Properties

Label 1764.2.l.c.949.1
Level $1764$
Weight $2$
Character 1764.949
Analytic conductor $14.086$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1764,2,Mod(949,1764)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1764, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 2, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1764.949");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1764 = 2^{2} \cdot 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1764.l (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(14.0856109166\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 36)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 949.1
Root \(0.500000 + 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 1764.949
Dual form 1764.2.l.c.961.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.50000 + 0.866025i) q^{3} +3.00000 q^{5} +(1.50000 + 2.59808i) q^{9} +3.00000 q^{11} +(0.500000 - 0.866025i) q^{13} +(4.50000 + 2.59808i) q^{15} +(-3.00000 + 5.19615i) q^{17} +(2.00000 + 3.46410i) q^{19} -3.00000 q^{23} +4.00000 q^{25} +5.19615i q^{27} +(-1.50000 - 2.59808i) q^{29} +(-2.50000 - 4.33013i) q^{31} +(4.50000 + 2.59808i) q^{33} +(-1.00000 - 1.73205i) q^{37} +(1.50000 - 0.866025i) q^{39} +(-1.50000 + 2.59808i) q^{41} +(0.500000 + 0.866025i) q^{43} +(4.50000 + 7.79423i) q^{45} +(4.50000 - 7.79423i) q^{47} +(-9.00000 + 5.19615i) q^{51} +(3.00000 - 5.19615i) q^{53} +9.00000 q^{55} +6.92820i q^{57} +(1.50000 + 2.59808i) q^{59} +(6.50000 - 11.2583i) q^{61} +(1.50000 - 2.59808i) q^{65} +(3.50000 + 6.06218i) q^{67} +(-4.50000 - 2.59808i) q^{69} -12.0000 q^{71} +(5.00000 - 8.66025i) q^{73} +(6.00000 + 3.46410i) q^{75} +(-5.50000 + 9.52628i) q^{79} +(-4.50000 + 7.79423i) q^{81} +(4.50000 + 7.79423i) q^{83} +(-9.00000 + 15.5885i) q^{85} -5.19615i q^{87} +(-3.00000 - 5.19615i) q^{89} -8.66025i q^{93} +(6.00000 + 10.3923i) q^{95} +(-5.50000 - 9.52628i) q^{97} +(4.50000 + 7.79423i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 3 q^{3} + 6 q^{5} + 3 q^{9} + 6 q^{11} + q^{13} + 9 q^{15} - 6 q^{17} + 4 q^{19} - 6 q^{23} + 8 q^{25} - 3 q^{29} - 5 q^{31} + 9 q^{33} - 2 q^{37} + 3 q^{39} - 3 q^{41} + q^{43} + 9 q^{45} + 9 q^{47}+ \cdots + 9 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1764\mathbb{Z}\right)^\times\).

\(n\) \(785\) \(883\) \(1081\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.50000 + 0.866025i 0.866025 + 0.500000i
\(4\) 0 0
\(5\) 3.00000 1.34164 0.670820 0.741620i \(-0.265942\pi\)
0.670820 + 0.741620i \(0.265942\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) 1.50000 + 2.59808i 0.500000 + 0.866025i
\(10\) 0 0
\(11\) 3.00000 0.904534 0.452267 0.891883i \(-0.350615\pi\)
0.452267 + 0.891883i \(0.350615\pi\)
\(12\) 0 0
\(13\) 0.500000 0.866025i 0.138675 0.240192i −0.788320 0.615265i \(-0.789049\pi\)
0.926995 + 0.375073i \(0.122382\pi\)
\(14\) 0 0
\(15\) 4.50000 + 2.59808i 1.16190 + 0.670820i
\(16\) 0 0
\(17\) −3.00000 + 5.19615i −0.727607 + 1.26025i 0.230285 + 0.973123i \(0.426034\pi\)
−0.957892 + 0.287129i \(0.907299\pi\)
\(18\) 0 0
\(19\) 2.00000 + 3.46410i 0.458831 + 0.794719i 0.998899 0.0469020i \(-0.0149348\pi\)
−0.540068 + 0.841621i \(0.681602\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −3.00000 −0.625543 −0.312772 0.949828i \(-0.601257\pi\)
−0.312772 + 0.949828i \(0.601257\pi\)
\(24\) 0 0
\(25\) 4.00000 0.800000
\(26\) 0 0
\(27\) 5.19615i 1.00000i
\(28\) 0 0
\(29\) −1.50000 2.59808i −0.278543 0.482451i 0.692480 0.721437i \(-0.256518\pi\)
−0.971023 + 0.238987i \(0.923185\pi\)
\(30\) 0 0
\(31\) −2.50000 4.33013i −0.449013 0.777714i 0.549309 0.835619i \(-0.314891\pi\)
−0.998322 + 0.0579057i \(0.981558\pi\)
\(32\) 0 0
\(33\) 4.50000 + 2.59808i 0.783349 + 0.452267i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −1.00000 1.73205i −0.164399 0.284747i 0.772043 0.635571i \(-0.219235\pi\)
−0.936442 + 0.350823i \(0.885902\pi\)
\(38\) 0 0
\(39\) 1.50000 0.866025i 0.240192 0.138675i
\(40\) 0 0
\(41\) −1.50000 + 2.59808i −0.234261 + 0.405751i −0.959058 0.283211i \(-0.908600\pi\)
0.724797 + 0.688963i \(0.241934\pi\)
\(42\) 0 0
\(43\) 0.500000 + 0.866025i 0.0762493 + 0.132068i 0.901629 0.432511i \(-0.142372\pi\)
−0.825380 + 0.564578i \(0.809039\pi\)
\(44\) 0 0
\(45\) 4.50000 + 7.79423i 0.670820 + 1.16190i
\(46\) 0 0
\(47\) 4.50000 7.79423i 0.656392 1.13691i −0.325150 0.945662i \(-0.605415\pi\)
0.981543 0.191243i \(-0.0612518\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) −9.00000 + 5.19615i −1.26025 + 0.727607i
\(52\) 0 0
\(53\) 3.00000 5.19615i 0.412082 0.713746i −0.583036 0.812447i \(-0.698135\pi\)
0.995117 + 0.0987002i \(0.0314685\pi\)
\(54\) 0 0
\(55\) 9.00000 1.21356
\(56\) 0 0
\(57\) 6.92820i 0.917663i
\(58\) 0 0
\(59\) 1.50000 + 2.59808i 0.195283 + 0.338241i 0.946993 0.321253i \(-0.104104\pi\)
−0.751710 + 0.659494i \(0.770771\pi\)
\(60\) 0 0
\(61\) 6.50000 11.2583i 0.832240 1.44148i −0.0640184 0.997949i \(-0.520392\pi\)
0.896258 0.443533i \(-0.146275\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 1.50000 2.59808i 0.186052 0.322252i
\(66\) 0 0
\(67\) 3.50000 + 6.06218i 0.427593 + 0.740613i 0.996659 0.0816792i \(-0.0260283\pi\)
−0.569066 + 0.822292i \(0.692695\pi\)
\(68\) 0 0
\(69\) −4.50000 2.59808i −0.541736 0.312772i
\(70\) 0 0
\(71\) −12.0000 −1.42414 −0.712069 0.702109i \(-0.752242\pi\)
−0.712069 + 0.702109i \(0.752242\pi\)
\(72\) 0 0
\(73\) 5.00000 8.66025i 0.585206 1.01361i −0.409644 0.912245i \(-0.634347\pi\)
0.994850 0.101361i \(-0.0323196\pi\)
\(74\) 0 0
\(75\) 6.00000 + 3.46410i 0.692820 + 0.400000i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −5.50000 + 9.52628i −0.618798 + 1.07179i 0.370907 + 0.928670i \(0.379047\pi\)
−0.989705 + 0.143120i \(0.954286\pi\)
\(80\) 0 0
\(81\) −4.50000 + 7.79423i −0.500000 + 0.866025i
\(82\) 0 0
\(83\) 4.50000 + 7.79423i 0.493939 + 0.855528i 0.999976 0.00698436i \(-0.00222321\pi\)
−0.506036 + 0.862512i \(0.668890\pi\)
\(84\) 0 0
\(85\) −9.00000 + 15.5885i −0.976187 + 1.69081i
\(86\) 0 0
\(87\) 5.19615i 0.557086i
\(88\) 0 0
\(89\) −3.00000 5.19615i −0.317999 0.550791i 0.662071 0.749441i \(-0.269678\pi\)
−0.980071 + 0.198650i \(0.936344\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 8.66025i 0.898027i
\(94\) 0 0
\(95\) 6.00000 + 10.3923i 0.615587 + 1.06623i
\(96\) 0 0
\(97\) −5.50000 9.52628i −0.558440 0.967247i −0.997627 0.0688512i \(-0.978067\pi\)
0.439187 0.898396i \(-0.355267\pi\)
\(98\) 0 0
\(99\) 4.50000 + 7.79423i 0.452267 + 0.783349i
\(100\) 0 0
\(101\) 15.0000 1.49256 0.746278 0.665635i \(-0.231839\pi\)
0.746278 + 0.665635i \(0.231839\pi\)
\(102\) 0 0
\(103\) −7.00000 −0.689730 −0.344865 0.938652i \(-0.612075\pi\)
−0.344865 + 0.938652i \(0.612075\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −6.00000 10.3923i −0.580042 1.00466i −0.995474 0.0950377i \(-0.969703\pi\)
0.415432 0.909624i \(-0.363630\pi\)
\(108\) 0 0
\(109\) −1.00000 + 1.73205i −0.0957826 + 0.165900i −0.909935 0.414751i \(-0.863869\pi\)
0.814152 + 0.580651i \(0.197202\pi\)
\(110\) 0 0
\(111\) 3.46410i 0.328798i
\(112\) 0 0
\(113\) 4.50000 7.79423i 0.423324 0.733219i −0.572938 0.819599i \(-0.694196\pi\)
0.996262 + 0.0863794i \(0.0275297\pi\)
\(114\) 0 0
\(115\) −9.00000 −0.839254
\(116\) 0 0
\(117\) 3.00000 0.277350
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −2.00000 −0.181818
\(122\) 0 0
\(123\) −4.50000 + 2.59808i −0.405751 + 0.234261i
\(124\) 0 0
\(125\) −3.00000 −0.268328
\(126\) 0 0
\(127\) −16.0000 −1.41977 −0.709885 0.704317i \(-0.751253\pi\)
−0.709885 + 0.704317i \(0.751253\pi\)
\(128\) 0 0
\(129\) 1.73205i 0.152499i
\(130\) 0 0
\(131\) 21.0000 1.83478 0.917389 0.397991i \(-0.130293\pi\)
0.917389 + 0.397991i \(0.130293\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 15.5885i 1.34164i
\(136\) 0 0
\(137\) 3.00000 0.256307 0.128154 0.991754i \(-0.459095\pi\)
0.128154 + 0.991754i \(0.459095\pi\)
\(138\) 0 0
\(139\) −2.50000 + 4.33013i −0.212047 + 0.367277i −0.952355 0.304991i \(-0.901346\pi\)
0.740308 + 0.672268i \(0.234680\pi\)
\(140\) 0 0
\(141\) 13.5000 7.79423i 1.13691 0.656392i
\(142\) 0 0
\(143\) 1.50000 2.59808i 0.125436 0.217262i
\(144\) 0 0
\(145\) −4.50000 7.79423i −0.373705 0.647275i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 15.0000 1.22885 0.614424 0.788976i \(-0.289388\pi\)
0.614424 + 0.788976i \(0.289388\pi\)
\(150\) 0 0
\(151\) −13.0000 −1.05792 −0.528962 0.848645i \(-0.677419\pi\)
−0.528962 + 0.848645i \(0.677419\pi\)
\(152\) 0 0
\(153\) −18.0000 −1.45521
\(154\) 0 0
\(155\) −7.50000 12.9904i −0.602414 1.04341i
\(156\) 0 0
\(157\) 6.50000 + 11.2583i 0.518756 + 0.898513i 0.999762 + 0.0217953i \(0.00693820\pi\)
−0.481006 + 0.876717i \(0.659728\pi\)
\(158\) 0 0
\(159\) 9.00000 5.19615i 0.713746 0.412082i
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) −10.0000 17.3205i −0.783260 1.35665i −0.930033 0.367477i \(-0.880222\pi\)
0.146772 0.989170i \(-0.453112\pi\)
\(164\) 0 0
\(165\) 13.5000 + 7.79423i 1.05097 + 0.606780i
\(166\) 0 0
\(167\) −4.50000 + 7.79423i −0.348220 + 0.603136i −0.985933 0.167139i \(-0.946547\pi\)
0.637713 + 0.770274i \(0.279881\pi\)
\(168\) 0 0
\(169\) 6.00000 + 10.3923i 0.461538 + 0.799408i
\(170\) 0 0
\(171\) −6.00000 + 10.3923i −0.458831 + 0.794719i
\(172\) 0 0
\(173\) 4.50000 7.79423i 0.342129 0.592584i −0.642699 0.766119i \(-0.722185\pi\)
0.984828 + 0.173534i \(0.0555188\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 5.19615i 0.390567i
\(178\) 0 0
\(179\) −6.00000 + 10.3923i −0.448461 + 0.776757i −0.998286 0.0585225i \(-0.981361\pi\)
0.549825 + 0.835280i \(0.314694\pi\)
\(180\) 0 0
\(181\) 2.00000 0.148659 0.0743294 0.997234i \(-0.476318\pi\)
0.0743294 + 0.997234i \(0.476318\pi\)
\(182\) 0 0
\(183\) 19.5000 11.2583i 1.44148 0.832240i
\(184\) 0 0
\(185\) −3.00000 5.19615i −0.220564 0.382029i
\(186\) 0 0
\(187\) −9.00000 + 15.5885i −0.658145 + 1.13994i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −7.50000 + 12.9904i −0.542681 + 0.939951i 0.456068 + 0.889945i \(0.349257\pi\)
−0.998749 + 0.0500060i \(0.984076\pi\)
\(192\) 0 0
\(193\) −5.50000 9.52628i −0.395899 0.685717i 0.597317 0.802005i \(-0.296234\pi\)
−0.993215 + 0.116289i \(0.962900\pi\)
\(194\) 0 0
\(195\) 4.50000 2.59808i 0.322252 0.186052i
\(196\) 0 0
\(197\) 6.00000 0.427482 0.213741 0.976890i \(-0.431435\pi\)
0.213741 + 0.976890i \(0.431435\pi\)
\(198\) 0 0
\(199\) 2.00000 3.46410i 0.141776 0.245564i −0.786389 0.617731i \(-0.788052\pi\)
0.928166 + 0.372168i \(0.121385\pi\)
\(200\) 0 0
\(201\) 12.1244i 0.855186i
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) −4.50000 + 7.79423i −0.314294 + 0.544373i
\(206\) 0 0
\(207\) −4.50000 7.79423i −0.312772 0.541736i
\(208\) 0 0
\(209\) 6.00000 + 10.3923i 0.415029 + 0.718851i
\(210\) 0 0
\(211\) −8.50000 + 14.7224i −0.585164 + 1.01353i 0.409691 + 0.912224i \(0.365637\pi\)
−0.994855 + 0.101310i \(0.967697\pi\)
\(212\) 0 0
\(213\) −18.0000 10.3923i −1.23334 0.712069i
\(214\) 0 0
\(215\) 1.50000 + 2.59808i 0.102299 + 0.177187i
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 15.0000 8.66025i 1.01361 0.585206i
\(220\) 0 0
\(221\) 3.00000 + 5.19615i 0.201802 + 0.349531i
\(222\) 0 0
\(223\) 0.500000 + 0.866025i 0.0334825 + 0.0579934i 0.882281 0.470723i \(-0.156007\pi\)
−0.848799 + 0.528716i \(0.822674\pi\)
\(224\) 0 0
\(225\) 6.00000 + 10.3923i 0.400000 + 0.692820i
\(226\) 0 0
\(227\) 27.0000 1.79205 0.896026 0.444001i \(-0.146441\pi\)
0.896026 + 0.444001i \(0.146441\pi\)
\(228\) 0 0
\(229\) −13.0000 −0.859064 −0.429532 0.903052i \(-0.641321\pi\)
−0.429532 + 0.903052i \(0.641321\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 3.00000 + 5.19615i 0.196537 + 0.340411i 0.947403 0.320043i \(-0.103697\pi\)
−0.750867 + 0.660454i \(0.770364\pi\)
\(234\) 0 0
\(235\) 13.5000 23.3827i 0.880643 1.52532i
\(236\) 0 0
\(237\) −16.5000 + 9.52628i −1.07179 + 0.618798i
\(238\) 0 0
\(239\) 13.5000 23.3827i 0.873242 1.51250i 0.0146191 0.999893i \(-0.495346\pi\)
0.858623 0.512607i \(-0.171320\pi\)
\(240\) 0 0
\(241\) −1.00000 −0.0644157 −0.0322078 0.999481i \(-0.510254\pi\)
−0.0322078 + 0.999481i \(0.510254\pi\)
\(242\) 0 0
\(243\) −13.5000 + 7.79423i −0.866025 + 0.500000i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 4.00000 0.254514
\(248\) 0 0
\(249\) 15.5885i 0.987878i
\(250\) 0 0
\(251\) 12.0000 0.757433 0.378717 0.925513i \(-0.376365\pi\)
0.378717 + 0.925513i \(0.376365\pi\)
\(252\) 0 0
\(253\) −9.00000 −0.565825
\(254\) 0 0
\(255\) −27.0000 + 15.5885i −1.69081 + 0.976187i
\(256\) 0 0
\(257\) −9.00000 −0.561405 −0.280702 0.959795i \(-0.590567\pi\)
−0.280702 + 0.959795i \(0.590567\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 4.50000 7.79423i 0.278543 0.482451i
\(262\) 0 0
\(263\) −21.0000 −1.29492 −0.647458 0.762101i \(-0.724168\pi\)
−0.647458 + 0.762101i \(0.724168\pi\)
\(264\) 0 0
\(265\) 9.00000 15.5885i 0.552866 0.957591i
\(266\) 0 0
\(267\) 10.3923i 0.635999i
\(268\) 0 0
\(269\) 3.00000 5.19615i 0.182913 0.316815i −0.759958 0.649972i \(-0.774781\pi\)
0.942871 + 0.333157i \(0.108114\pi\)
\(270\) 0 0
\(271\) −4.00000 6.92820i −0.242983 0.420858i 0.718580 0.695444i \(-0.244792\pi\)
−0.961563 + 0.274586i \(0.911459\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 12.0000 0.723627
\(276\) 0 0
\(277\) −1.00000 −0.0600842 −0.0300421 0.999549i \(-0.509564\pi\)
−0.0300421 + 0.999549i \(0.509564\pi\)
\(278\) 0 0
\(279\) 7.50000 12.9904i 0.449013 0.777714i
\(280\) 0 0
\(281\) −1.50000 2.59808i −0.0894825 0.154988i 0.817810 0.575488i \(-0.195188\pi\)
−0.907293 + 0.420500i \(0.861855\pi\)
\(282\) 0 0
\(283\) −2.50000 4.33013i −0.148610 0.257399i 0.782104 0.623148i \(-0.214146\pi\)
−0.930714 + 0.365748i \(0.880813\pi\)
\(284\) 0 0
\(285\) 20.7846i 1.23117i
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −9.50000 16.4545i −0.558824 0.967911i
\(290\) 0 0
\(291\) 19.0526i 1.11688i
\(292\) 0 0
\(293\) 10.5000 18.1865i 0.613417 1.06247i −0.377244 0.926114i \(-0.623128\pi\)
0.990660 0.136355i \(-0.0435386\pi\)
\(294\) 0 0
\(295\) 4.50000 + 7.79423i 0.262000 + 0.453798i
\(296\) 0 0
\(297\) 15.5885i 0.904534i
\(298\) 0 0
\(299\) −1.50000 + 2.59808i −0.0867472 + 0.150251i
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 22.5000 + 12.9904i 1.29259 + 0.746278i
\(304\) 0 0
\(305\) 19.5000 33.7750i 1.11657 1.93395i
\(306\) 0 0
\(307\) 20.0000 1.14146 0.570730 0.821138i \(-0.306660\pi\)
0.570730 + 0.821138i \(0.306660\pi\)
\(308\) 0 0
\(309\) −10.5000 6.06218i −0.597324 0.344865i
\(310\) 0 0
\(311\) −10.5000 18.1865i −0.595400 1.03126i −0.993490 0.113917i \(-0.963660\pi\)
0.398090 0.917346i \(-0.369673\pi\)
\(312\) 0 0
\(313\) 0.500000 0.866025i 0.0282617 0.0489506i −0.851549 0.524276i \(-0.824336\pi\)
0.879810 + 0.475325i \(0.157669\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 10.5000 18.1865i 0.589739 1.02146i −0.404528 0.914526i \(-0.632564\pi\)
0.994266 0.106932i \(-0.0341026\pi\)
\(318\) 0 0
\(319\) −4.50000 7.79423i −0.251952 0.436393i
\(320\) 0 0
\(321\) 20.7846i 1.16008i
\(322\) 0 0
\(323\) −24.0000 −1.33540
\(324\) 0 0
\(325\) 2.00000 3.46410i 0.110940 0.192154i
\(326\) 0 0
\(327\) −3.00000 + 1.73205i −0.165900 + 0.0957826i
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −5.50000 + 9.52628i −0.302307 + 0.523612i −0.976658 0.214799i \(-0.931090\pi\)
0.674351 + 0.738411i \(0.264424\pi\)
\(332\) 0 0
\(333\) 3.00000 5.19615i 0.164399 0.284747i
\(334\) 0 0
\(335\) 10.5000 + 18.1865i 0.573676 + 0.993636i
\(336\) 0 0
\(337\) −11.5000 + 19.9186i −0.626445 + 1.08503i 0.361815 + 0.932250i \(0.382157\pi\)
−0.988260 + 0.152784i \(0.951176\pi\)
\(338\) 0 0
\(339\) 13.5000 7.79423i 0.733219 0.423324i
\(340\) 0 0
\(341\) −7.50000 12.9904i −0.406148 0.703469i
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) −13.5000 7.79423i −0.726816 0.419627i
\(346\) 0 0
\(347\) −4.50000 7.79423i −0.241573 0.418416i 0.719590 0.694399i \(-0.244330\pi\)
−0.961162 + 0.275983i \(0.910997\pi\)
\(348\) 0 0
\(349\) 0.500000 + 0.866025i 0.0267644 + 0.0463573i 0.879097 0.476642i \(-0.158146\pi\)
−0.852333 + 0.523000i \(0.824813\pi\)
\(350\) 0 0
\(351\) 4.50000 + 2.59808i 0.240192 + 0.138675i
\(352\) 0 0
\(353\) 3.00000 0.159674 0.0798369 0.996808i \(-0.474560\pi\)
0.0798369 + 0.996808i \(0.474560\pi\)
\(354\) 0 0
\(355\) −36.0000 −1.91068
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(360\) 0 0
\(361\) 1.50000 2.59808i 0.0789474 0.136741i
\(362\) 0 0
\(363\) −3.00000 1.73205i −0.157459 0.0909091i
\(364\) 0 0
\(365\) 15.0000 25.9808i 0.785136 1.35990i
\(366\) 0 0
\(367\) −13.0000 −0.678594 −0.339297 0.940679i \(-0.610189\pi\)
−0.339297 + 0.940679i \(0.610189\pi\)
\(368\) 0 0
\(369\) −9.00000 −0.468521
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −1.00000 −0.0517780 −0.0258890 0.999665i \(-0.508242\pi\)
−0.0258890 + 0.999665i \(0.508242\pi\)
\(374\) 0 0
\(375\) −4.50000 2.59808i −0.232379 0.134164i
\(376\) 0 0
\(377\) −3.00000 −0.154508
\(378\) 0 0
\(379\) −16.0000 −0.821865 −0.410932 0.911666i \(-0.634797\pi\)
−0.410932 + 0.911666i \(0.634797\pi\)
\(380\) 0 0
\(381\) −24.0000 13.8564i −1.22956 0.709885i
\(382\) 0 0
\(383\) −15.0000 −0.766464 −0.383232 0.923652i \(-0.625189\pi\)
−0.383232 + 0.923652i \(0.625189\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −1.50000 + 2.59808i −0.0762493 + 0.132068i
\(388\) 0 0
\(389\) 15.0000 0.760530 0.380265 0.924878i \(-0.375833\pi\)
0.380265 + 0.924878i \(0.375833\pi\)
\(390\) 0 0
\(391\) 9.00000 15.5885i 0.455150 0.788342i
\(392\) 0 0
\(393\) 31.5000 + 18.1865i 1.58896 + 0.917389i
\(394\) 0 0
\(395\) −16.5000 + 28.5788i −0.830205 + 1.43796i
\(396\) 0 0
\(397\) −1.00000 1.73205i −0.0501886 0.0869291i 0.839840 0.542834i \(-0.182649\pi\)
−0.890028 + 0.455905i \(0.849316\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 3.00000 0.149813 0.0749064 0.997191i \(-0.476134\pi\)
0.0749064 + 0.997191i \(0.476134\pi\)
\(402\) 0 0
\(403\) −5.00000 −0.249068
\(404\) 0 0
\(405\) −13.5000 + 23.3827i −0.670820 + 1.16190i
\(406\) 0 0
\(407\) −3.00000 5.19615i −0.148704 0.257564i
\(408\) 0 0
\(409\) −11.5000 19.9186i −0.568638 0.984911i −0.996701 0.0811615i \(-0.974137\pi\)
0.428063 0.903749i \(-0.359196\pi\)
\(410\) 0 0
\(411\) 4.50000 + 2.59808i 0.221969 + 0.128154i
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 13.5000 + 23.3827i 0.662689 + 1.14781i
\(416\) 0 0
\(417\) −7.50000 + 4.33013i −0.367277 + 0.212047i
\(418\) 0 0
\(419\) −4.50000 + 7.79423i −0.219839 + 0.380773i −0.954759 0.297382i \(-0.903887\pi\)
0.734919 + 0.678155i \(0.237220\pi\)
\(420\) 0 0
\(421\) −17.5000 30.3109i −0.852898 1.47726i −0.878582 0.477592i \(-0.841510\pi\)
0.0256838 0.999670i \(-0.491824\pi\)
\(422\) 0 0
\(423\) 27.0000 1.31278
\(424\) 0 0
\(425\) −12.0000 + 20.7846i −0.582086 + 1.00820i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 4.50000 2.59808i 0.217262 0.125436i
\(430\) 0 0
\(431\) −12.0000 + 20.7846i −0.578020 + 1.00116i 0.417687 + 0.908591i \(0.362841\pi\)
−0.995706 + 0.0925683i \(0.970492\pi\)
\(432\) 0 0
\(433\) −34.0000 −1.63394 −0.816968 0.576683i \(-0.804347\pi\)
−0.816968 + 0.576683i \(0.804347\pi\)
\(434\) 0 0
\(435\) 15.5885i 0.747409i
\(436\) 0 0
\(437\) −6.00000 10.3923i −0.287019 0.497131i
\(438\) 0 0
\(439\) −17.5000 + 30.3109i −0.835229 + 1.44666i 0.0586141 + 0.998281i \(0.481332\pi\)
−0.893843 + 0.448379i \(0.852001\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 4.50000 7.79423i 0.213801 0.370315i −0.739100 0.673596i \(-0.764749\pi\)
0.952901 + 0.303281i \(0.0980821\pi\)
\(444\) 0 0
\(445\) −9.00000 15.5885i −0.426641 0.738964i
\(446\) 0 0
\(447\) 22.5000 + 12.9904i 1.06421 + 0.614424i
\(448\) 0 0
\(449\) −18.0000 −0.849473 −0.424736 0.905317i \(-0.639633\pi\)
−0.424736 + 0.905317i \(0.639633\pi\)
\(450\) 0 0
\(451\) −4.50000 + 7.79423i −0.211897 + 0.367016i
\(452\) 0 0
\(453\) −19.5000 11.2583i −0.916190 0.528962i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 18.5000 32.0429i 0.865393 1.49891i −0.00126243 0.999999i \(-0.500402\pi\)
0.866656 0.498906i \(-0.166265\pi\)
\(458\) 0 0
\(459\) −27.0000 15.5885i −1.26025 0.727607i
\(460\) 0 0
\(461\) −1.50000 2.59808i −0.0698620 0.121004i 0.828978 0.559281i \(-0.188923\pi\)
−0.898840 + 0.438276i \(0.855589\pi\)
\(462\) 0 0
\(463\) 9.50000 16.4545i 0.441502 0.764705i −0.556299 0.830982i \(-0.687779\pi\)
0.997801 + 0.0662777i \(0.0211123\pi\)
\(464\) 0 0
\(465\) 25.9808i 1.20483i
\(466\) 0 0
\(467\) −6.00000 10.3923i −0.277647 0.480899i 0.693153 0.720791i \(-0.256221\pi\)
−0.970799 + 0.239892i \(0.922888\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 22.5167i 1.03751i
\(472\) 0 0
\(473\) 1.50000 + 2.59808i 0.0689701 + 0.119460i
\(474\) 0 0
\(475\) 8.00000 + 13.8564i 0.367065 + 0.635776i
\(476\) 0 0
\(477\) 18.0000 0.824163
\(478\) 0 0
\(479\) 27.0000 1.23366 0.616831 0.787096i \(-0.288416\pi\)
0.616831 + 0.787096i \(0.288416\pi\)
\(480\) 0 0
\(481\) −2.00000 −0.0911922
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −16.5000 28.5788i −0.749226 1.29770i
\(486\) 0 0
\(487\) −16.0000 + 27.7128i −0.725029 + 1.25579i 0.233933 + 0.972253i \(0.424840\pi\)
−0.958962 + 0.283535i \(0.908493\pi\)
\(488\) 0 0
\(489\) 34.6410i 1.56652i
\(490\) 0 0
\(491\) 1.50000 2.59808i 0.0676941 0.117250i −0.830192 0.557478i \(-0.811769\pi\)
0.897886 + 0.440228i \(0.145102\pi\)
\(492\) 0 0
\(493\) 18.0000 0.810679
\(494\) 0 0
\(495\) 13.5000 + 23.3827i 0.606780 + 1.05097i
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 5.00000 0.223831 0.111915 0.993718i \(-0.464301\pi\)
0.111915 + 0.993718i \(0.464301\pi\)
\(500\) 0 0
\(501\) −13.5000 + 7.79423i −0.603136 + 0.348220i
\(502\) 0 0
\(503\) −36.0000 −1.60516 −0.802580 0.596544i \(-0.796540\pi\)
−0.802580 + 0.596544i \(0.796540\pi\)
\(504\) 0 0
\(505\) 45.0000 2.00247
\(506\) 0 0
\(507\) 20.7846i 0.923077i
\(508\) 0 0
\(509\) 39.0000 1.72864 0.864322 0.502938i \(-0.167748\pi\)
0.864322 + 0.502938i \(0.167748\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) −18.0000 + 10.3923i −0.794719 + 0.458831i
\(514\) 0 0
\(515\) −21.0000 −0.925371
\(516\) 0 0
\(517\) 13.5000 23.3827i 0.593729 1.02837i
\(518\) 0 0
\(519\) 13.5000 7.79423i 0.592584 0.342129i
\(520\) 0 0
\(521\) −21.0000 + 36.3731i −0.920027 + 1.59353i −0.120656 + 0.992694i \(0.538500\pi\)
−0.799370 + 0.600839i \(0.794833\pi\)
\(522\) 0 0
\(523\) −4.00000 6.92820i −0.174908 0.302949i 0.765222 0.643767i \(-0.222629\pi\)
−0.940129 + 0.340818i \(0.889296\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 30.0000 1.30682
\(528\) 0 0
\(529\) −14.0000 −0.608696
\(530\) 0 0
\(531\) −4.50000 + 7.79423i −0.195283 + 0.338241i
\(532\) 0 0
\(533\) 1.50000 + 2.59808i 0.0649722 + 0.112535i
\(534\) 0 0
\(535\) −18.0000 31.1769i −0.778208 1.34790i
\(536\) 0 0
\(537\) −18.0000 + 10.3923i −0.776757 + 0.448461i
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 17.0000 + 29.4449i 0.730887 + 1.26593i 0.956504 + 0.291718i \(0.0942267\pi\)
−0.225617 + 0.974216i \(0.572440\pi\)
\(542\) 0 0
\(543\) 3.00000 + 1.73205i 0.128742 + 0.0743294i
\(544\) 0 0
\(545\) −3.00000 + 5.19615i −0.128506 + 0.222579i
\(546\) 0 0
\(547\) 6.50000 + 11.2583i 0.277920 + 0.481371i 0.970868 0.239616i \(-0.0770217\pi\)
−0.692948 + 0.720988i \(0.743688\pi\)
\(548\) 0 0
\(549\) 39.0000 1.66448
\(550\) 0 0
\(551\) 6.00000 10.3923i 0.255609 0.442727i
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 10.3923i 0.441129i
\(556\) 0 0
\(557\) 15.0000 25.9808i 0.635570 1.10084i −0.350824 0.936442i \(-0.614098\pi\)
0.986394 0.164399i \(-0.0525683\pi\)
\(558\) 0 0
\(559\) 1.00000 0.0422955
\(560\) 0 0
\(561\) −27.0000 + 15.5885i −1.13994 + 0.658145i
\(562\) 0 0
\(563\) −4.50000 7.79423i −0.189652 0.328488i 0.755482 0.655169i \(-0.227403\pi\)
−0.945134 + 0.326682i \(0.894069\pi\)
\(564\) 0 0
\(565\) 13.5000 23.3827i 0.567949 0.983717i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −7.50000 + 12.9904i −0.314416 + 0.544585i −0.979313 0.202350i \(-0.935142\pi\)
0.664897 + 0.746935i \(0.268475\pi\)
\(570\) 0 0
\(571\) 15.5000 + 26.8468i 0.648655 + 1.12350i 0.983444 + 0.181210i \(0.0580014\pi\)
−0.334790 + 0.942293i \(0.608665\pi\)
\(572\) 0 0
\(573\) −22.5000 + 12.9904i −0.939951 + 0.542681i
\(574\) 0 0
\(575\) −12.0000 −0.500435
\(576\) 0 0
\(577\) 5.00000 8.66025i 0.208153 0.360531i −0.742980 0.669314i \(-0.766588\pi\)
0.951133 + 0.308783i \(0.0999216\pi\)
\(578\) 0 0
\(579\) 19.0526i 0.791797i
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 9.00000 15.5885i 0.372742 0.645608i
\(584\) 0 0
\(585\) 9.00000 0.372104
\(586\) 0 0
\(587\) −7.50000 12.9904i −0.309558 0.536170i 0.668708 0.743525i \(-0.266848\pi\)
−0.978266 + 0.207355i \(0.933514\pi\)
\(588\) 0 0
\(589\) 10.0000 17.3205i 0.412043 0.713679i
\(590\) 0 0
\(591\) 9.00000 + 5.19615i 0.370211 + 0.213741i
\(592\) 0 0
\(593\) −3.00000 5.19615i −0.123195 0.213380i 0.797831 0.602881i \(-0.205981\pi\)
−0.921026 + 0.389501i \(0.872647\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 6.00000 3.46410i 0.245564 0.141776i
\(598\) 0 0
\(599\) 19.5000 + 33.7750i 0.796748 + 1.38001i 0.921723 + 0.387849i \(0.126782\pi\)
−0.124975 + 0.992160i \(0.539885\pi\)
\(600\) 0 0
\(601\) −17.5000 30.3109i −0.713840 1.23641i −0.963405 0.268049i \(-0.913621\pi\)
0.249565 0.968358i \(-0.419712\pi\)
\(602\) 0 0
\(603\) −10.5000 + 18.1865i −0.427593 + 0.740613i
\(604\) 0 0
\(605\) −6.00000 −0.243935
\(606\) 0 0
\(607\) 41.0000 1.66414 0.832069 0.554672i \(-0.187156\pi\)
0.832069 + 0.554672i \(0.187156\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −4.50000 7.79423i −0.182051 0.315321i
\(612\) 0 0
\(613\) −13.0000 + 22.5167i −0.525065 + 0.909439i 0.474509 + 0.880251i \(0.342626\pi\)
−0.999574 + 0.0291886i \(0.990708\pi\)
\(614\) 0 0
\(615\) −13.5000 + 7.79423i −0.544373 + 0.314294i
\(616\) 0 0
\(617\) −1.50000 + 2.59808i −0.0603877 + 0.104595i −0.894639 0.446790i \(-0.852567\pi\)
0.834251 + 0.551385i \(0.185900\pi\)
\(618\) 0 0
\(619\) −13.0000 −0.522514 −0.261257 0.965269i \(-0.584137\pi\)
−0.261257 + 0.965269i \(0.584137\pi\)
\(620\) 0 0
\(621\) 15.5885i 0.625543i
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −29.0000 −1.16000
\(626\) 0 0
\(627\) 20.7846i 0.830057i
\(628\) 0 0
\(629\) 12.0000 0.478471
\(630\) 0 0
\(631\) −16.0000 −0.636950 −0.318475 0.947931i \(-0.603171\pi\)
−0.318475 + 0.947931i \(0.603171\pi\)
\(632\) 0 0
\(633\) −25.5000 + 14.7224i −1.01353 + 0.585164i
\(634\) 0 0
\(635\) −48.0000 −1.90482
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) −18.0000 31.1769i −0.712069 1.23334i
\(640\) 0 0
\(641\) −33.0000 −1.30342 −0.651711 0.758468i \(-0.725948\pi\)
−0.651711 + 0.758468i \(0.725948\pi\)
\(642\) 0 0
\(643\) −20.5000 + 35.5070i −0.808441 + 1.40026i 0.105502 + 0.994419i \(0.466355\pi\)
−0.913943 + 0.405842i \(0.866978\pi\)
\(644\) 0 0
\(645\) 5.19615i 0.204598i
\(646\) 0 0
\(647\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(648\) 0 0
\(649\) 4.50000 + 7.79423i 0.176640 + 0.305950i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −21.0000 −0.821794 −0.410897 0.911682i \(-0.634784\pi\)
−0.410897 + 0.911682i \(0.634784\pi\)
\(654\) 0 0
\(655\) 63.0000 2.46161
\(656\) 0 0
\(657\) 30.0000 1.17041
\(658\) 0 0
\(659\) 10.5000 + 18.1865i 0.409022 + 0.708447i 0.994780 0.102039i \(-0.0325366\pi\)
−0.585758 + 0.810486i \(0.699203\pi\)
\(660\) 0 0
\(661\) −5.50000 9.52628i −0.213925 0.370529i 0.739014 0.673690i \(-0.235292\pi\)
−0.952940 + 0.303160i \(0.901958\pi\)
\(662\) 0 0
\(663\) 10.3923i 0.403604i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 4.50000 + 7.79423i 0.174241 + 0.301794i
\(668\) 0 0
\(669\) 1.73205i 0.0669650i
\(670\) 0 0
\(671\) 19.5000 33.7750i 0.752789 1.30387i
\(672\) 0 0
\(673\) −5.50000 9.52628i −0.212009 0.367211i 0.740334 0.672239i \(-0.234667\pi\)
−0.952343 + 0.305028i \(0.901334\pi\)
\(674\) 0 0
\(675\) 20.7846i 0.800000i
\(676\) 0 0
\(677\) −7.50000 + 12.9904i −0.288248 + 0.499261i −0.973392 0.229147i \(-0.926406\pi\)
0.685143 + 0.728408i \(0.259740\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 40.5000 + 23.3827i 1.55196 + 0.896026i
\(682\) 0 0
\(683\) 18.0000 31.1769i 0.688751 1.19295i −0.283491 0.958975i \(-0.591493\pi\)
0.972242 0.233977i \(-0.0751739\pi\)
\(684\) 0 0
\(685\) 9.00000 0.343872
\(686\) 0 0
\(687\) −19.5000 11.2583i −0.743971 0.429532i
\(688\) 0 0
\(689\) −3.00000 5.19615i −0.114291 0.197958i
\(690\) 0 0
\(691\) 0.500000 0.866025i 0.0190209 0.0329452i −0.856358 0.516382i \(-0.827278\pi\)
0.875379 + 0.483437i \(0.160612\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −7.50000 + 12.9904i −0.284491 + 0.492753i
\(696\) 0 0
\(697\) −9.00000 15.5885i −0.340899 0.590455i
\(698\) 0 0
\(699\) 10.3923i 0.393073i
\(700\) 0 0
\(701\) −6.00000 −0.226617 −0.113308 0.993560i \(-0.536145\pi\)
−0.113308 + 0.993560i \(0.536145\pi\)
\(702\) 0 0
\(703\) 4.00000 6.92820i 0.150863 0.261302i
\(704\) 0 0
\(705\) 40.5000 23.3827i 1.52532 0.880643i
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 12.5000 21.6506i 0.469447 0.813107i −0.529943 0.848034i \(-0.677787\pi\)
0.999390 + 0.0349269i \(0.0111198\pi\)
\(710\) 0 0
\(711\) −33.0000 −1.23760
\(712\) 0 0
\(713\) 7.50000 + 12.9904i 0.280877 + 0.486494i
\(714\) 0 0
\(715\) 4.50000 7.79423i 0.168290 0.291488i
\(716\) 0 0
\(717\) 40.5000 23.3827i 1.51250 0.873242i
\(718\) 0 0
\(719\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) −1.50000 0.866025i −0.0557856 0.0322078i
\(724\) 0 0
\(725\) −6.00000 10.3923i −0.222834 0.385961i
\(726\) 0 0
\(727\) 18.5000 + 32.0429i 0.686127 + 1.18841i 0.973081 + 0.230463i \(0.0740239\pi\)
−0.286954 + 0.957944i \(0.592643\pi\)
\(728\) 0 0
\(729\) −27.0000 −1.00000
\(730\) 0 0
\(731\) −6.00000 −0.221918
\(732\) 0 0
\(733\) 23.0000 0.849524 0.424762 0.905305i \(-0.360358\pi\)
0.424762 + 0.905305i \(0.360358\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 10.5000 + 18.1865i 0.386772 + 0.669910i
\(738\) 0 0
\(739\) 8.00000 13.8564i 0.294285 0.509716i −0.680534 0.732717i \(-0.738252\pi\)
0.974818 + 0.223001i \(0.0715853\pi\)
\(740\) 0 0
\(741\) 6.00000 + 3.46410i 0.220416 + 0.127257i
\(742\) 0 0
\(743\) −4.50000 + 7.79423i −0.165089 + 0.285943i −0.936687 0.350168i \(-0.886124\pi\)
0.771598 + 0.636111i \(0.219458\pi\)
\(744\) 0 0
\(745\) 45.0000 1.64867
\(746\) 0 0
\(747\) −13.5000 + 23.3827i −0.493939 + 0.855528i
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) −31.0000 −1.13121 −0.565603 0.824678i \(-0.691357\pi\)
−0.565603 + 0.824678i \(0.691357\pi\)
\(752\) 0 0
\(753\) 18.0000 + 10.3923i 0.655956 + 0.378717i
\(754\) 0 0
\(755\) −39.0000 −1.41936
\(756\) 0 0
\(757\) −10.0000 −0.363456 −0.181728 0.983349i \(-0.558169\pi\)
−0.181728 + 0.983349i \(0.558169\pi\)
\(758\) 0 0
\(759\) −13.5000 7.79423i −0.490019 0.282913i
\(760\) 0 0
\(761\) 27.0000 0.978749 0.489375 0.872074i \(-0.337225\pi\)
0.489375 + 0.872074i \(0.337225\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) −54.0000 −1.95237
\(766\) 0 0
\(767\) 3.00000 0.108324
\(768\) 0 0
\(769\) 0.500000 0.866025i 0.0180305 0.0312297i −0.856869 0.515534i \(-0.827594\pi\)
0.874900 + 0.484304i \(0.160927\pi\)
\(770\) 0 0
\(771\) −13.5000 7.79423i −0.486191 0.280702i
\(772\) 0 0
\(773\) −9.00000 + 15.5885i −0.323708 + 0.560678i −0.981250 0.192740i \(-0.938263\pi\)
0.657542 + 0.753418i \(0.271596\pi\)
\(774\) 0 0
\(775\) −10.0000 17.3205i −0.359211 0.622171i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −12.0000 −0.429945
\(780\) 0 0
\(781\) −36.0000 −1.28818
\(782\) 0 0
\(783\) 13.5000 7.79423i 0.482451 0.278543i
\(784\) 0 0
\(785\) 19.5000 + 33.7750i 0.695985 + 1.20548i
\(786\) 0 0
\(787\) 21.5000 + 37.2391i 0.766392 + 1.32743i 0.939507 + 0.342529i \(0.111283\pi\)
−0.173115 + 0.984902i \(0.555383\pi\)
\(788\) 0 0
\(789\) −31.5000 18.1865i −1.12143 0.647458i
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) −6.50000 11.2583i −0.230822 0.399795i
\(794\) 0 0
\(795\) 27.0000 15.5885i 0.957591 0.552866i
\(796\) 0 0
\(797\) 4.50000 7.79423i 0.159398 0.276086i −0.775254 0.631650i \(-0.782378\pi\)
0.934652 + 0.355564i \(0.115711\pi\)
\(798\) 0 0
\(799\) 27.0000 + 46.7654i 0.955191 + 1.65444i
\(800\) 0 0
\(801\) 9.00000 15.5885i 0.317999 0.550791i
\(802\) 0 0
\(803\) 15.0000 25.9808i 0.529339 0.916841i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 9.00000 5.19615i 0.316815 0.182913i
\(808\) 0 0
\(809\) −3.00000 + 5.19615i −0.105474 + 0.182687i −0.913932 0.405868i \(-0.866969\pi\)
0.808458 + 0.588555i \(0.200303\pi\)
\(810\) 0 0
\(811\) 20.0000 0.702295 0.351147 0.936320i \(-0.385792\pi\)
0.351147 + 0.936320i \(0.385792\pi\)
\(812\) 0 0
\(813\) 13.8564i 0.485965i
\(814\) 0 0
\(815\) −30.0000 51.9615i −1.05085 1.82013i
\(816\) 0 0
\(817\) −2.00000 + 3.46410i −0.0699711 + 0.121194i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −25.5000 + 44.1673i −0.889956 + 1.54145i −0.0500305 + 0.998748i \(0.515932\pi\)
−0.839926 + 0.542702i \(0.817401\pi\)
\(822\) 0 0
\(823\) 9.50000 + 16.4545i 0.331149 + 0.573567i 0.982737 0.185006i \(-0.0592303\pi\)
−0.651588 + 0.758573i \(0.725897\pi\)
\(824\) 0 0
\(825\) 18.0000 + 10.3923i 0.626680 + 0.361814i
\(826\) 0 0
\(827\) −12.0000 −0.417281 −0.208640 0.977992i \(-0.566904\pi\)
−0.208640 + 0.977992i \(0.566904\pi\)
\(828\) 0 0
\(829\) −25.0000 + 43.3013i −0.868286 + 1.50392i −0.00453881 + 0.999990i \(0.501445\pi\)
−0.863747 + 0.503926i \(0.831889\pi\)
\(830\) 0 0
\(831\) −1.50000 0.866025i −0.0520344 0.0300421i
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) −13.5000 + 23.3827i −0.467187 + 0.809191i
\(836\) 0 0
\(837\) 22.5000 12.9904i 0.777714 0.449013i
\(838\) 0 0
\(839\) 4.50000 + 7.79423i 0.155357 + 0.269087i 0.933189 0.359386i \(-0.117014\pi\)
−0.777832 + 0.628473i \(0.783680\pi\)
\(840\) 0 0
\(841\) 10.0000 17.3205i 0.344828 0.597259i
\(842\) 0 0
\(843\) 5.19615i 0.178965i
\(844\) 0 0
\(845\) 18.0000 + 31.1769i 0.619219 + 1.07252i
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 8.66025i 0.297219i
\(850\) 0 0
\(851\) 3.00000 + 5.19615i 0.102839 + 0.178122i
\(852\) 0 0
\(853\) 6.50000 + 11.2583i 0.222556 + 0.385478i 0.955583 0.294721i \(-0.0952267\pi\)
−0.733028 + 0.680199i \(0.761893\pi\)
\(854\) 0 0
\(855\) −18.0000 + 31.1769i −0.615587 + 1.06623i
\(856\) 0 0
\(857\) 27.0000 0.922302 0.461151 0.887322i \(-0.347437\pi\)
0.461151 + 0.887322i \(0.347437\pi\)
\(858\) 0 0
\(859\) 41.0000 1.39890 0.699451 0.714681i \(-0.253428\pi\)
0.699451 + 0.714681i \(0.253428\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −12.0000 20.7846i −0.408485 0.707516i 0.586235 0.810141i \(-0.300609\pi\)
−0.994720 + 0.102624i \(0.967276\pi\)
\(864\) 0 0
\(865\) 13.5000 23.3827i 0.459014 0.795035i
\(866\) 0 0
\(867\) 32.9090i 1.11765i
\(868\) 0 0
\(869\) −16.5000 + 28.5788i −0.559724 + 0.969471i
\(870\) 0 0
\(871\) 7.00000 0.237186
\(872\) 0 0
\(873\) 16.5000 28.5788i 0.558440 0.967247i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 23.0000 0.776655 0.388327 0.921521i \(-0.373053\pi\)
0.388327 + 0.921521i \(0.373053\pi\)
\(878\) 0 0
\(879\) 31.5000 18.1865i 1.06247 0.613417i
\(880\) 0 0
\(881\) 30.0000 1.01073 0.505363 0.862907i \(-0.331359\pi\)
0.505363 + 0.862907i \(0.331359\pi\)
\(882\) 0 0
\(883\) −4.00000 −0.134611 −0.0673054 0.997732i \(-0.521440\pi\)
−0.0673054 + 0.997732i \(0.521440\pi\)
\(884\) 0 0
\(885\) 15.5885i 0.524000i
\(886\) 0 0
\(887\) 21.0000 0.705111 0.352555 0.935791i \(-0.385313\pi\)
0.352555 + 0.935791i \(0.385313\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) −13.5000 + 23.3827i −0.452267 + 0.783349i
\(892\) 0 0
\(893\) 36.0000 1.20469
\(894\) 0 0
\(895\) −18.0000 + 31.1769i −0.601674 + 1.04213i
\(896\) 0 0
\(897\) −4.50000 + 2.59808i −0.150251 + 0.0867472i
\(898\) 0 0
\(899\) −7.50000 + 12.9904i −0.250139 + 0.433253i
\(900\) 0 0
\(901\) 18.0000 + 31.1769i 0.599667 + 1.03865i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 6.00000 0.199447
\(906\) 0 0
\(907\) 47.0000 1.56061 0.780305 0.625400i \(-0.215064\pi\)
0.780305 + 0.625400i \(0.215064\pi\)
\(908\) 0 0
\(909\) 22.5000 + 38.9711i 0.746278 + 1.29259i
\(910\) 0 0
\(911\) 22.5000 + 38.9711i 0.745458 + 1.29117i 0.949980 + 0.312310i \(0.101103\pi\)
−0.204522 + 0.978862i \(0.565564\pi\)
\(912\) 0 0
\(913\) 13.5000 + 23.3827i 0.446785 + 0.773854i
\(914\) 0 0
\(915\) 58.5000 33.7750i 1.93395 1.11657i
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 8.00000 + 13.8564i 0.263896 + 0.457081i 0.967274 0.253735i \(-0.0816592\pi\)
−0.703378 + 0.710816i \(0.748326\pi\)
\(920\) 0 0
\(921\) 30.0000 + 17.3205i 0.988534 + 0.570730i
\(922\) 0 0
\(923\) −6.00000 + 10.3923i −0.197492 + 0.342067i
\(924\) 0 0
\(925\) −4.00000 6.92820i −0.131519 0.227798i
\(926\) 0 0
\(927\) −10.5000 18.1865i −0.344865 0.597324i
\(928\) 0 0
\(929\) −13.5000 + 23.3827i −0.442921 + 0.767161i −0.997905 0.0646999i \(-0.979391\pi\)
0.554984 + 0.831861i \(0.312724\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 36.3731i 1.19080i
\(934\) 0 0
\(935\) −27.0000 + 46.7654i −0.882994 + 1.52939i
\(936\) 0 0
\(937\) −34.0000 −1.11073 −0.555366 0.831606i \(-0.687422\pi\)
−0.555366 + 0.831606i \(0.687422\pi\)
\(938\) 0 0
\(939\) 1.50000 0.866025i 0.0489506 0.0282617i
\(940\) 0 0
\(941\) 10.5000 + 18.1865i 0.342290 + 0.592864i 0.984858 0.173365i \(-0.0554641\pi\)
−0.642567 + 0.766229i \(0.722131\pi\)
\(942\) 0 0
\(943\) 4.50000 7.79423i 0.146540 0.253815i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −13.5000 + 23.3827i −0.438691 + 0.759835i −0.997589 0.0694014i \(-0.977891\pi\)
0.558898 + 0.829237i \(0.311224\pi\)
\(948\) 0 0
\(949\) −5.00000 8.66025i −0.162307 0.281124i
\(950\) 0 0
\(951\) 31.5000 18.1865i 1.02146 0.589739i
\(952\) 0 0
\(953\) 54.0000 1.74923 0.874616 0.484817i \(-0.161114\pi\)
0.874616 + 0.484817i \(0.161114\pi\)
\(954\) 0 0
\(955\) −22.5000 + 38.9711i −0.728083 + 1.26108i
\(956\) 0 0
\(957\) 15.5885i 0.503903i
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 3.00000 5.19615i 0.0967742 0.167618i
\(962\) 0 0
\(963\) 18.0000 31.1769i 0.580042 1.00466i
\(964\) 0 0
\(965\) −16.5000 28.5788i −0.531154 0.919985i
\(966\) 0 0
\(967\) 21.5000 37.2391i 0.691393 1.19753i −0.279988 0.960003i \(-0.590331\pi\)
0.971381 0.237525i \(-0.0763362\pi\)
\(968\) 0 0
\(969\) −36.0000 20.7846i −1.15649 0.667698i
\(970\) 0 0
\(971\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 6.00000 3.46410i 0.192154 0.110940i
\(976\) 0 0
\(977\) 28.5000 + 49.3634i 0.911796 + 1.57928i 0.811526 + 0.584316i \(0.198637\pi\)
0.100270 + 0.994960i \(0.468029\pi\)
\(978\) 0 0
\(979\) −9.00000 15.5885i −0.287641 0.498209i
\(980\) 0 0
\(981\) −6.00000 −0.191565
\(982\) 0 0
\(983\) 51.0000 1.62665 0.813324 0.581811i \(-0.197656\pi\)
0.813324 + 0.581811i \(0.197656\pi\)
\(984\) 0 0
\(985\) 18.0000 0.573528
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −1.50000 2.59808i −0.0476972 0.0826140i
\(990\) 0 0
\(991\) −4.00000 + 6.92820i −0.127064 + 0.220082i −0.922538 0.385906i \(-0.873889\pi\)
0.795474 + 0.605988i \(0.207222\pi\)
\(992\) 0 0
\(993\) −16.5000 + 9.52628i −0.523612 + 0.302307i
\(994\) 0 0
\(995\) 6.00000 10.3923i 0.190213 0.329458i
\(996\) 0 0
\(997\) −1.00000 −0.0316703 −0.0158352 0.999875i \(-0.505041\pi\)
−0.0158352 + 0.999875i \(0.505041\pi\)
\(998\) 0 0
\(999\) 9.00000 5.19615i 0.284747 0.164399i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1764.2.l.c.949.1 2
3.2 odd 2 5292.2.l.a.361.1 2
7.2 even 3 1764.2.i.a.373.1 2
7.3 odd 6 1764.2.j.b.589.1 2
7.4 even 3 36.2.e.a.13.1 2
7.5 odd 6 1764.2.i.c.373.1 2
7.6 odd 2 1764.2.l.a.949.1 2
9.2 odd 6 5292.2.i.c.2125.1 2
9.7 even 3 1764.2.i.a.1537.1 2
21.2 odd 6 5292.2.i.c.1549.1 2
21.5 even 6 5292.2.i.a.1549.1 2
21.11 odd 6 108.2.e.a.37.1 2
21.17 even 6 5292.2.j.a.1765.1 2
21.20 even 2 5292.2.l.c.361.1 2
28.11 odd 6 144.2.i.a.49.1 2
35.4 even 6 900.2.i.b.301.1 2
35.18 odd 12 900.2.s.b.49.2 4
35.32 odd 12 900.2.s.b.49.1 4
56.11 odd 6 576.2.i.e.193.1 2
56.53 even 6 576.2.i.f.193.1 2
63.2 odd 6 5292.2.l.a.3313.1 2
63.4 even 3 324.2.a.c.1.1 1
63.11 odd 6 108.2.e.a.73.1 2
63.16 even 3 inner 1764.2.l.c.961.1 2
63.20 even 6 5292.2.i.a.2125.1 2
63.25 even 3 36.2.e.a.25.1 yes 2
63.32 odd 6 324.2.a.a.1.1 1
63.34 odd 6 1764.2.i.c.1537.1 2
63.38 even 6 5292.2.j.a.3529.1 2
63.47 even 6 5292.2.l.c.3313.1 2
63.52 odd 6 1764.2.j.b.1177.1 2
63.61 odd 6 1764.2.l.a.961.1 2
84.11 even 6 432.2.i.c.145.1 2
105.32 even 12 2700.2.s.b.1549.1 4
105.53 even 12 2700.2.s.b.1549.2 4
105.74 odd 6 2700.2.i.b.901.1 2
168.11 even 6 1728.2.i.c.577.1 2
168.53 odd 6 1728.2.i.d.577.1 2
252.11 even 6 432.2.i.c.289.1 2
252.67 odd 6 1296.2.a.k.1.1 1
252.95 even 6 1296.2.a.b.1.1 1
252.151 odd 6 144.2.i.a.97.1 2
315.4 even 6 8100.2.a.j.1.1 1
315.32 even 12 8100.2.d.c.649.1 2
315.67 odd 12 8100.2.d.h.649.1 2
315.74 odd 6 2700.2.i.b.1801.1 2
315.88 odd 12 900.2.s.b.349.1 4
315.137 even 12 2700.2.s.b.2449.2 4
315.158 even 12 8100.2.d.c.649.2 2
315.193 odd 12 8100.2.d.h.649.2 2
315.214 even 6 900.2.i.b.601.1 2
315.263 even 12 2700.2.s.b.2449.1 4
315.277 odd 12 900.2.s.b.349.2 4
315.284 odd 6 8100.2.a.g.1.1 1
504.11 even 6 1728.2.i.c.1153.1 2
504.67 odd 6 5184.2.a.f.1.1 1
504.221 odd 6 5184.2.a.ba.1.1 1
504.277 even 6 576.2.i.f.385.1 2
504.347 even 6 5184.2.a.bb.1.1 1
504.389 odd 6 1728.2.i.d.1153.1 2
504.403 odd 6 576.2.i.e.385.1 2
504.445 even 6 5184.2.a.e.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
36.2.e.a.13.1 2 7.4 even 3
36.2.e.a.25.1 yes 2 63.25 even 3
108.2.e.a.37.1 2 21.11 odd 6
108.2.e.a.73.1 2 63.11 odd 6
144.2.i.a.49.1 2 28.11 odd 6
144.2.i.a.97.1 2 252.151 odd 6
324.2.a.a.1.1 1 63.32 odd 6
324.2.a.c.1.1 1 63.4 even 3
432.2.i.c.145.1 2 84.11 even 6
432.2.i.c.289.1 2 252.11 even 6
576.2.i.e.193.1 2 56.11 odd 6
576.2.i.e.385.1 2 504.403 odd 6
576.2.i.f.193.1 2 56.53 even 6
576.2.i.f.385.1 2 504.277 even 6
900.2.i.b.301.1 2 35.4 even 6
900.2.i.b.601.1 2 315.214 even 6
900.2.s.b.49.1 4 35.32 odd 12
900.2.s.b.49.2 4 35.18 odd 12
900.2.s.b.349.1 4 315.88 odd 12
900.2.s.b.349.2 4 315.277 odd 12
1296.2.a.b.1.1 1 252.95 even 6
1296.2.a.k.1.1 1 252.67 odd 6
1728.2.i.c.577.1 2 168.11 even 6
1728.2.i.c.1153.1 2 504.11 even 6
1728.2.i.d.577.1 2 168.53 odd 6
1728.2.i.d.1153.1 2 504.389 odd 6
1764.2.i.a.373.1 2 7.2 even 3
1764.2.i.a.1537.1 2 9.7 even 3
1764.2.i.c.373.1 2 7.5 odd 6
1764.2.i.c.1537.1 2 63.34 odd 6
1764.2.j.b.589.1 2 7.3 odd 6
1764.2.j.b.1177.1 2 63.52 odd 6
1764.2.l.a.949.1 2 7.6 odd 2
1764.2.l.a.961.1 2 63.61 odd 6
1764.2.l.c.949.1 2 1.1 even 1 trivial
1764.2.l.c.961.1 2 63.16 even 3 inner
2700.2.i.b.901.1 2 105.74 odd 6
2700.2.i.b.1801.1 2 315.74 odd 6
2700.2.s.b.1549.1 4 105.32 even 12
2700.2.s.b.1549.2 4 105.53 even 12
2700.2.s.b.2449.1 4 315.263 even 12
2700.2.s.b.2449.2 4 315.137 even 12
5184.2.a.e.1.1 1 504.445 even 6
5184.2.a.f.1.1 1 504.67 odd 6
5184.2.a.ba.1.1 1 504.221 odd 6
5184.2.a.bb.1.1 1 504.347 even 6
5292.2.i.a.1549.1 2 21.5 even 6
5292.2.i.a.2125.1 2 63.20 even 6
5292.2.i.c.1549.1 2 21.2 odd 6
5292.2.i.c.2125.1 2 9.2 odd 6
5292.2.j.a.1765.1 2 21.17 even 6
5292.2.j.a.3529.1 2 63.38 even 6
5292.2.l.a.361.1 2 3.2 odd 2
5292.2.l.a.3313.1 2 63.2 odd 6
5292.2.l.c.361.1 2 21.20 even 2
5292.2.l.c.3313.1 2 63.47 even 6
8100.2.a.g.1.1 1 315.284 odd 6
8100.2.a.j.1.1 1 315.4 even 6
8100.2.d.c.649.1 2 315.32 even 12
8100.2.d.c.649.2 2 315.158 even 12
8100.2.d.h.649.1 2 315.67 odd 12
8100.2.d.h.649.2 2 315.193 odd 12