Properties

Label 5292.2.i.a.1549.1
Level $5292$
Weight $2$
Character 5292.1549
Analytic conductor $42.257$
Analytic rank $1$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [5292,2,Mod(1549,5292)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(5292, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 2, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("5292.1549");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 5292 = 2^{2} \cdot 3^{3} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5292.i (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(42.2568327497\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 36)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 1549.1
Root \(0.500000 - 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 5292.1549
Dual form 5292.2.i.a.2125.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.50000 - 2.59808i) q^{5} +(1.50000 - 2.59808i) q^{11} +(-0.500000 + 0.866025i) q^{13} +(-3.00000 - 5.19615i) q^{17} +(-2.00000 + 3.46410i) q^{19} +(-1.50000 - 2.59808i) q^{23} +(-2.00000 + 3.46410i) q^{25} +(1.50000 + 2.59808i) q^{29} -5.00000 q^{31} +(-1.00000 + 1.73205i) q^{37} +(-1.50000 + 2.59808i) q^{41} +(0.500000 + 0.866025i) q^{43} -9.00000 q^{47} +(-3.00000 - 5.19615i) q^{53} -9.00000 q^{55} -3.00000 q^{59} +13.0000 q^{61} +3.00000 q^{65} -7.00000 q^{67} +12.0000 q^{71} +(-5.00000 - 8.66025i) q^{73} +11.0000 q^{79} +(4.50000 + 7.79423i) q^{83} +(-9.00000 + 15.5885i) q^{85} +(-3.00000 + 5.19615i) q^{89} +12.0000 q^{95} +(5.50000 + 9.52628i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 3 q^{5} + 3 q^{11} - q^{13} - 6 q^{17} - 4 q^{19} - 3 q^{23} - 4 q^{25} + 3 q^{29} - 10 q^{31} - 2 q^{37} - 3 q^{41} + q^{43} - 18 q^{47} - 6 q^{53} - 18 q^{55} - 6 q^{59} + 26 q^{61} + 6 q^{65}+ \cdots + 11 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/5292\mathbb{Z}\right)^\times\).

\(n\) \(785\) \(1081\) \(2647\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −1.50000 2.59808i −0.670820 1.16190i −0.977672 0.210138i \(-0.932609\pi\)
0.306851 0.951757i \(-0.400725\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 1.50000 2.59808i 0.452267 0.783349i −0.546259 0.837616i \(-0.683949\pi\)
0.998526 + 0.0542666i \(0.0172821\pi\)
\(12\) 0 0
\(13\) −0.500000 + 0.866025i −0.138675 + 0.240192i −0.926995 0.375073i \(-0.877618\pi\)
0.788320 + 0.615265i \(0.210951\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −3.00000 5.19615i −0.727607 1.26025i −0.957892 0.287129i \(-0.907299\pi\)
0.230285 0.973123i \(-0.426034\pi\)
\(18\) 0 0
\(19\) −2.00000 + 3.46410i −0.458831 + 0.794719i −0.998899 0.0469020i \(-0.985065\pi\)
0.540068 + 0.841621i \(0.318398\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −1.50000 2.59808i −0.312772 0.541736i 0.666190 0.745782i \(-0.267924\pi\)
−0.978961 + 0.204046i \(0.934591\pi\)
\(24\) 0 0
\(25\) −2.00000 + 3.46410i −0.400000 + 0.692820i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 1.50000 + 2.59808i 0.278543 + 0.482451i 0.971023 0.238987i \(-0.0768152\pi\)
−0.692480 + 0.721437i \(0.743482\pi\)
\(30\) 0 0
\(31\) −5.00000 −0.898027 −0.449013 0.893525i \(-0.648224\pi\)
−0.449013 + 0.893525i \(0.648224\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −1.00000 + 1.73205i −0.164399 + 0.284747i −0.936442 0.350823i \(-0.885902\pi\)
0.772043 + 0.635571i \(0.219235\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −1.50000 + 2.59808i −0.234261 + 0.405751i −0.959058 0.283211i \(-0.908600\pi\)
0.724797 + 0.688963i \(0.241934\pi\)
\(42\) 0 0
\(43\) 0.500000 + 0.866025i 0.0762493 + 0.132068i 0.901629 0.432511i \(-0.142372\pi\)
−0.825380 + 0.564578i \(0.809039\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −9.00000 −1.31278 −0.656392 0.754420i \(-0.727918\pi\)
−0.656392 + 0.754420i \(0.727918\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −3.00000 5.19615i −0.412082 0.713746i 0.583036 0.812447i \(-0.301865\pi\)
−0.995117 + 0.0987002i \(0.968532\pi\)
\(54\) 0 0
\(55\) −9.00000 −1.21356
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −3.00000 −0.390567 −0.195283 0.980747i \(-0.562563\pi\)
−0.195283 + 0.980747i \(0.562563\pi\)
\(60\) 0 0
\(61\) 13.0000 1.66448 0.832240 0.554416i \(-0.187058\pi\)
0.832240 + 0.554416i \(0.187058\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 3.00000 0.372104
\(66\) 0 0
\(67\) −7.00000 −0.855186 −0.427593 0.903971i \(-0.640638\pi\)
−0.427593 + 0.903971i \(0.640638\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 12.0000 1.42414 0.712069 0.702109i \(-0.247758\pi\)
0.712069 + 0.702109i \(0.247758\pi\)
\(72\) 0 0
\(73\) −5.00000 8.66025i −0.585206 1.01361i −0.994850 0.101361i \(-0.967680\pi\)
0.409644 0.912245i \(-0.365653\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 11.0000 1.23760 0.618798 0.785550i \(-0.287620\pi\)
0.618798 + 0.785550i \(0.287620\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 4.50000 + 7.79423i 0.493939 + 0.855528i 0.999976 0.00698436i \(-0.00222321\pi\)
−0.506036 + 0.862512i \(0.668890\pi\)
\(84\) 0 0
\(85\) −9.00000 + 15.5885i −0.976187 + 1.69081i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −3.00000 + 5.19615i −0.317999 + 0.550791i −0.980071 0.198650i \(-0.936344\pi\)
0.662071 + 0.749441i \(0.269678\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 12.0000 1.23117
\(96\) 0 0
\(97\) 5.50000 + 9.52628i 0.558440 + 0.967247i 0.997627 + 0.0688512i \(0.0219334\pi\)
−0.439187 + 0.898396i \(0.644733\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −7.50000 + 12.9904i −0.746278 + 1.29259i 0.203317 + 0.979113i \(0.434828\pi\)
−0.949595 + 0.313478i \(0.898506\pi\)
\(102\) 0 0
\(103\) −3.50000 6.06218i −0.344865 0.597324i 0.640464 0.767988i \(-0.278742\pi\)
−0.985329 + 0.170664i \(0.945409\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 6.00000 10.3923i 0.580042 1.00466i −0.415432 0.909624i \(-0.636370\pi\)
0.995474 0.0950377i \(-0.0302972\pi\)
\(108\) 0 0
\(109\) −1.00000 1.73205i −0.0957826 0.165900i 0.814152 0.580651i \(-0.197202\pi\)
−0.909935 + 0.414751i \(0.863869\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −4.50000 + 7.79423i −0.423324 + 0.733219i −0.996262 0.0863794i \(-0.972470\pi\)
0.572938 + 0.819599i \(0.305804\pi\)
\(114\) 0 0
\(115\) −4.50000 + 7.79423i −0.419627 + 0.726816i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 1.00000 + 1.73205i 0.0909091 + 0.157459i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −3.00000 −0.268328
\(126\) 0 0
\(127\) −16.0000 −1.41977 −0.709885 0.704317i \(-0.751253\pi\)
−0.709885 + 0.704317i \(0.751253\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −10.5000 18.1865i −0.917389 1.58896i −0.803365 0.595487i \(-0.796959\pi\)
−0.114024 0.993478i \(-0.536374\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 1.50000 2.59808i 0.128154 0.221969i −0.794808 0.606861i \(-0.792428\pi\)
0.922961 + 0.384893i \(0.125762\pi\)
\(138\) 0 0
\(139\) 2.50000 4.33013i 0.212047 0.367277i −0.740308 0.672268i \(-0.765320\pi\)
0.952355 + 0.304991i \(0.0986536\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 1.50000 + 2.59808i 0.125436 + 0.217262i
\(144\) 0 0
\(145\) 4.50000 7.79423i 0.373705 0.647275i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 7.50000 + 12.9904i 0.614424 + 1.06421i 0.990485 + 0.137619i \(0.0439449\pi\)
−0.376061 + 0.926595i \(0.622722\pi\)
\(150\) 0 0
\(151\) 6.50000 11.2583i 0.528962 0.916190i −0.470467 0.882418i \(-0.655915\pi\)
0.999430 0.0337724i \(-0.0107521\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 7.50000 + 12.9904i 0.602414 + 1.04341i
\(156\) 0 0
\(157\) 13.0000 1.03751 0.518756 0.854922i \(-0.326395\pi\)
0.518756 + 0.854922i \(0.326395\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) −10.0000 + 17.3205i −0.783260 + 1.35665i 0.146772 + 0.989170i \(0.453112\pi\)
−0.930033 + 0.367477i \(0.880222\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −4.50000 + 7.79423i −0.348220 + 0.603136i −0.985933 0.167139i \(-0.946547\pi\)
0.637713 + 0.770274i \(0.279881\pi\)
\(168\) 0 0
\(169\) 6.00000 + 10.3923i 0.461538 + 0.799408i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −9.00000 −0.684257 −0.342129 0.939653i \(-0.611148\pi\)
−0.342129 + 0.939653i \(0.611148\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 6.00000 + 10.3923i 0.448461 + 0.776757i 0.998286 0.0585225i \(-0.0186389\pi\)
−0.549825 + 0.835280i \(0.685306\pi\)
\(180\) 0 0
\(181\) −2.00000 −0.148659 −0.0743294 0.997234i \(-0.523682\pi\)
−0.0743294 + 0.997234i \(0.523682\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 6.00000 0.441129
\(186\) 0 0
\(187\) −18.0000 −1.31629
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −15.0000 −1.08536 −0.542681 0.839939i \(-0.682591\pi\)
−0.542681 + 0.839939i \(0.682591\pi\)
\(192\) 0 0
\(193\) 11.0000 0.791797 0.395899 0.918294i \(-0.370433\pi\)
0.395899 + 0.918294i \(0.370433\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −6.00000 −0.427482 −0.213741 0.976890i \(-0.568565\pi\)
−0.213741 + 0.976890i \(0.568565\pi\)
\(198\) 0 0
\(199\) −2.00000 3.46410i −0.141776 0.245564i 0.786389 0.617731i \(-0.211948\pi\)
−0.928166 + 0.372168i \(0.878615\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 9.00000 0.628587
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 6.00000 + 10.3923i 0.415029 + 0.718851i
\(210\) 0 0
\(211\) −8.50000 + 14.7224i −0.585164 + 1.01353i 0.409691 + 0.912224i \(0.365637\pi\)
−0.994855 + 0.101310i \(0.967697\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 1.50000 2.59808i 0.102299 0.177187i
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 6.00000 0.403604
\(222\) 0 0
\(223\) −0.500000 0.866025i −0.0334825 0.0579934i 0.848799 0.528716i \(-0.177326\pi\)
−0.882281 + 0.470723i \(0.843993\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −13.5000 + 23.3827i −0.896026 + 1.55196i −0.0634974 + 0.997982i \(0.520225\pi\)
−0.832529 + 0.553981i \(0.813108\pi\)
\(228\) 0 0
\(229\) −6.50000 11.2583i −0.429532 0.743971i 0.567300 0.823511i \(-0.307988\pi\)
−0.996832 + 0.0795401i \(0.974655\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −3.00000 + 5.19615i −0.196537 + 0.340411i −0.947403 0.320043i \(-0.896303\pi\)
0.750867 + 0.660454i \(0.229636\pi\)
\(234\) 0 0
\(235\) 13.5000 + 23.3827i 0.880643 + 1.52532i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −13.5000 + 23.3827i −0.873242 + 1.51250i −0.0146191 + 0.999893i \(0.504654\pi\)
−0.858623 + 0.512607i \(0.828680\pi\)
\(240\) 0 0
\(241\) −0.500000 + 0.866025i −0.0322078 + 0.0557856i −0.881680 0.471848i \(-0.843587\pi\)
0.849472 + 0.527633i \(0.176921\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −2.00000 3.46410i −0.127257 0.220416i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 12.0000 0.757433 0.378717 0.925513i \(-0.376365\pi\)
0.378717 + 0.925513i \(0.376365\pi\)
\(252\) 0 0
\(253\) −9.00000 −0.565825
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 4.50000 + 7.79423i 0.280702 + 0.486191i 0.971558 0.236802i \(-0.0760993\pi\)
−0.690856 + 0.722993i \(0.742766\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −10.5000 + 18.1865i −0.647458 + 1.12143i 0.336270 + 0.941766i \(0.390834\pi\)
−0.983728 + 0.179664i \(0.942499\pi\)
\(264\) 0 0
\(265\) −9.00000 + 15.5885i −0.552866 + 0.957591i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 3.00000 + 5.19615i 0.182913 + 0.316815i 0.942871 0.333157i \(-0.108114\pi\)
−0.759958 + 0.649972i \(0.774781\pi\)
\(270\) 0 0
\(271\) 4.00000 6.92820i 0.242983 0.420858i −0.718580 0.695444i \(-0.755208\pi\)
0.961563 + 0.274586i \(0.0885408\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 6.00000 + 10.3923i 0.361814 + 0.626680i
\(276\) 0 0
\(277\) 0.500000 0.866025i 0.0300421 0.0520344i −0.850613 0.525792i \(-0.823769\pi\)
0.880656 + 0.473757i \(0.157103\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 1.50000 + 2.59808i 0.0894825 + 0.154988i 0.907293 0.420500i \(-0.138145\pi\)
−0.817810 + 0.575488i \(0.804812\pi\)
\(282\) 0 0
\(283\) −5.00000 −0.297219 −0.148610 0.988896i \(-0.547480\pi\)
−0.148610 + 0.988896i \(0.547480\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −9.50000 + 16.4545i −0.558824 + 0.967911i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 10.5000 18.1865i 0.613417 1.06247i −0.377244 0.926114i \(-0.623128\pi\)
0.990660 0.136355i \(-0.0435386\pi\)
\(294\) 0 0
\(295\) 4.50000 + 7.79423i 0.262000 + 0.453798i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 3.00000 0.173494
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −19.5000 33.7750i −1.11657 1.93395i
\(306\) 0 0
\(307\) −20.0000 −1.14146 −0.570730 0.821138i \(-0.693340\pi\)
−0.570730 + 0.821138i \(0.693340\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 21.0000 1.19080 0.595400 0.803429i \(-0.296993\pi\)
0.595400 + 0.803429i \(0.296993\pi\)
\(312\) 0 0
\(313\) 1.00000 0.0565233 0.0282617 0.999601i \(-0.491003\pi\)
0.0282617 + 0.999601i \(0.491003\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 21.0000 1.17948 0.589739 0.807594i \(-0.299231\pi\)
0.589739 + 0.807594i \(0.299231\pi\)
\(318\) 0 0
\(319\) 9.00000 0.503903
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 24.0000 1.33540
\(324\) 0 0
\(325\) −2.00000 3.46410i −0.110940 0.192154i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 11.0000 0.604615 0.302307 0.953211i \(-0.402243\pi\)
0.302307 + 0.953211i \(0.402243\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 10.5000 + 18.1865i 0.573676 + 0.993636i
\(336\) 0 0
\(337\) −11.5000 + 19.9186i −0.626445 + 1.08503i 0.361815 + 0.932250i \(0.382157\pi\)
−0.988260 + 0.152784i \(0.951176\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −7.50000 + 12.9904i −0.406148 + 0.703469i
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −9.00000 −0.483145 −0.241573 0.970383i \(-0.577663\pi\)
−0.241573 + 0.970383i \(0.577663\pi\)
\(348\) 0 0
\(349\) −0.500000 0.866025i −0.0267644 0.0463573i 0.852333 0.523000i \(-0.175187\pi\)
−0.879097 + 0.476642i \(0.841854\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −1.50000 + 2.59808i −0.0798369 + 0.138282i −0.903179 0.429263i \(-0.858773\pi\)
0.823343 + 0.567545i \(0.192107\pi\)
\(354\) 0 0
\(355\) −18.0000 31.1769i −0.955341 1.65470i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(360\) 0 0
\(361\) 1.50000 + 2.59808i 0.0789474 + 0.136741i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −15.0000 + 25.9808i −0.785136 + 1.35990i
\(366\) 0 0
\(367\) −6.50000 + 11.2583i −0.339297 + 0.587680i −0.984301 0.176500i \(-0.943523\pi\)
0.645003 + 0.764180i \(0.276856\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 0.500000 + 0.866025i 0.0258890 + 0.0448411i 0.878680 0.477412i \(-0.158425\pi\)
−0.852791 + 0.522253i \(0.825092\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −3.00000 −0.154508
\(378\) 0 0
\(379\) −16.0000 −0.821865 −0.410932 0.911666i \(-0.634797\pi\)
−0.410932 + 0.911666i \(0.634797\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 7.50000 + 12.9904i 0.383232 + 0.663777i 0.991522 0.129937i \(-0.0414776\pi\)
−0.608290 + 0.793715i \(0.708144\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 7.50000 12.9904i 0.380265 0.658638i −0.610835 0.791758i \(-0.709166\pi\)
0.991100 + 0.133120i \(0.0424994\pi\)
\(390\) 0 0
\(391\) −9.00000 + 15.5885i −0.455150 + 0.788342i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −16.5000 28.5788i −0.830205 1.43796i
\(396\) 0 0
\(397\) 1.00000 1.73205i 0.0501886 0.0869291i −0.839840 0.542834i \(-0.817351\pi\)
0.890028 + 0.455905i \(0.150684\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 1.50000 + 2.59808i 0.0749064 + 0.129742i 0.901046 0.433724i \(-0.142801\pi\)
−0.826139 + 0.563466i \(0.809468\pi\)
\(402\) 0 0
\(403\) 2.50000 4.33013i 0.124534 0.215699i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 3.00000 + 5.19615i 0.148704 + 0.257564i
\(408\) 0 0
\(409\) −23.0000 −1.13728 −0.568638 0.822588i \(-0.692530\pi\)
−0.568638 + 0.822588i \(0.692530\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 13.5000 23.3827i 0.662689 1.14781i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −4.50000 + 7.79423i −0.219839 + 0.380773i −0.954759 0.297382i \(-0.903887\pi\)
0.734919 + 0.678155i \(0.237220\pi\)
\(420\) 0 0
\(421\) −17.5000 30.3109i −0.852898 1.47726i −0.878582 0.477592i \(-0.841510\pi\)
0.0256838 0.999670i \(-0.491824\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 24.0000 1.16417
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 12.0000 + 20.7846i 0.578020 + 1.00116i 0.995706 + 0.0925683i \(0.0295076\pi\)
−0.417687 + 0.908591i \(0.637159\pi\)
\(432\) 0 0
\(433\) 34.0000 1.63394 0.816968 0.576683i \(-0.195653\pi\)
0.816968 + 0.576683i \(0.195653\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 12.0000 0.574038
\(438\) 0 0
\(439\) −35.0000 −1.67046 −0.835229 0.549902i \(-0.814665\pi\)
−0.835229 + 0.549902i \(0.814665\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 9.00000 0.427603 0.213801 0.976877i \(-0.431415\pi\)
0.213801 + 0.976877i \(0.431415\pi\)
\(444\) 0 0
\(445\) 18.0000 0.853282
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 18.0000 0.849473 0.424736 0.905317i \(-0.360367\pi\)
0.424736 + 0.905317i \(0.360367\pi\)
\(450\) 0 0
\(451\) 4.50000 + 7.79423i 0.211897 + 0.367016i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −37.0000 −1.73079 −0.865393 0.501093i \(-0.832931\pi\)
−0.865393 + 0.501093i \(0.832931\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −1.50000 2.59808i −0.0698620 0.121004i 0.828978 0.559281i \(-0.188923\pi\)
−0.898840 + 0.438276i \(0.855589\pi\)
\(462\) 0 0
\(463\) 9.50000 16.4545i 0.441502 0.764705i −0.556299 0.830982i \(-0.687779\pi\)
0.997801 + 0.0662777i \(0.0211123\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −6.00000 + 10.3923i −0.277647 + 0.480899i −0.970799 0.239892i \(-0.922888\pi\)
0.693153 + 0.720791i \(0.256221\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 3.00000 0.137940
\(474\) 0 0
\(475\) −8.00000 13.8564i −0.367065 0.635776i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −13.5000 + 23.3827i −0.616831 + 1.06838i 0.373230 + 0.927739i \(0.378250\pi\)
−0.990060 + 0.140643i \(0.955083\pi\)
\(480\) 0 0
\(481\) −1.00000 1.73205i −0.0455961 0.0789747i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 16.5000 28.5788i 0.749226 1.29770i
\(486\) 0 0
\(487\) −16.0000 27.7128i −0.725029 1.25579i −0.958962 0.283535i \(-0.908493\pi\)
0.233933 0.972253i \(-0.424840\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −1.50000 + 2.59808i −0.0676941 + 0.117250i −0.897886 0.440228i \(-0.854898\pi\)
0.830192 + 0.557478i \(0.188231\pi\)
\(492\) 0 0
\(493\) 9.00000 15.5885i 0.405340 0.702069i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) −2.50000 4.33013i −0.111915 0.193843i 0.804627 0.593780i \(-0.202365\pi\)
−0.916542 + 0.399937i \(0.869032\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −36.0000 −1.60516 −0.802580 0.596544i \(-0.796540\pi\)
−0.802580 + 0.596544i \(0.796540\pi\)
\(504\) 0 0
\(505\) 45.0000 2.00247
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −19.5000 33.7750i −0.864322 1.49705i −0.867719 0.497056i \(-0.834414\pi\)
0.00339621 0.999994i \(-0.498919\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −10.5000 + 18.1865i −0.462685 + 0.801394i
\(516\) 0 0
\(517\) −13.5000 + 23.3827i −0.593729 + 1.02837i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −21.0000 36.3731i −0.920027 1.59353i −0.799370 0.600839i \(-0.794833\pi\)
−0.120656 0.992694i \(-0.538500\pi\)
\(522\) 0 0
\(523\) 4.00000 6.92820i 0.174908 0.302949i −0.765222 0.643767i \(-0.777371\pi\)
0.940129 + 0.340818i \(0.110704\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 15.0000 + 25.9808i 0.653410 + 1.13174i
\(528\) 0 0
\(529\) 7.00000 12.1244i 0.304348 0.527146i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −1.50000 2.59808i −0.0649722 0.112535i
\(534\) 0 0
\(535\) −36.0000 −1.55642
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 17.0000 29.4449i 0.730887 1.26593i −0.225617 0.974216i \(-0.572440\pi\)
0.956504 0.291718i \(-0.0942267\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −3.00000 + 5.19615i −0.128506 + 0.222579i
\(546\) 0 0
\(547\) 6.50000 + 11.2583i 0.277920 + 0.481371i 0.970868 0.239616i \(-0.0770217\pi\)
−0.692948 + 0.720988i \(0.743688\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −12.0000 −0.511217
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −15.0000 25.9808i −0.635570 1.10084i −0.986394 0.164399i \(-0.947432\pi\)
0.350824 0.936442i \(-0.385902\pi\)
\(558\) 0 0
\(559\) −1.00000 −0.0422955
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 9.00000 0.379305 0.189652 0.981851i \(-0.439264\pi\)
0.189652 + 0.981851i \(0.439264\pi\)
\(564\) 0 0
\(565\) 27.0000 1.13590
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −15.0000 −0.628833 −0.314416 0.949285i \(-0.601809\pi\)
−0.314416 + 0.949285i \(0.601809\pi\)
\(570\) 0 0
\(571\) −31.0000 −1.29731 −0.648655 0.761083i \(-0.724668\pi\)
−0.648655 + 0.761083i \(0.724668\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 12.0000 0.500435
\(576\) 0 0
\(577\) −5.00000 8.66025i −0.208153 0.360531i 0.742980 0.669314i \(-0.233412\pi\)
−0.951133 + 0.308783i \(0.900078\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) −18.0000 −0.745484
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −7.50000 12.9904i −0.309558 0.536170i 0.668708 0.743525i \(-0.266848\pi\)
−0.978266 + 0.207355i \(0.933514\pi\)
\(588\) 0 0
\(589\) 10.0000 17.3205i 0.412043 0.713679i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −3.00000 + 5.19615i −0.123195 + 0.213380i −0.921026 0.389501i \(-0.872647\pi\)
0.797831 + 0.602881i \(0.205981\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 39.0000 1.59350 0.796748 0.604311i \(-0.206552\pi\)
0.796748 + 0.604311i \(0.206552\pi\)
\(600\) 0 0
\(601\) 17.5000 + 30.3109i 0.713840 + 1.23641i 0.963405 + 0.268049i \(0.0863789\pi\)
−0.249565 + 0.968358i \(0.580288\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 3.00000 5.19615i 0.121967 0.211254i
\(606\) 0 0
\(607\) 20.5000 + 35.5070i 0.832069 + 1.44119i 0.896394 + 0.443257i \(0.146177\pi\)
−0.0643251 + 0.997929i \(0.520489\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 4.50000 7.79423i 0.182051 0.315321i
\(612\) 0 0
\(613\) −13.0000 22.5167i −0.525065 0.909439i −0.999574 0.0291886i \(-0.990708\pi\)
0.474509 0.880251i \(-0.342626\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 1.50000 2.59808i 0.0603877 0.104595i −0.834251 0.551385i \(-0.814100\pi\)
0.894639 + 0.446790i \(0.147433\pi\)
\(618\) 0 0
\(619\) −6.50000 + 11.2583i −0.261257 + 0.452510i −0.966576 0.256379i \(-0.917470\pi\)
0.705319 + 0.708890i \(0.250804\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 14.5000 + 25.1147i 0.580000 + 1.00459i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 12.0000 0.478471
\(630\) 0 0
\(631\) −16.0000 −0.636950 −0.318475 0.947931i \(-0.603171\pi\)
−0.318475 + 0.947931i \(0.603171\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 24.0000 + 41.5692i 0.952411 + 1.64962i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −16.5000 + 28.5788i −0.651711 + 1.12880i 0.330997 + 0.943632i \(0.392615\pi\)
−0.982708 + 0.185164i \(0.940718\pi\)
\(642\) 0 0
\(643\) 20.5000 35.5070i 0.808441 1.40026i −0.105502 0.994419i \(-0.533645\pi\)
0.913943 0.405842i \(-0.133022\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(648\) 0 0
\(649\) −4.50000 + 7.79423i −0.176640 + 0.305950i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −10.5000 18.1865i −0.410897 0.711694i 0.584091 0.811688i \(-0.301451\pi\)
−0.994988 + 0.0999939i \(0.968118\pi\)
\(654\) 0 0
\(655\) −31.5000 + 54.5596i −1.23081 + 2.13182i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −10.5000 18.1865i −0.409022 0.708447i 0.585758 0.810486i \(-0.300797\pi\)
−0.994780 + 0.102039i \(0.967463\pi\)
\(660\) 0 0
\(661\) −11.0000 −0.427850 −0.213925 0.976850i \(-0.568625\pi\)
−0.213925 + 0.976850i \(0.568625\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 4.50000 7.79423i 0.174241 0.301794i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 19.5000 33.7750i 0.752789 1.30387i
\(672\) 0 0
\(673\) −5.50000 9.52628i −0.212009 0.367211i 0.740334 0.672239i \(-0.234667\pi\)
−0.952343 + 0.305028i \(0.901334\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 15.0000 0.576497 0.288248 0.957556i \(-0.406927\pi\)
0.288248 + 0.957556i \(0.406927\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −18.0000 31.1769i −0.688751 1.19295i −0.972242 0.233977i \(-0.924826\pi\)
0.283491 0.958975i \(-0.408507\pi\)
\(684\) 0 0
\(685\) −9.00000 −0.343872
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 6.00000 0.228582
\(690\) 0 0
\(691\) 1.00000 0.0380418 0.0190209 0.999819i \(-0.493945\pi\)
0.0190209 + 0.999819i \(0.493945\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −15.0000 −0.568982
\(696\) 0 0
\(697\) 18.0000 0.681799
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 6.00000 0.226617 0.113308 0.993560i \(-0.463855\pi\)
0.113308 + 0.993560i \(0.463855\pi\)
\(702\) 0 0
\(703\) −4.00000 6.92820i −0.150863 0.261302i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −25.0000 −0.938895 −0.469447 0.882960i \(-0.655547\pi\)
−0.469447 + 0.882960i \(0.655547\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 7.50000 + 12.9904i 0.280877 + 0.486494i
\(714\) 0 0
\(715\) 4.50000 7.79423i 0.168290 0.291488i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −12.0000 −0.445669
\(726\) 0 0
\(727\) −18.5000 32.0429i −0.686127 1.18841i −0.973081 0.230463i \(-0.925976\pi\)
0.286954 0.957944i \(-0.407357\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 3.00000 5.19615i 0.110959 0.192187i
\(732\) 0 0
\(733\) 11.5000 + 19.9186i 0.424762 + 0.735710i 0.996398 0.0847976i \(-0.0270244\pi\)
−0.571636 + 0.820507i \(0.693691\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −10.5000 + 18.1865i −0.386772 + 0.669910i
\(738\) 0 0
\(739\) 8.00000 + 13.8564i 0.294285 + 0.509716i 0.974818 0.223001i \(-0.0715853\pi\)
−0.680534 + 0.732717i \(0.738252\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 4.50000 7.79423i 0.165089 0.285943i −0.771598 0.636111i \(-0.780542\pi\)
0.936687 + 0.350168i \(0.113876\pi\)
\(744\) 0 0
\(745\) 22.5000 38.9711i 0.824336 1.42779i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 15.5000 + 26.8468i 0.565603 + 0.979653i 0.996993 + 0.0774878i \(0.0246899\pi\)
−0.431390 + 0.902165i \(0.641977\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −39.0000 −1.41936
\(756\) 0 0
\(757\) −10.0000 −0.363456 −0.181728 0.983349i \(-0.558169\pi\)
−0.181728 + 0.983349i \(0.558169\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −13.5000 23.3827i −0.489375 0.847622i 0.510551 0.859848i \(-0.329442\pi\)
−0.999925 + 0.0122260i \(0.996108\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 1.50000 2.59808i 0.0541619 0.0938111i
\(768\) 0 0
\(769\) −0.500000 + 0.866025i −0.0180305 + 0.0312297i −0.874900 0.484304i \(-0.839073\pi\)
0.856869 + 0.515534i \(0.172406\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −9.00000 15.5885i −0.323708 0.560678i 0.657542 0.753418i \(-0.271596\pi\)
−0.981250 + 0.192740i \(0.938263\pi\)
\(774\) 0 0
\(775\) 10.0000 17.3205i 0.359211 0.622171i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −6.00000 10.3923i −0.214972 0.372343i
\(780\) 0 0
\(781\) 18.0000 31.1769i 0.644091 1.11560i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −19.5000 33.7750i −0.695985 1.20548i
\(786\) 0 0
\(787\) 43.0000 1.53278 0.766392 0.642373i \(-0.222050\pi\)
0.766392 + 0.642373i \(0.222050\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) −6.50000 + 11.2583i −0.230822 + 0.399795i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 4.50000 7.79423i 0.159398 0.276086i −0.775254 0.631650i \(-0.782378\pi\)
0.934652 + 0.355564i \(0.115711\pi\)
\(798\) 0 0
\(799\) 27.0000 + 46.7654i 0.955191 + 1.65444i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −30.0000 −1.05868
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 3.00000 + 5.19615i 0.105474 + 0.182687i 0.913932 0.405868i \(-0.133031\pi\)
−0.808458 + 0.588555i \(0.799697\pi\)
\(810\) 0 0
\(811\) −20.0000 −0.702295 −0.351147 0.936320i \(-0.614208\pi\)
−0.351147 + 0.936320i \(0.614208\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 60.0000 2.10171
\(816\) 0 0
\(817\) −4.00000 −0.139942
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −51.0000 −1.77991 −0.889956 0.456046i \(-0.849265\pi\)
−0.889956 + 0.456046i \(0.849265\pi\)
\(822\) 0 0
\(823\) −19.0000 −0.662298 −0.331149 0.943578i \(-0.607436\pi\)
−0.331149 + 0.943578i \(0.607436\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 12.0000 0.417281 0.208640 0.977992i \(-0.433096\pi\)
0.208640 + 0.977992i \(0.433096\pi\)
\(828\) 0 0
\(829\) 25.0000 + 43.3013i 0.868286 + 1.50392i 0.863747 + 0.503926i \(0.168111\pi\)
0.00453881 + 0.999990i \(0.498555\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 27.0000 0.934374
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 4.50000 + 7.79423i 0.155357 + 0.269087i 0.933189 0.359386i \(-0.117014\pi\)
−0.777832 + 0.628473i \(0.783680\pi\)
\(840\) 0 0
\(841\) 10.0000 17.3205i 0.344828 0.597259i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 18.0000 31.1769i 0.619219 1.07252i
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 6.00000 0.205677
\(852\) 0 0
\(853\) −6.50000 11.2583i −0.222556 0.385478i 0.733028 0.680199i \(-0.238107\pi\)
−0.955583 + 0.294721i \(0.904773\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −13.5000 + 23.3827i −0.461151 + 0.798737i −0.999019 0.0442921i \(-0.985897\pi\)
0.537867 + 0.843029i \(0.319230\pi\)
\(858\) 0 0
\(859\) 20.5000 + 35.5070i 0.699451 + 1.21148i 0.968657 + 0.248402i \(0.0799054\pi\)
−0.269206 + 0.963083i \(0.586761\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 12.0000 20.7846i 0.408485 0.707516i −0.586235 0.810141i \(-0.699391\pi\)
0.994720 + 0.102624i \(0.0327240\pi\)
\(864\) 0 0
\(865\) 13.5000 + 23.3827i 0.459014 + 0.795035i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 16.5000 28.5788i 0.559724 0.969471i
\(870\) 0 0
\(871\) 3.50000 6.06218i 0.118593 0.205409i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −11.5000 19.9186i −0.388327 0.672603i 0.603897 0.797062i \(-0.293614\pi\)
−0.992225 + 0.124459i \(0.960280\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 30.0000 1.01073 0.505363 0.862907i \(-0.331359\pi\)
0.505363 + 0.862907i \(0.331359\pi\)
\(882\) 0 0
\(883\) −4.00000 −0.134611 −0.0673054 0.997732i \(-0.521440\pi\)
−0.0673054 + 0.997732i \(0.521440\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −10.5000 18.1865i −0.352555 0.610644i 0.634141 0.773217i \(-0.281354\pi\)
−0.986696 + 0.162573i \(0.948021\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 18.0000 31.1769i 0.602347 1.04330i
\(894\) 0 0
\(895\) 18.0000 31.1769i 0.601674 1.04213i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −7.50000 12.9904i −0.250139 0.433253i
\(900\) 0 0
\(901\) −18.0000 + 31.1769i −0.599667 + 1.03865i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 3.00000 + 5.19615i 0.0997234 + 0.172726i
\(906\) 0 0
\(907\) −23.5000 + 40.7032i −0.780305 + 1.35153i 0.151460 + 0.988463i \(0.451603\pi\)
−0.931764 + 0.363064i \(0.881731\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −22.5000 38.9711i −0.745458 1.29117i −0.949980 0.312310i \(-0.898897\pi\)
0.204522 0.978862i \(-0.434436\pi\)
\(912\) 0 0
\(913\) 27.0000 0.893570
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 8.00000 13.8564i 0.263896 0.457081i −0.703378 0.710816i \(-0.748326\pi\)
0.967274 + 0.253735i \(0.0816592\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −6.00000 + 10.3923i −0.197492 + 0.342067i
\(924\) 0 0
\(925\) −4.00000 6.92820i −0.131519 0.227798i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 27.0000 0.885841 0.442921 0.896561i \(-0.353942\pi\)
0.442921 + 0.896561i \(0.353942\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 27.0000 + 46.7654i 0.882994 + 1.52939i
\(936\) 0 0
\(937\) 34.0000 1.11073 0.555366 0.831606i \(-0.312578\pi\)
0.555366 + 0.831606i \(0.312578\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −21.0000 −0.684580 −0.342290 0.939594i \(-0.611203\pi\)
−0.342290 + 0.939594i \(0.611203\pi\)
\(942\) 0 0
\(943\) 9.00000 0.293080
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −27.0000 −0.877382 −0.438691 0.898638i \(-0.644558\pi\)
−0.438691 + 0.898638i \(0.644558\pi\)
\(948\) 0 0
\(949\) 10.0000 0.324614
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −54.0000 −1.74923 −0.874616 0.484817i \(-0.838886\pi\)
−0.874616 + 0.484817i \(0.838886\pi\)
\(954\) 0 0
\(955\) 22.5000 + 38.9711i 0.728083 + 1.26108i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −6.00000 −0.193548
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −16.5000 28.5788i −0.531154 0.919985i
\(966\) 0 0
\(967\) 21.5000 37.2391i 0.691393 1.19753i −0.279988 0.960003i \(-0.590331\pi\)
0.971381 0.237525i \(-0.0763362\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 57.0000 1.82359 0.911796 0.410644i \(-0.134696\pi\)
0.911796 + 0.410644i \(0.134696\pi\)
\(978\) 0 0
\(979\) 9.00000 + 15.5885i 0.287641 + 0.498209i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −25.5000 + 44.1673i −0.813324 + 1.40872i 0.0972017 + 0.995265i \(0.469011\pi\)
−0.910525 + 0.413453i \(0.864323\pi\)
\(984\) 0 0
\(985\) 9.00000 + 15.5885i 0.286764 + 0.496690i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 1.50000 2.59808i 0.0476972 0.0826140i
\(990\) 0 0
\(991\) −4.00000 6.92820i −0.127064 0.220082i 0.795474 0.605988i \(-0.207222\pi\)
−0.922538 + 0.385906i \(0.873889\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −6.00000 + 10.3923i −0.190213 + 0.329458i
\(996\) 0 0
\(997\) −0.500000 + 0.866025i −0.0158352 + 0.0274273i −0.873834 0.486224i \(-0.838374\pi\)
0.857999 + 0.513651i \(0.171707\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 5292.2.i.a.1549.1 2
3.2 odd 2 1764.2.i.c.373.1 2
7.2 even 3 5292.2.j.a.1765.1 2
7.3 odd 6 5292.2.l.a.361.1 2
7.4 even 3 5292.2.l.c.361.1 2
7.5 odd 6 108.2.e.a.37.1 2
7.6 odd 2 5292.2.i.c.1549.1 2
9.2 odd 6 1764.2.l.a.961.1 2
9.7 even 3 5292.2.l.c.3313.1 2
21.2 odd 6 1764.2.j.b.589.1 2
21.5 even 6 36.2.e.a.13.1 2
21.11 odd 6 1764.2.l.a.949.1 2
21.17 even 6 1764.2.l.c.949.1 2
21.20 even 2 1764.2.i.a.373.1 2
28.19 even 6 432.2.i.c.145.1 2
35.12 even 12 2700.2.s.b.1549.1 4
35.19 odd 6 2700.2.i.b.901.1 2
35.33 even 12 2700.2.s.b.1549.2 4
56.5 odd 6 1728.2.i.d.577.1 2
56.19 even 6 1728.2.i.c.577.1 2
63.2 odd 6 1764.2.j.b.1177.1 2
63.5 even 6 324.2.a.c.1.1 1
63.11 odd 6 1764.2.i.c.1537.1 2
63.16 even 3 5292.2.j.a.3529.1 2
63.20 even 6 1764.2.l.c.961.1 2
63.25 even 3 inner 5292.2.i.a.2125.1 2
63.34 odd 6 5292.2.l.a.3313.1 2
63.38 even 6 1764.2.i.a.1537.1 2
63.40 odd 6 324.2.a.a.1.1 1
63.47 even 6 36.2.e.a.25.1 yes 2
63.52 odd 6 5292.2.i.c.2125.1 2
63.61 odd 6 108.2.e.a.73.1 2
84.47 odd 6 144.2.i.a.49.1 2
105.47 odd 12 900.2.s.b.49.1 4
105.68 odd 12 900.2.s.b.49.2 4
105.89 even 6 900.2.i.b.301.1 2
168.5 even 6 576.2.i.f.193.1 2
168.131 odd 6 576.2.i.e.193.1 2
252.47 odd 6 144.2.i.a.97.1 2
252.103 even 6 1296.2.a.b.1.1 1
252.131 odd 6 1296.2.a.k.1.1 1
252.187 even 6 432.2.i.c.289.1 2
315.47 odd 12 900.2.s.b.349.2 4
315.68 odd 12 8100.2.d.h.649.2 2
315.103 even 12 8100.2.d.c.649.2 2
315.124 odd 6 2700.2.i.b.1801.1 2
315.173 odd 12 900.2.s.b.349.1 4
315.187 even 12 2700.2.s.b.2449.2 4
315.194 even 6 8100.2.a.j.1.1 1
315.229 odd 6 8100.2.a.g.1.1 1
315.257 odd 12 8100.2.d.h.649.1 2
315.292 even 12 8100.2.d.c.649.1 2
315.299 even 6 900.2.i.b.601.1 2
315.313 even 12 2700.2.s.b.2449.1 4
504.5 even 6 5184.2.a.e.1.1 1
504.61 odd 6 1728.2.i.d.1153.1 2
504.131 odd 6 5184.2.a.f.1.1 1
504.173 even 6 576.2.i.f.385.1 2
504.187 even 6 1728.2.i.c.1153.1 2
504.229 odd 6 5184.2.a.ba.1.1 1
504.299 odd 6 576.2.i.e.385.1 2
504.355 even 6 5184.2.a.bb.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
36.2.e.a.13.1 2 21.5 even 6
36.2.e.a.25.1 yes 2 63.47 even 6
108.2.e.a.37.1 2 7.5 odd 6
108.2.e.a.73.1 2 63.61 odd 6
144.2.i.a.49.1 2 84.47 odd 6
144.2.i.a.97.1 2 252.47 odd 6
324.2.a.a.1.1 1 63.40 odd 6
324.2.a.c.1.1 1 63.5 even 6
432.2.i.c.145.1 2 28.19 even 6
432.2.i.c.289.1 2 252.187 even 6
576.2.i.e.193.1 2 168.131 odd 6
576.2.i.e.385.1 2 504.299 odd 6
576.2.i.f.193.1 2 168.5 even 6
576.2.i.f.385.1 2 504.173 even 6
900.2.i.b.301.1 2 105.89 even 6
900.2.i.b.601.1 2 315.299 even 6
900.2.s.b.49.1 4 105.47 odd 12
900.2.s.b.49.2 4 105.68 odd 12
900.2.s.b.349.1 4 315.173 odd 12
900.2.s.b.349.2 4 315.47 odd 12
1296.2.a.b.1.1 1 252.103 even 6
1296.2.a.k.1.1 1 252.131 odd 6
1728.2.i.c.577.1 2 56.19 even 6
1728.2.i.c.1153.1 2 504.187 even 6
1728.2.i.d.577.1 2 56.5 odd 6
1728.2.i.d.1153.1 2 504.61 odd 6
1764.2.i.a.373.1 2 21.20 even 2
1764.2.i.a.1537.1 2 63.38 even 6
1764.2.i.c.373.1 2 3.2 odd 2
1764.2.i.c.1537.1 2 63.11 odd 6
1764.2.j.b.589.1 2 21.2 odd 6
1764.2.j.b.1177.1 2 63.2 odd 6
1764.2.l.a.949.1 2 21.11 odd 6
1764.2.l.a.961.1 2 9.2 odd 6
1764.2.l.c.949.1 2 21.17 even 6
1764.2.l.c.961.1 2 63.20 even 6
2700.2.i.b.901.1 2 35.19 odd 6
2700.2.i.b.1801.1 2 315.124 odd 6
2700.2.s.b.1549.1 4 35.12 even 12
2700.2.s.b.1549.2 4 35.33 even 12
2700.2.s.b.2449.1 4 315.313 even 12
2700.2.s.b.2449.2 4 315.187 even 12
5184.2.a.e.1.1 1 504.5 even 6
5184.2.a.f.1.1 1 504.131 odd 6
5184.2.a.ba.1.1 1 504.229 odd 6
5184.2.a.bb.1.1 1 504.355 even 6
5292.2.i.a.1549.1 2 1.1 even 1 trivial
5292.2.i.a.2125.1 2 63.25 even 3 inner
5292.2.i.c.1549.1 2 7.6 odd 2
5292.2.i.c.2125.1 2 63.52 odd 6
5292.2.j.a.1765.1 2 7.2 even 3
5292.2.j.a.3529.1 2 63.16 even 3
5292.2.l.a.361.1 2 7.3 odd 6
5292.2.l.a.3313.1 2 63.34 odd 6
5292.2.l.c.361.1 2 7.4 even 3
5292.2.l.c.3313.1 2 9.7 even 3
8100.2.a.g.1.1 1 315.229 odd 6
8100.2.a.j.1.1 1 315.194 even 6
8100.2.d.c.649.1 2 315.292 even 12
8100.2.d.c.649.2 2 315.103 even 12
8100.2.d.h.649.1 2 315.257 odd 12
8100.2.d.h.649.2 2 315.68 odd 12