Properties

Label 1764.2.x.a.1469.4
Level $1764$
Weight $2$
Character 1764.1469
Analytic conductor $14.086$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1764,2,Mod(293,1764)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1764, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 5, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1764.293");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1764 = 2^{2} \cdot 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1764.x (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(14.0856109166\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 2 x^{15} + 5 x^{14} - 17 x^{13} + 22 x^{12} - 31 x^{11} + 62 x^{10} - 52 x^{9} + 52 x^{8} + \cdots + 6561 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 3^{4} \)
Twist minimal: no (minimal twist has level 252)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 1469.4
Root \(1.68042 - 0.419752i\) of defining polynomial
Character \(\chi\) \(=\) 1764.1469
Dual form 1764.2.x.a.293.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.240682 + 1.71525i) q^{3} +(-1.48494 - 2.57199i) q^{5} +(-2.88414 - 0.825658i) q^{9} +(4.09466 + 2.36406i) q^{11} +(-3.54045 + 2.04408i) q^{13} +(4.76900 - 1.92801i) q^{15} +1.67056 q^{17} -4.91183i q^{19} +(-4.25297 + 2.45545i) q^{23} +(-1.91009 + 3.30837i) q^{25} +(2.11037 - 4.74830i) q^{27} +(0.238557 + 0.137731i) q^{29} +(-1.38847 + 0.801636i) q^{31} +(-5.04045 + 6.45438i) q^{33} +3.39362 q^{37} +(-2.65398 - 6.56472i) q^{39} +(-3.55632 - 6.15972i) q^{41} +(5.22930 - 9.05742i) q^{43} +(2.15919 + 8.64404i) q^{45} +(5.49885 - 9.52430i) q^{47} +(-0.402073 + 2.86541i) q^{51} -0.816814i q^{53} -14.0419i q^{55} +(8.42500 + 1.18219i) q^{57} +(-1.37428 - 2.38032i) q^{59} +(-6.23807 - 3.60155i) q^{61} +(10.5147 + 6.07067i) q^{65} +(-5.80513 - 10.0548i) q^{67} +(-3.18809 - 7.88587i) q^{69} +10.4406i q^{71} -15.7608i q^{73} +(-5.21495 - 4.07254i) q^{75} +(6.15163 - 10.6549i) q^{79} +(7.63658 + 4.76264i) q^{81} +(-4.03981 + 6.99715i) q^{83} +(-2.48067 - 4.29665i) q^{85} +(-0.293659 + 0.376035i) q^{87} -9.21744 q^{89} +(-1.04082 - 2.57452i) q^{93} +(-12.6332 + 7.29377i) q^{95} +(7.00772 + 4.04591i) q^{97} +(-9.85770 - 10.1991i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 6 q^{9} + 6 q^{11} - 3 q^{13} - 3 q^{15} - 18 q^{17} - 21 q^{23} - 8 q^{25} + 9 q^{27} + 6 q^{29} + 6 q^{31} - 27 q^{33} - 2 q^{37} + 6 q^{39} - 6 q^{41} - 2 q^{43} + 15 q^{45} + 18 q^{47} + 18 q^{51}+ \cdots - 9 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1764\mathbb{Z}\right)^\times\).

\(n\) \(785\) \(883\) \(1081\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.240682 + 1.71525i −0.138958 + 0.990298i
\(4\) 0 0
\(5\) −1.48494 2.57199i −0.664085 1.15023i −0.979532 0.201286i \(-0.935488\pi\)
0.315447 0.948943i \(-0.397845\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) −2.88414 0.825658i −0.961381 0.275219i
\(10\) 0 0
\(11\) 4.09466 + 2.36406i 1.23459 + 0.712790i 0.967983 0.251016i \(-0.0807648\pi\)
0.266605 + 0.963806i \(0.414098\pi\)
\(12\) 0 0
\(13\) −3.54045 + 2.04408i −0.981945 + 0.566926i −0.902857 0.429942i \(-0.858534\pi\)
−0.0790880 + 0.996868i \(0.525201\pi\)
\(14\) 0 0
\(15\) 4.76900 1.92801i 1.23135 0.497809i
\(16\) 0 0
\(17\) 1.67056 0.405169 0.202585 0.979265i \(-0.435066\pi\)
0.202585 + 0.979265i \(0.435066\pi\)
\(18\) 0 0
\(19\) 4.91183i 1.12685i −0.826167 0.563426i \(-0.809483\pi\)
0.826167 0.563426i \(-0.190517\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −4.25297 + 2.45545i −0.886805 + 0.511997i −0.872896 0.487906i \(-0.837761\pi\)
−0.0139086 + 0.999903i \(0.504427\pi\)
\(24\) 0 0
\(25\) −1.91009 + 3.30837i −0.382018 + 0.661675i
\(26\) 0 0
\(27\) 2.11037 4.74830i 0.406141 0.913811i
\(28\) 0 0
\(29\) 0.238557 + 0.137731i 0.0442989 + 0.0255760i 0.521986 0.852954i \(-0.325191\pi\)
−0.477687 + 0.878530i \(0.658525\pi\)
\(30\) 0 0
\(31\) −1.38847 + 0.801636i −0.249377 + 0.143978i −0.619479 0.785013i \(-0.712656\pi\)
0.370102 + 0.928991i \(0.379323\pi\)
\(32\) 0 0
\(33\) −5.04045 + 6.45438i −0.877430 + 1.12356i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 3.39362 0.557907 0.278954 0.960305i \(-0.410012\pi\)
0.278954 + 0.960305i \(0.410012\pi\)
\(38\) 0 0
\(39\) −2.65398 6.56472i −0.424977 1.05120i
\(40\) 0 0
\(41\) −3.55632 6.15972i −0.555404 0.961987i −0.997872 0.0652031i \(-0.979230\pi\)
0.442468 0.896784i \(-0.354103\pi\)
\(42\) 0 0
\(43\) 5.22930 9.05742i 0.797461 1.38124i −0.123804 0.992307i \(-0.539509\pi\)
0.921265 0.388936i \(-0.127157\pi\)
\(44\) 0 0
\(45\) 2.15919 + 8.64404i 0.321874 + 1.28858i
\(46\) 0 0
\(47\) 5.49885 9.52430i 0.802090 1.38926i −0.116148 0.993232i \(-0.537055\pi\)
0.918238 0.396029i \(-0.129612\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) −0.402073 + 2.86541i −0.0563014 + 0.401238i
\(52\) 0 0
\(53\) 0.816814i 0.112198i −0.998425 0.0560990i \(-0.982134\pi\)
0.998425 0.0560990i \(-0.0178662\pi\)
\(54\) 0 0
\(55\) 14.0419i 1.89341i
\(56\) 0 0
\(57\) 8.42500 + 1.18219i 1.11592 + 0.156585i
\(58\) 0 0
\(59\) −1.37428 2.38032i −0.178916 0.309891i 0.762594 0.646878i \(-0.223926\pi\)
−0.941509 + 0.336986i \(0.890592\pi\)
\(60\) 0 0
\(61\) −6.23807 3.60155i −0.798703 0.461131i 0.0443147 0.999018i \(-0.485890\pi\)
−0.843017 + 0.537886i \(0.819223\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 10.5147 + 6.07067i 1.30419 + 0.752974i
\(66\) 0 0
\(67\) −5.80513 10.0548i −0.709210 1.22839i −0.965151 0.261695i \(-0.915719\pi\)
0.255941 0.966692i \(-0.417615\pi\)
\(68\) 0 0
\(69\) −3.18809 7.88587i −0.383801 0.949347i
\(70\) 0 0
\(71\) 10.4406i 1.23907i 0.784968 + 0.619537i \(0.212680\pi\)
−0.784968 + 0.619537i \(0.787320\pi\)
\(72\) 0 0
\(73\) 15.7608i 1.84467i −0.386395 0.922334i \(-0.626280\pi\)
0.386395 0.922334i \(-0.373720\pi\)
\(74\) 0 0
\(75\) −5.21495 4.07254i −0.602171 0.470257i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 6.15163 10.6549i 0.692112 1.19877i −0.279032 0.960282i \(-0.590014\pi\)
0.971145 0.238492i \(-0.0766530\pi\)
\(80\) 0 0
\(81\) 7.63658 + 4.76264i 0.848509 + 0.529182i
\(82\) 0 0
\(83\) −4.03981 + 6.99715i −0.443426 + 0.768037i −0.997941 0.0641368i \(-0.979571\pi\)
0.554515 + 0.832174i \(0.312904\pi\)
\(84\) 0 0
\(85\) −2.48067 4.29665i −0.269067 0.466037i
\(86\) 0 0
\(87\) −0.293659 + 0.376035i −0.0314835 + 0.0403151i
\(88\) 0 0
\(89\) −9.21744 −0.977047 −0.488523 0.872551i \(-0.662464\pi\)
−0.488523 + 0.872551i \(0.662464\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) −1.04082 2.57452i −0.107928 0.266965i
\(94\) 0 0
\(95\) −12.6332 + 7.29377i −1.29614 + 0.748325i
\(96\) 0 0
\(97\) 7.00772 + 4.04591i 0.711527 + 0.410800i 0.811626 0.584177i \(-0.198583\pi\)
−0.100099 + 0.994977i \(0.531916\pi\)
\(98\) 0 0
\(99\) −9.85770 10.1991i −0.990736 1.02505i
\(100\) 0 0
\(101\) −3.65365 + 6.32831i −0.363552 + 0.629690i −0.988543 0.150942i \(-0.951769\pi\)
0.624991 + 0.780632i \(0.285103\pi\)
\(102\) 0 0
\(103\) 6.08409 3.51265i 0.599483 0.346112i −0.169355 0.985555i \(-0.554168\pi\)
0.768838 + 0.639443i \(0.220835\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 14.1588i 1.36878i −0.729117 0.684389i \(-0.760069\pi\)
0.729117 0.684389i \(-0.239931\pi\)
\(108\) 0 0
\(109\) 5.64405 0.540602 0.270301 0.962776i \(-0.412877\pi\)
0.270301 + 0.962776i \(0.412877\pi\)
\(110\) 0 0
\(111\) −0.816783 + 5.82089i −0.0775256 + 0.552495i
\(112\) 0 0
\(113\) 11.6411 6.72099i 1.09510 0.632258i 0.160172 0.987089i \(-0.448795\pi\)
0.934930 + 0.354831i \(0.115462\pi\)
\(114\) 0 0
\(115\) 12.6308 + 7.29239i 1.17783 + 0.680019i
\(116\) 0 0
\(117\) 11.8989 2.97222i 1.10005 0.274782i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 5.67752 + 9.83375i 0.516138 + 0.893977i
\(122\) 0 0
\(123\) 11.4214 4.61743i 1.02983 0.416340i
\(124\) 0 0
\(125\) −3.50392 −0.313400
\(126\) 0 0
\(127\) −12.7730 −1.13342 −0.566712 0.823916i \(-0.691785\pi\)
−0.566712 + 0.823916i \(0.691785\pi\)
\(128\) 0 0
\(129\) 14.2771 + 11.1495i 1.25703 + 0.981659i
\(130\) 0 0
\(131\) 6.70890 + 11.6202i 0.586159 + 1.01526i 0.994730 + 0.102531i \(0.0326941\pi\)
−0.408570 + 0.912727i \(0.633973\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) −15.3464 + 1.62309i −1.32080 + 0.139693i
\(136\) 0 0
\(137\) 7.79449 + 4.50015i 0.665928 + 0.384474i 0.794532 0.607222i \(-0.207716\pi\)
−0.128604 + 0.991696i \(0.541050\pi\)
\(138\) 0 0
\(139\) 1.54902 0.894326i 0.131386 0.0758557i −0.432866 0.901458i \(-0.642498\pi\)
0.564252 + 0.825602i \(0.309164\pi\)
\(140\) 0 0
\(141\) 15.0130 + 11.7242i 1.26433 + 0.987357i
\(142\) 0 0
\(143\) −19.3293 −1.61640
\(144\) 0 0
\(145\) 0.818088i 0.0679385i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 11.1779 6.45358i 0.915732 0.528698i 0.0334609 0.999440i \(-0.489347\pi\)
0.882271 + 0.470742i \(0.156014\pi\)
\(150\) 0 0
\(151\) 6.48364 11.2300i 0.527631 0.913884i −0.471850 0.881679i \(-0.656414\pi\)
0.999481 0.0322054i \(-0.0102531\pi\)
\(152\) 0 0
\(153\) −4.81812 1.37931i −0.389522 0.111510i
\(154\) 0 0
\(155\) 4.12360 + 2.38076i 0.331216 + 0.191227i
\(156\) 0 0
\(157\) 14.8720 8.58638i 1.18692 0.685268i 0.229314 0.973353i \(-0.426352\pi\)
0.957605 + 0.288085i \(0.0930185\pi\)
\(158\) 0 0
\(159\) 1.40104 + 0.196592i 0.111109 + 0.0155908i
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) −5.06214 −0.396497 −0.198249 0.980152i \(-0.563525\pi\)
−0.198249 + 0.980152i \(0.563525\pi\)
\(164\) 0 0
\(165\) 24.0854 + 3.37964i 1.87504 + 0.263104i
\(166\) 0 0
\(167\) −5.79673 10.0402i −0.448564 0.776936i 0.549729 0.835343i \(-0.314731\pi\)
−0.998293 + 0.0584072i \(0.981398\pi\)
\(168\) 0 0
\(169\) 1.85653 3.21561i 0.142810 0.247354i
\(170\) 0 0
\(171\) −4.05549 + 14.1664i −0.310131 + 1.08333i
\(172\) 0 0
\(173\) −3.13346 + 5.42730i −0.238232 + 0.412630i −0.960207 0.279289i \(-0.909901\pi\)
0.721975 + 0.691919i \(0.243235\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 4.41360 1.78433i 0.331747 0.134118i
\(178\) 0 0
\(179\) 14.7418i 1.10185i 0.834554 + 0.550927i \(0.185726\pi\)
−0.834554 + 0.550927i \(0.814274\pi\)
\(180\) 0 0
\(181\) 0.0833642i 0.00619641i 0.999995 + 0.00309821i \(0.000986191\pi\)
−0.999995 + 0.00309821i \(0.999014\pi\)
\(182\) 0 0
\(183\) 7.67894 9.83300i 0.567643 0.726876i
\(184\) 0 0
\(185\) −5.03932 8.72835i −0.370498 0.641721i
\(186\) 0 0
\(187\) 6.84036 + 3.94929i 0.500217 + 0.288800i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −13.3672 7.71754i −0.967214 0.558421i −0.0688282 0.997629i \(-0.521926\pi\)
−0.898386 + 0.439207i \(0.855259\pi\)
\(192\) 0 0
\(193\) −10.7779 18.6678i −0.775808 1.34374i −0.934339 0.356385i \(-0.884009\pi\)
0.158532 0.987354i \(-0.449324\pi\)
\(194\) 0 0
\(195\) −12.9434 + 16.5742i −0.926896 + 1.18691i
\(196\) 0 0
\(197\) 9.88306i 0.704139i 0.935974 + 0.352069i \(0.114522\pi\)
−0.935974 + 0.352069i \(0.885478\pi\)
\(198\) 0 0
\(199\) 10.5612i 0.748660i 0.927295 + 0.374330i \(0.122127\pi\)
−0.927295 + 0.374330i \(0.877873\pi\)
\(200\) 0 0
\(201\) 18.6436 7.53723i 1.31502 0.531635i
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) −10.5618 + 18.2936i −0.737670 + 1.27768i
\(206\) 0 0
\(207\) 14.2935 3.57038i 0.993469 0.248158i
\(208\) 0 0
\(209\) 11.6118 20.1123i 0.803208 1.39120i
\(210\) 0 0
\(211\) 6.08453 + 10.5387i 0.418876 + 0.725514i 0.995827 0.0912645i \(-0.0290909\pi\)
−0.576951 + 0.816779i \(0.695758\pi\)
\(212\) 0 0
\(213\) −17.9082 2.51287i −1.22705 0.172179i
\(214\) 0 0
\(215\) −31.0608 −2.11833
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 27.0337 + 3.79335i 1.82677 + 0.256331i
\(220\) 0 0
\(221\) −5.91452 + 3.41475i −0.397854 + 0.229701i
\(222\) 0 0
\(223\) 0.714485 + 0.412508i 0.0478455 + 0.0276236i 0.523732 0.851883i \(-0.324539\pi\)
−0.475886 + 0.879507i \(0.657873\pi\)
\(224\) 0 0
\(225\) 8.24056 7.96475i 0.549371 0.530983i
\(226\) 0 0
\(227\) 0.166778 0.288869i 0.0110695 0.0191729i −0.860438 0.509556i \(-0.829810\pi\)
0.871507 + 0.490383i \(0.163143\pi\)
\(228\) 0 0
\(229\) −12.4893 + 7.21072i −0.825319 + 0.476498i −0.852247 0.523139i \(-0.824761\pi\)
0.0269285 + 0.999637i \(0.491427\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 14.7748i 0.967927i −0.875088 0.483964i \(-0.839197\pi\)
0.875088 0.483964i \(-0.160803\pi\)
\(234\) 0 0
\(235\) −32.6619 −2.13063
\(236\) 0 0
\(237\) 16.7953 + 13.1160i 1.09097 + 0.851976i
\(238\) 0 0
\(239\) −22.5339 + 13.0100i −1.45760 + 0.841545i −0.998893 0.0470423i \(-0.985020\pi\)
−0.458707 + 0.888588i \(0.651687\pi\)
\(240\) 0 0
\(241\) −1.66295 0.960105i −0.107120 0.0618458i 0.445483 0.895290i \(-0.353032\pi\)
−0.552603 + 0.833445i \(0.686365\pi\)
\(242\) 0 0
\(243\) −10.0071 + 11.9523i −0.641955 + 0.766743i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 10.0402 + 17.3901i 0.638841 + 1.10651i
\(248\) 0 0
\(249\) −11.0295 8.61336i −0.698968 0.545849i
\(250\) 0 0
\(251\) 9.97663 0.629719 0.314860 0.949138i \(-0.398043\pi\)
0.314860 + 0.949138i \(0.398043\pi\)
\(252\) 0 0
\(253\) −23.2193 −1.45978
\(254\) 0 0
\(255\) 7.96687 3.22084i 0.498905 0.201697i
\(256\) 0 0
\(257\) 7.50364 + 12.9967i 0.468064 + 0.810711i 0.999334 0.0364915i \(-0.0116182\pi\)
−0.531270 + 0.847203i \(0.678285\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) −0.574314 0.594202i −0.0355491 0.0367802i
\(262\) 0 0
\(263\) −6.11010 3.52767i −0.376765 0.217525i 0.299645 0.954051i \(-0.403132\pi\)
−0.676410 + 0.736525i \(0.736465\pi\)
\(264\) 0 0
\(265\) −2.10084 + 1.21292i −0.129053 + 0.0745090i
\(266\) 0 0
\(267\) 2.21847 15.8102i 0.135768 0.967568i
\(268\) 0 0
\(269\) −29.7795 −1.81569 −0.907844 0.419308i \(-0.862273\pi\)
−0.907844 + 0.419308i \(0.862273\pi\)
\(270\) 0 0
\(271\) 2.78816i 0.169369i −0.996408 0.0846843i \(-0.973012\pi\)
0.996408 0.0846843i \(-0.0269882\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −15.6424 + 9.03112i −0.943270 + 0.544597i
\(276\) 0 0
\(277\) −6.79074 + 11.7619i −0.408016 + 0.706705i −0.994667 0.103135i \(-0.967113\pi\)
0.586651 + 0.809840i \(0.300446\pi\)
\(278\) 0 0
\(279\) 4.66644 1.16563i 0.279372 0.0697844i
\(280\) 0 0
\(281\) −3.95777 2.28502i −0.236101 0.136313i 0.377283 0.926098i \(-0.376859\pi\)
−0.613383 + 0.789785i \(0.710192\pi\)
\(282\) 0 0
\(283\) 17.6685 10.2009i 1.05029 0.606383i 0.127556 0.991831i \(-0.459287\pi\)
0.922729 + 0.385449i \(0.125953\pi\)
\(284\) 0 0
\(285\) −9.47004 23.4245i −0.560957 1.38755i
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −14.2092 −0.835838
\(290\) 0 0
\(291\) −8.62637 + 11.0462i −0.505687 + 0.647540i
\(292\) 0 0
\(293\) 6.41037 + 11.1031i 0.374498 + 0.648649i 0.990252 0.139289i \(-0.0444818\pi\)
−0.615754 + 0.787939i \(0.711148\pi\)
\(294\) 0 0
\(295\) −4.08144 + 7.06926i −0.237631 + 0.411589i
\(296\) 0 0
\(297\) 19.8665 14.4537i 1.15277 0.838686i
\(298\) 0 0
\(299\) 10.0383 17.3868i 0.580529 1.00551i
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) −9.97524 7.79002i −0.573062 0.447525i
\(304\) 0 0
\(305\) 21.3923i 1.22492i
\(306\) 0 0
\(307\) 1.93411i 0.110386i 0.998476 + 0.0551928i \(0.0175773\pi\)
−0.998476 + 0.0551928i \(0.982423\pi\)
\(308\) 0 0
\(309\) 4.56073 + 11.2812i 0.259451 + 0.641762i
\(310\) 0 0
\(311\) −1.04458 1.80926i −0.0592326 0.102594i 0.834889 0.550419i \(-0.185532\pi\)
−0.894121 + 0.447825i \(0.852199\pi\)
\(312\) 0 0
\(313\) 19.4066 + 11.2044i 1.09692 + 0.633309i 0.935411 0.353562i \(-0.115030\pi\)
0.161512 + 0.986871i \(0.448363\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 3.01788 + 1.74237i 0.169501 + 0.0978614i 0.582350 0.812938i \(-0.302133\pi\)
−0.412850 + 0.910799i \(0.635466\pi\)
\(318\) 0 0
\(319\) 0.651207 + 1.12792i 0.0364606 + 0.0631516i
\(320\) 0 0
\(321\) 24.2858 + 3.40776i 1.35550 + 0.190203i
\(322\) 0 0
\(323\) 8.20549i 0.456565i
\(324\) 0 0
\(325\) 15.6175i 0.866304i
\(326\) 0 0
\(327\) −1.35842 + 9.68095i −0.0751209 + 0.535358i
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 2.28857 3.96392i 0.125791 0.217877i −0.796251 0.604967i \(-0.793186\pi\)
0.922042 + 0.387090i \(0.126520\pi\)
\(332\) 0 0
\(333\) −9.78768 2.80197i −0.536362 0.153547i
\(334\) 0 0
\(335\) −17.2405 + 29.8615i −0.941951 + 1.63151i
\(336\) 0 0
\(337\) −14.7062 25.4720i −0.801100 1.38755i −0.918893 0.394508i \(-0.870915\pi\)
0.117793 0.993038i \(-0.462418\pi\)
\(338\) 0 0
\(339\) 8.72636 + 21.5850i 0.473951 + 1.17234i
\(340\) 0 0
\(341\) −7.58045 −0.410504
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) −15.5483 + 19.9098i −0.837090 + 1.07191i
\(346\) 0 0
\(347\) −17.0245 + 9.82911i −0.913924 + 0.527654i −0.881692 0.471826i \(-0.843595\pi\)
−0.0322323 + 0.999480i \(0.510262\pi\)
\(348\) 0 0
\(349\) −8.47286 4.89181i −0.453542 0.261852i 0.255783 0.966734i \(-0.417667\pi\)
−0.709325 + 0.704882i \(0.751000\pi\)
\(350\) 0 0
\(351\) 2.23424 + 21.1249i 0.119255 + 1.12756i
\(352\) 0 0
\(353\) 12.5322 21.7065i 0.667023 1.15532i −0.311709 0.950178i \(-0.600901\pi\)
0.978733 0.205141i \(-0.0657652\pi\)
\(354\) 0 0
\(355\) 26.8532 15.5037i 1.42522 0.822850i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 9.35147i 0.493552i −0.969073 0.246776i \(-0.920629\pi\)
0.969073 0.246776i \(-0.0793712\pi\)
\(360\) 0 0
\(361\) −5.12609 −0.269794
\(362\) 0 0
\(363\) −18.2338 + 7.37154i −0.957026 + 0.386906i
\(364\) 0 0
\(365\) −40.5367 + 23.4039i −2.12179 + 1.22502i
\(366\) 0 0
\(367\) −18.9530 10.9425i −0.989337 0.571194i −0.0842608 0.996444i \(-0.526853\pi\)
−0.905076 + 0.425250i \(0.860186\pi\)
\(368\) 0 0
\(369\) 5.17111 + 20.7018i 0.269197 + 1.07769i
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −2.30822 3.99795i −0.119515 0.207006i 0.800061 0.599919i \(-0.204801\pi\)
−0.919576 + 0.392913i \(0.871467\pi\)
\(374\) 0 0
\(375\) 0.843330 6.01009i 0.0435494 0.310360i
\(376\) 0 0
\(377\) −1.12613 −0.0579988
\(378\) 0 0
\(379\) −6.22396 −0.319703 −0.159852 0.987141i \(-0.551102\pi\)
−0.159852 + 0.987141i \(0.551102\pi\)
\(380\) 0 0
\(381\) 3.07424 21.9089i 0.157498 1.12243i
\(382\) 0 0
\(383\) −10.9989 19.0506i −0.562015 0.973439i −0.997321 0.0731560i \(-0.976693\pi\)
0.435305 0.900283i \(-0.356640\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −22.5604 + 21.8053i −1.14681 + 1.10842i
\(388\) 0 0
\(389\) 8.51109 + 4.91388i 0.431529 + 0.249144i 0.699998 0.714145i \(-0.253184\pi\)
−0.268469 + 0.963288i \(0.586518\pi\)
\(390\) 0 0
\(391\) −7.10481 + 4.10197i −0.359306 + 0.207445i
\(392\) 0 0
\(393\) −21.5462 + 8.71066i −1.08686 + 0.439395i
\(394\) 0 0
\(395\) −36.5392 −1.83849
\(396\) 0 0
\(397\) 5.25762i 0.263873i 0.991258 + 0.131936i \(0.0421194\pi\)
−0.991258 + 0.131936i \(0.957881\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −14.7847 + 8.53594i −0.738312 + 0.426265i −0.821455 0.570273i \(-0.806837\pi\)
0.0831432 + 0.996538i \(0.473504\pi\)
\(402\) 0 0
\(403\) 3.27722 5.67631i 0.163250 0.282757i
\(404\) 0 0
\(405\) 0.909599 26.7134i 0.0451983 1.32740i
\(406\) 0 0
\(407\) 13.8957 + 8.02270i 0.688786 + 0.397671i
\(408\) 0 0
\(409\) 16.9484 9.78516i 0.838044 0.483845i −0.0185546 0.999828i \(-0.505906\pi\)
0.856599 + 0.515983i \(0.172573\pi\)
\(410\) 0 0
\(411\) −9.59486 + 12.2864i −0.473280 + 0.606042i
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 23.9955 1.17789
\(416\) 0 0
\(417\) 1.16117 + 2.87220i 0.0568627 + 0.140652i
\(418\) 0 0
\(419\) 10.3073 + 17.8529i 0.503547 + 0.872169i 0.999992 + 0.00410056i \(0.00130525\pi\)
−0.496445 + 0.868068i \(0.665361\pi\)
\(420\) 0 0
\(421\) 0.704748 1.22066i 0.0343473 0.0594913i −0.848341 0.529451i \(-0.822398\pi\)
0.882688 + 0.469959i \(0.155731\pi\)
\(422\) 0 0
\(423\) −23.7233 + 22.9293i −1.15347 + 1.11486i
\(424\) 0 0
\(425\) −3.19091 + 5.52682i −0.154782 + 0.268090i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 4.65221 33.1545i 0.224611 1.60071i
\(430\) 0 0
\(431\) 13.4714i 0.648894i −0.945904 0.324447i \(-0.894822\pi\)
0.945904 0.324447i \(-0.105178\pi\)
\(432\) 0 0
\(433\) 12.9356i 0.621646i 0.950468 + 0.310823i \(0.100605\pi\)
−0.950468 + 0.310823i \(0.899395\pi\)
\(434\) 0 0
\(435\) 1.40322 + 0.196899i 0.0672794 + 0.00944059i
\(436\) 0 0
\(437\) 12.0608 + 20.8899i 0.576944 + 0.999297i
\(438\) 0 0
\(439\) 8.75023 + 5.05195i 0.417626 + 0.241116i 0.694061 0.719916i \(-0.255820\pi\)
−0.276435 + 0.961033i \(0.589153\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 25.1220 + 14.5042i 1.19358 + 0.689115i 0.959117 0.283009i \(-0.0913326\pi\)
0.234466 + 0.972124i \(0.424666\pi\)
\(444\) 0 0
\(445\) 13.6873 + 23.7072i 0.648842 + 1.12383i
\(446\) 0 0
\(447\) 8.37916 + 20.7262i 0.396321 + 0.980314i
\(448\) 0 0
\(449\) 7.94881i 0.375127i 0.982252 + 0.187564i \(0.0600591\pi\)
−0.982252 + 0.187564i \(0.939941\pi\)
\(450\) 0 0
\(451\) 33.6293i 1.58354i
\(452\) 0 0
\(453\) 17.7017 + 13.8239i 0.831700 + 0.649504i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 6.98084 12.0912i 0.326550 0.565601i −0.655275 0.755391i \(-0.727447\pi\)
0.981825 + 0.189789i \(0.0607805\pi\)
\(458\) 0 0
\(459\) 3.52549 7.93230i 0.164556 0.370248i
\(460\) 0 0
\(461\) −16.4030 + 28.4108i −0.763964 + 1.32322i 0.176829 + 0.984242i \(0.443416\pi\)
−0.940793 + 0.338983i \(0.889917\pi\)
\(462\) 0 0
\(463\) −13.8812 24.0429i −0.645112 1.11737i −0.984276 0.176640i \(-0.943477\pi\)
0.339163 0.940727i \(-0.389856\pi\)
\(464\) 0 0
\(465\) −5.07607 + 6.49999i −0.235397 + 0.301430i
\(466\) 0 0
\(467\) 22.8621 1.05793 0.528966 0.848643i \(-0.322580\pi\)
0.528966 + 0.848643i \(0.322580\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 11.1483 + 27.5758i 0.513688 + 1.27063i
\(472\) 0 0
\(473\) 42.8245 24.7247i 1.96907 1.13684i
\(474\) 0 0
\(475\) 16.2502 + 9.38204i 0.745609 + 0.430478i
\(476\) 0 0
\(477\) −0.674409 + 2.35581i −0.0308791 + 0.107865i
\(478\) 0 0
\(479\) 1.21212 2.09946i 0.0553834 0.0959269i −0.837004 0.547196i \(-0.815695\pi\)
0.892388 + 0.451269i \(0.149029\pi\)
\(480\) 0 0
\(481\) −12.0149 + 6.93683i −0.547834 + 0.316292i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 24.0317i 1.09122i
\(486\) 0 0
\(487\) −10.3930 −0.470952 −0.235476 0.971880i \(-0.575665\pi\)
−0.235476 + 0.971880i \(0.575665\pi\)
\(488\) 0 0
\(489\) 1.21837 8.68282i 0.0550964 0.392651i
\(490\) 0 0
\(491\) −2.93014 + 1.69172i −0.132235 + 0.0763462i −0.564658 0.825325i \(-0.690992\pi\)
0.432423 + 0.901671i \(0.357659\pi\)
\(492\) 0 0
\(493\) 0.398522 + 0.230087i 0.0179485 + 0.0103626i
\(494\) 0 0
\(495\) −11.5938 + 40.4989i −0.521104 + 1.82029i
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) −19.7801 34.2602i −0.885481 1.53370i −0.845162 0.534511i \(-0.820496\pi\)
−0.0403188 0.999187i \(-0.512837\pi\)
\(500\) 0 0
\(501\) 18.6166 7.52632i 0.831730 0.336251i
\(502\) 0 0
\(503\) 14.5476 0.648645 0.324323 0.945947i \(-0.394864\pi\)
0.324323 + 0.945947i \(0.394864\pi\)
\(504\) 0 0
\(505\) 21.7018 0.965717
\(506\) 0 0
\(507\) 5.06873 + 3.95835i 0.225110 + 0.175797i
\(508\) 0 0
\(509\) 10.1958 + 17.6596i 0.451921 + 0.782750i 0.998505 0.0546542i \(-0.0174057\pi\)
−0.546585 + 0.837404i \(0.684072\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) −23.3228 10.3658i −1.02973 0.457660i
\(514\) 0 0
\(515\) −18.0690 10.4322i −0.796216 0.459696i
\(516\) 0 0
\(517\) 45.0319 25.9992i 1.98050 1.14344i
\(518\) 0 0
\(519\) −8.55500 6.68091i −0.375523 0.293259i
\(520\) 0 0
\(521\) 15.5024 0.679175 0.339587 0.940575i \(-0.389713\pi\)
0.339587 + 0.940575i \(0.389713\pi\)
\(522\) 0 0
\(523\) 10.8079i 0.472595i 0.971681 + 0.236298i \(0.0759340\pi\)
−0.971681 + 0.236298i \(0.924066\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −2.31952 + 1.33918i −0.101040 + 0.0583355i
\(528\) 0 0
\(529\) 0.558476 0.967309i 0.0242816 0.0420569i
\(530\) 0 0
\(531\) 1.99829 + 7.99987i 0.0867183 + 0.347165i
\(532\) 0 0
\(533\) 25.1819 + 14.5388i 1.09075 + 0.629745i
\(534\) 0 0
\(535\) −36.4162 + 21.0249i −1.57441 + 0.908986i
\(536\) 0 0
\(537\) −25.2858 3.54808i −1.09116 0.153111i
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 17.5871 0.756130 0.378065 0.925779i \(-0.376590\pi\)
0.378065 + 0.925779i \(0.376590\pi\)
\(542\) 0 0
\(543\) −0.142990 0.0200643i −0.00613630 0.000861040i
\(544\) 0 0
\(545\) −8.38108 14.5165i −0.359006 0.621817i
\(546\) 0 0
\(547\) −5.72451 + 9.91513i −0.244762 + 0.423940i −0.962065 0.272821i \(-0.912043\pi\)
0.717303 + 0.696762i \(0.245377\pi\)
\(548\) 0 0
\(549\) 15.0178 + 15.5379i 0.640946 + 0.663141i
\(550\) 0 0
\(551\) 0.676511 1.17175i 0.0288203 0.0499183i
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 16.1842 6.54291i 0.686979 0.277731i
\(556\) 0 0
\(557\) 38.0080i 1.61045i 0.592968 + 0.805226i \(0.297956\pi\)
−0.592968 + 0.805226i \(0.702044\pi\)
\(558\) 0 0
\(559\) 42.7565i 1.80841i
\(560\) 0 0
\(561\) −8.42035 + 10.7824i −0.355508 + 0.455233i
\(562\) 0 0
\(563\) 8.88438 + 15.3882i 0.374432 + 0.648535i 0.990242 0.139360i \(-0.0445044\pi\)
−0.615810 + 0.787895i \(0.711171\pi\)
\(564\) 0 0
\(565\) −34.5727 19.9605i −1.45448 0.839746i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 33.7404 + 19.4801i 1.41447 + 0.816646i 0.995806 0.0914936i \(-0.0291641\pi\)
0.418667 + 0.908140i \(0.362497\pi\)
\(570\) 0 0
\(571\) −8.45245 14.6401i −0.353724 0.612668i 0.633175 0.774009i \(-0.281752\pi\)
−0.986899 + 0.161341i \(0.948418\pi\)
\(572\) 0 0
\(573\) 16.4547 21.0705i 0.687406 0.880233i
\(574\) 0 0
\(575\) 18.7605i 0.782368i
\(576\) 0 0
\(577\) 47.2653i 1.96768i 0.179050 + 0.983840i \(0.442698\pi\)
−0.179050 + 0.983840i \(0.557302\pi\)
\(578\) 0 0
\(579\) 34.6139 13.9937i 1.43851 0.581558i
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 1.93099 3.34458i 0.0799736 0.138518i
\(584\) 0 0
\(585\) −25.3136 26.1903i −1.04659 1.08283i
\(586\) 0 0
\(587\) 11.6343 20.1513i 0.480200 0.831731i −0.519542 0.854445i \(-0.673897\pi\)
0.999742 + 0.0227138i \(0.00723065\pi\)
\(588\) 0 0
\(589\) 3.93750 + 6.81995i 0.162242 + 0.281011i
\(590\) 0 0
\(591\) −16.9519 2.37867i −0.697307 0.0978456i
\(592\) 0 0
\(593\) 37.1924 1.52731 0.763654 0.645626i \(-0.223404\pi\)
0.763654 + 0.645626i \(0.223404\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −18.1150 2.54188i −0.741397 0.104032i
\(598\) 0 0
\(599\) −27.9591 + 16.1422i −1.14238 + 0.659552i −0.947018 0.321180i \(-0.895921\pi\)
−0.195359 + 0.980732i \(0.562587\pi\)
\(600\) 0 0
\(601\) −14.7559 8.51933i −0.601906 0.347511i 0.167885 0.985807i \(-0.446306\pi\)
−0.769791 + 0.638296i \(0.779640\pi\)
\(602\) 0 0
\(603\) 8.44102 + 33.7925i 0.343745 + 1.37614i
\(604\) 0 0
\(605\) 16.8615 29.2051i 0.685519 1.18735i
\(606\) 0 0
\(607\) −8.44393 + 4.87510i −0.342728 + 0.197874i −0.661478 0.749965i \(-0.730070\pi\)
0.318749 + 0.947839i \(0.396737\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 44.9604i 1.81890i
\(612\) 0 0
\(613\) 13.7266 0.554414 0.277207 0.960810i \(-0.410591\pi\)
0.277207 + 0.960810i \(0.410591\pi\)
\(614\) 0 0
\(615\) −28.8361 22.5191i −1.16278 0.908058i
\(616\) 0 0
\(617\) −2.84301 + 1.64141i −0.114455 + 0.0660807i −0.556135 0.831092i \(-0.687716\pi\)
0.441680 + 0.897173i \(0.354383\pi\)
\(618\) 0 0
\(619\) 14.9907 + 8.65490i 0.602528 + 0.347870i 0.770036 0.638001i \(-0.220238\pi\)
−0.167507 + 0.985871i \(0.553572\pi\)
\(620\) 0 0
\(621\) 2.68388 + 25.3763i 0.107701 + 1.01831i
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 14.7536 + 25.5539i 0.590142 + 1.02216i
\(626\) 0 0
\(627\) 31.7028 + 24.7579i 1.26609 + 0.988733i
\(628\) 0 0
\(629\) 5.66923 0.226047
\(630\) 0 0
\(631\) −6.27821 −0.249932 −0.124966 0.992161i \(-0.539882\pi\)
−0.124966 + 0.992161i \(0.539882\pi\)
\(632\) 0 0
\(633\) −19.5409 + 7.89999i −0.776682 + 0.313996i
\(634\) 0 0
\(635\) 18.9672 + 32.8522i 0.752691 + 1.30370i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 8.62038 30.1123i 0.341017 1.19122i
\(640\) 0 0
\(641\) 17.9788 + 10.3801i 0.710120 + 0.409988i 0.811105 0.584900i \(-0.198866\pi\)
−0.100986 + 0.994888i \(0.532200\pi\)
\(642\) 0 0
\(643\) −17.2553 + 9.96236i −0.680483 + 0.392877i −0.800037 0.599950i \(-0.795187\pi\)
0.119554 + 0.992828i \(0.461854\pi\)
\(644\) 0 0
\(645\) 7.47577 53.2769i 0.294358 2.09778i
\(646\) 0 0
\(647\) 29.5340 1.16110 0.580551 0.814224i \(-0.302837\pi\)
0.580551 + 0.814224i \(0.302837\pi\)
\(648\) 0 0
\(649\) 12.9955i 0.510118i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −13.7914 + 7.96249i −0.539701 + 0.311596i −0.744958 0.667112i \(-0.767530\pi\)
0.205257 + 0.978708i \(0.434197\pi\)
\(654\) 0 0
\(655\) 19.9246 34.5105i 0.778520 1.34844i
\(656\) 0 0
\(657\) −13.0131 + 45.4565i −0.507688 + 1.77343i
\(658\) 0 0
\(659\) 2.80283 + 1.61822i 0.109183 + 0.0630368i 0.553597 0.832785i \(-0.313255\pi\)
−0.444414 + 0.895821i \(0.646588\pi\)
\(660\) 0 0
\(661\) 7.71194 4.45249i 0.299960 0.173182i −0.342465 0.939531i \(-0.611262\pi\)
0.642425 + 0.766349i \(0.277928\pi\)
\(662\) 0 0
\(663\) −4.43362 10.9667i −0.172188 0.425913i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −1.35277 −0.0523793
\(668\) 0 0
\(669\) −0.879517 + 1.12624i −0.0340041 + 0.0435428i
\(670\) 0 0
\(671\) −17.0285 29.4943i −0.657379 1.13861i
\(672\) 0 0
\(673\) −13.2311 + 22.9169i −0.510021 + 0.883382i 0.489912 + 0.871772i \(0.337029\pi\)
−0.999933 + 0.0116101i \(0.996304\pi\)
\(674\) 0 0
\(675\) 11.6782 + 16.0516i 0.449492 + 0.617825i
\(676\) 0 0
\(677\) −4.46424 + 7.73229i −0.171575 + 0.297176i −0.938971 0.343997i \(-0.888219\pi\)
0.767396 + 0.641174i \(0.221552\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0.455341 + 0.355592i 0.0174487 + 0.0136263i
\(682\) 0 0
\(683\) 37.8628i 1.44878i −0.689390 0.724390i \(-0.742121\pi\)
0.689390 0.724390i \(-0.257879\pi\)
\(684\) 0 0
\(685\) 26.7298i 1.02129i
\(686\) 0 0
\(687\) −9.36221 23.1578i −0.357191 0.883525i
\(688\) 0 0
\(689\) 1.66963 + 2.89189i 0.0636080 + 0.110172i
\(690\) 0 0
\(691\) −4.94211 2.85333i −0.188007 0.108546i 0.403042 0.915181i \(-0.367953\pi\)
−0.591049 + 0.806636i \(0.701286\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −4.60039 2.65604i −0.174503 0.100749i
\(696\) 0 0
\(697\) −5.94103 10.2902i −0.225032 0.389768i
\(698\) 0 0
\(699\) 25.3424 + 3.55602i 0.958537 + 0.134501i
\(700\) 0 0
\(701\) 8.19949i 0.309690i −0.987939 0.154845i \(-0.950512\pi\)
0.987939 0.154845i \(-0.0494879\pi\)
\(702\) 0 0
\(703\) 16.6689i 0.628679i
\(704\) 0 0
\(705\) 7.86112 56.0232i 0.296067 2.10995i
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −10.0757 + 17.4517i −0.378402 + 0.655412i −0.990830 0.135115i \(-0.956860\pi\)
0.612428 + 0.790527i \(0.290193\pi\)
\(710\) 0 0
\(711\) −26.5395 + 25.6512i −0.995309 + 0.961996i
\(712\) 0 0
\(713\) 3.93676 6.81866i 0.147433 0.255361i
\(714\) 0 0
\(715\) 28.7028 + 49.7147i 1.07342 + 1.85923i
\(716\) 0 0
\(717\) −16.8918 41.7825i −0.630836 1.56040i
\(718\) 0 0
\(719\) −51.1991 −1.90940 −0.954702 0.297563i \(-0.903826\pi\)
−0.954702 + 0.297563i \(0.903826\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 2.04706 2.62129i 0.0761309 0.0974868i
\(724\) 0 0
\(725\) −0.911330 + 0.526157i −0.0338460 + 0.0195410i
\(726\) 0 0
\(727\) 13.7848 + 7.95865i 0.511249 + 0.295170i 0.733347 0.679854i \(-0.237957\pi\)
−0.222098 + 0.975024i \(0.571290\pi\)
\(728\) 0 0
\(729\) −18.0927 20.0413i −0.670099 0.742271i
\(730\) 0 0
\(731\) 8.73584 15.1309i 0.323107 0.559637i
\(732\) 0 0
\(733\) −3.67216 + 2.12012i −0.135634 + 0.0783086i −0.566282 0.824212i \(-0.691619\pi\)
0.430647 + 0.902520i \(0.358285\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 54.8946i 2.02207i
\(738\) 0 0
\(739\) 28.3669 1.04349 0.521747 0.853100i \(-0.325280\pi\)
0.521747 + 0.853100i \(0.325280\pi\)
\(740\) 0 0
\(741\) −32.2448 + 13.0359i −1.18454 + 0.478886i
\(742\) 0 0
\(743\) 21.8850 12.6353i 0.802884 0.463545i −0.0415945 0.999135i \(-0.513244\pi\)
0.844479 + 0.535589i \(0.179910\pi\)
\(744\) 0 0
\(745\) −33.1971 19.1664i −1.21625 0.702201i
\(746\) 0 0
\(747\) 17.4286 16.8453i 0.637681 0.616337i
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) −23.7730 41.1761i −0.867490 1.50254i −0.864554 0.502540i \(-0.832399\pi\)
−0.00293597 0.999996i \(-0.500935\pi\)
\(752\) 0 0
\(753\) −2.40120 + 17.1124i −0.0875045 + 0.623610i
\(754\) 0 0
\(755\) −38.5113 −1.40157
\(756\) 0 0
\(757\) 37.3922 1.35904 0.679521 0.733656i \(-0.262188\pi\)
0.679521 + 0.733656i \(0.262188\pi\)
\(758\) 0 0
\(759\) 5.58847 39.8268i 0.202848 1.44562i
\(760\) 0 0
\(761\) −4.12142 7.13850i −0.149401 0.258770i 0.781605 0.623774i \(-0.214401\pi\)
−0.931006 + 0.365003i \(0.881068\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 3.60705 + 14.4404i 0.130413 + 0.522092i
\(766\) 0 0
\(767\) 9.73114 + 5.61827i 0.351371 + 0.202864i
\(768\) 0 0
\(769\) −20.2182 + 11.6730i −0.729086 + 0.420938i −0.818088 0.575094i \(-0.804966\pi\)
0.0890020 + 0.996031i \(0.471632\pi\)
\(770\) 0 0
\(771\) −24.0985 + 9.74253i −0.867887 + 0.350869i
\(772\) 0 0
\(773\) −34.4402 −1.23873 −0.619364 0.785104i \(-0.712609\pi\)
−0.619364 + 0.785104i \(0.712609\pi\)
\(774\) 0 0
\(775\) 6.12479i 0.220009i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −30.2555 + 17.4680i −1.08402 + 0.625857i
\(780\) 0 0
\(781\) −24.6822 + 42.7508i −0.883199 + 1.52975i
\(782\) 0 0
\(783\) 1.15743 0.842076i 0.0413632 0.0300933i
\(784\) 0 0
\(785\) −44.1682 25.5005i −1.57643 0.910152i
\(786\) 0 0
\(787\) −7.19975 + 4.15678i −0.256643 + 0.148173i −0.622802 0.782379i \(-0.714006\pi\)
0.366159 + 0.930552i \(0.380673\pi\)
\(788\) 0 0
\(789\) 7.52142 9.63129i 0.267769 0.342883i
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 29.4474 1.04571
\(794\) 0 0
\(795\) −1.57482 3.89538i −0.0558532 0.138155i
\(796\) 0 0
\(797\) −0.426036 0.737916i −0.0150910 0.0261383i 0.858381 0.513012i \(-0.171470\pi\)
−0.873472 + 0.486874i \(0.838137\pi\)
\(798\) 0 0
\(799\) 9.18614 15.9109i 0.324982 0.562886i
\(800\) 0 0
\(801\) 26.5844 + 7.61045i 0.939314 + 0.268902i
\(802\) 0 0
\(803\) 37.2595 64.5354i 1.31486 2.27740i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 7.16739 51.0792i 0.252304 1.79807i
\(808\) 0 0
\(809\) 36.4400i 1.28116i −0.767891 0.640581i \(-0.778694\pi\)
0.767891 0.640581i \(-0.221306\pi\)
\(810\) 0 0
\(811\) 1.08986i 0.0382702i −0.999817 0.0191351i \(-0.993909\pi\)
0.999817 0.0191351i \(-0.00609126\pi\)
\(812\) 0 0
\(813\) 4.78238 + 0.671060i 0.167725 + 0.0235351i
\(814\) 0 0
\(815\) 7.51697 + 13.0198i 0.263308 + 0.456063i
\(816\) 0 0
\(817\) −44.4885 25.6855i −1.55646 0.898620i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 20.9748 + 12.1098i 0.732025 + 0.422635i 0.819163 0.573561i \(-0.194439\pi\)
−0.0871374 + 0.996196i \(0.527772\pi\)
\(822\) 0 0
\(823\) −2.85592 4.94660i −0.0995512 0.172428i 0.811948 0.583730i \(-0.198407\pi\)
−0.911499 + 0.411302i \(0.865074\pi\)
\(824\) 0 0
\(825\) −11.7258 29.0041i −0.408239 1.00979i
\(826\) 0 0
\(827\) 36.4579i 1.26777i −0.773429 0.633883i \(-0.781460\pi\)
0.773429 0.633883i \(-0.218540\pi\)
\(828\) 0 0
\(829\) 0.575352i 0.0199828i 0.999950 + 0.00999140i \(0.00318041\pi\)
−0.999950 + 0.00999140i \(0.996820\pi\)
\(830\) 0 0
\(831\) −18.5402 14.4787i −0.643151 0.502260i
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) −17.2156 + 29.8183i −0.595770 + 1.03190i
\(836\) 0 0
\(837\) 0.876213 + 8.28464i 0.0302864 + 0.286359i
\(838\) 0 0
\(839\) 23.9341 41.4550i 0.826295 1.43119i −0.0746300 0.997211i \(-0.523778\pi\)
0.900925 0.433974i \(-0.142889\pi\)
\(840\) 0 0
\(841\) −14.4621 25.0490i −0.498692 0.863759i
\(842\) 0 0
\(843\) 4.87193 6.23859i 0.167798 0.214868i
\(844\) 0 0
\(845\) −11.0274 −0.379352
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 13.2446 + 32.7611i 0.454554 + 1.12436i
\(850\) 0 0
\(851\) −14.4329 + 8.33286i −0.494755 + 0.285647i
\(852\) 0 0
\(853\) −40.5393 23.4054i −1.38804 0.801385i −0.394945 0.918705i \(-0.629236\pi\)
−0.993094 + 0.117320i \(0.962570\pi\)
\(854\) 0 0
\(855\) 42.4581 10.6056i 1.45204 0.362704i
\(856\) 0 0
\(857\) 4.78220 8.28302i 0.163357 0.282943i −0.772714 0.634755i \(-0.781101\pi\)
0.936071 + 0.351812i \(0.114434\pi\)
\(858\) 0 0
\(859\) 4.68311 2.70379i 0.159786 0.0922523i −0.417975 0.908459i \(-0.637260\pi\)
0.577761 + 0.816206i \(0.303927\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 41.0383i 1.39696i −0.715630 0.698480i \(-0.753860\pi\)
0.715630 0.698480i \(-0.246140\pi\)
\(864\) 0 0
\(865\) 18.6120 0.632826
\(866\) 0 0
\(867\) 3.41991 24.3724i 0.116146 0.827729i
\(868\) 0 0
\(869\) 50.3777 29.0856i 1.70895 0.986661i
\(870\) 0 0
\(871\) 41.1056 + 23.7323i 1.39281 + 0.804139i
\(872\) 0 0
\(873\) −16.8707 17.4550i −0.570988 0.590762i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 7.32509 + 12.6874i 0.247351 + 0.428424i 0.962790 0.270251i \(-0.0871067\pi\)
−0.715439 + 0.698675i \(0.753773\pi\)
\(878\) 0 0
\(879\) −20.5874 + 8.32305i −0.694396 + 0.280730i
\(880\) 0 0
\(881\) 44.8295 1.51034 0.755172 0.655527i \(-0.227553\pi\)
0.755172 + 0.655527i \(0.227553\pi\)
\(882\) 0 0
\(883\) 33.8527 1.13923 0.569617 0.821910i \(-0.307091\pi\)
0.569617 + 0.821910i \(0.307091\pi\)
\(884\) 0 0
\(885\) −11.1432 8.70213i −0.374575 0.292519i
\(886\) 0 0
\(887\) −13.3422 23.1093i −0.447987 0.775936i 0.550268 0.834988i \(-0.314525\pi\)
−0.998255 + 0.0590523i \(0.981192\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 20.0101 + 37.5547i 0.670363 + 1.25813i
\(892\) 0 0
\(893\) −46.7817 27.0094i −1.56549 0.903837i
\(894\) 0 0
\(895\) 37.9157 21.8907i 1.26738 0.731724i
\(896\) 0 0
\(897\) 27.4066 + 21.4028i 0.915081 + 0.714619i
\(898\) 0 0
\(899\) −0.441640 −0.0147295
\(900\) 0 0
\(901\) 1.36453i 0.0454592i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0.214412 0.123791i 0.00712729 0.00411494i
\(906\) 0 0
\(907\) 7.97211 13.8081i 0.264710 0.458490i −0.702778 0.711409i \(-0.748057\pi\)
0.967487 + 0.252919i \(0.0813906\pi\)
\(908\) 0 0
\(909\) 15.7627 15.2351i 0.522815 0.505316i
\(910\) 0 0
\(911\) 40.9207 + 23.6256i 1.35576 + 0.782750i 0.989050 0.147584i \(-0.0471496\pi\)
0.366713 + 0.930334i \(0.380483\pi\)
\(912\) 0 0
\(913\) −33.0833 + 19.1007i −1.09490 + 0.632140i
\(914\) 0 0
\(915\) −36.6931 5.14875i −1.21304 0.170212i
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) −29.6325 −0.977486 −0.488743 0.872428i \(-0.662544\pi\)
−0.488743 + 0.872428i \(0.662544\pi\)
\(920\) 0 0
\(921\) −3.31748 0.465506i −0.109315 0.0153389i
\(922\) 0 0
\(923\) −21.3415 36.9645i −0.702463 1.21670i
\(924\) 0 0
\(925\) −6.48212 + 11.2274i −0.213131 + 0.369153i
\(926\) 0 0
\(927\) −20.4476 + 5.10761i −0.671589 + 0.167756i
\(928\) 0 0
\(929\) −16.6186 + 28.7842i −0.545238 + 0.944380i 0.453354 + 0.891331i \(0.350227\pi\)
−0.998592 + 0.0530496i \(0.983106\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 3.35474 1.35625i 0.109829 0.0444017i
\(934\) 0 0
\(935\) 23.4578i 0.767152i
\(936\) 0 0
\(937\) 23.8190i 0.778134i −0.921209 0.389067i \(-0.872797\pi\)
0.921209 0.389067i \(-0.127203\pi\)
\(938\) 0 0
\(939\) −23.8891 + 30.5903i −0.779591 + 0.998278i
\(940\) 0 0
\(941\) 27.1201 + 46.9734i 0.884091 + 1.53129i 0.846752 + 0.531988i \(0.178555\pi\)
0.0373389 + 0.999303i \(0.488112\pi\)
\(942\) 0 0
\(943\) 30.2498 + 17.4647i 0.985069 + 0.568730i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −18.2427 10.5324i −0.592807 0.342257i 0.173399 0.984852i \(-0.444525\pi\)
−0.766207 + 0.642594i \(0.777858\pi\)
\(948\) 0 0
\(949\) 32.2164 + 55.8005i 1.04579 + 1.81136i
\(950\) 0 0
\(951\) −3.71495 + 4.75705i −0.120465 + 0.154258i
\(952\) 0 0
\(953\) 4.50028i 0.145778i −0.997340 0.0728892i \(-0.976778\pi\)
0.997340 0.0728892i \(-0.0232219\pi\)
\(954\) 0 0
\(955\) 45.8403i 1.48336i
\(956\) 0 0
\(957\) −2.09140 + 0.845510i −0.0676054 + 0.0273314i
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −14.2148 + 24.6207i −0.458541 + 0.794216i
\(962\) 0 0
\(963\) −11.6903 + 40.8359i −0.376715 + 1.31592i
\(964\) 0 0
\(965\) −32.0090 + 55.4411i −1.03040 + 1.78471i
\(966\) 0 0
\(967\) −10.8811 18.8466i −0.349912 0.606065i 0.636322 0.771424i \(-0.280455\pi\)
−0.986233 + 0.165359i \(0.947122\pi\)
\(968\) 0 0
\(969\) 14.0744 + 1.97491i 0.452136 + 0.0634434i
\(970\) 0 0
\(971\) −47.0443 −1.50972 −0.754862 0.655884i \(-0.772296\pi\)
−0.754862 + 0.655884i \(0.772296\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 26.7879 + 3.75886i 0.857899 + 0.120380i
\(976\) 0 0
\(977\) 21.7766 12.5727i 0.696695 0.402237i −0.109420 0.993996i \(-0.534899\pi\)
0.806115 + 0.591758i \(0.201566\pi\)
\(978\) 0 0
\(979\) −37.7423 21.7905i −1.20625 0.696429i
\(980\) 0 0
\(981\) −16.2783 4.66006i −0.519725 0.148784i
\(982\) 0 0
\(983\) −18.1071 + 31.3624i −0.577527 + 1.00031i 0.418235 + 0.908339i \(0.362649\pi\)
−0.995762 + 0.0919674i \(0.970684\pi\)
\(984\) 0 0
\(985\) 25.4191 14.6757i 0.809921 0.467608i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 51.3612i 1.63319i
\(990\) 0 0
\(991\) 18.6554 0.592608 0.296304 0.955094i \(-0.404246\pi\)
0.296304 + 0.955094i \(0.404246\pi\)
\(992\) 0 0
\(993\) 6.24829 + 4.87951i 0.198284 + 0.154847i
\(994\) 0 0
\(995\) 27.1632 15.6827i 0.861131 0.497174i
\(996\) 0 0
\(997\) 15.1413 + 8.74181i 0.479528 + 0.276856i 0.720220 0.693746i \(-0.244041\pi\)
−0.240691 + 0.970602i \(0.577374\pi\)
\(998\) 0 0
\(999\) 7.16179 16.1139i 0.226589 0.509822i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1764.2.x.a.1469.4 16
3.2 odd 2 5292.2.x.a.4409.7 16
7.2 even 3 252.2.w.a.101.3 yes 16
7.3 odd 6 252.2.bm.a.173.1 yes 16
7.4 even 3 1764.2.bm.a.1685.8 16
7.5 odd 6 1764.2.w.b.1109.6 16
7.6 odd 2 1764.2.x.b.1469.5 16
9.4 even 3 5292.2.x.b.881.2 16
9.5 odd 6 1764.2.x.b.293.5 16
21.2 odd 6 756.2.w.a.521.7 16
21.5 even 6 5292.2.w.b.521.2 16
21.11 odd 6 5292.2.bm.a.4625.2 16
21.17 even 6 756.2.bm.a.89.7 16
21.20 even 2 5292.2.x.b.4409.2 16
28.3 even 6 1008.2.df.d.929.8 16
28.23 odd 6 1008.2.ca.d.353.6 16
63.2 odd 6 2268.2.t.a.1781.7 16
63.4 even 3 5292.2.w.b.1097.2 16
63.5 even 6 1764.2.bm.a.1697.8 16
63.13 odd 6 5292.2.x.a.881.7 16
63.16 even 3 2268.2.t.b.1781.2 16
63.23 odd 6 252.2.bm.a.185.1 yes 16
63.31 odd 6 756.2.w.a.341.7 16
63.32 odd 6 1764.2.w.b.509.6 16
63.38 even 6 2268.2.t.b.2105.2 16
63.40 odd 6 5292.2.bm.a.2285.2 16
63.41 even 6 inner 1764.2.x.a.293.4 16
63.52 odd 6 2268.2.t.a.2105.7 16
63.58 even 3 756.2.bm.a.17.7 16
63.59 even 6 252.2.w.a.5.3 16
84.23 even 6 3024.2.ca.d.2033.7 16
84.59 odd 6 3024.2.df.d.1601.7 16
252.23 even 6 1008.2.df.d.689.8 16
252.31 even 6 3024.2.ca.d.2609.7 16
252.59 odd 6 1008.2.ca.d.257.6 16
252.247 odd 6 3024.2.df.d.17.7 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
252.2.w.a.5.3 16 63.59 even 6
252.2.w.a.101.3 yes 16 7.2 even 3
252.2.bm.a.173.1 yes 16 7.3 odd 6
252.2.bm.a.185.1 yes 16 63.23 odd 6
756.2.w.a.341.7 16 63.31 odd 6
756.2.w.a.521.7 16 21.2 odd 6
756.2.bm.a.17.7 16 63.58 even 3
756.2.bm.a.89.7 16 21.17 even 6
1008.2.ca.d.257.6 16 252.59 odd 6
1008.2.ca.d.353.6 16 28.23 odd 6
1008.2.df.d.689.8 16 252.23 even 6
1008.2.df.d.929.8 16 28.3 even 6
1764.2.w.b.509.6 16 63.32 odd 6
1764.2.w.b.1109.6 16 7.5 odd 6
1764.2.x.a.293.4 16 63.41 even 6 inner
1764.2.x.a.1469.4 16 1.1 even 1 trivial
1764.2.x.b.293.5 16 9.5 odd 6
1764.2.x.b.1469.5 16 7.6 odd 2
1764.2.bm.a.1685.8 16 7.4 even 3
1764.2.bm.a.1697.8 16 63.5 even 6
2268.2.t.a.1781.7 16 63.2 odd 6
2268.2.t.a.2105.7 16 63.52 odd 6
2268.2.t.b.1781.2 16 63.16 even 3
2268.2.t.b.2105.2 16 63.38 even 6
3024.2.ca.d.2033.7 16 84.23 even 6
3024.2.ca.d.2609.7 16 252.31 even 6
3024.2.df.d.17.7 16 252.247 odd 6
3024.2.df.d.1601.7 16 84.59 odd 6
5292.2.w.b.521.2 16 21.5 even 6
5292.2.w.b.1097.2 16 63.4 even 3
5292.2.x.a.881.7 16 63.13 odd 6
5292.2.x.a.4409.7 16 3.2 odd 2
5292.2.x.b.881.2 16 9.4 even 3
5292.2.x.b.4409.2 16 21.20 even 2
5292.2.bm.a.2285.2 16 63.40 odd 6
5292.2.bm.a.4625.2 16 21.11 odd 6