Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [1764,2,Mod(589,1764)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1764, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([0, 2, 0]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("1764.589");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 1764 = 2^{2} \cdot 3^{2} \cdot 7^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 1764.j (of order \(3\), degree \(2\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(14.0856109166\) |
Analytic rank: | \(0\) |
Dimension: | \(24\) |
Relative dimension: | \(12\) over \(\Q(\zeta_{3})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{3}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
589.1 | 0 | −1.72754 | + | 0.124883i | 0 | −1.73981 | + | 3.01343i | 0 | 0 | 0 | 2.96881 | − | 0.431481i | 0 | ||||||||||||
589.2 | 0 | −1.69569 | + | 0.353059i | 0 | 0.469227 | − | 0.812725i | 0 | 0 | 0 | 2.75070 | − | 1.19736i | 0 | ||||||||||||
589.3 | 0 | −1.47192 | − | 0.912932i | 0 | 1.94623 | − | 3.37097i | 0 | 0 | 0 | 1.33311 | + | 2.68753i | 0 | ||||||||||||
589.4 | 0 | −1.05155 | + | 1.37631i | 0 | 0.736933 | − | 1.27640i | 0 | 0 | 0 | −0.788484 | − | 2.89453i | 0 | ||||||||||||
589.5 | 0 | −0.899846 | − | 1.47996i | 0 | 1.19243 | − | 2.06535i | 0 | 0 | 0 | −1.38055 | + | 2.66347i | 0 | ||||||||||||
589.6 | 0 | −0.241270 | + | 1.71516i | 0 | −0.0111913 | + | 0.0193839i | 0 | 0 | 0 | −2.88358 | − | 0.827636i | 0 | ||||||||||||
589.7 | 0 | 0.241270 | − | 1.71516i | 0 | 0.0111913 | − | 0.0193839i | 0 | 0 | 0 | −2.88358 | − | 0.827636i | 0 | ||||||||||||
589.8 | 0 | 0.899846 | + | 1.47996i | 0 | −1.19243 | + | 2.06535i | 0 | 0 | 0 | −1.38055 | + | 2.66347i | 0 | ||||||||||||
589.9 | 0 | 1.05155 | − | 1.37631i | 0 | −0.736933 | + | 1.27640i | 0 | 0 | 0 | −0.788484 | − | 2.89453i | 0 | ||||||||||||
589.10 | 0 | 1.47192 | + | 0.912932i | 0 | −1.94623 | + | 3.37097i | 0 | 0 | 0 | 1.33311 | + | 2.68753i | 0 | ||||||||||||
589.11 | 0 | 1.69569 | − | 0.353059i | 0 | −0.469227 | + | 0.812725i | 0 | 0 | 0 | 2.75070 | − | 1.19736i | 0 | ||||||||||||
589.12 | 0 | 1.72754 | − | 0.124883i | 0 | 1.73981 | − | 3.01343i | 0 | 0 | 0 | 2.96881 | − | 0.431481i | 0 | ||||||||||||
1177.1 | 0 | −1.72754 | − | 0.124883i | 0 | −1.73981 | − | 3.01343i | 0 | 0 | 0 | 2.96881 | + | 0.431481i | 0 | ||||||||||||
1177.2 | 0 | −1.69569 | − | 0.353059i | 0 | 0.469227 | + | 0.812725i | 0 | 0 | 0 | 2.75070 | + | 1.19736i | 0 | ||||||||||||
1177.3 | 0 | −1.47192 | + | 0.912932i | 0 | 1.94623 | + | 3.37097i | 0 | 0 | 0 | 1.33311 | − | 2.68753i | 0 | ||||||||||||
1177.4 | 0 | −1.05155 | − | 1.37631i | 0 | 0.736933 | + | 1.27640i | 0 | 0 | 0 | −0.788484 | + | 2.89453i | 0 | ||||||||||||
1177.5 | 0 | −0.899846 | + | 1.47996i | 0 | 1.19243 | + | 2.06535i | 0 | 0 | 0 | −1.38055 | − | 2.66347i | 0 | ||||||||||||
1177.6 | 0 | −0.241270 | − | 1.71516i | 0 | −0.0111913 | − | 0.0193839i | 0 | 0 | 0 | −2.88358 | + | 0.827636i | 0 | ||||||||||||
1177.7 | 0 | 0.241270 | + | 1.71516i | 0 | 0.0111913 | + | 0.0193839i | 0 | 0 | 0 | −2.88358 | + | 0.827636i | 0 | ||||||||||||
1177.8 | 0 | 0.899846 | − | 1.47996i | 0 | −1.19243 | − | 2.06535i | 0 | 0 | 0 | −1.38055 | − | 2.66347i | 0 | ||||||||||||
See all 24 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
7.b | odd | 2 | 1 | inner |
9.c | even | 3 | 1 | inner |
63.l | odd | 6 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 1764.2.j.i | ✓ | 24 |
3.b | odd | 2 | 1 | 5292.2.j.i | 24 | ||
7.b | odd | 2 | 1 | inner | 1764.2.j.i | ✓ | 24 |
7.c | even | 3 | 1 | 1764.2.i.j | 24 | ||
7.c | even | 3 | 1 | 1764.2.l.j | 24 | ||
7.d | odd | 6 | 1 | 1764.2.i.j | 24 | ||
7.d | odd | 6 | 1 | 1764.2.l.j | 24 | ||
9.c | even | 3 | 1 | inner | 1764.2.j.i | ✓ | 24 |
9.d | odd | 6 | 1 | 5292.2.j.i | 24 | ||
21.c | even | 2 | 1 | 5292.2.j.i | 24 | ||
21.g | even | 6 | 1 | 5292.2.i.j | 24 | ||
21.g | even | 6 | 1 | 5292.2.l.j | 24 | ||
21.h | odd | 6 | 1 | 5292.2.i.j | 24 | ||
21.h | odd | 6 | 1 | 5292.2.l.j | 24 | ||
63.g | even | 3 | 1 | 1764.2.i.j | 24 | ||
63.h | even | 3 | 1 | 1764.2.l.j | 24 | ||
63.i | even | 6 | 1 | 5292.2.l.j | 24 | ||
63.j | odd | 6 | 1 | 5292.2.l.j | 24 | ||
63.k | odd | 6 | 1 | 1764.2.i.j | 24 | ||
63.l | odd | 6 | 1 | inner | 1764.2.j.i | ✓ | 24 |
63.n | odd | 6 | 1 | 5292.2.i.j | 24 | ||
63.o | even | 6 | 1 | 5292.2.j.i | 24 | ||
63.s | even | 6 | 1 | 5292.2.i.j | 24 | ||
63.t | odd | 6 | 1 | 1764.2.l.j | 24 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
1764.2.i.j | 24 | 7.c | even | 3 | 1 | ||
1764.2.i.j | 24 | 7.d | odd | 6 | 1 | ||
1764.2.i.j | 24 | 63.g | even | 3 | 1 | ||
1764.2.i.j | 24 | 63.k | odd | 6 | 1 | ||
1764.2.j.i | ✓ | 24 | 1.a | even | 1 | 1 | trivial |
1764.2.j.i | ✓ | 24 | 7.b | odd | 2 | 1 | inner |
1764.2.j.i | ✓ | 24 | 9.c | even | 3 | 1 | inner |
1764.2.j.i | ✓ | 24 | 63.l | odd | 6 | 1 | inner |
1764.2.l.j | 24 | 7.c | even | 3 | 1 | ||
1764.2.l.j | 24 | 7.d | odd | 6 | 1 | ||
1764.2.l.j | 24 | 63.h | even | 3 | 1 | ||
1764.2.l.j | 24 | 63.t | odd | 6 | 1 | ||
5292.2.i.j | 24 | 21.g | even | 6 | 1 | ||
5292.2.i.j | 24 | 21.h | odd | 6 | 1 | ||
5292.2.i.j | 24 | 63.n | odd | 6 | 1 | ||
5292.2.i.j | 24 | 63.s | even | 6 | 1 | ||
5292.2.j.i | 24 | 3.b | odd | 2 | 1 | ||
5292.2.j.i | 24 | 9.d | odd | 6 | 1 | ||
5292.2.j.i | 24 | 21.c | even | 2 | 1 | ||
5292.2.j.i | 24 | 63.o | even | 6 | 1 | ||
5292.2.l.j | 24 | 21.g | even | 6 | 1 | ||
5292.2.l.j | 24 | 21.h | odd | 6 | 1 | ||
5292.2.l.j | 24 | 63.i | even | 6 | 1 | ||
5292.2.l.j | 24 | 63.j | odd | 6 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{24} + 36 T_{5}^{22} + 855 T_{5}^{20} + 11596 T_{5}^{18} + 113607 T_{5}^{16} + 669690 T_{5}^{14} + \cdots + 1 \) acting on \(S_{2}^{\mathrm{new}}(1764, [\chi])\).