0.546037 0.837761i \(-0.683864\pi\)
−0.546037 + 0.837761i \(0.683864\pi\)
\(620\) 0 0
\(621\) 1.52183e6 0.158357
\(622\) 0 0
\(623\) 1.71700e6 0.177236
\(624\) 0 0
\(625\) 9.70886e6 0.994187
\(626\) 0 0
\(627\) 4.29546e6 0.436356
\(628\) 0 0
\(629\) −1.31469e6 −0.132494
\(630\) 0 0
\(631\) 2.63321e6 0.263277 0.131638 0.991298i \(-0.457976\pi\)
0.131638 + 0.991298i \(0.457976\pi\)
\(632\) 0 0
\(633\) 1.41439e7 1.40301
\(634\) 0 0
\(635\) 144346. 0.0142059
\(636\) 0 0
\(637\) −1.26031e7 −1.23064
\(638\) 0 0
\(639\) −2.68854e7 −2.60474
\(640\) 0 0
\(641\) 1.15325e7 1.10861 0.554304 0.832314i \(-0.312985\pi\)
0.554304 + 0.832314i \(0.312985\pi\)
\(642\) 0 0
\(643\) −3.88676e6 −0.370732 −0.185366 0.982670i \(-0.559347\pi\)
−0.185366 + 0.982670i \(0.559347\pi\)
\(644\) 0 0
\(645\) −544031. −0.0514901
\(646\) 0 0
\(647\) −9.17393e6 −0.861579 −0.430789 0.902453i \(-0.641765\pi\)
−0.430789 + 0.902453i \(0.641765\pi\)
\(648\) 0 0
\(649\) −4.30032e6 −0.400765
\(650\) 0 0
\(651\) −5.81492e6 −0.537763
\(652\) 0 0
\(653\) 9.62692e6 0.883496 0.441748 0.897139i \(-0.354359\pi\)
0.441748 + 0.897139i \(0.354359\pi\)
\(654\) 0 0
\(655\) 814315. 0.0741633
\(656\) 0 0
\(657\) 3.25011e7 2.93754
\(658\) 0 0
\(659\) 1.20253e7 1.07865 0.539327 0.842096i \(-0.318679\pi\)
0.539327 + 0.842096i \(0.318679\pi\)
\(660\) 0 0
\(661\) 5.52924e6 0.492223 0.246111 0.969242i \(-0.420847\pi\)
0.246111 + 0.969242i \(0.420847\pi\)
\(662\) 0 0
\(663\) −7.91730e6 −0.699509
\(664\) 0 0
\(665\) 127083. 0.0111438
\(666\) 0 0
\(667\) −1.81830e6 −0.158252
\(668\) 0 0
\(669\) 2.23581e7 1.93139
\(670\) 0 0
\(671\) 5.85283e6 0.501833
\(672\) 0 0
\(673\) 4.66768e6 0.397249 0.198625 0.980076i \(-0.436353\pi\)
0.198625 + 0.980076i \(0.436353\pi\)
\(674\) 0 0
\(675\) 1.25873e7 1.06334
\(676\) 0 0
\(677\) −1.48229e7 −1.24297 −0.621487 0.783425i \(-0.713471\pi\)
−0.621487 + 0.783425i \(0.713471\pi\)
\(678\) 0 0
\(679\) 5.84653e6 0.486658
\(680\) 0 0
\(681\) −1.36237e7 −1.12571
\(682\) 0 0
\(683\) 1.69744e6 0.139234 0.0696168 0.997574i \(-0.477822\pi\)
0.0696168 + 0.997574i \(0.477822\pi\)
\(684\) 0 0
\(685\) −19554.9 −0.00159231
\(686\) 0 0
\(687\) −1.15867e7 −0.936629
\(688\) 0 0
\(689\) −2.31264e7 −1.85592
\(690\) 0 0
\(691\) 8.43993e6 0.672425 0.336213 0.941786i \(-0.390854\pi\)
0.336213 + 0.941786i \(0.390854\pi\)
\(692\) 0 0
\(693\) 1.79616e6 0.142073
\(694\) 0 0
\(695\) 794742. 0.0624114
\(696\) 0 0
\(697\) −2.21889e6 −0.173003
\(698\) 0 0
\(699\) −1.85846e7 −1.43867
\(700\) 0 0
\(701\) −1.84917e7 −1.42128 −0.710642 0.703554i \(-0.751595\pi\)
−0.710642 + 0.703554i \(0.751595\pi\)
\(702\) 0 0
\(703\) −4.81082e6 −0.367140
\(704\) 0 0
\(705\) −142601. −0.0108056
\(706\) 0 0
\(707\) −1.58530e6 −0.119279
\(708\) 0 0
\(709\) −2.05168e7 −1.53283 −0.766415 0.642346i \(-0.777961\pi\)
−0.766415 + 0.642346i \(0.777961\pi\)
\(710\) 0 0
\(711\) 2.36826e7 1.75693
\(712\) 0 0
\(713\) 2.33781e6 0.172221
\(714\) 0 0
\(715\) 243068. 0.0177812
\(716\) 0 0
\(717\) 1.74098e7 1.26472
\(718\) 0 0
\(719\) 4.89582e6 0.353186 0.176593 0.984284i \(-0.443492\pi\)
0.176593 + 0.984284i \(0.443492\pi\)
\(720\) 0 0
\(721\) 992510. 0.0711044
\(722\) 0 0
\(723\) 2.96856e7 2.11203
\(724\) 0 0
\(725\) −1.50394e7 −1.06264
\(726\) 0 0
\(727\) −8.08996e6 −0.567689 −0.283844 0.958870i \(-0.591610\pi\)
−0.283844 + 0.958870i \(0.591610\pi\)
\(728\) 0 0
\(729\) −2.29664e7 −1.60057
\(730\) 0 0
\(731\) −3.32471e6 −0.230123
\(732\) 0 0
\(733\) 2.08651e7 1.43437 0.717183 0.696885i \(-0.245431\pi\)
0.717183 + 0.696885i \(0.245431\pi\)
\(734\) 0 0
\(735\) −965325. −0.0659106
\(736\) 0 0
\(737\) −5.84560e6 −0.396424
\(738\) 0 0
\(739\) 8.45704e6 0.569649 0.284825 0.958580i \(-0.408065\pi\)
0.284825 + 0.958580i \(0.408065\pi\)
\(740\) 0 0
\(741\) −2.89717e7 −1.93833
\(742\) 0 0
\(743\) −4.50054e6 −0.299083 −0.149542 0.988755i \(-0.547780\pi\)
−0.149542 + 0.988755i \(0.547780\pi\)
\(744\) 0 0
\(745\) −966319. −0.0637867
\(746\) 0 0
\(747\) 6.18830e6 0.405760
\(748\) 0 0
\(749\) −1.95081e6 −0.127060
\(750\) 0 0
\(751\) −1.42022e7 −0.918871 −0.459435 0.888211i \(-0.651948\pi\)
−0.459435 + 0.888211i \(0.651948\pi\)
\(752\) 0 0
\(753\) 4.13356e7 2.65666
\(754\) 0 0
\(755\) −903685. −0.0576965
\(756\) 0 0
\(757\) −4.47342e6 −0.283727 −0.141863 0.989886i \(-0.545309\pi\)
−0.141863 + 0.989886i \(0.545309\pi\)
\(758\) 0 0
\(759\) −1.15872e6 −0.0730086
\(760\) 0 0
\(761\) −1.78407e7 −1.11673 −0.558366 0.829594i \(-0.688572\pi\)
−0.558366 + 0.829594i \(0.688572\pi\)
\(762\) 0 0
\(763\) 837569. 0.0520846
\(764\) 0 0
\(765\) −377925. −0.0233481
\(766\) 0 0
\(767\) 2.90045e7 1.78023
\(768\) 0 0
\(769\) −1.22169e7 −0.744984 −0.372492 0.928036i \(-0.621497\pi\)
−0.372492 + 0.928036i \(0.621497\pi\)
\(770\) 0 0
\(771\) −2.19978e7 −1.33273
\(772\) 0 0
\(773\) −1.31589e7 −0.792083 −0.396041 0.918233i \(-0.629616\pi\)
−0.396041 + 0.918233i \(0.629616\pi\)
\(774\) 0 0
\(775\) 1.93364e7 1.15643
\(776\) 0 0
\(777\) −3.22792e6 −0.191810
\(778\) 0 0
\(779\) −8.11956e6 −0.479390
\(780\) 0 0
\(781\) 8.09404e6 0.474829
\(782\) 0 0
\(783\) −1.94602e7 −1.13434
\(784\) 0 0
\(785\) 1.08857e6 0.0630493
\(786\) 0 0
\(787\) −1.18114e7 −0.679773 −0.339887 0.940466i \(-0.610389\pi\)
−0.339887 + 0.940466i \(0.610389\pi\)
\(788\) 0 0
\(789\) 3.46477e7 1.98144
\(790\) 0 0
\(791\) 4.10805e6 0.233450
\(792\) 0 0
\(793\) −3.94757e7 −2.22919
\(794\) 0 0
\(795\) −1.77135e6 −0.0993999
\(796\) 0 0
\(797\) 3.15545e7 1.75961 0.879804 0.475336i \(-0.157673\pi\)
0.879804 + 0.475336i \(0.157673\pi\)
\(798\) 0 0
\(799\) −871470. −0.0482932
\(800\) 0 0
\(801\) −1.86846e7 −1.02897
\(802\) 0 0
\(803\) −9.78467e6 −0.535497
\(804\) 0 0
\(805\) −34281.3 −0.00186452
\(806\) 0 0
\(807\) 4.13141e7 2.23313
\(808\) 0 0
\(809\) 3.43127e7 1.84324 0.921622 0.388088i \(-0.126864\pi\)
0.921622 + 0.388088i \(0.126864\pi\)
\(810\) 0 0
\(811\) 1.57834e7 0.842651 0.421325 0.906910i \(-0.361565\pi\)
0.421325 + 0.906910i \(0.361565\pi\)
\(812\) 0 0
\(813\) −3.36541e7 −1.78571
\(814\) 0 0
\(815\) 12634.5 0.000666289 0
\(816\) 0 0
\(817\) −1.21661e7 −0.637670
\(818\) 0 0
\(819\) −1.21146e7 −0.631103
\(820\) 0 0
\(821\) 3.27662e7 1.69655 0.848277 0.529553i \(-0.177640\pi\)
0.848277 + 0.529553i \(0.177640\pi\)
\(822\) 0 0
\(823\) −316695. −0.0162983 −0.00814913 0.999967i \(-0.502594\pi\)
−0.00814913 + 0.999967i \(0.502594\pi\)
\(824\) 0 0
\(825\) −9.58395e6 −0.490241
\(826\) 0 0
\(827\) −268265. −0.0136395 −0.00681977 0.999977i \(-0.502171\pi\)
−0.00681977 + 0.999977i \(0.502171\pi\)
\(828\) 0 0
\(829\) 3.25083e7 1.64289 0.821443 0.570291i \(-0.193170\pi\)
0.821443 + 0.570291i \(0.193170\pi\)
\(830\) 0 0
\(831\) −1.25939e6 −0.0632642
\(832\) 0 0
\(833\) −5.89935e6 −0.294572
\(834\) 0 0
\(835\) −727641. −0.0361161
\(836\) 0 0
\(837\) 2.50203e7 1.23446
\(838\) 0 0
\(839\) −1.67263e7 −0.820343 −0.410172 0.912008i \(-0.634531\pi\)
−0.410172 + 0.912008i \(0.634531\pi\)
\(840\) 0 0
\(841\) 2.74019e6 0.133595
\(842\) 0 0
\(843\) −3.01404e7 −1.46076
\(844\) 0 0
\(845\) −725500. −0.0349539
\(846\) 0 0
\(847\) −540747. −0.0258992
\(848\) 0 0
\(849\) −7.81694e6 −0.372192
\(850\) 0 0
\(851\) 1.29774e6 0.0614277
\(852\) 0 0
\(853\) −4.62988e6 −0.217870 −0.108935 0.994049i \(-0.534744\pi\)
−0.108935 + 0.994049i \(0.534744\pi\)
\(854\) 0 0
\(855\) −1.38294e6 −0.0646974
\(856\) 0 0
\(857\) −5.74853e6 −0.267365 −0.133682 0.991024i \(-0.542680\pi\)
−0.133682 + 0.991024i \(0.542680\pi\)
\(858\) 0 0
\(859\) −1.56347e7 −0.722948 −0.361474 0.932382i \(-0.617726\pi\)
−0.361474 + 0.932382i \(0.617726\pi\)
\(860\) 0 0
\(861\) −5.44799e6 −0.250454
\(862\) 0 0
\(863\) −6.87214e6 −0.314098 −0.157049 0.987591i \(-0.550198\pi\)
−0.157049 + 0.987591i \(0.550198\pi\)
\(864\) 0 0
\(865\) −1.21205e6 −0.0550782
\(866\) 0 0
\(867\) 3.23516e7 1.46167
\(868\) 0 0
\(869\) −7.12981e6 −0.320279
\(870\) 0 0
\(871\) 3.94269e7 1.76095
\(872\) 0 0
\(873\) −6.36226e7 −2.82537
\(874\) 0 0
\(875\) −567643. −0.0250643
\(876\) 0 0
\(877\) −2.66074e7 −1.16816 −0.584082 0.811695i \(-0.698545\pi\)
−0.584082 + 0.811695i \(0.698545\pi\)
\(878\) 0 0
\(879\) −4.86554e7 −2.12402
\(880\) 0 0
\(881\) −3.06349e7 −1.32977 −0.664886 0.746945i \(-0.731520\pi\)
−0.664886 + 0.746945i \(0.731520\pi\)
\(882\) 0 0
\(883\) −3.43836e7 −1.48405 −0.742027 0.670369i \(-0.766136\pi\)
−0.742027 + 0.670369i \(0.766136\pi\)
\(884\) 0 0
\(885\) 2.22157e6 0.0953460
\(886\) 0 0
\(887\) −4.68639e6 −0.200000 −0.0999998 0.994987i \(-0.531884\pi\)
−0.0999998 + 0.994987i \(0.531884\pi\)
\(888\) 0 0
\(889\) 2.16588e6 0.0919138
\(890\) 0 0
\(891\) −583553. −0.0246256
\(892\) 0 0
\(893\) −3.18896e6 −0.133820
\(894\) 0 0
\(895\) 1.55018e6 0.0646881
\(896\) 0 0
\(897\) 7.81524e6 0.324311
\(898\) 0 0
\(899\) −2.98946e7 −1.23365
\(900\) 0 0
\(901\) −1.08252e7 −0.444245
\(902\) 0 0
\(903\) −8.16309e6 −0.333146
\(904\) 0 0
\(905\) 658130. 0.0267110
\(906\) 0 0
\(907\) −1.65093e7 −0.666364 −0.333182 0.942862i \(-0.608122\pi\)
−0.333182 + 0.942862i \(0.608122\pi\)
\(908\) 0 0
\(909\) 1.72514e7 0.692493
\(910\) 0 0
\(911\) 1.04813e7 0.418425 0.209213 0.977870i \(-0.432910\pi\)
0.209213 + 0.977870i \(0.432910\pi\)
\(912\) 0 0
\(913\) −1.86303e6 −0.0739678
\(914\) 0 0
\(915\) −3.02360e6 −0.119391
\(916\) 0 0
\(917\) 1.22187e7 0.479844
\(918\) 0 0
\(919\) 2.17428e6 0.0849234 0.0424617 0.999098i \(-0.486480\pi\)
0.0424617 + 0.999098i \(0.486480\pi\)
\(920\) 0 0
\(921\) 4.05618e7 1.57568
\(922\) 0 0
\(923\) −5.45920e7 −2.10923
\(924\) 0 0
\(925\) 1.07338e7 0.412477
\(926\) 0 0
\(927\) −1.08006e7 −0.412809
\(928\) 0 0
\(929\) 4.11976e7 1.56615 0.783073 0.621929i \(-0.213651\pi\)
0.783073 + 0.621929i \(0.213651\pi\)
\(930\) 0 0
\(931\) −2.15874e7 −0.816257
\(932\) 0 0
\(933\) −6.12895e7 −2.30506
\(934\) 0 0
\(935\) 113777. 0.00425623
\(936\) 0 0
\(937\) −932491. −0.0346973 −0.0173486 0.999850i \(-0.505523\pi\)
−0.0173486 + 0.999850i \(0.505523\pi\)
\(938\) 0 0
\(939\) 7.98398e6 0.295498
\(940\) 0 0
\(941\) −2.61944e7 −0.964350 −0.482175 0.876075i \(-0.660153\pi\)
−0.482175 + 0.876075i \(0.660153\pi\)
\(942\) 0 0
\(943\) 2.19029e6 0.0802088
\(944\) 0 0
\(945\) −366894. −0.0133647
\(946\) 0 0
\(947\) 3.25549e7 1.17962 0.589809 0.807542i \(-0.299203\pi\)
0.589809 + 0.807542i \(0.299203\pi\)
\(948\) 0 0
\(949\) 6.59948e7 2.37873
\(950\) 0 0
\(951\) −4.45583e7 −1.59763
\(952\) 0 0
\(953\) 3.34686e7 1.19373 0.596865 0.802342i \(-0.296413\pi\)
0.596865 + 0.802342i \(0.296413\pi\)
\(954\) 0 0
\(955\) 1.97352e6 0.0700218
\(956\) 0 0
\(957\) 1.48170e7 0.522976
\(958\) 0 0
\(959\) −293418. −0.0103024
\(960\) 0 0
\(961\) 9.80667e6 0.342541
\(962\) 0 0
\(963\) 2.12289e7 0.737670
\(964\) 0 0
\(965\) 2.22511e6 0.0769190
\(966\) 0 0
\(967\) 2.92544e7 1.00606 0.503031 0.864268i \(-0.332218\pi\)
0.503031 + 0.864268i \(0.332218\pi\)
\(968\) 0 0
\(969\) −1.35613e7 −0.463971
\(970\) 0 0
\(971\) 79377.9 0.00270179 0.00135090 0.999999i \(-0.499570\pi\)
0.00135090 + 0.999999i \(0.499570\pi\)
\(972\) 0 0
\(973\) 1.19250e7 0.403808
\(974\) 0 0
\(975\) 6.46411e7 2.17769
\(976\) 0 0
\(977\) 1.24149e7 0.416110 0.208055 0.978117i \(-0.433287\pi\)
0.208055 + 0.978117i \(0.433287\pi\)
\(978\) 0 0
\(979\) 5.62514e6 0.187576
\(980\) 0 0
\(981\) −9.11453e6 −0.302386
\(982\) 0 0
\(983\) −3.03404e7 −1.00147 −0.500734 0.865601i \(-0.666937\pi\)
−0.500734 + 0.865601i \(0.666937\pi\)
\(984\) 0 0
\(985\) −68489.3 −0.00224922
\(986\) 0 0
\(987\) −2.13970e6 −0.0699133
\(988\) 0 0
\(989\) 3.28186e6 0.106691
\(990\) 0 0
\(991\) 3.86025e7 1.24862 0.624311 0.781176i \(-0.285380\pi\)
0.624311 + 0.781176i \(0.285380\pi\)
\(992\) 0 0
\(993\) −6.16161e7 −1.98299
\(994\) 0 0
\(995\) 2.15450e6 0.0689903
\(996\) 0 0
\(997\) 5.17340e7 1.64831 0.824154 0.566366i \(-0.191651\pi\)
0.824154 + 0.566366i \(0.191651\pi\)
\(998\) 0 0
\(999\) 1.38890e7 0.440309
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 176.6.a.j.1.1 3
4.3 odd 2 88.6.a.b.1.3 3
8.3 odd 2 704.6.a.r.1.1 3
8.5 even 2 704.6.a.s.1.3 3
12.11 even 2 792.6.a.f.1.2 3
44.43 even 2 968.6.a.c.1.3 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
88.6.a.b.1.3 3 4.3 odd 2
176.6.a.j.1.1 3 1.1 even 1 trivial
704.6.a.r.1.1 3 8.3 odd 2
704.6.a.s.1.3 3 8.5 even 2
792.6.a.f.1.2 3 12.11 even 2
968.6.a.c.1.3 3 44.43 even 2