Properties

Label 1764.2.j.i.1177.7
Level $1764$
Weight $2$
Character 1764.1177
Analytic conductor $14.086$
Analytic rank $0$
Dimension $24$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1764,2,Mod(589,1764)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1764, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 2, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1764.589");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1764 = 2^{2} \cdot 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1764.j (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(14.0856109166\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(\zeta_{3})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 1177.7
Character \(\chi\) \(=\) 1764.1177
Dual form 1764.2.j.i.589.7

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.241270 + 1.71516i) q^{3} +(0.0111913 + 0.0193839i) q^{5} +(-2.88358 + 0.827636i) q^{9} +O(q^{10})\) \(q+(0.241270 + 1.71516i) q^{3} +(0.0111913 + 0.0193839i) q^{5} +(-2.88358 + 0.827636i) q^{9} +(0.280281 - 0.485460i) q^{11} +(-2.06442 - 3.57567i) q^{13} +(-0.0305465 + 0.0238717i) q^{15} -2.58304 q^{17} -3.39339 q^{19} +(-2.24626 - 3.89064i) q^{23} +(2.49975 - 4.32969i) q^{25} +(-2.11525 - 4.74613i) q^{27} +(2.57275 - 4.45613i) q^{29} +(0.407568 + 0.705929i) q^{31} +(0.900268 + 0.363600i) q^{33} +0.471092 q^{37} +(5.63478 - 4.40351i) q^{39} +(-3.02774 - 5.24420i) q^{41} +(0.811935 - 1.40631i) q^{43} +(-0.0483138 - 0.0466327i) q^{45} +(-6.05540 + 10.4883i) q^{47} +(-0.623211 - 4.43034i) q^{51} -2.91845 q^{53} +0.0125468 q^{55} +(-0.818723 - 5.82022i) q^{57} +(4.47941 + 7.75856i) q^{59} +(1.05692 - 1.83064i) q^{61} +(0.0462070 - 0.0800329i) q^{65} +(-7.54544 - 13.0691i) q^{67} +(6.13113 - 4.79140i) q^{69} +2.16045 q^{71} -7.10410 q^{73} +(8.02925 + 3.24286i) q^{75} +(-1.15891 + 2.00729i) q^{79} +(7.63004 - 4.77310i) q^{81} +(3.83160 - 6.63653i) q^{83} +(-0.0289077 - 0.0500695i) q^{85} +(8.26373 + 3.33756i) q^{87} +1.00473 q^{89} +(-1.11245 + 0.869366i) q^{93} +(-0.0379765 - 0.0657772i) q^{95} +(7.32986 - 12.6957i) q^{97} +(-0.406427 + 1.63183i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 8 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 24 q + 8 q^{9} - 4 q^{11} - 28 q^{15} - 8 q^{23} - 12 q^{25} - 32 q^{29} + 24 q^{37} - 40 q^{51} + 32 q^{53} + 52 q^{57} - 36 q^{65} + 12 q^{67} + 48 q^{71} + 12 q^{79} + 16 q^{81} + 12 q^{85} + 48 q^{93} + 32 q^{95} - 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1764\mathbb{Z}\right)^\times\).

\(n\) \(785\) \(883\) \(1081\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.241270 + 1.71516i 0.139297 + 0.990251i
\(4\) 0 0
\(5\) 0.0111913 + 0.0193839i 0.00500491 + 0.00866875i 0.868517 0.495659i \(-0.165074\pi\)
−0.863512 + 0.504328i \(0.831740\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) −2.88358 + 0.827636i −0.961193 + 0.275879i
\(10\) 0 0
\(11\) 0.280281 0.485460i 0.0845078 0.146372i −0.820674 0.571397i \(-0.806402\pi\)
0.905181 + 0.425025i \(0.139735\pi\)
\(12\) 0 0
\(13\) −2.06442 3.57567i −0.572566 0.991713i −0.996301 0.0859272i \(-0.972615\pi\)
0.423736 0.905786i \(-0.360719\pi\)
\(14\) 0 0
\(15\) −0.0305465 + 0.0238717i −0.00788707 + 0.00616365i
\(16\) 0 0
\(17\) −2.58304 −0.626480 −0.313240 0.949674i \(-0.601414\pi\)
−0.313240 + 0.949674i \(0.601414\pi\)
\(18\) 0 0
\(19\) −3.39339 −0.778497 −0.389248 0.921133i \(-0.627265\pi\)
−0.389248 + 0.921133i \(0.627265\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −2.24626 3.89064i −0.468378 0.811255i 0.530969 0.847391i \(-0.321828\pi\)
−0.999347 + 0.0361367i \(0.988495\pi\)
\(24\) 0 0
\(25\) 2.49975 4.32969i 0.499950 0.865939i
\(26\) 0 0
\(27\) −2.11525 4.74613i −0.407080 0.913392i
\(28\) 0 0
\(29\) 2.57275 4.45613i 0.477748 0.827483i −0.521927 0.852990i \(-0.674787\pi\)
0.999675 + 0.0255069i \(0.00811996\pi\)
\(30\) 0 0
\(31\) 0.407568 + 0.705929i 0.0732014 + 0.126789i 0.900303 0.435264i \(-0.143345\pi\)
−0.827101 + 0.562053i \(0.810012\pi\)
\(32\) 0 0
\(33\) 0.900268 + 0.363600i 0.156717 + 0.0632947i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 0.471092 0.0774471 0.0387236 0.999250i \(-0.487671\pi\)
0.0387236 + 0.999250i \(0.487671\pi\)
\(38\) 0 0
\(39\) 5.63478 4.40351i 0.902288 0.705127i
\(40\) 0 0
\(41\) −3.02774 5.24420i −0.472854 0.819007i 0.526663 0.850074i \(-0.323443\pi\)
−0.999517 + 0.0310669i \(0.990110\pi\)
\(42\) 0 0
\(43\) 0.811935 1.40631i 0.123819 0.214461i −0.797452 0.603383i \(-0.793819\pi\)
0.921271 + 0.388922i \(0.127152\pi\)
\(44\) 0 0
\(45\) −0.0483138 0.0466327i −0.00720220 0.00695160i
\(46\) 0 0
\(47\) −6.05540 + 10.4883i −0.883271 + 1.52987i −0.0355879 + 0.999367i \(0.511330\pi\)
−0.847683 + 0.530503i \(0.822003\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) −0.623211 4.43034i −0.0872670 0.620372i
\(52\) 0 0
\(53\) −2.91845 −0.400880 −0.200440 0.979706i \(-0.564237\pi\)
−0.200440 + 0.979706i \(0.564237\pi\)
\(54\) 0 0
\(55\) 0.0125468 0.00169182
\(56\) 0 0
\(57\) −0.818723 5.82022i −0.108443 0.770907i
\(58\) 0 0
\(59\) 4.47941 + 7.75856i 0.583169 + 1.01008i 0.995101 + 0.0988641i \(0.0315209\pi\)
−0.411932 + 0.911215i \(0.635146\pi\)
\(60\) 0 0
\(61\) 1.05692 1.83064i 0.135325 0.234390i −0.790397 0.612596i \(-0.790125\pi\)
0.925722 + 0.378206i \(0.123459\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 0.0462070 0.0800329i 0.00573128 0.00992686i
\(66\) 0 0
\(67\) −7.54544 13.0691i −0.921822 1.59664i −0.796594 0.604514i \(-0.793367\pi\)
−0.125227 0.992128i \(-0.539966\pi\)
\(68\) 0 0
\(69\) 6.13113 4.79140i 0.738102 0.576817i
\(70\) 0 0
\(71\) 2.16045 0.256398 0.128199 0.991748i \(-0.459080\pi\)
0.128199 + 0.991748i \(0.459080\pi\)
\(72\) 0 0
\(73\) −7.10410 −0.831472 −0.415736 0.909485i \(-0.636476\pi\)
−0.415736 + 0.909485i \(0.636476\pi\)
\(74\) 0 0
\(75\) 8.02925 + 3.24286i 0.927138 + 0.374453i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −1.15891 + 2.00729i −0.130387 + 0.225837i −0.923826 0.382813i \(-0.874955\pi\)
0.793439 + 0.608650i \(0.208289\pi\)
\(80\) 0 0
\(81\) 7.63004 4.77310i 0.847782 0.530345i
\(82\) 0 0
\(83\) 3.83160 6.63653i 0.420573 0.728454i −0.575423 0.817856i \(-0.695162\pi\)
0.995996 + 0.0894025i \(0.0284958\pi\)
\(84\) 0 0
\(85\) −0.0289077 0.0500695i −0.00313548 0.00543080i
\(86\) 0 0
\(87\) 8.26373 + 3.33756i 0.885965 + 0.357824i
\(88\) 0 0
\(89\) 1.00473 0.106501 0.0532506 0.998581i \(-0.483042\pi\)
0.0532506 + 0.998581i \(0.483042\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) −1.11245 + 0.869366i −0.115356 + 0.0901490i
\(94\) 0 0
\(95\) −0.0379765 0.0657772i −0.00389630 0.00674860i
\(96\) 0 0
\(97\) 7.32986 12.6957i 0.744235 1.28905i −0.206316 0.978485i \(-0.566148\pi\)
0.950551 0.310567i \(-0.100519\pi\)
\(98\) 0 0
\(99\) −0.406427 + 1.63183i −0.0408474 + 0.164005i
\(100\) 0 0
\(101\) −7.57250 + 13.1160i −0.753492 + 1.30509i 0.192629 + 0.981272i \(0.438299\pi\)
−0.946121 + 0.323814i \(0.895035\pi\)
\(102\) 0 0
\(103\) −4.45031 7.70817i −0.438502 0.759508i 0.559072 0.829119i \(-0.311158\pi\)
−0.997574 + 0.0696109i \(0.977824\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 17.7169 1.71276 0.856380 0.516346i \(-0.172708\pi\)
0.856380 + 0.516346i \(0.172708\pi\)
\(108\) 0 0
\(109\) −11.9487 −1.14447 −0.572237 0.820088i \(-0.693924\pi\)
−0.572237 + 0.820088i \(0.693924\pi\)
\(110\) 0 0
\(111\) 0.113660 + 0.808001i 0.0107882 + 0.0766920i
\(112\) 0 0
\(113\) −7.50835 13.0048i −0.706326 1.22339i −0.966211 0.257753i \(-0.917018\pi\)
0.259884 0.965640i \(-0.416316\pi\)
\(114\) 0 0
\(115\) 0.0502773 0.0870828i 0.00468838 0.00812051i
\(116\) 0 0
\(117\) 8.91226 + 8.60215i 0.823938 + 0.795269i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 5.34289 + 9.25415i 0.485717 + 0.841286i
\(122\) 0 0
\(123\) 8.26417 6.45835i 0.745155 0.582329i
\(124\) 0 0
\(125\) 0.223815 0.0200186
\(126\) 0 0
\(127\) 4.17511 0.370481 0.185240 0.982693i \(-0.440694\pi\)
0.185240 + 0.982693i \(0.440694\pi\)
\(128\) 0 0
\(129\) 2.60795 + 1.05330i 0.229617 + 0.0927379i
\(130\) 0 0
\(131\) 3.03947 + 5.26451i 0.265560 + 0.459963i 0.967710 0.252066i \(-0.0811100\pi\)
−0.702150 + 0.712029i \(0.747777\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0.0683261 0.0941173i 0.00588057 0.00810032i
\(136\) 0 0
\(137\) −8.04927 + 13.9418i −0.687696 + 1.19112i 0.284886 + 0.958562i \(0.408044\pi\)
−0.972581 + 0.232563i \(0.925289\pi\)
\(138\) 0 0
\(139\) −1.83849 3.18435i −0.155938 0.270093i 0.777462 0.628930i \(-0.216507\pi\)
−0.933400 + 0.358837i \(0.883173\pi\)
\(140\) 0 0
\(141\) −19.4501 7.85550i −1.63799 0.661553i
\(142\) 0 0
\(143\) −2.31446 −0.193545
\(144\) 0 0
\(145\) 0.115170 0.00956433
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −4.57786 7.92909i −0.375033 0.649576i 0.615299 0.788294i \(-0.289035\pi\)
−0.990332 + 0.138718i \(0.955702\pi\)
\(150\) 0 0
\(151\) 9.28603 16.0839i 0.755687 1.30889i −0.189346 0.981910i \(-0.560637\pi\)
0.945032 0.326977i \(-0.106030\pi\)
\(152\) 0 0
\(153\) 7.44841 2.13782i 0.602168 0.172832i
\(154\) 0 0
\(155\) −0.00912245 + 0.0158005i −0.000732732 + 0.00126913i
\(156\) 0 0
\(157\) −5.83095 10.0995i −0.465361 0.806028i 0.533857 0.845575i \(-0.320742\pi\)
−0.999218 + 0.0395465i \(0.987409\pi\)
\(158\) 0 0
\(159\) −0.704134 5.00562i −0.0558415 0.396971i
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 13.0614 1.02305 0.511523 0.859270i \(-0.329082\pi\)
0.511523 + 0.859270i \(0.329082\pi\)
\(164\) 0 0
\(165\) 0.00302718 + 0.0215199i 0.000235665 + 0.00167532i
\(166\) 0 0
\(167\) 6.86282 + 11.8867i 0.531061 + 0.919824i 0.999343 + 0.0362450i \(0.0115397\pi\)
−0.468282 + 0.883579i \(0.655127\pi\)
\(168\) 0 0
\(169\) −2.02362 + 3.50502i −0.155663 + 0.269617i
\(170\) 0 0
\(171\) 9.78510 2.80849i 0.748285 0.214771i
\(172\) 0 0
\(173\) −12.4629 + 21.5863i −0.947534 + 1.64118i −0.196936 + 0.980416i \(0.563099\pi\)
−0.750597 + 0.660760i \(0.770234\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −12.2265 + 9.55483i −0.918997 + 0.718185i
\(178\) 0 0
\(179\) −9.16404 −0.684952 −0.342476 0.939527i \(-0.611266\pi\)
−0.342476 + 0.939527i \(0.611266\pi\)
\(180\) 0 0
\(181\) 0.882658 0.0656075 0.0328037 0.999462i \(-0.489556\pi\)
0.0328037 + 0.999462i \(0.489556\pi\)
\(182\) 0 0
\(183\) 3.39486 + 1.37112i 0.250955 + 0.101356i
\(184\) 0 0
\(185\) 0.00527214 + 0.00913162i 0.000387616 + 0.000671370i
\(186\) 0 0
\(187\) −0.723977 + 1.25397i −0.0529425 + 0.0916991i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 8.30753 14.3891i 0.601111 1.04116i −0.391542 0.920160i \(-0.628058\pi\)
0.992653 0.120995i \(-0.0386086\pi\)
\(192\) 0 0
\(193\) −9.29344 16.0967i −0.668957 1.15867i −0.978196 0.207683i \(-0.933408\pi\)
0.309240 0.950984i \(-0.399925\pi\)
\(194\) 0 0
\(195\) 0.148418 + 0.0599431i 0.0106284 + 0.00429262i
\(196\) 0 0
\(197\) 23.4037 1.66744 0.833722 0.552184i \(-0.186205\pi\)
0.833722 + 0.552184i \(0.186205\pi\)
\(198\) 0 0
\(199\) 8.06852 0.571962 0.285981 0.958235i \(-0.407681\pi\)
0.285981 + 0.958235i \(0.407681\pi\)
\(200\) 0 0
\(201\) 20.5951 16.0948i 1.45267 1.13524i
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 0.0677688 0.117379i 0.00473318 0.00819811i
\(206\) 0 0
\(207\) 9.69730 + 9.35988i 0.674009 + 0.650556i
\(208\) 0 0
\(209\) −0.951102 + 1.64736i −0.0657891 + 0.113950i
\(210\) 0 0
\(211\) 6.94647 + 12.0316i 0.478215 + 0.828292i 0.999688 0.0249755i \(-0.00795078\pi\)
−0.521473 + 0.853268i \(0.674617\pi\)
\(212\) 0 0
\(213\) 0.521252 + 3.70553i 0.0357156 + 0.253899i
\(214\) 0 0
\(215\) 0.0363465 0.00247881
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) −1.71401 12.1847i −0.115822 0.823366i
\(220\) 0 0
\(221\) 5.33248 + 9.23612i 0.358701 + 0.621289i
\(222\) 0 0
\(223\) −8.28588 + 14.3516i −0.554863 + 0.961052i 0.443051 + 0.896497i \(0.353896\pi\)
−0.997914 + 0.0645551i \(0.979437\pi\)
\(224\) 0 0
\(225\) −3.62481 + 14.5539i −0.241654 + 0.970259i
\(226\) 0 0
\(227\) 3.06311 5.30547i 0.203306 0.352136i −0.746286 0.665626i \(-0.768165\pi\)
0.949592 + 0.313490i \(0.101498\pi\)
\(228\) 0 0
\(229\) −14.4155 24.9683i −0.952600 1.64995i −0.739767 0.672863i \(-0.765064\pi\)
−0.212833 0.977089i \(-0.568269\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −16.8999 −1.10715 −0.553575 0.832799i \(-0.686737\pi\)
−0.553575 + 0.832799i \(0.686737\pi\)
\(234\) 0 0
\(235\) −0.271071 −0.0176828
\(236\) 0 0
\(237\) −3.72244 1.50342i −0.241798 0.0976575i
\(238\) 0 0
\(239\) −7.63989 13.2327i −0.494184 0.855951i 0.505794 0.862654i \(-0.331200\pi\)
−0.999978 + 0.00670310i \(0.997866\pi\)
\(240\) 0 0
\(241\) 2.09714 3.63236i 0.135089 0.233981i −0.790543 0.612407i \(-0.790201\pi\)
0.925631 + 0.378426i \(0.123535\pi\)
\(242\) 0 0
\(243\) 10.0276 + 11.9352i 0.643268 + 0.765641i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 7.00537 + 12.1336i 0.445741 + 0.772046i
\(248\) 0 0
\(249\) 12.3072 + 4.97063i 0.779936 + 0.315001i
\(250\) 0 0
\(251\) −19.7104 −1.24411 −0.622056 0.782973i \(-0.713702\pi\)
−0.622056 + 0.782973i \(0.713702\pi\)
\(252\) 0 0
\(253\) −2.51834 −0.158326
\(254\) 0 0
\(255\) 0.0789029 0.0616617i 0.00494109 0.00386140i
\(256\) 0 0
\(257\) −2.47060 4.27921i −0.154112 0.266930i 0.778623 0.627492i \(-0.215918\pi\)
−0.932735 + 0.360562i \(0.882585\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) −3.73067 + 14.9789i −0.230923 + 0.927171i
\(262\) 0 0
\(263\) −13.5987 + 23.5537i −0.838533 + 1.45238i 0.0525879 + 0.998616i \(0.483253\pi\)
−0.891121 + 0.453766i \(0.850080\pi\)
\(264\) 0 0
\(265\) −0.0326613 0.0565710i −0.00200637 0.00347513i
\(266\) 0 0
\(267\) 0.242411 + 1.72328i 0.0148353 + 0.105463i
\(268\) 0 0
\(269\) −21.1769 −1.29118 −0.645588 0.763686i \(-0.723388\pi\)
−0.645588 + 0.763686i \(0.723388\pi\)
\(270\) 0 0
\(271\) −23.5397 −1.42994 −0.714968 0.699157i \(-0.753559\pi\)
−0.714968 + 0.699157i \(0.753559\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −1.40126 2.42706i −0.0844994 0.146357i
\(276\) 0 0
\(277\) −10.1560 + 17.5907i −0.610216 + 1.05693i 0.380988 + 0.924580i \(0.375584\pi\)
−0.991204 + 0.132345i \(0.957749\pi\)
\(278\) 0 0
\(279\) −1.75951 1.69828i −0.105339 0.101674i
\(280\) 0 0
\(281\) −9.63184 + 16.6828i −0.574587 + 0.995215i 0.421499 + 0.906829i \(0.361504\pi\)
−0.996086 + 0.0883856i \(0.971829\pi\)
\(282\) 0 0
\(283\) −8.99799 15.5850i −0.534875 0.926430i −0.999169 0.0407496i \(-0.987025\pi\)
0.464295 0.885681i \(-0.346308\pi\)
\(284\) 0 0
\(285\) 0.103656 0.0810060i 0.00614006 0.00479838i
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −10.3279 −0.607523
\(290\) 0 0
\(291\) 23.5437 + 9.50883i 1.38016 + 0.557417i
\(292\) 0 0
\(293\) 5.27396 + 9.13477i 0.308108 + 0.533659i 0.977949 0.208846i \(-0.0669708\pi\)
−0.669840 + 0.742505i \(0.733637\pi\)
\(294\) 0 0
\(295\) −0.100261 + 0.173657i −0.00583742 + 0.0101107i
\(296\) 0 0
\(297\) −2.89692 0.303376i −0.168096 0.0176037i
\(298\) 0 0
\(299\) −9.27444 + 16.0638i −0.536355 + 0.928993i
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) −24.3230 9.82359i −1.39732 0.564351i
\(304\) 0 0
\(305\) 0.0473134 0.00270916
\(306\) 0 0
\(307\) −16.2337 −0.926506 −0.463253 0.886226i \(-0.653318\pi\)
−0.463253 + 0.886226i \(0.653318\pi\)
\(308\) 0 0
\(309\) 12.1470 9.49277i 0.691021 0.540025i
\(310\) 0 0
\(311\) 7.85512 + 13.6055i 0.445423 + 0.771495i 0.998082 0.0619125i \(-0.0197200\pi\)
−0.552659 + 0.833408i \(0.686387\pi\)
\(312\) 0 0
\(313\) 16.5194 28.6124i 0.933729 1.61727i 0.156846 0.987623i \(-0.449868\pi\)
0.776884 0.629644i \(-0.216799\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −4.13063 + 7.15446i −0.231999 + 0.401834i −0.958396 0.285441i \(-0.907860\pi\)
0.726397 + 0.687275i \(0.241193\pi\)
\(318\) 0 0
\(319\) −1.44218 2.49794i −0.0807468 0.139858i
\(320\) 0 0
\(321\) 4.27456 + 30.3874i 0.238583 + 1.69606i
\(322\) 0 0
\(323\) 8.76527 0.487713
\(324\) 0 0
\(325\) −20.6421 −1.14502
\(326\) 0 0
\(327\) −2.88286 20.4939i −0.159422 1.13332i
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −9.13837 + 15.8281i −0.502290 + 0.869992i 0.497706 + 0.867346i \(0.334176\pi\)
−0.999996 + 0.00264661i \(0.999158\pi\)
\(332\) 0 0
\(333\) −1.35843 + 0.389893i −0.0744416 + 0.0213660i
\(334\) 0 0
\(335\) 0.168887 0.292520i 0.00922727 0.0159821i
\(336\) 0 0
\(337\) 10.6530 + 18.4516i 0.580307 + 1.00512i 0.995443 + 0.0953621i \(0.0304009\pi\)
−0.415135 + 0.909760i \(0.636266\pi\)
\(338\) 0 0
\(339\) 20.4939 16.0157i 1.11308 0.869855i
\(340\) 0 0
\(341\) 0.456934 0.0247444
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 0.161492 + 0.0652233i 0.00869442 + 0.00351150i
\(346\) 0 0
\(347\) 10.9378 + 18.9448i 0.587170 + 1.01701i 0.994601 + 0.103773i \(0.0330915\pi\)
−0.407431 + 0.913236i \(0.633575\pi\)
\(348\) 0 0
\(349\) −2.46155 + 4.26354i −0.131764 + 0.228222i −0.924357 0.381530i \(-0.875397\pi\)
0.792593 + 0.609751i \(0.208731\pi\)
\(350\) 0 0
\(351\) −12.6038 + 17.3614i −0.672743 + 0.926684i
\(352\) 0 0
\(353\) 2.30915 3.99956i 0.122903 0.212875i −0.798008 0.602647i \(-0.794113\pi\)
0.920911 + 0.389772i \(0.127446\pi\)
\(354\) 0 0
\(355\) 0.0241783 + 0.0418780i 0.00128325 + 0.00222265i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 27.3390 1.44290 0.721449 0.692468i \(-0.243476\pi\)
0.721449 + 0.692468i \(0.243476\pi\)
\(360\) 0 0
\(361\) −7.48491 −0.393943
\(362\) 0 0
\(363\) −14.5833 + 11.3967i −0.765425 + 0.598170i
\(364\) 0 0
\(365\) −0.0795042 0.137705i −0.00416144 0.00720783i
\(366\) 0 0
\(367\) 12.0924 20.9446i 0.631217 1.09330i −0.356086 0.934453i \(-0.615889\pi\)
0.987303 0.158847i \(-0.0507776\pi\)
\(368\) 0 0
\(369\) 13.0710 + 12.6162i 0.680450 + 0.656773i
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −7.11620 12.3256i −0.368463 0.638196i 0.620863 0.783919i \(-0.286782\pi\)
−0.989325 + 0.145723i \(0.953449\pi\)
\(374\) 0 0
\(375\) 0.0539999 + 0.383880i 0.00278854 + 0.0198235i
\(376\) 0 0
\(377\) −21.2449 −1.09417
\(378\) 0 0
\(379\) 14.5071 0.745178 0.372589 0.927996i \(-0.378470\pi\)
0.372589 + 0.927996i \(0.378470\pi\)
\(380\) 0 0
\(381\) 1.00733 + 7.16100i 0.0516070 + 0.366869i
\(382\) 0 0
\(383\) −12.4659 21.5916i −0.636979 1.10328i −0.986092 0.166199i \(-0.946851\pi\)
0.349113 0.937080i \(-0.386483\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −1.17736 + 4.72720i −0.0598487 + 0.240297i
\(388\) 0 0
\(389\) −15.5536 + 26.9396i −0.788599 + 1.36589i 0.138226 + 0.990401i \(0.455860\pi\)
−0.926825 + 0.375493i \(0.877473\pi\)
\(390\) 0 0
\(391\) 5.80219 + 10.0497i 0.293430 + 0.508235i
\(392\) 0 0
\(393\) −8.29617 + 6.48336i −0.418487 + 0.327042i
\(394\) 0 0
\(395\) −0.0518788 −0.00261030
\(396\) 0 0
\(397\) 3.04486 0.152817 0.0764086 0.997077i \(-0.475655\pi\)
0.0764086 + 0.997077i \(0.475655\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −5.73300 9.92985i −0.286292 0.495873i 0.686629 0.727008i \(-0.259090\pi\)
−0.972922 + 0.231135i \(0.925756\pi\)
\(402\) 0 0
\(403\) 1.68278 2.91466i 0.0838252 0.145190i
\(404\) 0 0
\(405\) 0.177912 + 0.0944828i 0.00884050 + 0.00469489i
\(406\) 0 0
\(407\) 0.132038 0.228697i 0.00654489 0.0113361i
\(408\) 0 0
\(409\) −2.56246 4.43832i −0.126706 0.219461i 0.795693 0.605700i \(-0.207107\pi\)
−0.922398 + 0.386240i \(0.873774\pi\)
\(410\) 0 0
\(411\) −25.8544 10.4421i −1.27531 0.515071i
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 0.171523 0.00841971
\(416\) 0 0
\(417\) 5.01811 3.92159i 0.245738 0.192041i
\(418\) 0 0
\(419\) 17.2951 + 29.9560i 0.844921 + 1.46345i 0.885690 + 0.464278i \(0.153686\pi\)
−0.0407685 + 0.999169i \(0.512981\pi\)
\(420\) 0 0
\(421\) −16.3403 + 28.3023i −0.796379 + 1.37937i 0.125581 + 0.992083i \(0.459920\pi\)
−0.921960 + 0.387285i \(0.873413\pi\)
\(422\) 0 0
\(423\) 8.78076 35.2554i 0.426935 1.71417i
\(424\) 0 0
\(425\) −6.45696 + 11.1838i −0.313209 + 0.542493i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) −0.558411 3.96969i −0.0269603 0.191658i
\(430\) 0 0
\(431\) 0.145103 0.00698937 0.00349468 0.999994i \(-0.498888\pi\)
0.00349468 + 0.999994i \(0.498888\pi\)
\(432\) 0 0
\(433\) 19.1583 0.920690 0.460345 0.887740i \(-0.347726\pi\)
0.460345 + 0.887740i \(0.347726\pi\)
\(434\) 0 0
\(435\) 0.0277870 + 0.197535i 0.00133229 + 0.00947109i
\(436\) 0 0
\(437\) 7.62244 + 13.2025i 0.364631 + 0.631559i
\(438\) 0 0
\(439\) −3.79250 + 6.56881i −0.181006 + 0.313512i −0.942223 0.334985i \(-0.891269\pi\)
0.761217 + 0.648497i \(0.224602\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 1.63242 2.82743i 0.0775586 0.134335i −0.824637 0.565662i \(-0.808621\pi\)
0.902196 + 0.431326i \(0.141954\pi\)
\(444\) 0 0
\(445\) 0.0112443 + 0.0194756i 0.000533029 + 0.000923233i
\(446\) 0 0
\(447\) 12.4952 9.76483i 0.591002 0.461861i
\(448\) 0 0
\(449\) 19.8316 0.935909 0.467955 0.883752i \(-0.344991\pi\)
0.467955 + 0.883752i \(0.344991\pi\)
\(450\) 0 0
\(451\) −3.39447 −0.159839
\(452\) 0 0
\(453\) 29.8269 + 12.0465i 1.40139 + 0.565995i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 2.23051 3.86336i 0.104339 0.180720i −0.809129 0.587631i \(-0.800061\pi\)
0.913468 + 0.406911i \(0.133394\pi\)
\(458\) 0 0
\(459\) 5.46379 + 12.2595i 0.255028 + 0.572222i
\(460\) 0 0
\(461\) −7.88515 + 13.6575i −0.367248 + 0.636092i −0.989134 0.147015i \(-0.953033\pi\)
0.621886 + 0.783108i \(0.286367\pi\)
\(462\) 0 0
\(463\) −8.34621 14.4561i −0.387881 0.671830i 0.604283 0.796770i \(-0.293460\pi\)
−0.992164 + 0.124940i \(0.960126\pi\)
\(464\) 0 0
\(465\) −0.0293015 0.0118343i −0.00135882 0.000548802i
\(466\) 0 0
\(467\) 29.3947 1.36022 0.680112 0.733108i \(-0.261931\pi\)
0.680112 + 0.733108i \(0.261931\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 15.9155 12.4377i 0.733346 0.573101i
\(472\) 0 0
\(473\) −0.455139 0.788324i −0.0209273 0.0362472i
\(474\) 0 0
\(475\) −8.48262 + 14.6923i −0.389209 + 0.674131i
\(476\) 0 0
\(477\) 8.41557 2.41541i 0.385322 0.110594i
\(478\) 0 0
\(479\) 9.16675 15.8773i 0.418839 0.725451i −0.576984 0.816756i \(-0.695770\pi\)
0.995823 + 0.0913046i \(0.0291037\pi\)
\(480\) 0 0
\(481\) −0.972530 1.68447i −0.0443436 0.0768053i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 0.328123 0.0148993
\(486\) 0 0
\(487\) −12.4953 −0.566217 −0.283108 0.959088i \(-0.591366\pi\)
−0.283108 + 0.959088i \(0.591366\pi\)
\(488\) 0 0
\(489\) 3.15132 + 22.4024i 0.142508 + 1.01307i
\(490\) 0 0
\(491\) −1.75354 3.03721i −0.0791359 0.137067i 0.823741 0.566966i \(-0.191883\pi\)
−0.902877 + 0.429898i \(0.858549\pi\)
\(492\) 0 0
\(493\) −6.64553 + 11.5104i −0.299299 + 0.518402i
\(494\) 0 0
\(495\) −0.0361798 + 0.0103842i −0.00162616 + 0.000466735i
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 16.1819 + 28.0279i 0.724402 + 1.25470i 0.959220 + 0.282662i \(0.0912175\pi\)
−0.234817 + 0.972040i \(0.575449\pi\)
\(500\) 0 0
\(501\) −18.7319 + 14.6388i −0.836881 + 0.654012i
\(502\) 0 0
\(503\) 15.3277 0.683430 0.341715 0.939804i \(-0.388992\pi\)
0.341715 + 0.939804i \(0.388992\pi\)
\(504\) 0 0
\(505\) −0.338985 −0.0150846
\(506\) 0 0
\(507\) −6.49992 2.62519i −0.288672 0.116589i
\(508\) 0 0
\(509\) −8.47237 14.6746i −0.375531 0.650439i 0.614875 0.788625i \(-0.289206\pi\)
−0.990406 + 0.138185i \(0.955873\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 7.17787 + 16.1055i 0.316911 + 0.711073i
\(514\) 0 0
\(515\) 0.0996097 0.172529i 0.00438933 0.00760254i
\(516\) 0 0
\(517\) 3.39442 + 5.87931i 0.149287 + 0.258572i
\(518\) 0 0
\(519\) −40.0310 16.1677i −1.75716 0.709684i
\(520\) 0 0
\(521\) −18.7395 −0.820994 −0.410497 0.911862i \(-0.634645\pi\)
−0.410497 + 0.911862i \(0.634645\pi\)
\(522\) 0 0
\(523\) 8.96764 0.392127 0.196064 0.980591i \(-0.437184\pi\)
0.196064 + 0.980591i \(0.437184\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −1.05277 1.82344i −0.0458592 0.0794305i
\(528\) 0 0
\(529\) 1.40861 2.43978i 0.0612439 0.106078i
\(530\) 0 0
\(531\) −19.3380 18.6651i −0.839197 0.809996i
\(532\) 0 0
\(533\) −12.5010 + 21.6524i −0.541480 + 0.937871i
\(534\) 0 0
\(535\) 0.198276 + 0.343423i 0.00857220 + 0.0148475i
\(536\) 0 0
\(537\) −2.21101 15.7178i −0.0954120 0.678274i
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 35.1518 1.51129 0.755646 0.654980i \(-0.227323\pi\)
0.755646 + 0.654980i \(0.227323\pi\)
\(542\) 0 0
\(543\) 0.212959 + 1.51390i 0.00913894 + 0.0649678i
\(544\) 0 0
\(545\) −0.133721 0.231612i −0.00572799 0.00992117i
\(546\) 0 0
\(547\) 7.75354 13.4295i 0.331517 0.574205i −0.651292 0.758827i \(-0.725773\pi\)
0.982810 + 0.184622i \(0.0591061\pi\)
\(548\) 0 0
\(549\) −1.53261 + 6.15355i −0.0654103 + 0.262627i
\(550\) 0 0
\(551\) −8.73034 + 15.1214i −0.371925 + 0.644193i
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) −0.0143902 + 0.0112458i −0.000610831 + 0.000477357i
\(556\) 0 0
\(557\) 2.96505 0.125633 0.0628166 0.998025i \(-0.479992\pi\)
0.0628166 + 0.998025i \(0.479992\pi\)
\(558\) 0 0
\(559\) −6.70468 −0.283578
\(560\) 0 0
\(561\) −2.32543 0.939196i −0.0981798 0.0396529i
\(562\) 0 0
\(563\) −12.1857 21.1062i −0.513564 0.889520i −0.999876 0.0157343i \(-0.994991\pi\)
0.486312 0.873785i \(-0.338342\pi\)
\(564\) 0 0
\(565\) 0.168057 0.291083i 0.00707020 0.0122459i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −22.4801 + 38.9366i −0.942414 + 1.63231i −0.181567 + 0.983379i \(0.558117\pi\)
−0.760848 + 0.648931i \(0.775217\pi\)
\(570\) 0 0
\(571\) 7.83880 + 13.5772i 0.328043 + 0.568188i 0.982124 0.188237i \(-0.0602774\pi\)
−0.654080 + 0.756425i \(0.726944\pi\)
\(572\) 0 0
\(573\) 26.6840 + 10.7771i 1.11474 + 0.450221i
\(574\) 0 0
\(575\) −22.4604 −0.936662
\(576\) 0 0
\(577\) 27.4971 1.14472 0.572360 0.820003i \(-0.306028\pi\)
0.572360 + 0.820003i \(0.306028\pi\)
\(578\) 0 0
\(579\) 25.3663 19.8234i 1.05419 0.823834i
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) −0.817985 + 1.41679i −0.0338775 + 0.0586775i
\(584\) 0 0
\(585\) −0.0670035 + 0.269024i −0.00277025 + 0.0111228i
\(586\) 0 0
\(587\) 13.3162 23.0644i 0.549619 0.951968i −0.448681 0.893692i \(-0.648106\pi\)
0.998300 0.0582763i \(-0.0185604\pi\)
\(588\) 0 0
\(589\) −1.38304 2.39549i −0.0569871 0.0987045i
\(590\) 0 0
\(591\) 5.64661 + 40.1412i 0.232271 + 1.65119i
\(592\) 0 0
\(593\) 17.7599 0.729311 0.364656 0.931142i \(-0.381187\pi\)
0.364656 + 0.931142i \(0.381187\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 1.94669 + 13.8388i 0.0796728 + 0.566386i
\(598\) 0 0
\(599\) −8.29043 14.3594i −0.338738 0.586711i 0.645458 0.763796i \(-0.276667\pi\)
−0.984196 + 0.177085i \(0.943333\pi\)
\(600\) 0 0
\(601\) 12.3406 21.3746i 0.503384 0.871886i −0.496608 0.867975i \(-0.665422\pi\)
0.999992 0.00391177i \(-0.00124516\pi\)
\(602\) 0 0
\(603\) 32.5743 + 31.4408i 1.32653 + 1.28037i
\(604\) 0 0
\(605\) −0.119588 + 0.207132i −0.00486194 + 0.00842112i
\(606\) 0 0
\(607\) −6.19000 10.7214i −0.251244 0.435168i 0.712624 0.701546i \(-0.247506\pi\)
−0.963869 + 0.266378i \(0.914173\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 50.0034 2.02292
\(612\) 0 0
\(613\) −5.49601 −0.221982 −0.110991 0.993821i \(-0.535402\pi\)
−0.110991 + 0.993821i \(0.535402\pi\)
\(614\) 0 0
\(615\) 0.217675 + 0.0879146i 0.00877750 + 0.00354506i
\(616\) 0 0
\(617\) −11.4573 19.8446i −0.461254 0.798916i 0.537770 0.843092i \(-0.319267\pi\)
−0.999024 + 0.0441763i \(0.985934\pi\)
\(618\) 0 0
\(619\) 3.49256 6.04930i 0.140378 0.243142i −0.787261 0.616620i \(-0.788502\pi\)
0.927639 + 0.373478i \(0.121835\pi\)
\(620\) 0 0
\(621\) −13.7141 + 18.8907i −0.550326 + 0.758059i
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −12.4962 21.6441i −0.499850 0.865765i
\(626\) 0 0
\(627\) −3.05496 1.23384i −0.122003 0.0492747i
\(628\) 0 0
\(629\) −1.21685 −0.0485191
\(630\) 0 0
\(631\) −14.7028 −0.585310 −0.292655 0.956218i \(-0.594539\pi\)
−0.292655 + 0.956218i \(0.594539\pi\)
\(632\) 0 0
\(633\) −18.9603 + 14.8172i −0.753603 + 0.588931i
\(634\) 0 0
\(635\) 0.0467249 + 0.0809300i 0.00185422 + 0.00321161i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) −6.22983 + 1.78807i −0.246448 + 0.0707348i
\(640\) 0 0
\(641\) 10.8057 18.7161i 0.426801 0.739241i −0.569786 0.821793i \(-0.692974\pi\)
0.996587 + 0.0825523i \(0.0263072\pi\)
\(642\) 0 0
\(643\) 6.78105 + 11.7451i 0.267418 + 0.463182i 0.968194 0.250199i \(-0.0804961\pi\)
−0.700776 + 0.713381i \(0.747163\pi\)
\(644\) 0 0
\(645\) 0.00876931 + 0.0623401i 0.000345291 + 0.00245464i
\(646\) 0 0
\(647\) 20.4148 0.802590 0.401295 0.915949i \(-0.368560\pi\)
0.401295 + 0.915949i \(0.368560\pi\)
\(648\) 0 0
\(649\) 5.02197 0.197129
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −24.3462 42.1689i −0.952741 1.65020i −0.739454 0.673207i \(-0.764916\pi\)
−0.213287 0.976990i \(-0.568417\pi\)
\(654\) 0 0
\(655\) −0.0680313 + 0.117834i −0.00265820 + 0.00460414i
\(656\) 0 0
\(657\) 20.4852 5.87961i 0.799205 0.229385i
\(658\) 0 0
\(659\) −7.65029 + 13.2507i −0.298013 + 0.516174i −0.975681 0.219194i \(-0.929657\pi\)
0.677668 + 0.735368i \(0.262991\pi\)
\(660\) 0 0
\(661\) 8.77495 + 15.1987i 0.341306 + 0.591159i 0.984676 0.174397i \(-0.0557974\pi\)
−0.643370 + 0.765556i \(0.722464\pi\)
\(662\) 0 0
\(663\) −14.5549 + 11.3745i −0.565265 + 0.441748i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −23.1163 −0.895066
\(668\) 0 0
\(669\) −26.6144 10.7490i −1.02897 0.415582i
\(670\) 0 0
\(671\) −0.592470 1.02619i −0.0228721 0.0396156i
\(672\) 0 0
\(673\) 3.79336 6.57029i 0.146223 0.253266i −0.783605 0.621259i \(-0.786622\pi\)
0.929829 + 0.367993i \(0.119955\pi\)
\(674\) 0 0
\(675\) −25.8369 2.70573i −0.994462 0.104144i
\(676\) 0 0
\(677\) −5.76627 + 9.98748i −0.221616 + 0.383850i −0.955299 0.295642i \(-0.904466\pi\)
0.733683 + 0.679492i \(0.237800\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 9.83878 + 3.97369i 0.377023 + 0.152272i
\(682\) 0 0
\(683\) −14.9587 −0.572380 −0.286190 0.958173i \(-0.592389\pi\)
−0.286190 + 0.958173i \(0.592389\pi\)
\(684\) 0 0
\(685\) −0.360328 −0.0137674
\(686\) 0 0
\(687\) 39.3467 30.7490i 1.50117 1.17315i
\(688\) 0 0
\(689\) 6.02489 + 10.4354i 0.229530 + 0.397558i
\(690\) 0 0
\(691\) −9.94803 + 17.2305i −0.378441 + 0.655479i −0.990836 0.135073i \(-0.956873\pi\)
0.612395 + 0.790552i \(0.290206\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0.0411501 0.0712741i 0.00156091 0.00270358i
\(696\) 0 0
\(697\) 7.82079 + 13.5460i 0.296234 + 0.513092i
\(698\) 0 0
\(699\) −4.07744 28.9861i −0.154223 1.09636i
\(700\) 0 0
\(701\) 34.9655 1.32063 0.660315 0.750989i \(-0.270423\pi\)
0.660315 + 0.750989i \(0.270423\pi\)
\(702\) 0 0
\(703\) −1.59860 −0.0602923
\(704\) 0 0
\(705\) −0.0654014 0.464932i −0.00246316 0.0175104i
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 9.65227 16.7182i 0.362499 0.627866i −0.625873 0.779925i \(-0.715257\pi\)
0.988371 + 0.152059i \(0.0485904\pi\)
\(710\) 0 0
\(711\) 1.68050 6.74732i 0.0630236 0.253044i
\(712\) 0 0
\(713\) 1.83101 3.17140i 0.0685719 0.118770i
\(714\) 0 0
\(715\) −0.0259019 0.0448634i −0.000968676 0.00167780i
\(716\) 0 0
\(717\) 20.8530 16.2963i 0.778768 0.608597i
\(718\) 0 0
\(719\) 35.4569 1.32232 0.661159 0.750246i \(-0.270065\pi\)
0.661159 + 0.750246i \(0.270065\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 6.73607 + 2.72056i 0.250517 + 0.101179i
\(724\) 0 0
\(725\) −12.8625 22.2784i −0.477700 0.827400i
\(726\) 0 0
\(727\) −2.27159 + 3.93452i −0.0842487 + 0.145923i −0.905071 0.425261i \(-0.860182\pi\)
0.820822 + 0.571184i \(0.193516\pi\)
\(728\) 0 0
\(729\) −18.0514 + 20.0785i −0.668571 + 0.743648i
\(730\) 0 0
\(731\) −2.09726 + 3.63257i −0.0775701 + 0.134355i
\(732\) 0 0
\(733\) 16.6444 + 28.8290i 0.614777 + 1.06482i 0.990424 + 0.138062i \(0.0440872\pi\)
−0.375647 + 0.926763i \(0.622579\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −8.45936 −0.311605
\(738\) 0 0
\(739\) 41.3199 1.51998 0.759988 0.649937i \(-0.225205\pi\)
0.759988 + 0.649937i \(0.225205\pi\)
\(740\) 0 0
\(741\) −19.1210 + 14.9428i −0.702428 + 0.548939i
\(742\) 0 0
\(743\) −13.7638 23.8396i −0.504946 0.874592i −0.999984 0.00572027i \(-0.998179\pi\)
0.495038 0.868871i \(-0.335154\pi\)
\(744\) 0 0
\(745\) 0.102465 0.177474i 0.00375401 0.00650214i
\(746\) 0 0
\(747\) −5.55609 + 22.3081i −0.203287 + 0.816211i
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) −6.58398 11.4038i −0.240253 0.416130i 0.720533 0.693420i \(-0.243897\pi\)
−0.960786 + 0.277290i \(0.910564\pi\)
\(752\) 0 0
\(753\) −4.75554 33.8067i −0.173302 1.23198i
\(754\) 0 0
\(755\) 0.415692 0.0151286
\(756\) 0 0
\(757\) −13.7925 −0.501297 −0.250648 0.968078i \(-0.580644\pi\)
−0.250648 + 0.968078i \(0.580644\pi\)
\(758\) 0 0
\(759\) −0.607599 4.31936i −0.0220545 0.156783i
\(760\) 0 0
\(761\) −15.6055 27.0294i −0.565697 0.979816i −0.996984 0.0776016i \(-0.975274\pi\)
0.431287 0.902215i \(-0.358060\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0.124797 + 0.120454i 0.00451204 + 0.00435504i
\(766\) 0 0
\(767\) 18.4947 32.0338i 0.667806 1.15667i
\(768\) 0 0
\(769\) −19.1337 33.1405i −0.689977 1.19508i −0.971845 0.235622i \(-0.924287\pi\)
0.281867 0.959453i \(-0.409046\pi\)
\(770\) 0 0
\(771\) 6.74346 5.26993i 0.242860 0.189792i
\(772\) 0 0
\(773\) −7.46790 −0.268602 −0.134301 0.990941i \(-0.542879\pi\)
−0.134301 + 0.990941i \(0.542879\pi\)
\(774\) 0 0
\(775\) 4.07527 0.146388
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 10.2743 + 17.7956i 0.368115 + 0.637594i
\(780\) 0 0
\(781\) 0.605533 1.04881i 0.0216677 0.0375295i
\(782\) 0 0
\(783\) −26.5914 2.78475i −0.950299 0.0995189i
\(784\) 0 0
\(785\) 0.130512 0.226053i 0.00465817 0.00806819i
\(786\) 0 0
\(787\) 10.3451 + 17.9182i 0.368761 + 0.638713i 0.989372 0.145405i \(-0.0464486\pi\)
−0.620611 + 0.784119i \(0.713115\pi\)
\(788\) 0 0
\(789\) −43.6794 17.6412i −1.55503 0.628045i
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) −8.72771 −0.309930
\(794\) 0 0
\(795\) 0.0891483 0.0696683i 0.00316176 0.00247088i
\(796\) 0 0
\(797\) −15.8354 27.4276i −0.560917 0.971537i −0.997417 0.0718325i \(-0.977115\pi\)
0.436500 0.899704i \(-0.356218\pi\)
\(798\) 0 0
\(799\) 15.6414 27.0916i 0.553352 0.958433i
\(800\) 0 0
\(801\) −2.89722 + 0.831551i −0.102368 + 0.0293814i
\(802\) 0 0
\(803\) −1.99114 + 3.44876i −0.0702659 + 0.121704i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −5.10934 36.3218i −0.179857 1.27859i
\(808\) 0 0
\(809\) 48.0861 1.69062 0.845308 0.534279i \(-0.179417\pi\)
0.845308 + 0.534279i \(0.179417\pi\)
\(810\) 0 0
\(811\) −17.6685 −0.620427 −0.310213 0.950667i \(-0.600400\pi\)
−0.310213 + 0.950667i \(0.600400\pi\)
\(812\) 0 0
\(813\) −5.67943 40.3745i −0.199186 1.41600i
\(814\) 0 0
\(815\) 0.146174 + 0.253181i 0.00512025 + 0.00886853i
\(816\) 0 0
\(817\) −2.75521 + 4.77216i −0.0963926 + 0.166957i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −14.4990 + 25.1129i −0.506017 + 0.876448i 0.493958 + 0.869486i \(0.335550\pi\)
−0.999976 + 0.00696234i \(0.997784\pi\)
\(822\) 0 0
\(823\) −6.88723 11.9290i −0.240074 0.415820i 0.720661 0.693287i \(-0.243838\pi\)
−0.960735 + 0.277467i \(0.910505\pi\)
\(824\) 0 0
\(825\) 3.82472 2.98897i 0.133160 0.104063i
\(826\) 0 0
\(827\) 21.4150 0.744673 0.372337 0.928098i \(-0.378557\pi\)
0.372337 + 0.928098i \(0.378557\pi\)
\(828\) 0 0
\(829\) −18.8154 −0.653487 −0.326744 0.945113i \(-0.605951\pi\)
−0.326744 + 0.945113i \(0.605951\pi\)
\(830\) 0 0
\(831\) −32.6214 13.1751i −1.13162 0.457040i
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) −0.153608 + 0.266057i −0.00531582 + 0.00920727i
\(836\) 0 0
\(837\) 2.48832 3.42759i 0.0860088 0.118475i
\(838\) 0 0
\(839\) 21.4124 37.0874i 0.739239 1.28040i −0.213600 0.976921i \(-0.568519\pi\)
0.952839 0.303477i \(-0.0981477\pi\)
\(840\) 0 0
\(841\) 1.26191 + 2.18569i 0.0435142 + 0.0753688i
\(842\) 0 0
\(843\) −30.9377 12.4951i −1.06555 0.430355i
\(844\) 0 0
\(845\) −0.0905880 −0.00311632
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 24.5598 19.1932i 0.842892 0.658709i
\(850\) 0 0
\(851\) −1.05820 1.83285i −0.0362745 0.0628293i
\(852\) 0 0
\(853\) 13.3281 23.0849i 0.456345 0.790412i −0.542420 0.840108i \(-0.682492\pi\)
0.998764 + 0.0496954i \(0.0158251\pi\)
\(854\) 0 0
\(855\) 0.163948 + 0.158243i 0.00560689 + 0.00541180i
\(856\) 0 0
\(857\) 15.5907 27.0040i 0.532570 0.922438i −0.466707 0.884412i \(-0.654560\pi\)
0.999277 0.0380257i \(-0.0121069\pi\)
\(858\) 0 0
\(859\) 26.9668 + 46.7078i 0.920094 + 1.59365i 0.799267 + 0.600976i \(0.205221\pi\)
0.120827 + 0.992674i \(0.461445\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −33.7510 −1.14890 −0.574448 0.818541i \(-0.694783\pi\)
−0.574448 + 0.818541i \(0.694783\pi\)
\(864\) 0 0
\(865\) −0.557903 −0.0189693
\(866\) 0 0
\(867\) −2.49181 17.7140i −0.0846263 0.601600i
\(868\) 0 0
\(869\) 0.649639 + 1.12521i 0.0220375 + 0.0381700i
\(870\) 0 0
\(871\) −31.1538 + 53.9600i −1.05561 + 1.82837i
\(872\) 0 0
\(873\) −10.6288 + 42.6755i −0.359731 + 1.44435i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −1.60808 2.78527i −0.0543009 0.0940519i 0.837597 0.546288i \(-0.183960\pi\)
−0.891898 + 0.452236i \(0.850626\pi\)
\(878\) 0 0
\(879\) −14.3952 + 11.2497i −0.485538 + 0.379442i
\(880\) 0 0
\(881\) −35.9141 −1.20998 −0.604989 0.796234i \(-0.706822\pi\)
−0.604989 + 0.796234i \(0.706822\pi\)
\(882\) 0 0
\(883\) 4.58572 0.154322 0.0771609 0.997019i \(-0.475414\pi\)
0.0771609 + 0.997019i \(0.475414\pi\)
\(884\) 0 0
\(885\) −0.322040 0.130066i −0.0108253 0.00437211i
\(886\) 0 0
\(887\) −27.5154 47.6581i −0.923877 1.60020i −0.793357 0.608757i \(-0.791668\pi\)
−0.130521 0.991446i \(-0.541665\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) −0.178600 5.04189i −0.00598331 0.168910i
\(892\) 0 0
\(893\) 20.5483 35.5907i 0.687624 1.19100i
\(894\) 0 0
\(895\) −0.102558 0.177635i −0.00342812 0.00593768i
\(896\) 0 0
\(897\) −29.7897 12.0315i −0.994649 0.401719i
\(898\) 0 0
\(899\) 4.19428 0.139887
\(900\) 0 0
\(901\) 7.53848 0.251143
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0.00987810 + 0.0171094i 0.000328359 + 0.000568735i
\(906\) 0 0
\(907\) 6.38823 11.0647i 0.212118 0.367399i −0.740259 0.672321i \(-0.765297\pi\)
0.952377 + 0.304923i \(0.0986307\pi\)
\(908\) 0 0
\(909\) 10.9807 44.0881i 0.364205 1.46231i
\(910\) 0 0
\(911\) −15.9053 + 27.5489i −0.526968 + 0.912735i 0.472539 + 0.881310i \(0.343338\pi\)
−0.999506 + 0.0314246i \(0.989996\pi\)
\(912\) 0 0
\(913\) −2.14785 3.72018i −0.0710834 0.123120i
\(914\) 0 0
\(915\) 0.0114153 + 0.0811503i 0.000377378 + 0.00268275i
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) −58.5448 −1.93121 −0.965607 0.260006i \(-0.916275\pi\)
−0.965607 + 0.260006i \(0.916275\pi\)
\(920\) 0 0
\(921\) −3.91671 27.8435i −0.129060 0.917474i
\(922\) 0 0
\(923\) −4.46007 7.72506i −0.146805 0.254274i
\(924\) 0 0
\(925\) 1.17761 2.03969i 0.0387197 0.0670644i
\(926\) 0 0
\(927\) 19.2124 + 18.5439i 0.631017 + 0.609060i
\(928\) 0 0
\(929\) 6.36634 11.0268i 0.208873 0.361779i −0.742487 0.669861i \(-0.766354\pi\)
0.951360 + 0.308082i \(0.0996872\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) −21.4404 + 16.7554i −0.701927 + 0.548548i
\(934\) 0 0
\(935\) −0.0324090 −0.00105989
\(936\) 0 0
\(937\) 28.2201 0.921911 0.460956 0.887423i \(-0.347507\pi\)
0.460956 + 0.887423i \(0.347507\pi\)
\(938\) 0 0
\(939\) 53.0605 + 21.4301i 1.73157 + 0.699345i
\(940\) 0 0
\(941\) 24.3023 + 42.0928i 0.792232 + 1.37219i 0.924582 + 0.380983i \(0.124414\pi\)
−0.132350 + 0.991203i \(0.542252\pi\)
\(942\) 0 0
\(943\) −13.6022 + 23.5597i −0.442949 + 0.767210i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −6.10659 + 10.5769i −0.198437 + 0.343704i −0.948022 0.318205i \(-0.896920\pi\)
0.749585 + 0.661909i \(0.230253\pi\)
\(948\) 0 0
\(949\) 14.6658 + 25.4019i 0.476072 + 0.824582i
\(950\) 0 0
\(951\) −13.2677 5.35855i −0.430234 0.173763i
\(952\) 0 0
\(953\) 22.7206 0.735993 0.367996 0.929827i \(-0.380044\pi\)
0.367996 + 0.929827i \(0.380044\pi\)
\(954\) 0 0
\(955\) 0.371889 0.0120340
\(956\) 0 0
\(957\) 3.93642 3.07626i 0.127246 0.0994414i
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 15.1678 26.2714i 0.489283 0.847463i
\(962\) 0 0
\(963\) −51.0881 + 14.6632i −1.64629 + 0.472514i
\(964\) 0 0
\(965\) 0.208012 0.360287i 0.00669613 0.0115980i
\(966\) 0 0
\(967\) −26.9926 46.7526i −0.868024 1.50346i −0.864013 0.503469i \(-0.832057\pi\)
−0.00401026 0.999992i \(-0.501277\pi\)
\(968\) 0 0
\(969\) 2.11480 + 15.0339i 0.0679371 + 0.482958i
\(970\) 0 0
\(971\) 40.6374 1.30412 0.652059 0.758169i \(-0.273906\pi\)
0.652059 + 0.758169i \(0.273906\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) −4.98032 35.4046i −0.159498 1.13385i
\(976\) 0 0
\(977\) −10.0220 17.3586i −0.320632 0.555351i 0.659987 0.751277i \(-0.270562\pi\)
−0.980619 + 0.195927i \(0.937229\pi\)
\(978\) 0 0
\(979\) 0.281607 0.487757i 0.00900018 0.0155888i
\(980\) 0 0
\(981\) 34.4549 9.88914i 1.10006 0.315736i
\(982\) 0 0
\(983\) −4.83700 + 8.37793i −0.154276 + 0.267214i −0.932795 0.360407i \(-0.882638\pi\)
0.778519 + 0.627621i \(0.215971\pi\)
\(984\) 0 0
\(985\) 0.261918 + 0.453655i 0.00834540 + 0.0144547i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −7.29527 −0.231976
\(990\) 0 0
\(991\) 12.9376 0.410975 0.205488 0.978660i \(-0.434122\pi\)
0.205488 + 0.978660i \(0.434122\pi\)
\(992\) 0 0
\(993\) −29.3526 11.8550i −0.931478 0.376206i
\(994\) 0 0
\(995\) 0.0902974 + 0.156400i 0.00286262 + 0.00495820i
\(996\) 0 0
\(997\) 0.856372 1.48328i 0.0271216 0.0469759i −0.852146 0.523304i \(-0.824699\pi\)
0.879268 + 0.476328i \(0.158033\pi\)
\(998\) 0 0
\(999\) −0.996479 2.23586i −0.0315272 0.0707396i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1764.2.j.i.1177.7 yes 24
3.2 odd 2 5292.2.j.i.3529.6 24
7.2 even 3 1764.2.i.j.1537.2 24
7.3 odd 6 1764.2.l.j.961.3 24
7.4 even 3 1764.2.l.j.961.10 24
7.5 odd 6 1764.2.i.j.1537.11 24
7.6 odd 2 inner 1764.2.j.i.1177.6 yes 24
9.4 even 3 inner 1764.2.j.i.589.7 yes 24
9.5 odd 6 5292.2.j.i.1765.6 24
21.2 odd 6 5292.2.i.j.2125.6 24
21.5 even 6 5292.2.i.j.2125.7 24
21.11 odd 6 5292.2.l.j.3313.7 24
21.17 even 6 5292.2.l.j.3313.6 24
21.20 even 2 5292.2.j.i.3529.7 24
63.4 even 3 1764.2.i.j.373.2 24
63.5 even 6 5292.2.l.j.361.6 24
63.13 odd 6 inner 1764.2.j.i.589.6 24
63.23 odd 6 5292.2.l.j.361.7 24
63.31 odd 6 1764.2.i.j.373.11 24
63.32 odd 6 5292.2.i.j.1549.6 24
63.40 odd 6 1764.2.l.j.949.3 24
63.41 even 6 5292.2.j.i.1765.7 24
63.58 even 3 1764.2.l.j.949.10 24
63.59 even 6 5292.2.i.j.1549.7 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1764.2.i.j.373.2 24 63.4 even 3
1764.2.i.j.373.11 24 63.31 odd 6
1764.2.i.j.1537.2 24 7.2 even 3
1764.2.i.j.1537.11 24 7.5 odd 6
1764.2.j.i.589.6 24 63.13 odd 6 inner
1764.2.j.i.589.7 yes 24 9.4 even 3 inner
1764.2.j.i.1177.6 yes 24 7.6 odd 2 inner
1764.2.j.i.1177.7 yes 24 1.1 even 1 trivial
1764.2.l.j.949.3 24 63.40 odd 6
1764.2.l.j.949.10 24 63.58 even 3
1764.2.l.j.961.3 24 7.3 odd 6
1764.2.l.j.961.10 24 7.4 even 3
5292.2.i.j.1549.6 24 63.32 odd 6
5292.2.i.j.1549.7 24 63.59 even 6
5292.2.i.j.2125.6 24 21.2 odd 6
5292.2.i.j.2125.7 24 21.5 even 6
5292.2.j.i.1765.6 24 9.5 odd 6
5292.2.j.i.1765.7 24 63.41 even 6
5292.2.j.i.3529.6 24 3.2 odd 2
5292.2.j.i.3529.7 24 21.20 even 2
5292.2.l.j.361.6 24 63.5 even 6
5292.2.l.j.361.7 24 63.23 odd 6
5292.2.l.j.3313.6 24 21.17 even 6
5292.2.l.j.3313.7 24 21.11 odd 6