Properties

Label 5292.2.i.j.2125.7
Level $5292$
Weight $2$
Character 5292.2125
Analytic conductor $42.257$
Analytic rank $0$
Dimension $24$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [5292,2,Mod(1549,5292)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(5292, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 2, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("5292.1549");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 5292 = 2^{2} \cdot 3^{3} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5292.i (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(42.2568327497\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(\zeta_{3})\)
Twist minimal: no (minimal twist has level 1764)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 2125.7
Character \(\chi\) \(=\) 5292.2125
Dual form 5292.2.i.j.1549.7

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.0111913 - 0.0193839i) q^{5} +(-0.280281 - 0.485460i) q^{11} +(2.06442 + 3.57567i) q^{13} +(1.29152 - 2.23698i) q^{17} +(-1.69669 - 2.93876i) q^{19} +(2.24626 - 3.89064i) q^{23} +(2.49975 + 4.32969i) q^{25} +(-2.57275 + 4.45613i) q^{29} +0.815136 q^{31} +(-0.235546 - 0.407978i) q^{37} +(-3.02774 - 5.24420i) q^{41} +(0.811935 - 1.40631i) q^{43} +12.1108 q^{47} +(-1.45922 + 2.52745i) q^{53} -0.0125468 q^{55} -8.95882 q^{59} +2.11385 q^{61} +0.0924141 q^{65} +15.0909 q^{67} -2.16045 q^{71} +(-3.55205 + 6.15233i) q^{73} +2.31781 q^{79} +(3.83160 - 6.63653i) q^{83} +(-0.0289077 - 0.0500695i) q^{85} +(-0.502365 - 0.870122i) q^{89} -0.0759530 q^{95} +(-7.32986 + 12.6957i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 4 q^{11} + 8 q^{23} - 12 q^{25} + 32 q^{29} - 12 q^{37} + 16 q^{53} - 72 q^{65} - 24 q^{67} - 48 q^{71} - 24 q^{79} + 12 q^{85} + 64 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/5292\mathbb{Z}\right)^\times\).

\(n\) \(785\) \(1081\) \(2647\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{2}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 0.0111913 0.0193839i 0.00500491 0.00866875i −0.863512 0.504328i \(-0.831740\pi\)
0.868517 + 0.495659i \(0.165074\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −0.280281 0.485460i −0.0845078 0.146372i 0.820674 0.571397i \(-0.193598\pi\)
−0.905181 + 0.425025i \(0.860265\pi\)
\(12\) 0 0
\(13\) 2.06442 + 3.57567i 0.572566 + 0.991713i 0.996301 + 0.0859272i \(0.0273852\pi\)
−0.423736 + 0.905786i \(0.639281\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 1.29152 2.23698i 0.313240 0.542548i −0.665822 0.746111i \(-0.731919\pi\)
0.979062 + 0.203563i \(0.0652522\pi\)
\(18\) 0 0
\(19\) −1.69669 2.93876i −0.389248 0.674198i 0.603100 0.797665i \(-0.293932\pi\)
−0.992349 + 0.123467i \(0.960599\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 2.24626 3.89064i 0.468378 0.811255i −0.530969 0.847391i \(-0.678172\pi\)
0.999347 + 0.0361367i \(0.0115052\pi\)
\(24\) 0 0
\(25\) 2.49975 + 4.32969i 0.499950 + 0.865939i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −2.57275 + 4.45613i −0.477748 + 0.827483i −0.999675 0.0255069i \(-0.991880\pi\)
0.521927 + 0.852990i \(0.325213\pi\)
\(30\) 0 0
\(31\) 0.815136 0.146403 0.0732014 0.997317i \(-0.476678\pi\)
0.0732014 + 0.997317i \(0.476678\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −0.235546 0.407978i −0.0387236 0.0670712i 0.846014 0.533161i \(-0.178996\pi\)
−0.884738 + 0.466089i \(0.845663\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −3.02774 5.24420i −0.472854 0.819007i 0.526663 0.850074i \(-0.323443\pi\)
−0.999517 + 0.0310669i \(0.990110\pi\)
\(42\) 0 0
\(43\) 0.811935 1.40631i 0.123819 0.214461i −0.797452 0.603383i \(-0.793819\pi\)
0.921271 + 0.388922i \(0.127152\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 12.1108 1.76654 0.883271 0.468863i \(-0.155336\pi\)
0.883271 + 0.468863i \(0.155336\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −1.45922 + 2.52745i −0.200440 + 0.347172i −0.948670 0.316267i \(-0.897570\pi\)
0.748230 + 0.663439i \(0.230904\pi\)
\(54\) 0 0
\(55\) −0.0125468 −0.00169182
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −8.95882 −1.16634 −0.583169 0.812351i \(-0.698188\pi\)
−0.583169 + 0.812351i \(0.698188\pi\)
\(60\) 0 0
\(61\) 2.11385 0.270650 0.135325 0.990801i \(-0.456792\pi\)
0.135325 + 0.990801i \(0.456792\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 0.0924141 0.0114626
\(66\) 0 0
\(67\) 15.0909 1.84364 0.921822 0.387614i \(-0.126701\pi\)
0.921822 + 0.387614i \(0.126701\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −2.16045 −0.256398 −0.128199 0.991748i \(-0.540920\pi\)
−0.128199 + 0.991748i \(0.540920\pi\)
\(72\) 0 0
\(73\) −3.55205 + 6.15233i −0.415736 + 0.720076i −0.995505 0.0947047i \(-0.969809\pi\)
0.579769 + 0.814781i \(0.303143\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 2.31781 0.260775 0.130387 0.991463i \(-0.458378\pi\)
0.130387 + 0.991463i \(0.458378\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 3.83160 6.63653i 0.420573 0.728454i −0.575423 0.817856i \(-0.695162\pi\)
0.995996 + 0.0894025i \(0.0284958\pi\)
\(84\) 0 0
\(85\) −0.0289077 0.0500695i −0.00313548 0.00543080i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −0.502365 0.870122i −0.0532506 0.0922327i 0.838171 0.545407i \(-0.183625\pi\)
−0.891422 + 0.453174i \(0.850292\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −0.0759530 −0.00779261
\(96\) 0 0
\(97\) −7.32986 + 12.6957i −0.744235 + 1.28905i 0.206316 + 0.978485i \(0.433852\pi\)
−0.950551 + 0.310567i \(0.899481\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −7.57250 13.1160i −0.753492 1.30509i −0.946121 0.323814i \(-0.895035\pi\)
0.192629 0.981272i \(-0.438299\pi\)
\(102\) 0 0
\(103\) 4.45031 7.70817i 0.438502 0.759508i −0.559072 0.829119i \(-0.688842\pi\)
0.997574 + 0.0696109i \(0.0221758\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 8.85846 + 15.3433i 0.856380 + 1.48329i 0.875359 + 0.483473i \(0.160625\pi\)
−0.0189792 + 0.999820i \(0.506042\pi\)
\(108\) 0 0
\(109\) 5.97433 10.3478i 0.572237 0.991144i −0.424098 0.905616i \(-0.639409\pi\)
0.996336 0.0855281i \(-0.0272577\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 7.50835 + 13.0048i 0.706326 + 1.22339i 0.966211 + 0.257753i \(0.0829822\pi\)
−0.259884 + 0.965640i \(0.583684\pi\)
\(114\) 0 0
\(115\) −0.0502773 0.0870828i −0.00468838 0.00812051i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 5.34289 9.25415i 0.485717 0.841286i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 0.223815 0.0200186
\(126\) 0 0
\(127\) 4.17511 0.370481 0.185240 0.982693i \(-0.440694\pi\)
0.185240 + 0.982693i \(0.440694\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 3.03947 5.26451i 0.265560 0.459963i −0.702150 0.712029i \(-0.747777\pi\)
0.967710 + 0.252066i \(0.0811100\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 8.04927 + 13.9418i 0.687696 + 1.19112i 0.972581 + 0.232563i \(0.0747111\pi\)
−0.284886 + 0.958562i \(0.591956\pi\)
\(138\) 0 0
\(139\) 1.83849 + 3.18435i 0.155938 + 0.270093i 0.933400 0.358837i \(-0.116827\pi\)
−0.777462 + 0.628930i \(0.783493\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 1.15723 2.00438i 0.0967726 0.167615i
\(144\) 0 0
\(145\) 0.0575849 + 0.0997400i 0.00478217 + 0.00828296i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 4.57786 7.92909i 0.375033 0.649576i −0.615299 0.788294i \(-0.710965\pi\)
0.990332 + 0.138718i \(0.0442981\pi\)
\(150\) 0 0
\(151\) 9.28603 + 16.0839i 0.755687 + 1.30889i 0.945032 + 0.326977i \(0.106030\pi\)
−0.189346 + 0.981910i \(0.560637\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0.00912245 0.0158005i 0.000732732 0.00126913i
\(156\) 0 0
\(157\) −11.6619 −0.930721 −0.465361 0.885121i \(-0.654075\pi\)
−0.465361 + 0.885121i \(0.654075\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) −6.53069 11.3115i −0.511523 0.885984i −0.999911 0.0133569i \(-0.995748\pi\)
0.488388 0.872627i \(-0.337585\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 6.86282 + 11.8867i 0.531061 + 0.919824i 0.999343 + 0.0362450i \(0.0115397\pi\)
−0.468282 + 0.883579i \(0.655127\pi\)
\(168\) 0 0
\(169\) −2.02362 + 3.50502i −0.155663 + 0.269617i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 24.9257 1.89507 0.947534 0.319656i \(-0.103567\pi\)
0.947534 + 0.319656i \(0.103567\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −4.58202 + 7.93629i −0.342476 + 0.593186i −0.984892 0.173170i \(-0.944599\pi\)
0.642416 + 0.766356i \(0.277932\pi\)
\(180\) 0 0
\(181\) −0.882658 −0.0656075 −0.0328037 0.999462i \(-0.510444\pi\)
−0.0328037 + 0.999462i \(0.510444\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −0.0105443 −0.000775231
\(186\) 0 0
\(187\) −1.44795 −0.105885
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 16.6151 1.20222 0.601111 0.799165i \(-0.294725\pi\)
0.601111 + 0.799165i \(0.294725\pi\)
\(192\) 0 0
\(193\) 18.5869 1.33791 0.668957 0.743302i \(-0.266741\pi\)
0.668957 + 0.743302i \(0.266741\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −23.4037 −1.66744 −0.833722 0.552184i \(-0.813795\pi\)
−0.833722 + 0.552184i \(0.813795\pi\)
\(198\) 0 0
\(199\) 4.03426 6.98754i 0.285981 0.495334i −0.686865 0.726785i \(-0.741014\pi\)
0.972847 + 0.231451i \(0.0743472\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) −0.135538 −0.00946636
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −0.951102 + 1.64736i −0.0657891 + 0.113950i
\(210\) 0 0
\(211\) 6.94647 + 12.0316i 0.478215 + 0.828292i 0.999688 0.0249755i \(-0.00795078\pi\)
−0.521473 + 0.853268i \(0.674617\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −0.0181732 0.0314770i −0.00123940 0.00214671i
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 10.6650 0.717402
\(222\) 0 0
\(223\) 8.28588 14.3516i 0.554863 0.961052i −0.443051 0.896497i \(-0.646104\pi\)
0.997914 0.0645551i \(-0.0205628\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 3.06311 + 5.30547i 0.203306 + 0.352136i 0.949592 0.313490i \(-0.101498\pi\)
−0.746286 + 0.665626i \(0.768165\pi\)
\(228\) 0 0
\(229\) 14.4155 24.9683i 0.952600 1.64995i 0.212833 0.977089i \(-0.431731\pi\)
0.739767 0.672863i \(-0.234936\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −8.44996 14.6358i −0.553575 0.958821i −0.998013 0.0630107i \(-0.979930\pi\)
0.444438 0.895810i \(-0.353404\pi\)
\(234\) 0 0
\(235\) 0.135536 0.234755i 0.00884138 0.0153137i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 7.63989 + 13.2327i 0.494184 + 0.855951i 0.999978 0.00670310i \(-0.00213368\pi\)
−0.505794 + 0.862654i \(0.668800\pi\)
\(240\) 0 0
\(241\) −2.09714 3.63236i −0.135089 0.233981i 0.790543 0.612407i \(-0.209799\pi\)
−0.925631 + 0.378426i \(0.876465\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 7.00537 12.1336i 0.445741 0.772046i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −19.7104 −1.24411 −0.622056 0.782973i \(-0.713702\pi\)
−0.622056 + 0.782973i \(0.713702\pi\)
\(252\) 0 0
\(253\) −2.51834 −0.158326
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −2.47060 + 4.27921i −0.154112 + 0.266930i −0.932735 0.360562i \(-0.882585\pi\)
0.778623 + 0.627492i \(0.215918\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 13.5987 + 23.5537i 0.838533 + 1.45238i 0.891121 + 0.453766i \(0.149920\pi\)
−0.0525879 + 0.998616i \(0.516747\pi\)
\(264\) 0 0
\(265\) 0.0326613 + 0.0565710i 0.00200637 + 0.00347513i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 10.5884 18.3397i 0.645588 1.11819i −0.338578 0.940938i \(-0.609946\pi\)
0.984165 0.177253i \(-0.0567209\pi\)
\(270\) 0 0
\(271\) −11.7699 20.3860i −0.714968 1.23836i −0.962972 0.269602i \(-0.913108\pi\)
0.248003 0.968759i \(-0.420226\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 1.40126 2.42706i 0.0844994 0.146357i
\(276\) 0 0
\(277\) −10.1560 17.5907i −0.610216 1.05693i −0.991204 0.132345i \(-0.957749\pi\)
0.380988 0.924580i \(-0.375584\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 9.63184 16.6828i 0.574587 0.995215i −0.421499 0.906829i \(-0.638496\pi\)
0.996086 0.0883856i \(-0.0281708\pi\)
\(282\) 0 0
\(283\) −17.9960 −1.06975 −0.534875 0.844931i \(-0.679641\pi\)
−0.534875 + 0.844931i \(0.679641\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 5.16394 + 8.94421i 0.303761 + 0.526130i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 5.27396 + 9.13477i 0.308108 + 0.533659i 0.977949 0.208846i \(-0.0669708\pi\)
−0.669840 + 0.742505i \(0.733637\pi\)
\(294\) 0 0
\(295\) −0.100261 + 0.173657i −0.00583742 + 0.0101107i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 18.5489 1.07271
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 0.0236567 0.0409746i 0.00135458 0.00234620i
\(306\) 0 0
\(307\) 16.2337 0.926506 0.463253 0.886226i \(-0.346682\pi\)
0.463253 + 0.886226i \(0.346682\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −15.7102 −0.890846 −0.445423 0.895320i \(-0.646947\pi\)
−0.445423 + 0.895320i \(0.646947\pi\)
\(312\) 0 0
\(313\) 33.0387 1.86746 0.933729 0.357979i \(-0.116534\pi\)
0.933729 + 0.357979i \(0.116534\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −8.26125 −0.463998 −0.231999 0.972716i \(-0.574527\pi\)
−0.231999 + 0.972716i \(0.574527\pi\)
\(318\) 0 0
\(319\) 2.88437 0.161494
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −8.76527 −0.487713
\(324\) 0 0
\(325\) −10.3210 + 17.8766i −0.572508 + 0.991614i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 18.2767 1.00458 0.502290 0.864699i \(-0.332491\pi\)
0.502290 + 0.864699i \(0.332491\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 0.168887 0.292520i 0.00922727 0.0159821i
\(336\) 0 0
\(337\) 10.6530 + 18.4516i 0.580307 + 1.00512i 0.995443 + 0.0953621i \(0.0304009\pi\)
−0.415135 + 0.909760i \(0.636266\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −0.228467 0.395716i −0.0123722 0.0214292i
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 21.8755 1.17434 0.587170 0.809463i \(-0.300242\pi\)
0.587170 + 0.809463i \(0.300242\pi\)
\(348\) 0 0
\(349\) 2.46155 4.26354i 0.131764 0.228222i −0.792593 0.609751i \(-0.791269\pi\)
0.924357 + 0.381530i \(0.124603\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 2.30915 + 3.99956i 0.122903 + 0.212875i 0.920911 0.389772i \(-0.127446\pi\)
−0.798008 + 0.602647i \(0.794113\pi\)
\(354\) 0 0
\(355\) −0.0241783 + 0.0418780i −0.00128325 + 0.00222265i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 13.6695 + 23.6763i 0.721449 + 1.24959i 0.960419 + 0.278559i \(0.0898568\pi\)
−0.238970 + 0.971027i \(0.576810\pi\)
\(360\) 0 0
\(361\) 3.74245 6.48212i 0.196971 0.341164i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 0.0795042 + 0.137705i 0.00416144 + 0.00720783i
\(366\) 0 0
\(367\) −12.0924 20.9446i −0.631217 1.09330i −0.987303 0.158847i \(-0.949222\pi\)
0.356086 0.934453i \(-0.384111\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −7.11620 + 12.3256i −0.368463 + 0.638196i −0.989325 0.145723i \(-0.953449\pi\)
0.620863 + 0.783919i \(0.286782\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −21.2449 −1.09417
\(378\) 0 0
\(379\) 14.5071 0.745178 0.372589 0.927996i \(-0.378470\pi\)
0.372589 + 0.927996i \(0.378470\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −12.4659 + 21.5916i −0.636979 + 1.10328i 0.349113 + 0.937080i \(0.386483\pi\)
−0.986092 + 0.166199i \(0.946851\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 15.5536 + 26.9396i 0.788599 + 1.36589i 0.926825 + 0.375493i \(0.122527\pi\)
−0.138226 + 0.990401i \(0.544140\pi\)
\(390\) 0 0
\(391\) −5.80219 10.0497i −0.293430 0.508235i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0.0259394 0.0449283i 0.00130515 0.00226059i
\(396\) 0 0
\(397\) 1.52243 + 2.63693i 0.0764086 + 0.132344i 0.901698 0.432367i \(-0.142321\pi\)
−0.825289 + 0.564710i \(0.808988\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 5.73300 9.92985i 0.286292 0.495873i −0.686629 0.727008i \(-0.740910\pi\)
0.972922 + 0.231135i \(0.0742438\pi\)
\(402\) 0 0
\(403\) 1.68278 + 2.91466i 0.0838252 + 0.145190i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −0.132038 + 0.228697i −0.00654489 + 0.0113361i
\(408\) 0 0
\(409\) −5.12492 −0.253411 −0.126706 0.991940i \(-0.540440\pi\)
−0.126706 + 0.991940i \(0.540440\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) −0.0857613 0.148543i −0.00420986 0.00729169i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 17.2951 + 29.9560i 0.844921 + 1.46345i 0.885690 + 0.464278i \(0.153686\pi\)
−0.0407685 + 0.999169i \(0.512981\pi\)
\(420\) 0 0
\(421\) −16.3403 + 28.3023i −0.796379 + 1.37937i 0.125581 + 0.992083i \(0.459920\pi\)
−0.921960 + 0.387285i \(0.873413\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 12.9139 0.626417
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0.0725515 0.125663i 0.00349468 0.00605297i −0.864273 0.503023i \(-0.832221\pi\)
0.867767 + 0.496970i \(0.165554\pi\)
\(432\) 0 0
\(433\) −19.1583 −0.920690 −0.460345 0.887740i \(-0.652274\pi\)
−0.460345 + 0.887740i \(0.652274\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −15.2449 −0.729262
\(438\) 0 0
\(439\) −7.58500 −0.362012 −0.181006 0.983482i \(-0.557935\pi\)
−0.181006 + 0.983482i \(0.557935\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 3.26484 0.155117 0.0775586 0.996988i \(-0.475288\pi\)
0.0775586 + 0.996988i \(0.475288\pi\)
\(444\) 0 0
\(445\) −0.0224885 −0.00106606
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −19.8316 −0.935909 −0.467955 0.883752i \(-0.655009\pi\)
−0.467955 + 0.883752i \(0.655009\pi\)
\(450\) 0 0
\(451\) −1.69724 + 2.93970i −0.0799197 + 0.138425i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −4.46102 −0.208678 −0.104339 0.994542i \(-0.533273\pi\)
−0.104339 + 0.994542i \(0.533273\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −7.88515 + 13.6575i −0.367248 + 0.636092i −0.989134 0.147015i \(-0.953033\pi\)
0.621886 + 0.783108i \(0.286367\pi\)
\(462\) 0 0
\(463\) −8.34621 14.4561i −0.387881 0.671830i 0.604283 0.796770i \(-0.293460\pi\)
−0.992164 + 0.124940i \(0.960126\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −14.6974 25.4566i −0.680112 1.17799i −0.974946 0.222441i \(-0.928598\pi\)
0.294834 0.955549i \(-0.404736\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −0.910278 −0.0418546
\(474\) 0 0
\(475\) 8.48262 14.6923i 0.389209 0.674131i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 9.16675 + 15.8773i 0.418839 + 0.725451i 0.995823 0.0913046i \(-0.0291037\pi\)
−0.576984 + 0.816756i \(0.695770\pi\)
\(480\) 0 0
\(481\) 0.972530 1.68447i 0.0443436 0.0768053i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 0.164062 + 0.284163i 0.00744965 + 0.0129032i
\(486\) 0 0
\(487\) 6.24766 10.8213i 0.283108 0.490358i −0.689040 0.724723i \(-0.741968\pi\)
0.972149 + 0.234365i \(0.0753010\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 1.75354 + 3.03721i 0.0791359 + 0.137067i 0.902877 0.429898i \(-0.141451\pi\)
−0.823741 + 0.566966i \(0.808117\pi\)
\(492\) 0 0
\(493\) 6.64553 + 11.5104i 0.299299 + 0.518402i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 16.1819 28.0279i 0.724402 1.25470i −0.234817 0.972040i \(-0.575449\pi\)
0.959220 0.282662i \(-0.0912175\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 15.3277 0.683430 0.341715 0.939804i \(-0.388992\pi\)
0.341715 + 0.939804i \(0.388992\pi\)
\(504\) 0 0
\(505\) −0.338985 −0.0150846
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −8.47237 + 14.6746i −0.375531 + 0.650439i −0.990406 0.138185i \(-0.955873\pi\)
0.614875 + 0.788625i \(0.289206\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −0.0996097 0.172529i −0.00438933 0.00760254i
\(516\) 0 0
\(517\) −3.39442 5.87931i −0.149287 0.258572i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 9.36977 16.2289i 0.410497 0.711002i −0.584447 0.811432i \(-0.698689\pi\)
0.994944 + 0.100430i \(0.0320219\pi\)
\(522\) 0 0
\(523\) 4.48382 + 7.76620i 0.196064 + 0.339592i 0.947249 0.320499i \(-0.103851\pi\)
−0.751185 + 0.660092i \(0.770517\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 1.05277 1.82344i 0.0458592 0.0794305i
\(528\) 0 0
\(529\) 1.40861 + 2.43978i 0.0612439 + 0.106078i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 12.5010 21.6524i 0.541480 0.937871i
\(534\) 0 0
\(535\) 0.396551 0.0171444
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −17.5759 30.4423i −0.755646 1.30882i −0.945052 0.326919i \(-0.893990\pi\)
0.189406 0.981899i \(-0.439344\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −0.133721 0.231612i −0.00572799 0.00992117i
\(546\) 0 0
\(547\) 7.75354 13.4295i 0.331517 0.574205i −0.651292 0.758827i \(-0.725773\pi\)
0.982810 + 0.184622i \(0.0591061\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 17.4607 0.743850
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 1.48253 2.56781i 0.0628166 0.108802i −0.832907 0.553413i \(-0.813325\pi\)
0.895723 + 0.444612i \(0.146658\pi\)
\(558\) 0 0
\(559\) 6.70468 0.283578
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 24.3713 1.02713 0.513564 0.858051i \(-0.328325\pi\)
0.513564 + 0.858051i \(0.328325\pi\)
\(564\) 0 0
\(565\) 0.336113 0.0141404
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −44.9602 −1.88483 −0.942414 0.334448i \(-0.891450\pi\)
−0.942414 + 0.334448i \(0.891450\pi\)
\(570\) 0 0
\(571\) −15.6776 −0.656087 −0.328043 0.944663i \(-0.606389\pi\)
−0.328043 + 0.944663i \(0.606389\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 22.4604 0.936662
\(576\) 0 0
\(577\) 13.7485 23.8132i 0.572360 0.991356i −0.423963 0.905679i \(-0.639362\pi\)
0.996323 0.0856765i \(-0.0273051\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 1.63597 0.0677549
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 13.3162 23.0644i 0.549619 0.951968i −0.448681 0.893692i \(-0.648106\pi\)
0.998300 0.0582763i \(-0.0185604\pi\)
\(588\) 0 0
\(589\) −1.38304 2.39549i −0.0569871 0.0987045i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −8.87994 15.3805i −0.364656 0.631602i 0.624065 0.781372i \(-0.285480\pi\)
−0.988721 + 0.149770i \(0.952147\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −16.5809 −0.677475 −0.338738 0.940881i \(-0.610000\pi\)
−0.338738 + 0.940881i \(0.610000\pi\)
\(600\) 0 0
\(601\) −12.3406 + 21.3746i −0.503384 + 0.871886i 0.496608 + 0.867975i \(0.334578\pi\)
−0.999992 + 0.00391177i \(0.998755\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −0.119588 0.207132i −0.00486194 0.00842112i
\(606\) 0 0
\(607\) 6.19000 10.7214i 0.251244 0.435168i −0.712624 0.701546i \(-0.752494\pi\)
0.963869 + 0.266378i \(0.0858269\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 25.0017 + 43.3042i 1.01146 + 1.75190i
\(612\) 0 0
\(613\) 2.74800 4.75968i 0.110991 0.192242i −0.805179 0.593032i \(-0.797931\pi\)
0.916170 + 0.400790i \(0.131264\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 11.4573 + 19.8446i 0.461254 + 0.798916i 0.999024 0.0441763i \(-0.0140663\pi\)
−0.537770 + 0.843092i \(0.680733\pi\)
\(618\) 0 0
\(619\) −3.49256 6.04930i −0.140378 0.243142i 0.787261 0.616620i \(-0.211498\pi\)
−0.927639 + 0.373478i \(0.878165\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −12.4962 + 21.6441i −0.499850 + 0.865765i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −1.21685 −0.0485191
\(630\) 0 0
\(631\) −14.7028 −0.585310 −0.292655 0.956218i \(-0.594539\pi\)
−0.292655 + 0.956218i \(0.594539\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 0.0467249 0.0809300i 0.00185422 0.00321161i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −10.8057 18.7161i −0.426801 0.739241i 0.569786 0.821793i \(-0.307026\pi\)
−0.996587 + 0.0825523i \(0.973693\pi\)
\(642\) 0 0
\(643\) −6.78105 11.7451i −0.267418 0.463182i 0.700776 0.713381i \(-0.252837\pi\)
−0.968194 + 0.250199i \(0.919504\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −10.2074 + 17.6798i −0.401295 + 0.695063i −0.993882 0.110443i \(-0.964773\pi\)
0.592587 + 0.805506i \(0.298106\pi\)
\(648\) 0 0
\(649\) 2.51098 + 4.34915i 0.0985647 + 0.170719i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 24.3462 42.1689i 0.952741 1.65020i 0.213287 0.976990i \(-0.431583\pi\)
0.739454 0.673207i \(-0.235084\pi\)
\(654\) 0 0
\(655\) −0.0680313 0.117834i −0.00265820 0.00460414i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 7.65029 13.2507i 0.298013 0.516174i −0.677668 0.735368i \(-0.737009\pi\)
0.975681 + 0.219194i \(0.0703428\pi\)
\(660\) 0 0
\(661\) 17.5499 0.682612 0.341306 0.939952i \(-0.389131\pi\)
0.341306 + 0.939952i \(0.389131\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 11.5581 + 20.0193i 0.447533 + 0.775150i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −0.592470 1.02619i −0.0228721 0.0396156i
\(672\) 0 0
\(673\) 3.79336 6.57029i 0.146223 0.253266i −0.783605 0.621259i \(-0.786622\pi\)
0.929829 + 0.367993i \(0.119955\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 11.5325 0.443232 0.221616 0.975134i \(-0.428867\pi\)
0.221616 + 0.975134i \(0.428867\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −7.47937 + 12.9546i −0.286190 + 0.495696i −0.972897 0.231239i \(-0.925722\pi\)
0.686707 + 0.726934i \(0.259056\pi\)
\(684\) 0 0
\(685\) 0.360328 0.0137674
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −12.0498 −0.459060
\(690\) 0 0
\(691\) −19.8961 −0.756882 −0.378441 0.925625i \(-0.623540\pi\)
−0.378441 + 0.925625i \(0.623540\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0.0823002 0.00312183
\(696\) 0 0
\(697\) −15.6416 −0.592467
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −34.9655 −1.32063 −0.660315 0.750989i \(-0.729577\pi\)
−0.660315 + 0.750989i \(0.729577\pi\)
\(702\) 0 0
\(703\) −0.799300 + 1.38443i −0.0301462 + 0.0522147i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −19.3045 −0.724998 −0.362499 0.931984i \(-0.618076\pi\)
−0.362499 + 0.931984i \(0.618076\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 1.83101 3.17140i 0.0685719 0.118770i
\(714\) 0 0
\(715\) −0.0259019 0.0448634i −0.000968676 0.00167780i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −17.7284 30.7066i −0.661159 1.14516i −0.980311 0.197458i \(-0.936731\pi\)
0.319152 0.947704i \(-0.396602\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −25.7249 −0.955400
\(726\) 0 0
\(727\) 2.27159 3.93452i 0.0842487 0.145923i −0.820822 0.571184i \(-0.806484\pi\)
0.905071 + 0.425261i \(0.139818\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −2.09726 3.63257i −0.0775701 0.134355i
\(732\) 0 0
\(733\) −16.6444 + 28.8290i −0.614777 + 1.06482i 0.375647 + 0.926763i \(0.377421\pi\)
−0.990424 + 0.138062i \(0.955913\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −4.22968 7.32602i −0.155802 0.269858i
\(738\) 0 0
\(739\) −20.6599 + 35.7841i −0.759988 + 1.31634i 0.182868 + 0.983137i \(0.441462\pi\)
−0.942856 + 0.333200i \(0.891871\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 13.7638 + 23.8396i 0.504946 + 0.874592i 0.999984 + 0.00572027i \(0.00182083\pi\)
−0.495038 + 0.868871i \(0.664846\pi\)
\(744\) 0 0
\(745\) −0.102465 0.177474i −0.00375401 0.00650214i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) −6.58398 + 11.4038i −0.240253 + 0.416130i −0.960786 0.277290i \(-0.910564\pi\)
0.720533 + 0.693420i \(0.243897\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0.415692 0.0151286
\(756\) 0 0
\(757\) −13.7925 −0.501297 −0.250648 0.968078i \(-0.580644\pi\)
−0.250648 + 0.968078i \(0.580644\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −15.6055 + 27.0294i −0.565697 + 0.979816i 0.431287 + 0.902215i \(0.358060\pi\)
−0.996984 + 0.0776016i \(0.975274\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −18.4947 32.0338i −0.667806 1.15667i
\(768\) 0 0
\(769\) 19.1337 + 33.1405i 0.689977 + 1.19508i 0.971845 + 0.235622i \(0.0757128\pi\)
−0.281867 + 0.959453i \(0.590954\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 3.73395 6.46739i 0.134301 0.232616i −0.791029 0.611778i \(-0.790455\pi\)
0.925330 + 0.379162i \(0.123788\pi\)
\(774\) 0 0
\(775\) 2.03764 + 3.52929i 0.0731941 + 0.126776i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −10.2743 + 17.7956i −0.368115 + 0.637594i
\(780\) 0 0
\(781\) 0.605533 + 1.04881i 0.0216677 + 0.0375295i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −0.130512 + 0.226053i −0.00465817 + 0.00806819i
\(786\) 0 0
\(787\) 20.6901 0.737523 0.368761 0.929524i \(-0.379782\pi\)
0.368761 + 0.929524i \(0.379782\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 4.36386 + 7.55842i 0.154965 + 0.268407i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −15.8354 27.4276i −0.560917 0.971537i −0.997417 0.0718325i \(-0.977115\pi\)
0.436500 0.899704i \(-0.356218\pi\)
\(798\) 0 0
\(799\) 15.6414 27.0916i 0.553352 0.958433i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 3.98229 0.140532
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 24.0430 41.6438i 0.845308 1.46412i −0.0400451 0.999198i \(-0.512750\pi\)
0.885353 0.464919i \(-0.153917\pi\)
\(810\) 0 0
\(811\) 17.6685 0.620427 0.310213 0.950667i \(-0.399600\pi\)
0.310213 + 0.950667i \(0.399600\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −0.292348 −0.0102405
\(816\) 0 0
\(817\) −5.51042 −0.192785
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −28.9979 −1.01203 −0.506017 0.862523i \(-0.668883\pi\)
−0.506017 + 0.862523i \(0.668883\pi\)
\(822\) 0 0
\(823\) 13.7745 0.480147 0.240074 0.970755i \(-0.422828\pi\)
0.240074 + 0.970755i \(0.422828\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −21.4150 −0.744673 −0.372337 0.928098i \(-0.621443\pi\)
−0.372337 + 0.928098i \(0.621443\pi\)
\(828\) 0 0
\(829\) −9.40772 + 16.2947i −0.326744 + 0.565937i −0.981864 0.189588i \(-0.939285\pi\)
0.655120 + 0.755525i \(0.272618\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 0.307216 0.0106316
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 21.4124 37.0874i 0.739239 1.28040i −0.213600 0.976921i \(-0.568519\pi\)
0.952839 0.303477i \(-0.0981477\pi\)
\(840\) 0 0
\(841\) 1.26191 + 2.18569i 0.0435142 + 0.0753688i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 0.0452940 + 0.0784515i 0.00155816 + 0.00269881i
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −2.11639 −0.0725491
\(852\) 0 0
\(853\) −13.3281 + 23.0849i −0.456345 + 0.790412i −0.998764 0.0496954i \(-0.984175\pi\)
0.542420 + 0.840108i \(0.317508\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 15.5907 + 27.0040i 0.532570 + 0.922438i 0.999277 + 0.0380257i \(0.0121069\pi\)
−0.466707 + 0.884412i \(0.654560\pi\)
\(858\) 0 0
\(859\) −26.9668 + 46.7078i −0.920094 + 1.59365i −0.120827 + 0.992674i \(0.538555\pi\)
−0.799267 + 0.600976i \(0.794779\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −16.8755 29.2292i −0.574448 0.994974i −0.996101 0.0882164i \(-0.971883\pi\)
0.421653 0.906757i \(-0.361450\pi\)
\(864\) 0 0
\(865\) 0.278952 0.483158i 0.00948464 0.0164279i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −0.649639 1.12521i −0.0220375 0.0381700i
\(870\) 0 0
\(871\) 31.1538 + 53.9600i 1.05561 + 1.82837i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −1.60808 + 2.78527i −0.0543009 + 0.0940519i −0.891898 0.452236i \(-0.850626\pi\)
0.837597 + 0.546288i \(0.183960\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −35.9141 −1.20998 −0.604989 0.796234i \(-0.706822\pi\)
−0.604989 + 0.796234i \(0.706822\pi\)
\(882\) 0 0
\(883\) 4.58572 0.154322 0.0771609 0.997019i \(-0.475414\pi\)
0.0771609 + 0.997019i \(0.475414\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −27.5154 + 47.6581i −0.923877 + 1.60020i −0.130521 + 0.991446i \(0.541665\pi\)
−0.793357 + 0.608757i \(0.791668\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −20.5483 35.5907i −0.687624 1.19100i
\(894\) 0 0
\(895\) 0.102558 + 0.177635i 0.00342812 + 0.00593768i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −2.09714 + 3.63236i −0.0699436 + 0.121146i
\(900\) 0 0
\(901\) 3.76924 + 6.52851i 0.125572 + 0.217496i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −0.00987810 + 0.0171094i −0.000328359 + 0.000568735i
\(906\) 0 0
\(907\) 6.38823 + 11.0647i 0.212118 + 0.367399i 0.952377 0.304923i \(-0.0986307\pi\)
−0.740259 + 0.672321i \(0.765297\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 15.9053 27.5489i 0.526968 0.912735i −0.472539 0.881310i \(-0.656662\pi\)
0.999506 0.0314246i \(-0.0100044\pi\)
\(912\) 0 0
\(913\) −4.29570 −0.142167
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 29.2724 + 50.7013i 0.965607 + 1.67248i 0.707975 + 0.706237i \(0.249609\pi\)
0.257631 + 0.966243i \(0.417058\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −4.46007 7.72506i −0.146805 0.254274i
\(924\) 0 0
\(925\) 1.17761 2.03969i 0.0387197 0.0670644i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −12.7327 −0.417746 −0.208873 0.977943i \(-0.566980\pi\)
−0.208873 + 0.977943i \(0.566980\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −0.0162045 + 0.0280670i −0.000529944 + 0.000917891i
\(936\) 0 0
\(937\) −28.2201 −0.921911 −0.460956 0.887423i \(-0.652493\pi\)
−0.460956 + 0.887423i \(0.652493\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −48.6046 −1.58446 −0.792232 0.610220i \(-0.791081\pi\)
−0.792232 + 0.610220i \(0.791081\pi\)
\(942\) 0 0
\(943\) −27.2044 −0.885898
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −12.2132 −0.396875 −0.198437 0.980114i \(-0.563587\pi\)
−0.198437 + 0.980114i \(0.563587\pi\)
\(948\) 0 0
\(949\) −29.3316 −0.952145
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −22.7206 −0.735993 −0.367996 0.929827i \(-0.619956\pi\)
−0.367996 + 0.929827i \(0.619956\pi\)
\(954\) 0 0
\(955\) 0.185944 0.322065i 0.00601701 0.0104218i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −30.3356 −0.978566
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 0.208012 0.360287i 0.00669613 0.0115980i
\(966\) 0 0
\(967\) −26.9926 46.7526i −0.868024 1.50346i −0.864013 0.503469i \(-0.832057\pi\)
−0.00401026 0.999992i \(-0.501277\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −20.3187 35.1930i −0.652059 1.12940i −0.982623 0.185615i \(-0.940572\pi\)
0.330564 0.943784i \(-0.392761\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −20.0440 −0.641264 −0.320632 0.947204i \(-0.603895\pi\)
−0.320632 + 0.947204i \(0.603895\pi\)
\(978\) 0 0
\(979\) −0.281607 + 0.487757i −0.00900018 + 0.0155888i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −4.83700 8.37793i −0.154276 0.267214i 0.778519 0.627621i \(-0.215971\pi\)
−0.932795 + 0.360407i \(0.882638\pi\)
\(984\) 0 0
\(985\) −0.261918 + 0.453655i −0.00834540 + 0.0144547i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −3.64764 6.31789i −0.115988 0.200897i
\(990\) 0 0
\(991\) −6.46878 + 11.2043i −0.205488 + 0.355915i −0.950288 0.311372i \(-0.899211\pi\)
0.744800 + 0.667287i \(0.232545\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −0.0902974 0.156400i −0.00286262 0.00495820i
\(996\) 0 0
\(997\) −0.856372 1.48328i −0.0271216 0.0469759i 0.852146 0.523304i \(-0.175301\pi\)
−0.879268 + 0.476328i \(0.841967\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 5292.2.i.j.2125.7 24
3.2 odd 2 1764.2.i.j.1537.11 24
7.2 even 3 5292.2.l.j.3313.6 24
7.3 odd 6 5292.2.j.i.3529.6 24
7.4 even 3 5292.2.j.i.3529.7 24
7.5 odd 6 5292.2.l.j.3313.7 24
7.6 odd 2 inner 5292.2.i.j.2125.6 24
9.4 even 3 5292.2.l.j.361.6 24
9.5 odd 6 1764.2.l.j.949.3 24
21.2 odd 6 1764.2.l.j.961.3 24
21.5 even 6 1764.2.l.j.961.10 24
21.11 odd 6 1764.2.j.i.1177.6 yes 24
21.17 even 6 1764.2.j.i.1177.7 yes 24
21.20 even 2 1764.2.i.j.1537.2 24
63.4 even 3 5292.2.j.i.1765.7 24
63.5 even 6 1764.2.i.j.373.2 24
63.13 odd 6 5292.2.l.j.361.7 24
63.23 odd 6 1764.2.i.j.373.11 24
63.31 odd 6 5292.2.j.i.1765.6 24
63.32 odd 6 1764.2.j.i.589.6 24
63.40 odd 6 inner 5292.2.i.j.1549.6 24
63.41 even 6 1764.2.l.j.949.10 24
63.58 even 3 inner 5292.2.i.j.1549.7 24
63.59 even 6 1764.2.j.i.589.7 yes 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1764.2.i.j.373.2 24 63.5 even 6
1764.2.i.j.373.11 24 63.23 odd 6
1764.2.i.j.1537.2 24 21.20 even 2
1764.2.i.j.1537.11 24 3.2 odd 2
1764.2.j.i.589.6 24 63.32 odd 6
1764.2.j.i.589.7 yes 24 63.59 even 6
1764.2.j.i.1177.6 yes 24 21.11 odd 6
1764.2.j.i.1177.7 yes 24 21.17 even 6
1764.2.l.j.949.3 24 9.5 odd 6
1764.2.l.j.949.10 24 63.41 even 6
1764.2.l.j.961.3 24 21.2 odd 6
1764.2.l.j.961.10 24 21.5 even 6
5292.2.i.j.1549.6 24 63.40 odd 6 inner
5292.2.i.j.1549.7 24 63.58 even 3 inner
5292.2.i.j.2125.6 24 7.6 odd 2 inner
5292.2.i.j.2125.7 24 1.1 even 1 trivial
5292.2.j.i.1765.6 24 63.31 odd 6
5292.2.j.i.1765.7 24 63.4 even 3
5292.2.j.i.3529.6 24 7.3 odd 6
5292.2.j.i.3529.7 24 7.4 even 3
5292.2.l.j.361.6 24 9.4 even 3
5292.2.l.j.361.7 24 63.13 odd 6
5292.2.l.j.3313.6 24 7.2 even 3
5292.2.l.j.3313.7 24 7.5 odd 6