Properties

Label 1764.2.i.j.373.11
Level $1764$
Weight $2$
Character 1764.373
Analytic conductor $14.086$
Analytic rank $0$
Dimension $24$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1764,2,Mod(373,1764)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1764, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 2, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1764.373");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1764 = 2^{2} \cdot 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1764.i (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(14.0856109166\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(\zeta_{3})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 373.11
Character \(\chi\) \(=\) 1764.373
Dual form 1764.2.i.j.1537.11

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.60601 - 0.648636i) q^{3} +(-0.0111913 - 0.0193839i) q^{5} +(2.15854 - 2.08343i) q^{9} +O(q^{10})\) \(q+(1.60601 - 0.648636i) q^{3} +(-0.0111913 - 0.0193839i) q^{5} +(2.15854 - 2.08343i) q^{9} +(0.280281 - 0.485460i) q^{11} +(2.06442 - 3.57567i) q^{13} +(-0.0305465 - 0.0238717i) q^{15} +(-1.29152 - 2.23698i) q^{17} +(-1.69669 + 2.93876i) q^{19} +(-2.24626 - 3.89064i) q^{23} +(2.49975 - 4.32969i) q^{25} +(2.11525 - 4.74613i) q^{27} +(2.57275 + 4.45613i) q^{29} +0.815136 q^{31} +(0.135247 - 0.961455i) q^{33} +(-0.235546 + 0.407978i) q^{37} +(0.996163 - 7.08162i) q^{39} +(3.02774 - 5.24420i) q^{41} +(0.811935 + 1.40631i) q^{43} +(-0.0645420 - 0.0185247i) q^{45} -12.1108 q^{47} +(-3.52519 - 2.75489i) q^{51} +(1.45922 + 2.52745i) q^{53} -0.0125468 q^{55} +(-0.818723 + 5.82022i) q^{57} +8.95882 q^{59} +2.11385 q^{61} -0.0924141 q^{65} +15.0909 q^{67} +(-6.13113 - 4.79140i) q^{69} +2.16045 q^{71} +(-3.55205 - 6.15233i) q^{73} +(1.20623 - 8.57496i) q^{75} +2.31781 q^{79} +(0.318608 - 8.99436i) q^{81} +(-3.83160 - 6.63653i) q^{83} +(-0.0289077 + 0.0500695i) q^{85} +(7.02228 + 5.48782i) q^{87} +(0.502365 - 0.870122i) q^{89} +(1.30912 - 0.528727i) q^{93} +0.0759530 q^{95} +(-7.32986 - 12.6957i) q^{97} +(-0.406427 - 1.63183i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q - 4 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 24 q - 4 q^{9} - 4 q^{11} - 28 q^{15} - 8 q^{23} - 12 q^{25} - 32 q^{29} - 12 q^{37} + 8 q^{51} - 16 q^{53} + 52 q^{57} + 72 q^{65} - 24 q^{67} + 48 q^{71} - 24 q^{79} - 8 q^{81} + 12 q^{85} - 48 q^{93} - 64 q^{95} - 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1764\mathbb{Z}\right)^\times\).

\(n\) \(785\) \(883\) \(1081\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.60601 0.648636i 0.927231 0.374490i
\(4\) 0 0
\(5\) −0.0111913 0.0193839i −0.00500491 0.00866875i 0.863512 0.504328i \(-0.168260\pi\)
−0.868517 + 0.495659i \(0.834926\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) 2.15854 2.08343i 0.719514 0.694478i
\(10\) 0 0
\(11\) 0.280281 0.485460i 0.0845078 0.146372i −0.820674 0.571397i \(-0.806402\pi\)
0.905181 + 0.425025i \(0.139735\pi\)
\(12\) 0 0
\(13\) 2.06442 3.57567i 0.572566 0.991713i −0.423736 0.905786i \(-0.639281\pi\)
0.996301 0.0859272i \(-0.0273852\pi\)
\(14\) 0 0
\(15\) −0.0305465 0.0238717i −0.00788707 0.00616365i
\(16\) 0 0
\(17\) −1.29152 2.23698i −0.313240 0.542548i 0.665822 0.746111i \(-0.268081\pi\)
−0.979062 + 0.203563i \(0.934748\pi\)
\(18\) 0 0
\(19\) −1.69669 + 2.93876i −0.389248 + 0.674198i −0.992349 0.123467i \(-0.960599\pi\)
0.603100 + 0.797665i \(0.293932\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −2.24626 3.89064i −0.468378 0.811255i 0.530969 0.847391i \(-0.321828\pi\)
−0.999347 + 0.0361367i \(0.988495\pi\)
\(24\) 0 0
\(25\) 2.49975 4.32969i 0.499950 0.865939i
\(26\) 0 0
\(27\) 2.11525 4.74613i 0.407080 0.913392i
\(28\) 0 0
\(29\) 2.57275 + 4.45613i 0.477748 + 0.827483i 0.999675 0.0255069i \(-0.00811996\pi\)
−0.521927 + 0.852990i \(0.674787\pi\)
\(30\) 0 0
\(31\) 0.815136 0.146403 0.0732014 0.997317i \(-0.476678\pi\)
0.0732014 + 0.997317i \(0.476678\pi\)
\(32\) 0 0
\(33\) 0.135247 0.961455i 0.0235434 0.167368i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −0.235546 + 0.407978i −0.0387236 + 0.0670712i −0.884738 0.466089i \(-0.845663\pi\)
0.846014 + 0.533161i \(0.178996\pi\)
\(38\) 0 0
\(39\) 0.996163 7.08162i 0.159514 1.13397i
\(40\) 0 0
\(41\) 3.02774 5.24420i 0.472854 0.819007i −0.526663 0.850074i \(-0.676557\pi\)
0.999517 + 0.0310669i \(0.00989048\pi\)
\(42\) 0 0
\(43\) 0.811935 + 1.40631i 0.123819 + 0.214461i 0.921271 0.388922i \(-0.127152\pi\)
−0.797452 + 0.603383i \(0.793819\pi\)
\(44\) 0 0
\(45\) −0.0645420 0.0185247i −0.00962136 0.00276149i
\(46\) 0 0
\(47\) −12.1108 −1.76654 −0.883271 0.468863i \(-0.844664\pi\)
−0.883271 + 0.468863i \(0.844664\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) −3.52519 2.75489i −0.493625 0.385762i
\(52\) 0 0
\(53\) 1.45922 + 2.52745i 0.200440 + 0.347172i 0.948670 0.316267i \(-0.102430\pi\)
−0.748230 + 0.663439i \(0.769096\pi\)
\(54\) 0 0
\(55\) −0.0125468 −0.00169182
\(56\) 0 0
\(57\) −0.818723 + 5.82022i −0.108443 + 0.770907i
\(58\) 0 0
\(59\) 8.95882 1.16634 0.583169 0.812351i \(-0.301812\pi\)
0.583169 + 0.812351i \(0.301812\pi\)
\(60\) 0 0
\(61\) 2.11385 0.270650 0.135325 0.990801i \(-0.456792\pi\)
0.135325 + 0.990801i \(0.456792\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −0.0924141 −0.0114626
\(66\) 0 0
\(67\) 15.0909 1.84364 0.921822 0.387614i \(-0.126701\pi\)
0.921822 + 0.387614i \(0.126701\pi\)
\(68\) 0 0
\(69\) −6.13113 4.79140i −0.738102 0.576817i
\(70\) 0 0
\(71\) 2.16045 0.256398 0.128199 0.991748i \(-0.459080\pi\)
0.128199 + 0.991748i \(0.459080\pi\)
\(72\) 0 0
\(73\) −3.55205 6.15233i −0.415736 0.720076i 0.579769 0.814781i \(-0.303143\pi\)
−0.995505 + 0.0947047i \(0.969809\pi\)
\(74\) 0 0
\(75\) 1.20623 8.57496i 0.139283 0.990151i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 2.31781 0.260775 0.130387 0.991463i \(-0.458378\pi\)
0.130387 + 0.991463i \(0.458378\pi\)
\(80\) 0 0
\(81\) 0.318608 8.99436i 0.0354009 0.999373i
\(82\) 0 0
\(83\) −3.83160 6.63653i −0.420573 0.728454i 0.575423 0.817856i \(-0.304838\pi\)
−0.995996 + 0.0894025i \(0.971504\pi\)
\(84\) 0 0
\(85\) −0.0289077 + 0.0500695i −0.00313548 + 0.00543080i
\(86\) 0 0
\(87\) 7.02228 + 5.48782i 0.752867 + 0.588356i
\(88\) 0 0
\(89\) 0.502365 0.870122i 0.0532506 0.0922327i −0.838171 0.545407i \(-0.816375\pi\)
0.891422 + 0.453174i \(0.149708\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 1.30912 0.528727i 0.135749 0.0548264i
\(94\) 0 0
\(95\) 0.0759530 0.00779261
\(96\) 0 0
\(97\) −7.32986 12.6957i −0.744235 1.28905i −0.950551 0.310567i \(-0.899481\pi\)
0.206316 0.978485i \(-0.433852\pi\)
\(98\) 0 0
\(99\) −0.406427 1.63183i −0.0408474 0.164005i
\(100\) 0 0
\(101\) 7.57250 13.1160i 0.753492 1.30509i −0.192629 0.981272i \(-0.561701\pi\)
0.946121 0.323814i \(-0.104965\pi\)
\(102\) 0 0
\(103\) 4.45031 + 7.70817i 0.438502 + 0.759508i 0.997574 0.0696109i \(-0.0221758\pi\)
−0.559072 + 0.829119i \(0.688842\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −8.85846 + 15.3433i −0.856380 + 1.48329i 0.0189792 + 0.999820i \(0.493958\pi\)
−0.875359 + 0.483473i \(0.839375\pi\)
\(108\) 0 0
\(109\) 5.97433 + 10.3478i 0.572237 + 0.991144i 0.996336 + 0.0855281i \(0.0272577\pi\)
−0.424098 + 0.905616i \(0.639409\pi\)
\(110\) 0 0
\(111\) −0.113660 + 0.808001i −0.0107882 + 0.0766920i
\(112\) 0 0
\(113\) −7.50835 + 13.0048i −0.706326 + 1.22339i 0.259884 + 0.965640i \(0.416316\pi\)
−0.966211 + 0.257753i \(0.917018\pi\)
\(114\) 0 0
\(115\) −0.0502773 + 0.0870828i −0.00468838 + 0.00812051i
\(116\) 0 0
\(117\) −2.99355 12.0193i −0.276754 1.11119i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 5.34289 + 9.25415i 0.485717 + 0.841286i
\(122\) 0 0
\(123\) 1.46101 10.3862i 0.131735 0.936488i
\(124\) 0 0
\(125\) −0.223815 −0.0200186
\(126\) 0 0
\(127\) 4.17511 0.370481 0.185240 0.982693i \(-0.440694\pi\)
0.185240 + 0.982693i \(0.440694\pi\)
\(128\) 0 0
\(129\) 2.21616 + 1.73190i 0.195122 + 0.152485i
\(130\) 0 0
\(131\) −3.03947 5.26451i −0.265560 0.459963i 0.702150 0.712029i \(-0.252223\pi\)
−0.967710 + 0.252066i \(0.918890\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) −0.115671 + 0.0121135i −0.00995537 + 0.00104256i
\(136\) 0 0
\(137\) −8.04927 + 13.9418i −0.687696 + 1.19112i 0.284886 + 0.958562i \(0.408044\pi\)
−0.972581 + 0.232563i \(0.925289\pi\)
\(138\) 0 0
\(139\) 1.83849 3.18435i 0.155938 0.270093i −0.777462 0.628930i \(-0.783493\pi\)
0.933400 + 0.358837i \(0.116827\pi\)
\(140\) 0 0
\(141\) −19.4501 + 7.85550i −1.63799 + 0.661553i
\(142\) 0 0
\(143\) −1.15723 2.00438i −0.0967726 0.167615i
\(144\) 0 0
\(145\) 0.0575849 0.0997400i 0.00478217 0.00828296i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −4.57786 7.92909i −0.375033 0.649576i 0.615299 0.788294i \(-0.289035\pi\)
−0.990332 + 0.138718i \(0.955702\pi\)
\(150\) 0 0
\(151\) 9.28603 16.0839i 0.755687 1.30889i −0.189346 0.981910i \(-0.560637\pi\)
0.945032 0.326977i \(-0.106030\pi\)
\(152\) 0 0
\(153\) −7.44841 2.13782i −0.602168 0.172832i
\(154\) 0 0
\(155\) −0.00912245 0.0158005i −0.000732732 0.00126913i
\(156\) 0 0
\(157\) −11.6619 −0.930721 −0.465361 0.885121i \(-0.654075\pi\)
−0.465361 + 0.885121i \(0.654075\pi\)
\(158\) 0 0
\(159\) 3.98292 + 3.11261i 0.315866 + 0.246846i
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) −6.53069 + 11.3115i −0.511523 + 0.885984i 0.488388 + 0.872627i \(0.337585\pi\)
−0.999911 + 0.0133569i \(0.995748\pi\)
\(164\) 0 0
\(165\) −0.0201504 + 0.00813833i −0.00156870 + 0.000633568i
\(166\) 0 0
\(167\) −6.86282 + 11.8867i −0.531061 + 0.919824i 0.468282 + 0.883579i \(0.344873\pi\)
−0.999343 + 0.0362450i \(0.988460\pi\)
\(168\) 0 0
\(169\) −2.02362 3.50502i −0.155663 0.269617i
\(170\) 0 0
\(171\) 2.46033 + 9.87839i 0.188146 + 0.755419i
\(172\) 0 0
\(173\) −24.9257 −1.89507 −0.947534 0.319656i \(-0.896433\pi\)
−0.947534 + 0.319656i \(0.896433\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 14.3880 5.81101i 1.08147 0.436782i
\(178\) 0 0
\(179\) 4.58202 + 7.93629i 0.342476 + 0.593186i 0.984892 0.173170i \(-0.0554011\pi\)
−0.642416 + 0.766356i \(0.722068\pi\)
\(180\) 0 0
\(181\) −0.882658 −0.0656075 −0.0328037 0.999462i \(-0.510444\pi\)
−0.0328037 + 0.999462i \(0.510444\pi\)
\(182\) 0 0
\(183\) 3.39486 1.37112i 0.250955 0.101356i
\(184\) 0 0
\(185\) 0.0105443 0.000775231
\(186\) 0 0
\(187\) −1.44795 −0.105885
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −16.6151 −1.20222 −0.601111 0.799165i \(-0.705275\pi\)
−0.601111 + 0.799165i \(0.705275\pi\)
\(192\) 0 0
\(193\) 18.5869 1.33791 0.668957 0.743302i \(-0.266741\pi\)
0.668957 + 0.743302i \(0.266741\pi\)
\(194\) 0 0
\(195\) −0.148418 + 0.0599431i −0.0106284 + 0.00429262i
\(196\) 0 0
\(197\) 23.4037 1.66744 0.833722 0.552184i \(-0.186205\pi\)
0.833722 + 0.552184i \(0.186205\pi\)
\(198\) 0 0
\(199\) 4.03426 + 6.98754i 0.285981 + 0.495334i 0.972847 0.231451i \(-0.0743472\pi\)
−0.686865 + 0.726785i \(0.741014\pi\)
\(200\) 0 0
\(201\) 24.2361 9.78849i 1.70948 0.690427i
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) −0.135538 −0.00946636
\(206\) 0 0
\(207\) −12.9545 3.71817i −0.900403 0.258431i
\(208\) 0 0
\(209\) 0.951102 + 1.64736i 0.0657891 + 0.113950i
\(210\) 0 0
\(211\) 6.94647 12.0316i 0.478215 0.828292i −0.521473 0.853268i \(-0.674617\pi\)
0.999688 + 0.0249755i \(0.00795078\pi\)
\(212\) 0 0
\(213\) 3.46971 1.40135i 0.237740 0.0960187i
\(214\) 0 0
\(215\) 0.0181732 0.0314770i 0.00123940 0.00214671i
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) −9.69526 7.57672i −0.655145 0.511988i
\(220\) 0 0
\(221\) −10.6650 −0.717402
\(222\) 0 0
\(223\) 8.28588 + 14.3516i 0.554863 + 0.961052i 0.997914 + 0.0645551i \(0.0205628\pi\)
−0.443051 + 0.896497i \(0.646104\pi\)
\(224\) 0 0
\(225\) −3.62481 14.5539i −0.241654 0.970259i
\(226\) 0 0
\(227\) −3.06311 + 5.30547i −0.203306 + 0.352136i −0.949592 0.313490i \(-0.898502\pi\)
0.746286 + 0.665626i \(0.231835\pi\)
\(228\) 0 0
\(229\) 14.4155 + 24.9683i 0.952600 + 1.64995i 0.739767 + 0.672863i \(0.234936\pi\)
0.212833 + 0.977089i \(0.431731\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 8.44996 14.6358i 0.553575 0.958821i −0.444438 0.895810i \(-0.646596\pi\)
0.998013 0.0630107i \(-0.0200702\pi\)
\(234\) 0 0
\(235\) 0.135536 + 0.234755i 0.00884138 + 0.0153137i
\(236\) 0 0
\(237\) 3.72244 1.50342i 0.241798 0.0976575i
\(238\) 0 0
\(239\) −7.63989 + 13.2327i −0.494184 + 0.855951i −0.999978 0.00670310i \(-0.997866\pi\)
0.505794 + 0.862654i \(0.331200\pi\)
\(240\) 0 0
\(241\) −2.09714 + 3.63236i −0.135089 + 0.233981i −0.925631 0.378426i \(-0.876465\pi\)
0.790543 + 0.612407i \(0.209799\pi\)
\(242\) 0 0
\(243\) −5.32238 14.6517i −0.341431 0.939907i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 7.00537 + 12.1336i 0.445741 + 0.772046i
\(248\) 0 0
\(249\) −10.4583 8.17302i −0.662767 0.517944i
\(250\) 0 0
\(251\) 19.7104 1.24411 0.622056 0.782973i \(-0.286298\pi\)
0.622056 + 0.782973i \(0.286298\pi\)
\(252\) 0 0
\(253\) −2.51834 −0.158326
\(254\) 0 0
\(255\) −0.0139491 + 0.0991628i −0.000873527 + 0.00620981i
\(256\) 0 0
\(257\) 2.47060 + 4.27921i 0.154112 + 0.266930i 0.932735 0.360562i \(-0.117415\pi\)
−0.778623 + 0.627492i \(0.784082\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 14.8375 + 4.25860i 0.918415 + 0.263601i
\(262\) 0 0
\(263\) −13.5987 + 23.5537i −0.838533 + 1.45238i 0.0525879 + 0.998616i \(0.483253\pi\)
−0.891121 + 0.453766i \(0.850080\pi\)
\(264\) 0 0
\(265\) 0.0326613 0.0565710i 0.00200637 0.00347513i
\(266\) 0 0
\(267\) 0.242411 1.72328i 0.0148353 0.105463i
\(268\) 0 0
\(269\) −10.5884 18.3397i −0.645588 1.11819i −0.984165 0.177253i \(-0.943279\pi\)
0.338578 0.940938i \(-0.390054\pi\)
\(270\) 0 0
\(271\) −11.7699 + 20.3860i −0.714968 + 1.23836i 0.248003 + 0.968759i \(0.420226\pi\)
−0.962972 + 0.269602i \(0.913108\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −1.40126 2.42706i −0.0844994 0.146357i
\(276\) 0 0
\(277\) −10.1560 + 17.5907i −0.610216 + 1.05693i 0.380988 + 0.924580i \(0.375584\pi\)
−0.991204 + 0.132345i \(0.957749\pi\)
\(278\) 0 0
\(279\) 1.75951 1.69828i 0.105339 0.101674i
\(280\) 0 0
\(281\) −9.63184 16.6828i −0.574587 0.995215i −0.996086 0.0883856i \(-0.971829\pi\)
0.421499 0.906829i \(-0.361504\pi\)
\(282\) 0 0
\(283\) −17.9960 −1.06975 −0.534875 0.844931i \(-0.679641\pi\)
−0.534875 + 0.844931i \(0.679641\pi\)
\(284\) 0 0
\(285\) 0.121981 0.0492658i 0.00722555 0.00291826i
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 5.16394 8.94421i 0.303761 0.526130i
\(290\) 0 0
\(291\) −20.0067 15.6350i −1.17282 0.916541i
\(292\) 0 0
\(293\) −5.27396 + 9.13477i −0.308108 + 0.533659i −0.977949 0.208846i \(-0.933029\pi\)
0.669840 + 0.742505i \(0.266363\pi\)
\(294\) 0 0
\(295\) −0.100261 0.173657i −0.00583742 0.0101107i
\(296\) 0 0
\(297\) −1.71119 2.35712i −0.0992934 0.136774i
\(298\) 0 0
\(299\) −18.5489 −1.07271
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 3.65403 25.9762i 0.209919 1.49229i
\(304\) 0 0
\(305\) −0.0236567 0.0409746i −0.00135458 0.00234620i
\(306\) 0 0
\(307\) 16.2337 0.926506 0.463253 0.886226i \(-0.346682\pi\)
0.463253 + 0.886226i \(0.346682\pi\)
\(308\) 0 0
\(309\) 12.1470 + 9.49277i 0.691021 + 0.540025i
\(310\) 0 0
\(311\) 15.7102 0.890846 0.445423 0.895320i \(-0.353053\pi\)
0.445423 + 0.895320i \(0.353053\pi\)
\(312\) 0 0
\(313\) 33.0387 1.86746 0.933729 0.357979i \(-0.116534\pi\)
0.933729 + 0.357979i \(0.116534\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 8.26125 0.463998 0.231999 0.972716i \(-0.425473\pi\)
0.231999 + 0.972716i \(0.425473\pi\)
\(318\) 0 0
\(319\) 2.88437 0.161494
\(320\) 0 0
\(321\) −4.27456 + 30.3874i −0.238583 + 1.69606i
\(322\) 0 0
\(323\) 8.76527 0.487713
\(324\) 0 0
\(325\) −10.3210 17.8766i −0.572508 0.991614i
\(326\) 0 0
\(327\) 16.3068 + 12.7436i 0.901770 + 0.704722i
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 18.2767 1.00458 0.502290 0.864699i \(-0.332491\pi\)
0.502290 + 0.864699i \(0.332491\pi\)
\(332\) 0 0
\(333\) 0.341559 + 1.37138i 0.0187173 + 0.0751513i
\(334\) 0 0
\(335\) −0.168887 0.292520i −0.00922727 0.0159821i
\(336\) 0 0
\(337\) 10.6530 18.4516i 0.580307 1.00512i −0.415135 0.909760i \(-0.636266\pi\)
0.995443 0.0953621i \(-0.0304009\pi\)
\(338\) 0 0
\(339\) −3.62308 + 25.7561i −0.196779 + 1.39888i
\(340\) 0 0
\(341\) 0.228467 0.395716i 0.0123722 0.0214292i
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) −0.0242608 + 0.172468i −0.00130616 + 0.00928534i
\(346\) 0 0
\(347\) −21.8755 −1.17434 −0.587170 0.809463i \(-0.699758\pi\)
−0.587170 + 0.809463i \(0.699758\pi\)
\(348\) 0 0
\(349\) 2.46155 + 4.26354i 0.131764 + 0.228222i 0.924357 0.381530i \(-0.124603\pi\)
−0.792593 + 0.609751i \(0.791269\pi\)
\(350\) 0 0
\(351\) −12.6038 17.3614i −0.672743 0.926684i
\(352\) 0 0
\(353\) −2.30915 + 3.99956i −0.122903 + 0.212875i −0.920911 0.389772i \(-0.872554\pi\)
0.798008 + 0.602647i \(0.205887\pi\)
\(354\) 0 0
\(355\) −0.0241783 0.0418780i −0.00128325 0.00222265i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −13.6695 + 23.6763i −0.721449 + 1.24959i 0.238970 + 0.971027i \(0.423190\pi\)
−0.960419 + 0.278559i \(0.910143\pi\)
\(360\) 0 0
\(361\) 3.74245 + 6.48212i 0.196971 + 0.341164i
\(362\) 0 0
\(363\) 14.5833 + 11.3967i 0.765425 + 0.598170i
\(364\) 0 0
\(365\) −0.0795042 + 0.137705i −0.00416144 + 0.00720783i
\(366\) 0 0
\(367\) −12.0924 + 20.9446i −0.631217 + 1.09330i 0.356086 + 0.934453i \(0.384111\pi\)
−0.987303 + 0.158847i \(0.949222\pi\)
\(368\) 0 0
\(369\) −4.39044 17.6279i −0.228557 0.917674i
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −7.11620 12.3256i −0.368463 0.638196i 0.620863 0.783919i \(-0.286782\pi\)
−0.989325 + 0.145723i \(0.953449\pi\)
\(374\) 0 0
\(375\) −0.359449 + 0.145175i −0.0185619 + 0.00749678i
\(376\) 0 0
\(377\) 21.2449 1.09417
\(378\) 0 0
\(379\) 14.5071 0.745178 0.372589 0.927996i \(-0.378470\pi\)
0.372589 + 0.927996i \(0.378470\pi\)
\(380\) 0 0
\(381\) 6.70527 2.70813i 0.343521 0.138742i
\(382\) 0 0
\(383\) 12.4659 + 21.5916i 0.636979 + 1.10328i 0.986092 + 0.166199i \(0.0531495\pi\)
−0.349113 + 0.937080i \(0.613517\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 4.68255 + 1.34397i 0.238028 + 0.0683179i
\(388\) 0 0
\(389\) −15.5536 + 26.9396i −0.788599 + 1.36589i 0.138226 + 0.990401i \(0.455860\pi\)
−0.926825 + 0.375493i \(0.877473\pi\)
\(390\) 0 0
\(391\) −5.80219 + 10.0497i −0.293430 + 0.508235i
\(392\) 0 0
\(393\) −8.29617 6.48336i −0.418487 0.327042i
\(394\) 0 0
\(395\) −0.0259394 0.0449283i −0.00130515 0.00226059i
\(396\) 0 0
\(397\) 1.52243 2.63693i 0.0764086 0.132344i −0.825289 0.564710i \(-0.808988\pi\)
0.901698 + 0.432367i \(0.142321\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −5.73300 9.92985i −0.286292 0.495873i 0.686629 0.727008i \(-0.259090\pi\)
−0.972922 + 0.231135i \(0.925756\pi\)
\(402\) 0 0
\(403\) 1.68278 2.91466i 0.0838252 0.145190i
\(404\) 0 0
\(405\) −0.177912 + 0.0944828i −0.00884050 + 0.00469489i
\(406\) 0 0
\(407\) 0.132038 + 0.228697i 0.00654489 + 0.0113361i
\(408\) 0 0
\(409\) −5.12492 −0.253411 −0.126706 0.991940i \(-0.540440\pi\)
−0.126706 + 0.991940i \(0.540440\pi\)
\(410\) 0 0
\(411\) −3.88410 + 27.6117i −0.191588 + 1.36198i
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) −0.0857613 + 0.148543i −0.00420986 + 0.00729169i
\(416\) 0 0
\(417\) 0.887143 6.30661i 0.0434436 0.308836i
\(418\) 0 0
\(419\) −17.2951 + 29.9560i −0.844921 + 1.46345i 0.0407685 + 0.999169i \(0.487019\pi\)
−0.885690 + 0.464278i \(0.846314\pi\)
\(420\) 0 0
\(421\) −16.3403 28.3023i −0.796379 1.37937i −0.921960 0.387285i \(-0.873413\pi\)
0.125581 0.992083i \(-0.459920\pi\)
\(422\) 0 0
\(423\) −26.1417 + 25.2320i −1.27105 + 1.22682i
\(424\) 0 0
\(425\) −12.9139 −0.626417
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) −3.15864 2.46844i −0.152501 0.119177i
\(430\) 0 0
\(431\) −0.0725515 0.125663i −0.00349468 0.00605297i 0.864273 0.503023i \(-0.167779\pi\)
−0.867767 + 0.496970i \(0.834446\pi\)
\(432\) 0 0
\(433\) −19.1583 −0.920690 −0.460345 0.887740i \(-0.652274\pi\)
−0.460345 + 0.887740i \(0.652274\pi\)
\(434\) 0 0
\(435\) 0.0277870 0.197535i 0.00133229 0.00947109i
\(436\) 0 0
\(437\) 15.2449 0.729262
\(438\) 0 0
\(439\) −7.58500 −0.362012 −0.181006 0.983482i \(-0.557935\pi\)
−0.181006 + 0.983482i \(0.557935\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −3.26484 −0.155117 −0.0775586 0.996988i \(-0.524712\pi\)
−0.0775586 + 0.996988i \(0.524712\pi\)
\(444\) 0 0
\(445\) −0.0224885 −0.00106606
\(446\) 0 0
\(447\) −12.4952 9.76483i −0.591002 0.461861i
\(448\) 0 0
\(449\) 19.8316 0.935909 0.467955 0.883752i \(-0.344991\pi\)
0.467955 + 0.883752i \(0.344991\pi\)
\(450\) 0 0
\(451\) −1.69724 2.93970i −0.0799197 0.138425i
\(452\) 0 0
\(453\) 4.48088 31.8541i 0.210530 1.49664i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −4.46102 −0.208678 −0.104339 0.994542i \(-0.533273\pi\)
−0.104339 + 0.994542i \(0.533273\pi\)
\(458\) 0 0
\(459\) −13.3489 + 1.39795i −0.623073 + 0.0652505i
\(460\) 0 0
\(461\) 7.88515 + 13.6575i 0.367248 + 0.636092i 0.989134 0.147015i \(-0.0469667\pi\)
−0.621886 + 0.783108i \(0.713633\pi\)
\(462\) 0 0
\(463\) −8.34621 + 14.4561i −0.387881 + 0.671830i −0.992164 0.124940i \(-0.960126\pi\)
0.604283 + 0.796770i \(0.293460\pi\)
\(464\) 0 0
\(465\) −0.0248995 0.0194587i −0.00115469 0.000902375i
\(466\) 0 0
\(467\) 14.6974 25.4566i 0.680112 1.17799i −0.294834 0.955549i \(-0.595264\pi\)
0.974946 0.222441i \(-0.0714024\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) −18.7291 + 7.56433i −0.862993 + 0.348546i
\(472\) 0 0
\(473\) 0.910278 0.0418546
\(474\) 0 0
\(475\) 8.48262 + 14.6923i 0.389209 + 0.674131i
\(476\) 0 0
\(477\) 8.41557 + 2.41541i 0.385322 + 0.110594i
\(478\) 0 0
\(479\) −9.16675 + 15.8773i −0.418839 + 0.725451i −0.995823 0.0913046i \(-0.970896\pi\)
0.576984 + 0.816756i \(0.304230\pi\)
\(480\) 0 0
\(481\) 0.972530 + 1.68447i 0.0443436 + 0.0768053i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −0.164062 + 0.284163i −0.00744965 + 0.0129032i
\(486\) 0 0
\(487\) 6.24766 + 10.8213i 0.283108 + 0.490358i 0.972149 0.234365i \(-0.0753010\pi\)
−0.689040 + 0.724723i \(0.741968\pi\)
\(488\) 0 0
\(489\) −3.15132 + 22.4024i −0.142508 + 1.01307i
\(490\) 0 0
\(491\) −1.75354 + 3.03721i −0.0791359 + 0.137067i −0.902877 0.429898i \(-0.858549\pi\)
0.823741 + 0.566966i \(0.191883\pi\)
\(492\) 0 0
\(493\) 6.64553 11.5104i 0.299299 0.518402i
\(494\) 0 0
\(495\) −0.0270829 + 0.0261405i −0.00121728 + 0.00117493i
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 16.1819 + 28.0279i 0.724402 + 1.25470i 0.959220 + 0.282662i \(0.0912175\pi\)
−0.234817 + 0.972040i \(0.575449\pi\)
\(500\) 0 0
\(501\) −3.31158 + 23.5417i −0.147951 + 1.05177i
\(502\) 0 0
\(503\) −15.3277 −0.683430 −0.341715 0.939804i \(-0.611008\pi\)
−0.341715 + 0.939804i \(0.611008\pi\)
\(504\) 0 0
\(505\) −0.338985 −0.0150846
\(506\) 0 0
\(507\) −5.52344 4.31650i −0.245305 0.191702i
\(508\) 0 0
\(509\) 8.47237 + 14.6746i 0.375531 + 0.650439i 0.990406 0.138185i \(-0.0441269\pi\)
−0.614875 + 0.788625i \(0.710794\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 10.3588 + 14.2689i 0.457352 + 0.629989i
\(514\) 0 0
\(515\) 0.0996097 0.172529i 0.00438933 0.00760254i
\(516\) 0 0
\(517\) −3.39442 + 5.87931i −0.149287 + 0.258572i
\(518\) 0 0
\(519\) −40.0310 + 16.1677i −1.75716 + 0.709684i
\(520\) 0 0
\(521\) −9.36977 16.2289i −0.410497 0.711002i 0.584447 0.811432i \(-0.301311\pi\)
−0.994944 + 0.100430i \(0.967978\pi\)
\(522\) 0 0
\(523\) 4.48382 7.76620i 0.196064 0.339592i −0.751185 0.660092i \(-0.770517\pi\)
0.947249 + 0.320499i \(0.103851\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −1.05277 1.82344i −0.0458592 0.0794305i
\(528\) 0 0
\(529\) 1.40861 2.43978i 0.0612439 0.106078i
\(530\) 0 0
\(531\) 19.3380 18.6651i 0.839197 0.809996i
\(532\) 0 0
\(533\) −12.5010 21.6524i −0.541480 0.937871i
\(534\) 0 0
\(535\) 0.396551 0.0171444
\(536\) 0 0
\(537\) 12.5065 + 9.77370i 0.539697 + 0.421766i
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −17.5759 + 30.4423i −0.755646 + 1.30882i 0.189406 + 0.981899i \(0.439344\pi\)
−0.945052 + 0.326919i \(0.893990\pi\)
\(542\) 0 0
\(543\) −1.41756 + 0.572524i −0.0608333 + 0.0245694i
\(544\) 0 0
\(545\) 0.133721 0.231612i 0.00572799 0.00992117i
\(546\) 0 0
\(547\) 7.75354 + 13.4295i 0.331517 + 0.574205i 0.982810 0.184622i \(-0.0591061\pi\)
−0.651292 + 0.758827i \(0.725773\pi\)
\(548\) 0 0
\(549\) 4.56282 4.40406i 0.194737 0.187961i
\(550\) 0 0
\(551\) −17.4607 −0.743850
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0.0169342 0.00683940i 0.000718818 0.000290317i
\(556\) 0 0
\(557\) −1.48253 2.56781i −0.0628166 0.108802i 0.832907 0.553413i \(-0.186675\pi\)
−0.895723 + 0.444612i \(0.853342\pi\)
\(558\) 0 0
\(559\) 6.70468 0.283578
\(560\) 0 0
\(561\) −2.32543 + 0.939196i −0.0981798 + 0.0396529i
\(562\) 0 0
\(563\) −24.3713 −1.02713 −0.513564 0.858051i \(-0.671675\pi\)
−0.513564 + 0.858051i \(0.671675\pi\)
\(564\) 0 0
\(565\) 0.336113 0.0141404
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 44.9602 1.88483 0.942414 0.334448i \(-0.108550\pi\)
0.942414 + 0.334448i \(0.108550\pi\)
\(570\) 0 0
\(571\) −15.6776 −0.656087 −0.328043 0.944663i \(-0.606389\pi\)
−0.328043 + 0.944663i \(0.606389\pi\)
\(572\) 0 0
\(573\) −26.6840 + 10.7771i −1.11474 + 0.450221i
\(574\) 0 0
\(575\) −22.4604 −0.936662
\(576\) 0 0
\(577\) 13.7485 + 23.8132i 0.572360 + 0.991356i 0.996323 + 0.0856765i \(0.0273051\pi\)
−0.423963 + 0.905679i \(0.639362\pi\)
\(578\) 0 0
\(579\) 29.8507 12.0561i 1.24055 0.501035i
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 1.63597 0.0677549
\(584\) 0 0
\(585\) −0.199480 + 0.192539i −0.00824747 + 0.00796049i
\(586\) 0 0
\(587\) −13.3162 23.0644i −0.549619 0.951968i −0.998300 0.0582763i \(-0.981440\pi\)
0.448681 0.893692i \(-0.351894\pi\)
\(588\) 0 0
\(589\) −1.38304 + 2.39549i −0.0569871 + 0.0987045i
\(590\) 0 0
\(591\) 37.5866 15.1805i 1.54611 0.624442i
\(592\) 0 0
\(593\) 8.87994 15.3805i 0.364656 0.631602i −0.624065 0.781372i \(-0.714520\pi\)
0.988721 + 0.149770i \(0.0478534\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 11.0114 + 8.60531i 0.450668 + 0.352192i
\(598\) 0 0
\(599\) 16.5809 0.677475 0.338738 0.940881i \(-0.390000\pi\)
0.338738 + 0.940881i \(0.390000\pi\)
\(600\) 0 0
\(601\) −12.3406 21.3746i −0.503384 0.871886i −0.999992 0.00391177i \(-0.998755\pi\)
0.496608 0.867975i \(-0.334578\pi\)
\(602\) 0 0
\(603\) 32.5743 31.4408i 1.32653 1.28037i
\(604\) 0 0
\(605\) 0.119588 0.207132i 0.00486194 0.00842112i
\(606\) 0 0
\(607\) 6.19000 + 10.7214i 0.251244 + 0.435168i 0.963869 0.266378i \(-0.0858269\pi\)
−0.712624 + 0.701546i \(0.752494\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −25.0017 + 43.3042i −1.01146 + 1.75190i
\(612\) 0 0
\(613\) 2.74800 + 4.75968i 0.110991 + 0.192242i 0.916170 0.400790i \(-0.131264\pi\)
−0.805179 + 0.593032i \(0.797931\pi\)
\(614\) 0 0
\(615\) −0.217675 + 0.0879146i −0.00877750 + 0.00354506i
\(616\) 0 0
\(617\) −11.4573 + 19.8446i −0.461254 + 0.798916i −0.999024 0.0441763i \(-0.985934\pi\)
0.537770 + 0.843092i \(0.319267\pi\)
\(618\) 0 0
\(619\) −3.49256 + 6.04930i −0.140378 + 0.243142i −0.927639 0.373478i \(-0.878165\pi\)
0.787261 + 0.616620i \(0.211498\pi\)
\(620\) 0 0
\(621\) −23.2169 + 2.43136i −0.931661 + 0.0975671i
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −12.4962 21.6441i −0.499850 0.865765i
\(626\) 0 0
\(627\) 2.59601 + 2.02875i 0.103675 + 0.0810206i
\(628\) 0 0
\(629\) 1.21685 0.0485191
\(630\) 0 0
\(631\) −14.7028 −0.585310 −0.292655 0.956218i \(-0.594539\pi\)
−0.292655 + 0.956218i \(0.594539\pi\)
\(632\) 0 0
\(633\) 3.35195 23.8287i 0.133228 0.947105i
\(634\) 0 0
\(635\) −0.0467249 0.0809300i −0.00185422 0.00321161i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 4.66342 4.50116i 0.184482 0.178063i
\(640\) 0 0
\(641\) 10.8057 18.7161i 0.426801 0.739241i −0.569786 0.821793i \(-0.692974\pi\)
0.996587 + 0.0825523i \(0.0263072\pi\)
\(642\) 0 0
\(643\) −6.78105 + 11.7451i −0.267418 + 0.463182i −0.968194 0.250199i \(-0.919504\pi\)
0.700776 + 0.713381i \(0.252837\pi\)
\(644\) 0 0
\(645\) 0.00876931 0.0623401i 0.000345291 0.00245464i
\(646\) 0 0
\(647\) 10.2074 + 17.6798i 0.401295 + 0.695063i 0.993882 0.110443i \(-0.0352269\pi\)
−0.592587 + 0.805506i \(0.701894\pi\)
\(648\) 0 0
\(649\) 2.51098 4.34915i 0.0985647 0.170719i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −24.3462 42.1689i −0.952741 1.65020i −0.739454 0.673207i \(-0.764916\pi\)
−0.213287 0.976990i \(-0.568417\pi\)
\(654\) 0 0
\(655\) −0.0680313 + 0.117834i −0.00265820 + 0.00460414i
\(656\) 0 0
\(657\) −20.4852 5.87961i −0.799205 0.229385i
\(658\) 0 0
\(659\) −7.65029 13.2507i −0.298013 0.516174i 0.677668 0.735368i \(-0.262991\pi\)
−0.975681 + 0.219194i \(0.929657\pi\)
\(660\) 0 0
\(661\) 17.5499 0.682612 0.341306 0.939952i \(-0.389131\pi\)
0.341306 + 0.939952i \(0.389131\pi\)
\(662\) 0 0
\(663\) −17.1280 + 6.91767i −0.665197 + 0.268660i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 11.5581 20.0193i 0.447533 0.775150i
\(668\) 0 0
\(669\) 22.6162 + 17.6742i 0.874391 + 0.683326i
\(670\) 0 0
\(671\) 0.592470 1.02619i 0.0228721 0.0396156i
\(672\) 0 0
\(673\) 3.79336 + 6.57029i 0.146223 + 0.253266i 0.929829 0.367993i \(-0.119955\pi\)
−0.783605 + 0.621259i \(0.786622\pi\)
\(674\) 0 0
\(675\) −15.2617 21.0225i −0.587422 0.809157i
\(676\) 0 0
\(677\) −11.5325 −0.443232 −0.221616 0.975134i \(-0.571133\pi\)
−0.221616 + 0.975134i \(0.571133\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) −1.47807 + 10.5075i −0.0566399 + 0.402648i
\(682\) 0 0
\(683\) 7.47937 + 12.9546i 0.286190 + 0.495696i 0.972897 0.231239i \(-0.0742778\pi\)
−0.686707 + 0.726934i \(0.740944\pi\)
\(684\) 0 0
\(685\) 0.360328 0.0137674
\(686\) 0 0
\(687\) 39.3467 + 30.7490i 1.50117 + 1.17315i
\(688\) 0 0
\(689\) 12.0498 0.459060
\(690\) 0 0
\(691\) −19.8961 −0.756882 −0.378441 0.925625i \(-0.623540\pi\)
−0.378441 + 0.925625i \(0.623540\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −0.0823002 −0.00312183
\(696\) 0 0
\(697\) −15.6416 −0.592467
\(698\) 0 0
\(699\) 4.07744 28.9861i 0.154223 1.09636i
\(700\) 0 0
\(701\) 34.9655 1.32063 0.660315 0.750989i \(-0.270423\pi\)
0.660315 + 0.750989i \(0.270423\pi\)
\(702\) 0 0
\(703\) −0.799300 1.38443i −0.0301462 0.0522147i
\(704\) 0 0
\(705\) 0.369942 + 0.289105i 0.0139328 + 0.0108883i
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −19.3045 −0.724998 −0.362499 0.931984i \(-0.618076\pi\)
−0.362499 + 0.931984i \(0.618076\pi\)
\(710\) 0 0
\(711\) 5.00310 4.82901i 0.187631 0.181102i
\(712\) 0 0
\(713\) −1.83101 3.17140i −0.0685719 0.118770i
\(714\) 0 0
\(715\) −0.0259019 + 0.0448634i −0.000968676 + 0.00167780i
\(716\) 0 0
\(717\) −3.68656 + 26.2074i −0.137677 + 0.978731i
\(718\) 0 0
\(719\) 17.7284 30.7066i 0.661159 1.14516i −0.319152 0.947704i \(-0.603398\pi\)
0.980311 0.197458i \(-0.0632686\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) −1.01196 + 7.19389i −0.0376350 + 0.267544i
\(724\) 0 0
\(725\) 25.7249 0.955400
\(726\) 0 0
\(727\) 2.27159 + 3.93452i 0.0842487 + 0.145923i 0.905071 0.425261i \(-0.139818\pi\)
−0.820822 + 0.571184i \(0.806484\pi\)
\(728\) 0 0
\(729\) −18.0514 20.0785i −0.668571 0.743648i
\(730\) 0 0
\(731\) 2.09726 3.63257i 0.0775701 0.134355i
\(732\) 0 0
\(733\) −16.6444 28.8290i −0.614777 1.06482i −0.990424 0.138062i \(-0.955913\pi\)
0.375647 0.926763i \(-0.377421\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 4.22968 7.32602i 0.155802 0.269858i
\(738\) 0 0
\(739\) −20.6599 35.7841i −0.759988 1.31634i −0.942856 0.333200i \(-0.891871\pi\)
0.182868 0.983137i \(-0.441462\pi\)
\(740\) 0 0
\(741\) 19.1210 + 14.9428i 0.702428 + 0.548939i
\(742\) 0 0
\(743\) −13.7638 + 23.8396i −0.504946 + 0.874592i 0.495038 + 0.868871i \(0.335154\pi\)
−0.999984 + 0.00572027i \(0.998179\pi\)
\(744\) 0 0
\(745\) −0.102465 + 0.177474i −0.00375401 + 0.00650214i
\(746\) 0 0
\(747\) −22.0974 6.34234i −0.808503 0.232054i
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) −6.58398 11.4038i −0.240253 0.416130i 0.720533 0.693420i \(-0.243897\pi\)
−0.960786 + 0.277290i \(0.910564\pi\)
\(752\) 0 0
\(753\) 31.6552 12.7849i 1.15358 0.465908i
\(754\) 0 0
\(755\) −0.415692 −0.0151286
\(756\) 0 0
\(757\) −13.7925 −0.501297 −0.250648 0.968078i \(-0.580644\pi\)
−0.250648 + 0.968078i \(0.580644\pi\)
\(758\) 0 0
\(759\) −4.04448 + 1.63348i −0.146805 + 0.0592917i
\(760\) 0 0
\(761\) 15.6055 + 27.0294i 0.565697 + 0.979816i 0.996984 + 0.0776016i \(0.0247262\pi\)
−0.431287 + 0.902215i \(0.641940\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0.0419181 + 0.168304i 0.00151555 + 0.00608506i
\(766\) 0 0
\(767\) 18.4947 32.0338i 0.667806 1.15667i
\(768\) 0 0
\(769\) 19.1337 33.1405i 0.689977 1.19508i −0.281867 0.959453i \(-0.590954\pi\)
0.971845 0.235622i \(-0.0757128\pi\)
\(770\) 0 0
\(771\) 6.74346 + 5.26993i 0.242860 + 0.189792i
\(772\) 0 0
\(773\) −3.73395 6.46739i −0.134301 0.232616i 0.791029 0.611778i \(-0.209545\pi\)
−0.925330 + 0.379162i \(0.876212\pi\)
\(774\) 0 0
\(775\) 2.03764 3.52929i 0.0731941 0.126776i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 10.2743 + 17.7956i 0.368115 + 0.637594i
\(780\) 0 0
\(781\) 0.605533 1.04881i 0.0216677 0.0375295i
\(782\) 0 0
\(783\) 26.5914 2.78475i 0.950299 0.0995189i
\(784\) 0 0
\(785\) 0.130512 + 0.226053i 0.00465817 + 0.00806819i
\(786\) 0 0
\(787\) 20.6901 0.737523 0.368761 0.929524i \(-0.379782\pi\)
0.368761 + 0.929524i \(0.379782\pi\)
\(788\) 0 0
\(789\) −6.56193 + 46.6481i −0.233611 + 1.66072i
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 4.36386 7.55842i 0.154965 0.268407i
\(794\) 0 0
\(795\) 0.0157604 0.112039i 0.000558963 0.00397361i
\(796\) 0 0
\(797\) 15.8354 27.4276i 0.560917 0.971537i −0.436500 0.899704i \(-0.643782\pi\)
0.997417 0.0718325i \(-0.0228847\pi\)
\(798\) 0 0
\(799\) 15.6414 + 27.0916i 0.553352 + 0.958433i
\(800\) 0 0
\(801\) −0.728465 2.92484i −0.0257390 0.103344i
\(802\) 0 0
\(803\) −3.98229 −0.140532
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −28.9009 22.5857i −1.01736 0.795055i
\(808\) 0 0
\(809\) −24.0430 41.6438i −0.845308 1.46412i −0.885353 0.464919i \(-0.846083\pi\)
0.0400451 0.999198i \(-0.487250\pi\)
\(810\) 0 0
\(811\) 17.6685 0.620427 0.310213 0.950667i \(-0.399600\pi\)
0.310213 + 0.950667i \(0.399600\pi\)
\(812\) 0 0
\(813\) −5.67943 + 40.3745i −0.199186 + 1.41600i
\(814\) 0 0
\(815\) 0.292348 0.0102405
\(816\) 0 0
\(817\) −5.51042 −0.192785
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 28.9979 1.01203 0.506017 0.862523i \(-0.331117\pi\)
0.506017 + 0.862523i \(0.331117\pi\)
\(822\) 0 0
\(823\) 13.7745 0.480147 0.240074 0.970755i \(-0.422828\pi\)
0.240074 + 0.970755i \(0.422828\pi\)
\(824\) 0 0
\(825\) −3.82472 2.98897i −0.133160 0.104063i
\(826\) 0 0
\(827\) 21.4150 0.744673 0.372337 0.928098i \(-0.378557\pi\)
0.372337 + 0.928098i \(0.378557\pi\)
\(828\) 0 0
\(829\) −9.40772 16.2947i −0.326744 0.565937i 0.655120 0.755525i \(-0.272618\pi\)
−0.981864 + 0.189588i \(0.939285\pi\)
\(830\) 0 0
\(831\) −4.90069 + 34.8385i −0.170003 + 1.20853i
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 0.307216 0.0106316
\(836\) 0 0
\(837\) 1.72422 3.86874i 0.0595977 0.133723i
\(838\) 0 0
\(839\) −21.4124 37.0874i −0.739239 1.28040i −0.952839 0.303477i \(-0.901852\pi\)
0.213600 0.976921i \(-0.431481\pi\)
\(840\) 0 0
\(841\) 1.26191 2.18569i 0.0435142 0.0753688i
\(842\) 0 0
\(843\) −26.2899 20.5453i −0.905473 0.707616i
\(844\) 0 0
\(845\) −0.0452940 + 0.0784515i −0.00155816 + 0.00269881i
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) −28.9017 + 11.6728i −0.991905 + 0.400611i
\(850\) 0 0
\(851\) 2.11639 0.0725491
\(852\) 0 0
\(853\) −13.3281 23.0849i −0.456345 0.790412i 0.542420 0.840108i \(-0.317508\pi\)
−0.998764 + 0.0496954i \(0.984175\pi\)
\(854\) 0 0
\(855\) 0.163948 0.158243i 0.00560689 0.00541180i
\(856\) 0 0
\(857\) −15.5907 + 27.0040i −0.532570 + 0.922438i 0.466707 + 0.884412i \(0.345440\pi\)
−0.999277 + 0.0380257i \(0.987893\pi\)
\(858\) 0 0
\(859\) −26.9668 46.7078i −0.920094 1.59365i −0.799267 0.600976i \(-0.794779\pi\)
−0.120827 0.992674i \(-0.538555\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 16.8755 29.2292i 0.574448 0.994974i −0.421653 0.906757i \(-0.638550\pi\)
0.996101 0.0882164i \(-0.0281167\pi\)
\(864\) 0 0
\(865\) 0.278952 + 0.483158i 0.00948464 + 0.0164279i
\(866\) 0 0
\(867\) 2.49181 17.7140i 0.0846263 0.601600i
\(868\) 0 0
\(869\) 0.649639 1.12521i 0.0220375 0.0381700i
\(870\) 0 0
\(871\) 31.1538 53.9600i 1.05561 1.82837i
\(872\) 0 0
\(873\) −42.2725 12.1329i −1.43071 0.410637i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −1.60808 2.78527i −0.0543009 0.0940519i 0.837597 0.546288i \(-0.183960\pi\)
−0.891898 + 0.452236i \(0.850626\pi\)
\(878\) 0 0
\(879\) −2.54490 + 18.0914i −0.0858373 + 0.610209i
\(880\) 0 0
\(881\) 35.9141 1.20998 0.604989 0.796234i \(-0.293178\pi\)
0.604989 + 0.796234i \(0.293178\pi\)
\(882\) 0 0
\(883\) 4.58572 0.154322 0.0771609 0.997019i \(-0.475414\pi\)
0.0771609 + 0.997019i \(0.475414\pi\)
\(884\) 0 0
\(885\) −0.273660 0.213862i −0.00919899 0.00718890i
\(886\) 0 0
\(887\) 27.5154 + 47.6581i 0.923877 + 1.60020i 0.793357 + 0.608757i \(0.208332\pi\)
0.130521 + 0.991446i \(0.458335\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) −4.27711 2.67562i −0.143288 0.0896366i
\(892\) 0 0
\(893\) 20.5483 35.5907i 0.687624 1.19100i
\(894\) 0 0
\(895\) 0.102558 0.177635i 0.00342812 0.00593768i
\(896\) 0 0
\(897\) −29.7897 + 12.0315i −0.994649 + 0.401719i
\(898\) 0 0
\(899\) 2.09714 + 3.63236i 0.0699436 + 0.121146i
\(900\) 0 0
\(901\) 3.76924 6.52851i 0.125572 0.217496i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0.00987810 + 0.0171094i 0.000328359 + 0.000568735i
\(906\) 0 0
\(907\) 6.38823 11.0647i 0.212118 0.367399i −0.740259 0.672321i \(-0.765297\pi\)
0.952377 + 0.304923i \(0.0986307\pi\)
\(908\) 0 0
\(909\) −10.9807 44.0881i −0.364205 1.46231i
\(910\) 0 0
\(911\) −15.9053 27.5489i −0.526968 0.912735i −0.999506 0.0314246i \(-0.989996\pi\)
0.472539 0.881310i \(-0.343338\pi\)
\(912\) 0 0
\(913\) −4.29570 −0.142167
\(914\) 0 0
\(915\) −0.0645705 0.0504611i −0.00213464 0.00166819i
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 29.2724 50.7013i 0.965607 1.67248i 0.257631 0.966243i \(-0.417058\pi\)
0.707975 0.706237i \(-0.249609\pi\)
\(920\) 0 0
\(921\) 26.0715 10.5298i 0.859085 0.346968i
\(922\) 0 0
\(923\) 4.46007 7.72506i 0.146805 0.254274i
\(924\) 0 0
\(925\) 1.17761 + 2.03969i 0.0387197 + 0.0670644i
\(926\) 0 0
\(927\) 25.6656 + 7.36647i 0.842970 + 0.241947i
\(928\) 0 0
\(929\) 12.7327 0.417746 0.208873 0.977943i \(-0.433020\pi\)
0.208873 + 0.977943i \(0.433020\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 25.2308 10.1902i 0.826020 0.333613i
\(934\) 0 0
\(935\) 0.0162045 + 0.0280670i 0.000529944 + 0.000917891i
\(936\) 0 0
\(937\) −28.2201 −0.921911 −0.460956 0.887423i \(-0.652493\pi\)
−0.460956 + 0.887423i \(0.652493\pi\)
\(938\) 0 0
\(939\) 53.0605 21.4301i 1.73157 0.699345i
\(940\) 0 0
\(941\) 48.6046 1.58446 0.792232 0.610220i \(-0.208919\pi\)
0.792232 + 0.610220i \(0.208919\pi\)
\(942\) 0 0
\(943\) −27.2044 −0.885898
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 12.2132 0.396875 0.198437 0.980114i \(-0.436413\pi\)
0.198437 + 0.980114i \(0.436413\pi\)
\(948\) 0 0
\(949\) −29.3316 −0.952145
\(950\) 0 0
\(951\) 13.2677 5.35855i 0.430234 0.173763i
\(952\) 0 0
\(953\) 22.7206 0.735993 0.367996 0.929827i \(-0.380044\pi\)
0.367996 + 0.929827i \(0.380044\pi\)
\(954\) 0 0
\(955\) 0.185944 + 0.322065i 0.00601701 + 0.0104218i
\(956\) 0 0
\(957\) 4.63233 1.87091i 0.149742 0.0604778i
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −30.3356 −0.978566
\(962\) 0 0
\(963\) 12.8454 + 51.5752i 0.413937 + 1.66199i
\(964\) 0 0
\(965\) −0.208012 0.360287i −0.00669613 0.0115980i
\(966\) 0 0
\(967\) −26.9926 + 46.7526i −0.868024 + 1.50346i −0.00401026 + 0.999992i \(0.501277\pi\)
−0.864013 + 0.503469i \(0.832057\pi\)
\(968\) 0 0
\(969\) 14.0771 5.68547i 0.452222 0.182644i
\(970\) 0 0
\(971\) 20.3187 35.1930i 0.652059 1.12940i −0.330564 0.943784i \(-0.607239\pi\)
0.982623 0.185615i \(-0.0594278\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) −28.1711 22.0154i −0.902197 0.705056i
\(976\) 0 0
\(977\) 20.0440 0.641264 0.320632 0.947204i \(-0.396105\pi\)
0.320632 + 0.947204i \(0.396105\pi\)
\(978\) 0 0
\(979\) −0.281607 0.487757i −0.00900018 0.0155888i
\(980\) 0 0
\(981\) 34.4549 + 9.88914i 1.10006 + 0.315736i
\(982\) 0 0
\(983\) 4.83700 8.37793i 0.154276 0.267214i −0.778519 0.627621i \(-0.784029\pi\)
0.932795 + 0.360407i \(0.117362\pi\)
\(984\) 0 0
\(985\) −0.261918 0.453655i −0.00834540 0.0144547i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 3.64764 6.31789i 0.115988 0.200897i
\(990\) 0 0
\(991\) −6.46878 11.2043i −0.205488 0.355915i 0.744800 0.667287i \(-0.232545\pi\)
−0.950288 + 0.311372i \(0.899211\pi\)
\(992\) 0 0
\(993\) 29.3526 11.8550i 0.931478 0.376206i
\(994\) 0 0
\(995\) 0.0902974 0.156400i 0.00286262 0.00495820i
\(996\) 0 0
\(997\) −0.856372 + 1.48328i −0.0271216 + 0.0469759i −0.879268 0.476328i \(-0.841967\pi\)
0.852146 + 0.523304i \(0.175301\pi\)
\(998\) 0 0
\(999\) 1.43808 + 1.98091i 0.0454987 + 0.0626732i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1764.2.i.j.373.11 24
3.2 odd 2 5292.2.i.j.1549.7 24
7.2 even 3 1764.2.j.i.589.6 24
7.3 odd 6 1764.2.l.j.949.10 24
7.4 even 3 1764.2.l.j.949.3 24
7.5 odd 6 1764.2.j.i.589.7 yes 24
7.6 odd 2 inner 1764.2.i.j.373.2 24
9.2 odd 6 5292.2.l.j.3313.6 24
9.7 even 3 1764.2.l.j.961.3 24
21.2 odd 6 5292.2.j.i.1765.7 24
21.5 even 6 5292.2.j.i.1765.6 24
21.11 odd 6 5292.2.l.j.361.6 24
21.17 even 6 5292.2.l.j.361.7 24
21.20 even 2 5292.2.i.j.1549.6 24
63.2 odd 6 5292.2.j.i.3529.7 24
63.11 odd 6 5292.2.i.j.2125.7 24
63.16 even 3 1764.2.j.i.1177.6 yes 24
63.20 even 6 5292.2.l.j.3313.7 24
63.25 even 3 inner 1764.2.i.j.1537.11 24
63.34 odd 6 1764.2.l.j.961.10 24
63.38 even 6 5292.2.i.j.2125.6 24
63.47 even 6 5292.2.j.i.3529.6 24
63.52 odd 6 inner 1764.2.i.j.1537.2 24
63.61 odd 6 1764.2.j.i.1177.7 yes 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1764.2.i.j.373.2 24 7.6 odd 2 inner
1764.2.i.j.373.11 24 1.1 even 1 trivial
1764.2.i.j.1537.2 24 63.52 odd 6 inner
1764.2.i.j.1537.11 24 63.25 even 3 inner
1764.2.j.i.589.6 24 7.2 even 3
1764.2.j.i.589.7 yes 24 7.5 odd 6
1764.2.j.i.1177.6 yes 24 63.16 even 3
1764.2.j.i.1177.7 yes 24 63.61 odd 6
1764.2.l.j.949.3 24 7.4 even 3
1764.2.l.j.949.10 24 7.3 odd 6
1764.2.l.j.961.3 24 9.7 even 3
1764.2.l.j.961.10 24 63.34 odd 6
5292.2.i.j.1549.6 24 21.20 even 2
5292.2.i.j.1549.7 24 3.2 odd 2
5292.2.i.j.2125.6 24 63.38 even 6
5292.2.i.j.2125.7 24 63.11 odd 6
5292.2.j.i.1765.6 24 21.5 even 6
5292.2.j.i.1765.7 24 21.2 odd 6
5292.2.j.i.3529.6 24 63.47 even 6
5292.2.j.i.3529.7 24 63.2 odd 6
5292.2.l.j.361.6 24 21.11 odd 6
5292.2.l.j.361.7 24 21.17 even 6
5292.2.l.j.3313.6 24 9.2 odd 6
5292.2.l.j.3313.7 24 63.20 even 6