Properties

Label 5292.2.x.b.4409.2
Level $5292$
Weight $2$
Character 5292.4409
Analytic conductor $42.257$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [5292,2,Mod(881,5292)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(5292, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 5, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("5292.881");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 5292 = 2^{2} \cdot 3^{3} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5292.x (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(42.2568327497\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 2 x^{15} + 5 x^{14} - 17 x^{13} + 22 x^{12} - 31 x^{11} + 62 x^{10} - 52 x^{9} + 52 x^{8} + \cdots + 6561 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 3^{6} \)
Twist minimal: no (minimal twist has level 252)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 4409.2
Root \(1.68042 - 0.419752i\) of defining polynomial
Character \(\chi\) \(=\) 5292.4409
Dual form 5292.2.x.b.881.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.48494 - 2.57199i) q^{5} +(-4.09466 - 2.36406i) q^{11} +(3.54045 - 2.04408i) q^{13} +1.67056 q^{17} +4.91183i q^{19} +(4.25297 - 2.45545i) q^{23} +(-1.91009 + 3.30837i) q^{25} +(-0.238557 - 0.137731i) q^{29} +(1.38847 - 0.801636i) q^{31} +3.39362 q^{37} +(-3.55632 - 6.15972i) q^{41} +(5.22930 - 9.05742i) q^{43} +(5.49885 - 9.52430i) q^{47} +0.816814i q^{53} +14.0419i q^{55} +(-1.37428 - 2.38032i) q^{59} +(6.23807 + 3.60155i) q^{61} +(-10.5147 - 6.07067i) q^{65} +(-5.80513 - 10.0548i) q^{67} -10.4406i q^{71} +15.7608i q^{73} +(6.15163 - 10.6549i) q^{79} +(-4.03981 + 6.99715i) q^{83} +(-2.48067 - 4.29665i) q^{85} -9.21744 q^{89} +(12.6332 - 7.29377i) q^{95} +(-7.00772 - 4.04591i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 6 q^{11} + 3 q^{13} - 18 q^{17} + 21 q^{23} - 8 q^{25} - 6 q^{29} - 6 q^{31} - 2 q^{37} - 6 q^{41} - 2 q^{43} + 18 q^{47} + 15 q^{59} - 3 q^{61} - 39 q^{65} - 7 q^{67} - q^{79} + 6 q^{85} - 42 q^{89}+ \cdots + 3 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/5292\mathbb{Z}\right)^\times\).

\(n\) \(785\) \(1081\) \(2647\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −1.48494 2.57199i −0.664085 1.15023i −0.979532 0.201286i \(-0.935488\pi\)
0.315447 0.948943i \(-0.397845\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −4.09466 2.36406i −1.23459 0.712790i −0.266605 0.963806i \(-0.585902\pi\)
−0.967983 + 0.251016i \(0.919235\pi\)
\(12\) 0 0
\(13\) 3.54045 2.04408i 0.981945 0.566926i 0.0790880 0.996868i \(-0.474799\pi\)
0.902857 + 0.429942i \(0.141466\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 1.67056 0.405169 0.202585 0.979265i \(-0.435066\pi\)
0.202585 + 0.979265i \(0.435066\pi\)
\(18\) 0 0
\(19\) 4.91183i 1.12685i 0.826167 + 0.563426i \(0.190517\pi\)
−0.826167 + 0.563426i \(0.809483\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 4.25297 2.45545i 0.886805 0.511997i 0.0139086 0.999903i \(-0.495573\pi\)
0.872896 + 0.487906i \(0.162239\pi\)
\(24\) 0 0
\(25\) −1.91009 + 3.30837i −0.382018 + 0.661675i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −0.238557 0.137731i −0.0442989 0.0255760i 0.477687 0.878530i \(-0.341475\pi\)
−0.521986 + 0.852954i \(0.674809\pi\)
\(30\) 0 0
\(31\) 1.38847 0.801636i 0.249377 0.143978i −0.370102 0.928991i \(-0.620677\pi\)
0.619479 + 0.785013i \(0.287344\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 3.39362 0.557907 0.278954 0.960305i \(-0.410012\pi\)
0.278954 + 0.960305i \(0.410012\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −3.55632 6.15972i −0.555404 0.961987i −0.997872 0.0652031i \(-0.979230\pi\)
0.442468 0.896784i \(-0.354103\pi\)
\(42\) 0 0
\(43\) 5.22930 9.05742i 0.797461 1.38124i −0.123804 0.992307i \(-0.539509\pi\)
0.921265 0.388936i \(-0.127157\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 5.49885 9.52430i 0.802090 1.38926i −0.116148 0.993232i \(-0.537055\pi\)
0.918238 0.396029i \(-0.129612\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 0.816814i 0.112198i 0.998425 + 0.0560990i \(0.0178662\pi\)
−0.998425 + 0.0560990i \(0.982134\pi\)
\(54\) 0 0
\(55\) 14.0419i 1.89341i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −1.37428 2.38032i −0.178916 0.309891i 0.762594 0.646878i \(-0.223926\pi\)
−0.941509 + 0.336986i \(0.890592\pi\)
\(60\) 0 0
\(61\) 6.23807 + 3.60155i 0.798703 + 0.461131i 0.843017 0.537886i \(-0.180777\pi\)
−0.0443147 + 0.999018i \(0.514110\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −10.5147 6.07067i −1.30419 0.752974i
\(66\) 0 0
\(67\) −5.80513 10.0548i −0.709210 1.22839i −0.965151 0.261695i \(-0.915719\pi\)
0.255941 0.966692i \(-0.417615\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 10.4406i 1.23907i −0.784968 0.619537i \(-0.787320\pi\)
0.784968 0.619537i \(-0.212680\pi\)
\(72\) 0 0
\(73\) 15.7608i 1.84467i 0.386395 + 0.922334i \(0.373720\pi\)
−0.386395 + 0.922334i \(0.626280\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 6.15163 10.6549i 0.692112 1.19877i −0.279032 0.960282i \(-0.590014\pi\)
0.971145 0.238492i \(-0.0766530\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −4.03981 + 6.99715i −0.443426 + 0.768037i −0.997941 0.0641368i \(-0.979571\pi\)
0.554515 + 0.832174i \(0.312904\pi\)
\(84\) 0 0
\(85\) −2.48067 4.29665i −0.269067 0.466037i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −9.21744 −0.977047 −0.488523 0.872551i \(-0.662464\pi\)
−0.488523 + 0.872551i \(0.662464\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 12.6332 7.29377i 1.29614 0.748325i
\(96\) 0 0
\(97\) −7.00772 4.04591i −0.711527 0.410800i 0.100099 0.994977i \(-0.468084\pi\)
−0.811626 + 0.584177i \(0.801417\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −3.65365 + 6.32831i −0.363552 + 0.629690i −0.988543 0.150942i \(-0.951769\pi\)
0.624991 + 0.780632i \(0.285103\pi\)
\(102\) 0 0
\(103\) −6.08409 + 3.51265i −0.599483 + 0.346112i −0.768838 0.639443i \(-0.779165\pi\)
0.169355 + 0.985555i \(0.445832\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 14.1588i 1.36878i 0.729117 + 0.684389i \(0.239931\pi\)
−0.729117 + 0.684389i \(0.760069\pi\)
\(108\) 0 0
\(109\) 5.64405 0.540602 0.270301 0.962776i \(-0.412877\pi\)
0.270301 + 0.962776i \(0.412877\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −11.6411 + 6.72099i −1.09510 + 0.632258i −0.934930 0.354831i \(-0.884538\pi\)
−0.160172 + 0.987089i \(0.551205\pi\)
\(114\) 0 0
\(115\) −12.6308 7.29239i −1.17783 0.680019i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 5.67752 + 9.83375i 0.516138 + 0.893977i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −3.50392 −0.313400
\(126\) 0 0
\(127\) −12.7730 −1.13342 −0.566712 0.823916i \(-0.691785\pi\)
−0.566712 + 0.823916i \(0.691785\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 6.70890 + 11.6202i 0.586159 + 1.01526i 0.994730 + 0.102531i \(0.0326941\pi\)
−0.408570 + 0.912727i \(0.633973\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −7.79449 4.50015i −0.665928 0.384474i 0.128604 0.991696i \(-0.458950\pi\)
−0.794532 + 0.607222i \(0.792284\pi\)
\(138\) 0 0
\(139\) −1.54902 + 0.894326i −0.131386 + 0.0758557i −0.564252 0.825602i \(-0.690836\pi\)
0.432866 + 0.901458i \(0.357502\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −19.3293 −1.61640
\(144\) 0 0
\(145\) 0.818088i 0.0679385i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −11.1779 + 6.45358i −0.915732 + 0.528698i −0.882271 0.470742i \(-0.843986\pi\)
−0.0334609 + 0.999440i \(0.510653\pi\)
\(150\) 0 0
\(151\) 6.48364 11.2300i 0.527631 0.913884i −0.471850 0.881679i \(-0.656414\pi\)
0.999481 0.0322054i \(-0.0102531\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −4.12360 2.38076i −0.331216 0.191227i
\(156\) 0 0
\(157\) −14.8720 + 8.58638i −1.18692 + 0.685268i −0.957605 0.288085i \(-0.906981\pi\)
−0.229314 + 0.973353i \(0.573648\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) −5.06214 −0.396497 −0.198249 0.980152i \(-0.563525\pi\)
−0.198249 + 0.980152i \(0.563525\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −5.79673 10.0402i −0.448564 0.776936i 0.549729 0.835343i \(-0.314731\pi\)
−0.998293 + 0.0584072i \(0.981398\pi\)
\(168\) 0 0
\(169\) 1.85653 3.21561i 0.142810 0.247354i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −3.13346 + 5.42730i −0.238232 + 0.412630i −0.960207 0.279289i \(-0.909901\pi\)
0.721975 + 0.691919i \(0.243235\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 14.7418i 1.10185i −0.834554 0.550927i \(-0.814274\pi\)
0.834554 0.550927i \(-0.185726\pi\)
\(180\) 0 0
\(181\) 0.0833642i 0.00619641i −0.999995 0.00309821i \(-0.999014\pi\)
0.999995 0.00309821i \(-0.000986191\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −5.03932 8.72835i −0.370498 0.641721i
\(186\) 0 0
\(187\) −6.84036 3.94929i −0.500217 0.288800i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 13.3672 + 7.71754i 0.967214 + 0.558421i 0.898386 0.439207i \(-0.144741\pi\)
0.0688282 + 0.997629i \(0.478074\pi\)
\(192\) 0 0
\(193\) −10.7779 18.6678i −0.775808 1.34374i −0.934339 0.356385i \(-0.884009\pi\)
0.158532 0.987354i \(-0.449324\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 9.88306i 0.704139i −0.935974 0.352069i \(-0.885478\pi\)
0.935974 0.352069i \(-0.114522\pi\)
\(198\) 0 0
\(199\) 10.5612i 0.748660i −0.927295 0.374330i \(-0.877873\pi\)
0.927295 0.374330i \(-0.122127\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) −10.5618 + 18.2936i −0.737670 + 1.27768i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 11.6118 20.1123i 0.803208 1.39120i
\(210\) 0 0
\(211\) 6.08453 + 10.5387i 0.418876 + 0.725514i 0.995827 0.0912645i \(-0.0290909\pi\)
−0.576951 + 0.816779i \(0.695758\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −31.0608 −2.11833
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 5.91452 3.41475i 0.397854 0.229701i
\(222\) 0 0
\(223\) −0.714485 0.412508i −0.0478455 0.0276236i 0.475886 0.879507i \(-0.342127\pi\)
−0.523732 + 0.851883i \(0.675461\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 0.166778 0.288869i 0.0110695 0.0191729i −0.860438 0.509556i \(-0.829810\pi\)
0.871507 + 0.490383i \(0.163143\pi\)
\(228\) 0 0
\(229\) 12.4893 7.21072i 0.825319 0.476498i −0.0269285 0.999637i \(-0.508573\pi\)
0.852247 + 0.523139i \(0.175239\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 14.7748i 0.967927i 0.875088 + 0.483964i \(0.160803\pi\)
−0.875088 + 0.483964i \(0.839197\pi\)
\(234\) 0 0
\(235\) −32.6619 −2.13063
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 22.5339 13.0100i 1.45760 0.841545i 0.458707 0.888588i \(-0.348313\pi\)
0.998893 + 0.0470423i \(0.0149795\pi\)
\(240\) 0 0
\(241\) 1.66295 + 0.960105i 0.107120 + 0.0618458i 0.552603 0.833445i \(-0.313635\pi\)
−0.445483 + 0.895290i \(0.646968\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 10.0402 + 17.3901i 0.638841 + 1.10651i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 9.97663 0.629719 0.314860 0.949138i \(-0.398043\pi\)
0.314860 + 0.949138i \(0.398043\pi\)
\(252\) 0 0
\(253\) −23.2193 −1.45978
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 7.50364 + 12.9967i 0.468064 + 0.810711i 0.999334 0.0364915i \(-0.0116182\pi\)
−0.531270 + 0.847203i \(0.678285\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 6.11010 + 3.52767i 0.376765 + 0.217525i 0.676410 0.736525i \(-0.263535\pi\)
−0.299645 + 0.954051i \(0.596868\pi\)
\(264\) 0 0
\(265\) 2.10084 1.21292i 0.129053 0.0745090i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −29.7795 −1.81569 −0.907844 0.419308i \(-0.862273\pi\)
−0.907844 + 0.419308i \(0.862273\pi\)
\(270\) 0 0
\(271\) 2.78816i 0.169369i 0.996408 + 0.0846843i \(0.0269882\pi\)
−0.996408 + 0.0846843i \(0.973012\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 15.6424 9.03112i 0.943270 0.544597i
\(276\) 0 0
\(277\) −6.79074 + 11.7619i −0.408016 + 0.706705i −0.994667 0.103135i \(-0.967113\pi\)
0.586651 + 0.809840i \(0.300446\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 3.95777 + 2.28502i 0.236101 + 0.136313i 0.613383 0.789785i \(-0.289808\pi\)
−0.377283 + 0.926098i \(0.623141\pi\)
\(282\) 0 0
\(283\) −17.6685 + 10.2009i −1.05029 + 0.606383i −0.922729 0.385449i \(-0.874047\pi\)
−0.127556 + 0.991831i \(0.540713\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −14.2092 −0.835838
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 6.41037 + 11.1031i 0.374498 + 0.648649i 0.990252 0.139289i \(-0.0444818\pi\)
−0.615754 + 0.787939i \(0.711148\pi\)
\(294\) 0 0
\(295\) −4.08144 + 7.06926i −0.237631 + 0.411589i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 10.0383 17.3868i 0.580529 1.00551i
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 21.3923i 1.22492i
\(306\) 0 0
\(307\) 1.93411i 0.110386i −0.998476 0.0551928i \(-0.982423\pi\)
0.998476 0.0551928i \(-0.0175773\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −1.04458 1.80926i −0.0592326 0.102594i 0.834889 0.550419i \(-0.185532\pi\)
−0.894121 + 0.447825i \(0.852199\pi\)
\(312\) 0 0
\(313\) −19.4066 11.2044i −1.09692 0.633309i −0.161512 0.986871i \(-0.551637\pi\)
−0.935411 + 0.353562i \(0.884970\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −3.01788 1.74237i −0.169501 0.0978614i 0.412850 0.910799i \(-0.364534\pi\)
−0.582350 + 0.812938i \(0.697867\pi\)
\(318\) 0 0
\(319\) 0.651207 + 1.12792i 0.0364606 + 0.0631516i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 8.20549i 0.456565i
\(324\) 0 0
\(325\) 15.6175i 0.866304i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 2.28857 3.96392i 0.125791 0.217877i −0.796251 0.604967i \(-0.793186\pi\)
0.922042 + 0.387090i \(0.126520\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −17.2405 + 29.8615i −0.941951 + 1.63151i
\(336\) 0 0
\(337\) −14.7062 25.4720i −0.801100 1.38755i −0.918893 0.394508i \(-0.870915\pi\)
0.117793 0.993038i \(-0.462418\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −7.58045 −0.410504
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 17.0245 9.82911i 0.913924 0.527654i 0.0322323 0.999480i \(-0.489738\pi\)
0.881692 + 0.471826i \(0.156405\pi\)
\(348\) 0 0
\(349\) 8.47286 + 4.89181i 0.453542 + 0.261852i 0.709325 0.704882i \(-0.249000\pi\)
−0.255783 + 0.966734i \(0.582333\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 12.5322 21.7065i 0.667023 1.15532i −0.311709 0.950178i \(-0.600901\pi\)
0.978733 0.205141i \(-0.0657652\pi\)
\(354\) 0 0
\(355\) −26.8532 + 15.5037i −1.42522 + 0.822850i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 9.35147i 0.493552i 0.969073 + 0.246776i \(0.0793712\pi\)
−0.969073 + 0.246776i \(0.920629\pi\)
\(360\) 0 0
\(361\) −5.12609 −0.269794
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 40.5367 23.4039i 2.12179 1.22502i
\(366\) 0 0
\(367\) 18.9530 + 10.9425i 0.989337 + 0.571194i 0.905076 0.425250i \(-0.139814\pi\)
0.0842608 + 0.996444i \(0.473147\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −2.30822 3.99795i −0.119515 0.207006i 0.800061 0.599919i \(-0.204801\pi\)
−0.919576 + 0.392913i \(0.871467\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −1.12613 −0.0579988
\(378\) 0 0
\(379\) −6.22396 −0.319703 −0.159852 0.987141i \(-0.551102\pi\)
−0.159852 + 0.987141i \(0.551102\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −10.9989 19.0506i −0.562015 0.973439i −0.997321 0.0731560i \(-0.976693\pi\)
0.435305 0.900283i \(-0.356640\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −8.51109 4.91388i −0.431529 0.249144i 0.268469 0.963288i \(-0.413482\pi\)
−0.699998 + 0.714145i \(0.746816\pi\)
\(390\) 0 0
\(391\) 7.10481 4.10197i 0.359306 0.207445i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −36.5392 −1.83849
\(396\) 0 0
\(397\) 5.25762i 0.263873i −0.991258 0.131936i \(-0.957881\pi\)
0.991258 0.131936i \(-0.0421194\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 14.7847 8.53594i 0.738312 0.426265i −0.0831432 0.996538i \(-0.526496\pi\)
0.821455 + 0.570273i \(0.193163\pi\)
\(402\) 0 0
\(403\) 3.27722 5.67631i 0.163250 0.282757i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −13.8957 8.02270i −0.688786 0.397671i
\(408\) 0 0
\(409\) −16.9484 + 9.78516i −0.838044 + 0.483845i −0.856599 0.515983i \(-0.827427\pi\)
0.0185546 + 0.999828i \(0.494094\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 23.9955 1.17789
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 10.3073 + 17.8529i 0.503547 + 0.872169i 0.999992 + 0.00410056i \(0.00130525\pi\)
−0.496445 + 0.868068i \(0.665361\pi\)
\(420\) 0 0
\(421\) 0.704748 1.22066i 0.0343473 0.0594913i −0.848341 0.529451i \(-0.822398\pi\)
0.882688 + 0.469959i \(0.155731\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −3.19091 + 5.52682i −0.154782 + 0.268090i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 13.4714i 0.648894i 0.945904 + 0.324447i \(0.105178\pi\)
−0.945904 + 0.324447i \(0.894822\pi\)
\(432\) 0 0
\(433\) 12.9356i 0.621646i −0.950468 0.310823i \(-0.899395\pi\)
0.950468 0.310823i \(-0.100605\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 12.0608 + 20.8899i 0.576944 + 0.999297i
\(438\) 0 0
\(439\) −8.75023 5.05195i −0.417626 0.241116i 0.276435 0.961033i \(-0.410847\pi\)
−0.694061 + 0.719916i \(0.744180\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −25.1220 14.5042i −1.19358 0.689115i −0.234466 0.972124i \(-0.575334\pi\)
−0.959117 + 0.283009i \(0.908667\pi\)
\(444\) 0 0
\(445\) 13.6873 + 23.7072i 0.648842 + 1.12383i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 7.94881i 0.375127i −0.982252 0.187564i \(-0.939941\pi\)
0.982252 0.187564i \(-0.0600591\pi\)
\(450\) 0 0
\(451\) 33.6293i 1.58354i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 6.98084 12.0912i 0.326550 0.565601i −0.655275 0.755391i \(-0.727447\pi\)
0.981825 + 0.189789i \(0.0607805\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −16.4030 + 28.4108i −0.763964 + 1.32322i 0.176829 + 0.984242i \(0.443416\pi\)
−0.940793 + 0.338983i \(0.889917\pi\)
\(462\) 0 0
\(463\) −13.8812 24.0429i −0.645112 1.11737i −0.984276 0.176640i \(-0.943477\pi\)
0.339163 0.940727i \(-0.389856\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 22.8621 1.05793 0.528966 0.848643i \(-0.322580\pi\)
0.528966 + 0.848643i \(0.322580\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −42.8245 + 24.7247i −1.96907 + 1.13684i
\(474\) 0 0
\(475\) −16.2502 9.38204i −0.745609 0.430478i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 1.21212 2.09946i 0.0553834 0.0959269i −0.837004 0.547196i \(-0.815695\pi\)
0.892388 + 0.451269i \(0.149029\pi\)
\(480\) 0 0
\(481\) 12.0149 6.93683i 0.547834 0.316292i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 24.0317i 1.09122i
\(486\) 0 0
\(487\) −10.3930 −0.470952 −0.235476 0.971880i \(-0.575665\pi\)
−0.235476 + 0.971880i \(0.575665\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 2.93014 1.69172i 0.132235 0.0763462i −0.432423 0.901671i \(-0.642341\pi\)
0.564658 + 0.825325i \(0.309008\pi\)
\(492\) 0 0
\(493\) −0.398522 0.230087i −0.0179485 0.0103626i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) −19.7801 34.2602i −0.885481 1.53370i −0.845162 0.534511i \(-0.820496\pi\)
−0.0403188 0.999187i \(-0.512837\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 14.5476 0.648645 0.324323 0.945947i \(-0.394864\pi\)
0.324323 + 0.945947i \(0.394864\pi\)
\(504\) 0 0
\(505\) 21.7018 0.965717
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 10.1958 + 17.6596i 0.451921 + 0.782750i 0.998505 0.0546542i \(-0.0174057\pi\)
−0.546585 + 0.837404i \(0.684072\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 18.0690 + 10.4322i 0.796216 + 0.459696i
\(516\) 0 0
\(517\) −45.0319 + 25.9992i −1.98050 + 1.14344i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 15.5024 0.679175 0.339587 0.940575i \(-0.389713\pi\)
0.339587 + 0.940575i \(0.389713\pi\)
\(522\) 0 0
\(523\) 10.8079i 0.472595i −0.971681 0.236298i \(-0.924066\pi\)
0.971681 0.236298i \(-0.0759340\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 2.31952 1.33918i 0.101040 0.0583355i
\(528\) 0 0
\(529\) 0.558476 0.967309i 0.0242816 0.0420569i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −25.1819 14.5388i −1.09075 0.629745i
\(534\) 0 0
\(535\) 36.4162 21.0249i 1.57441 0.908986i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 17.5871 0.756130 0.378065 0.925779i \(-0.376590\pi\)
0.378065 + 0.925779i \(0.376590\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −8.38108 14.5165i −0.359006 0.621817i
\(546\) 0 0
\(547\) −5.72451 + 9.91513i −0.244762 + 0.423940i −0.962065 0.272821i \(-0.912043\pi\)
0.717303 + 0.696762i \(0.245377\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 0.676511 1.17175i 0.0288203 0.0499183i
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 38.0080i 1.61045i −0.592968 0.805226i \(-0.702044\pi\)
0.592968 0.805226i \(-0.297956\pi\)
\(558\) 0 0
\(559\) 42.7565i 1.80841i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 8.88438 + 15.3882i 0.374432 + 0.648535i 0.990242 0.139360i \(-0.0445044\pi\)
−0.615810 + 0.787895i \(0.711171\pi\)
\(564\) 0 0
\(565\) 34.5727 + 19.9605i 1.45448 + 0.839746i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −33.7404 19.4801i −1.41447 0.816646i −0.418667 0.908140i \(-0.637503\pi\)
−0.995806 + 0.0914936i \(0.970836\pi\)
\(570\) 0 0
\(571\) −8.45245 14.6401i −0.353724 0.612668i 0.633175 0.774009i \(-0.281752\pi\)
−0.986899 + 0.161341i \(0.948418\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 18.7605i 0.782368i
\(576\) 0 0
\(577\) 47.2653i 1.96768i −0.179050 0.983840i \(-0.557302\pi\)
0.179050 0.983840i \(-0.442698\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 1.93099 3.34458i 0.0799736 0.138518i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 11.6343 20.1513i 0.480200 0.831731i −0.519542 0.854445i \(-0.673897\pi\)
0.999742 + 0.0227138i \(0.00723065\pi\)
\(588\) 0 0
\(589\) 3.93750 + 6.81995i 0.162242 + 0.281011i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 37.1924 1.52731 0.763654 0.645626i \(-0.223404\pi\)
0.763654 + 0.645626i \(0.223404\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 27.9591 16.1422i 1.14238 0.659552i 0.195359 0.980732i \(-0.437413\pi\)
0.947018 + 0.321180i \(0.104079\pi\)
\(600\) 0 0
\(601\) 14.7559 + 8.51933i 0.601906 + 0.347511i 0.769791 0.638296i \(-0.220360\pi\)
−0.167885 + 0.985807i \(0.553694\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 16.8615 29.2051i 0.685519 1.18735i
\(606\) 0 0
\(607\) 8.44393 4.87510i 0.342728 0.197874i −0.318749 0.947839i \(-0.603263\pi\)
0.661478 + 0.749965i \(0.269930\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 44.9604i 1.81890i
\(612\) 0 0
\(613\) 13.7266 0.554414 0.277207 0.960810i \(-0.410591\pi\)
0.277207 + 0.960810i \(0.410591\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 2.84301 1.64141i 0.114455 0.0660807i −0.441680 0.897173i \(-0.645617\pi\)
0.556135 + 0.831092i \(0.312284\pi\)
\(618\) 0 0
\(619\) −14.9907 8.65490i −0.602528 0.347870i 0.167507 0.985871i \(-0.446428\pi\)
−0.770036 + 0.638001i \(0.779762\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 14.7536 + 25.5539i 0.590142 + 1.02216i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 5.66923 0.226047
\(630\) 0 0
\(631\) −6.27821 −0.249932 −0.124966 0.992161i \(-0.539882\pi\)
−0.124966 + 0.992161i \(0.539882\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 18.9672 + 32.8522i 0.752691 + 1.30370i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −17.9788 10.3801i −0.710120 0.409988i 0.100986 0.994888i \(-0.467800\pi\)
−0.811105 + 0.584900i \(0.801134\pi\)
\(642\) 0 0
\(643\) 17.2553 9.96236i 0.680483 0.392877i −0.119554 0.992828i \(-0.538146\pi\)
0.800037 + 0.599950i \(0.204813\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 29.5340 1.16110 0.580551 0.814224i \(-0.302837\pi\)
0.580551 + 0.814224i \(0.302837\pi\)
\(648\) 0 0
\(649\) 12.9955i 0.510118i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 13.7914 7.96249i 0.539701 0.311596i −0.205257 0.978708i \(-0.565803\pi\)
0.744958 + 0.667112i \(0.232470\pi\)
\(654\) 0 0
\(655\) 19.9246 34.5105i 0.778520 1.34844i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −2.80283 1.61822i −0.109183 0.0630368i 0.444414 0.895821i \(-0.353412\pi\)
−0.553597 + 0.832785i \(0.686745\pi\)
\(660\) 0 0
\(661\) −7.71194 + 4.45249i −0.299960 + 0.173182i −0.642425 0.766349i \(-0.722072\pi\)
0.342465 + 0.939531i \(0.388738\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −1.35277 −0.0523793
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −17.0285 29.4943i −0.657379 1.13861i
\(672\) 0 0
\(673\) −13.2311 + 22.9169i −0.510021 + 0.883382i 0.489912 + 0.871772i \(0.337029\pi\)
−0.999933 + 0.0116101i \(0.996304\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −4.46424 + 7.73229i −0.171575 + 0.297176i −0.938971 0.343997i \(-0.888219\pi\)
0.767396 + 0.641174i \(0.221552\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 37.8628i 1.44878i 0.689390 + 0.724390i \(0.257879\pi\)
−0.689390 + 0.724390i \(0.742121\pi\)
\(684\) 0 0
\(685\) 26.7298i 1.02129i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 1.66963 + 2.89189i 0.0636080 + 0.110172i
\(690\) 0 0
\(691\) 4.94211 + 2.85333i 0.188007 + 0.108546i 0.591049 0.806636i \(-0.298714\pi\)
−0.403042 + 0.915181i \(0.632047\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 4.60039 + 2.65604i 0.174503 + 0.100749i
\(696\) 0 0
\(697\) −5.94103 10.2902i −0.225032 0.389768i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 8.19949i 0.309690i 0.987939 + 0.154845i \(0.0494879\pi\)
−0.987939 + 0.154845i \(0.950512\pi\)
\(702\) 0 0
\(703\) 16.6689i 0.628679i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −10.0757 + 17.4517i −0.378402 + 0.655412i −0.990830 0.135115i \(-0.956860\pi\)
0.612428 + 0.790527i \(0.290193\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 3.93676 6.81866i 0.147433 0.255361i
\(714\) 0 0
\(715\) 28.7028 + 49.7147i 1.07342 + 1.85923i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −51.1991 −1.90940 −0.954702 0.297563i \(-0.903826\pi\)
−0.954702 + 0.297563i \(0.903826\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 0.911330 0.526157i 0.0338460 0.0195410i
\(726\) 0 0
\(727\) −13.7848 7.95865i −0.511249 0.295170i 0.222098 0.975024i \(-0.428710\pi\)
−0.733347 + 0.679854i \(0.762043\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 8.73584 15.1309i 0.323107 0.559637i
\(732\) 0 0
\(733\) 3.67216 2.12012i 0.135634 0.0783086i −0.430647 0.902520i \(-0.641715\pi\)
0.566282 + 0.824212i \(0.308381\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 54.8946i 2.02207i
\(738\) 0 0
\(739\) 28.3669 1.04349 0.521747 0.853100i \(-0.325280\pi\)
0.521747 + 0.853100i \(0.325280\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −21.8850 + 12.6353i −0.802884 + 0.463545i −0.844479 0.535589i \(-0.820090\pi\)
0.0415945 + 0.999135i \(0.486756\pi\)
\(744\) 0 0
\(745\) 33.1971 + 19.1664i 1.21625 + 0.702201i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) −23.7730 41.1761i −0.867490 1.50254i −0.864554 0.502540i \(-0.832399\pi\)
−0.00293597 0.999996i \(-0.500935\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −38.5113 −1.40157
\(756\) 0 0
\(757\) 37.3922 1.35904 0.679521 0.733656i \(-0.262188\pi\)
0.679521 + 0.733656i \(0.262188\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −4.12142 7.13850i −0.149401 0.258770i 0.781605 0.623774i \(-0.214401\pi\)
−0.931006 + 0.365003i \(0.881068\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −9.73114 5.61827i −0.351371 0.202864i
\(768\) 0 0
\(769\) 20.2182 11.6730i 0.729086 0.420938i −0.0890020 0.996031i \(-0.528368\pi\)
0.818088 + 0.575094i \(0.195034\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −34.4402 −1.23873 −0.619364 0.785104i \(-0.712609\pi\)
−0.619364 + 0.785104i \(0.712609\pi\)
\(774\) 0 0
\(775\) 6.12479i 0.220009i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 30.2555 17.4680i 1.08402 0.625857i
\(780\) 0 0
\(781\) −24.6822 + 42.7508i −0.883199 + 1.52975i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 44.1682 + 25.5005i 1.57643 + 0.910152i
\(786\) 0 0
\(787\) 7.19975 4.15678i 0.256643 0.148173i −0.366159 0.930552i \(-0.619327\pi\)
0.622802 + 0.782379i \(0.285994\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 29.4474 1.04571
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −0.426036 0.737916i −0.0150910 0.0261383i 0.858381 0.513012i \(-0.171470\pi\)
−0.873472 + 0.486874i \(0.838137\pi\)
\(798\) 0 0
\(799\) 9.18614 15.9109i 0.324982 0.562886i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 37.2595 64.5354i 1.31486 2.27740i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 36.4400i 1.28116i 0.767891 + 0.640581i \(0.221306\pi\)
−0.767891 + 0.640581i \(0.778694\pi\)
\(810\) 0 0
\(811\) 1.08986i 0.0382702i 0.999817 + 0.0191351i \(0.00609126\pi\)
−0.999817 + 0.0191351i \(0.993909\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 7.51697 + 13.0198i 0.263308 + 0.456063i
\(816\) 0 0
\(817\) 44.4885 + 25.6855i 1.55646 + 0.898620i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −20.9748 12.1098i −0.732025 0.422635i 0.0871374 0.996196i \(-0.472228\pi\)
−0.819163 + 0.573561i \(0.805561\pi\)
\(822\) 0 0
\(823\) −2.85592 4.94660i −0.0995512 0.172428i 0.811948 0.583730i \(-0.198407\pi\)
−0.911499 + 0.411302i \(0.865074\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 36.4579i 1.26777i 0.773429 + 0.633883i \(0.218540\pi\)
−0.773429 + 0.633883i \(0.781460\pi\)
\(828\) 0 0
\(829\) 0.575352i 0.0199828i −0.999950 0.00999140i \(-0.996820\pi\)
0.999950 0.00999140i \(-0.00318041\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) −17.2156 + 29.8183i −0.595770 + 1.03190i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 23.9341 41.4550i 0.826295 1.43119i −0.0746300 0.997211i \(-0.523778\pi\)
0.900925 0.433974i \(-0.142889\pi\)
\(840\) 0 0
\(841\) −14.4621 25.0490i −0.498692 0.863759i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −11.0274 −0.379352
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 14.4329 8.33286i 0.494755 0.285647i
\(852\) 0 0
\(853\) 40.5393 + 23.4054i 1.38804 + 0.801385i 0.993094 0.117320i \(-0.0374303\pi\)
0.394945 + 0.918705i \(0.370764\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 4.78220 8.28302i 0.163357 0.282943i −0.772714 0.634755i \(-0.781101\pi\)
0.936071 + 0.351812i \(0.114434\pi\)
\(858\) 0 0
\(859\) −4.68311 + 2.70379i −0.159786 + 0.0922523i −0.577761 0.816206i \(-0.696073\pi\)
0.417975 + 0.908459i \(0.362740\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 41.0383i 1.39696i 0.715630 + 0.698480i \(0.246140\pi\)
−0.715630 + 0.698480i \(0.753860\pi\)
\(864\) 0 0
\(865\) 18.6120 0.632826
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −50.3777 + 29.0856i −1.70895 + 0.986661i
\(870\) 0 0
\(871\) −41.1056 23.7323i −1.39281 0.804139i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 7.32509 + 12.6874i 0.247351 + 0.428424i 0.962790 0.270251i \(-0.0871067\pi\)
−0.715439 + 0.698675i \(0.753773\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 44.8295 1.51034 0.755172 0.655527i \(-0.227553\pi\)
0.755172 + 0.655527i \(0.227553\pi\)
\(882\) 0 0
\(883\) 33.8527 1.13923 0.569617 0.821910i \(-0.307091\pi\)
0.569617 + 0.821910i \(0.307091\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −13.3422 23.1093i −0.447987 0.775936i 0.550268 0.834988i \(-0.314525\pi\)
−0.998255 + 0.0590523i \(0.981192\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 46.7817 + 27.0094i 1.56549 + 0.903837i
\(894\) 0 0
\(895\) −37.9157 + 21.8907i −1.26738 + 0.731724i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −0.441640 −0.0147295
\(900\) 0 0
\(901\) 1.36453i 0.0454592i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −0.214412 + 0.123791i −0.00712729 + 0.00411494i
\(906\) 0 0
\(907\) 7.97211 13.8081i 0.264710 0.458490i −0.702778 0.711409i \(-0.748057\pi\)
0.967487 + 0.252919i \(0.0813906\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −40.9207 23.6256i −1.35576 0.782750i −0.366713 0.930334i \(-0.619517\pi\)
−0.989050 + 0.147584i \(0.952850\pi\)
\(912\) 0 0
\(913\) 33.0833 19.1007i 1.09490 0.632140i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) −29.6325 −0.977486 −0.488743 0.872428i \(-0.662544\pi\)
−0.488743 + 0.872428i \(0.662544\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −21.3415 36.9645i −0.702463 1.21670i
\(924\) 0 0
\(925\) −6.48212 + 11.2274i −0.213131 + 0.369153i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −16.6186 + 28.7842i −0.545238 + 0.944380i 0.453354 + 0.891331i \(0.350227\pi\)
−0.998592 + 0.0530496i \(0.983106\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 23.4578i 0.767152i
\(936\) 0 0
\(937\) 23.8190i 0.778134i 0.921209 + 0.389067i \(0.127203\pi\)
−0.921209 + 0.389067i \(0.872797\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 27.1201 + 46.9734i 0.884091 + 1.53129i 0.846752 + 0.531988i \(0.178555\pi\)
0.0373389 + 0.999303i \(0.488112\pi\)
\(942\) 0 0
\(943\) −30.2498 17.4647i −0.985069 0.568730i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 18.2427 + 10.5324i 0.592807 + 0.342257i 0.766207 0.642594i \(-0.222142\pi\)
−0.173399 + 0.984852i \(0.555475\pi\)
\(948\) 0 0
\(949\) 32.2164 + 55.8005i 1.04579 + 1.81136i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 4.50028i 0.145778i 0.997340 + 0.0728892i \(0.0232219\pi\)
−0.997340 + 0.0728892i \(0.976778\pi\)
\(954\) 0 0
\(955\) 45.8403i 1.48336i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −14.2148 + 24.6207i −0.458541 + 0.794216i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −32.0090 + 55.4411i −1.03040 + 1.78471i
\(966\) 0 0
\(967\) −10.8811 18.8466i −0.349912 0.606065i 0.636322 0.771424i \(-0.280455\pi\)
−0.986233 + 0.165359i \(0.947122\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −47.0443 −1.50972 −0.754862 0.655884i \(-0.772296\pi\)
−0.754862 + 0.655884i \(0.772296\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −21.7766 + 12.5727i −0.696695 + 0.402237i −0.806115 0.591758i \(-0.798434\pi\)
0.109420 + 0.993996i \(0.465101\pi\)
\(978\) 0 0
\(979\) 37.7423 + 21.7905i 1.20625 + 0.696429i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −18.1071 + 31.3624i −0.577527 + 1.00031i 0.418235 + 0.908339i \(0.362649\pi\)
−0.995762 + 0.0919674i \(0.970684\pi\)
\(984\) 0 0
\(985\) −25.4191 + 14.6757i −0.809921 + 0.467608i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 51.3612i 1.63319i
\(990\) 0 0
\(991\) 18.6554 0.592608 0.296304 0.955094i \(-0.404246\pi\)
0.296304 + 0.955094i \(0.404246\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −27.1632 + 15.6827i −0.861131 + 0.497174i
\(996\) 0 0
\(997\) −15.1413 8.74181i −0.479528 0.276856i 0.240691 0.970602i \(-0.422626\pi\)
−0.720220 + 0.693746i \(0.755959\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 5292.2.x.b.4409.2 16
3.2 odd 2 1764.2.x.b.1469.5 16
7.2 even 3 5292.2.w.b.521.2 16
7.3 odd 6 5292.2.bm.a.4625.2 16
7.4 even 3 756.2.bm.a.89.7 16
7.5 odd 6 756.2.w.a.521.7 16
7.6 odd 2 5292.2.x.a.4409.7 16
9.4 even 3 1764.2.x.a.293.4 16
9.5 odd 6 5292.2.x.a.881.7 16
21.2 odd 6 1764.2.w.b.1109.6 16
21.5 even 6 252.2.w.a.101.3 yes 16
21.11 odd 6 252.2.bm.a.173.1 yes 16
21.17 even 6 1764.2.bm.a.1685.8 16
21.20 even 2 1764.2.x.a.1469.4 16
28.11 odd 6 3024.2.df.d.1601.7 16
28.19 even 6 3024.2.ca.d.2033.7 16
63.4 even 3 252.2.w.a.5.3 16
63.5 even 6 756.2.bm.a.17.7 16
63.11 odd 6 2268.2.t.a.2105.7 16
63.13 odd 6 1764.2.x.b.293.5 16
63.23 odd 6 5292.2.bm.a.2285.2 16
63.25 even 3 2268.2.t.b.2105.2 16
63.31 odd 6 1764.2.w.b.509.6 16
63.32 odd 6 756.2.w.a.341.7 16
63.40 odd 6 252.2.bm.a.185.1 yes 16
63.41 even 6 inner 5292.2.x.b.881.2 16
63.47 even 6 2268.2.t.b.1781.2 16
63.58 even 3 1764.2.bm.a.1697.8 16
63.59 even 6 5292.2.w.b.1097.2 16
63.61 odd 6 2268.2.t.a.1781.7 16
84.11 even 6 1008.2.df.d.929.8 16
84.47 odd 6 1008.2.ca.d.353.6 16
252.67 odd 6 1008.2.ca.d.257.6 16
252.95 even 6 3024.2.ca.d.2609.7 16
252.103 even 6 1008.2.df.d.689.8 16
252.131 odd 6 3024.2.df.d.17.7 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
252.2.w.a.5.3 16 63.4 even 3
252.2.w.a.101.3 yes 16 21.5 even 6
252.2.bm.a.173.1 yes 16 21.11 odd 6
252.2.bm.a.185.1 yes 16 63.40 odd 6
756.2.w.a.341.7 16 63.32 odd 6
756.2.w.a.521.7 16 7.5 odd 6
756.2.bm.a.17.7 16 63.5 even 6
756.2.bm.a.89.7 16 7.4 even 3
1008.2.ca.d.257.6 16 252.67 odd 6
1008.2.ca.d.353.6 16 84.47 odd 6
1008.2.df.d.689.8 16 252.103 even 6
1008.2.df.d.929.8 16 84.11 even 6
1764.2.w.b.509.6 16 63.31 odd 6
1764.2.w.b.1109.6 16 21.2 odd 6
1764.2.x.a.293.4 16 9.4 even 3
1764.2.x.a.1469.4 16 21.20 even 2
1764.2.x.b.293.5 16 63.13 odd 6
1764.2.x.b.1469.5 16 3.2 odd 2
1764.2.bm.a.1685.8 16 21.17 even 6
1764.2.bm.a.1697.8 16 63.58 even 3
2268.2.t.a.1781.7 16 63.61 odd 6
2268.2.t.a.2105.7 16 63.11 odd 6
2268.2.t.b.1781.2 16 63.47 even 6
2268.2.t.b.2105.2 16 63.25 even 3
3024.2.ca.d.2033.7 16 28.19 even 6
3024.2.ca.d.2609.7 16 252.95 even 6
3024.2.df.d.17.7 16 252.131 odd 6
3024.2.df.d.1601.7 16 28.11 odd 6
5292.2.w.b.521.2 16 7.2 even 3
5292.2.w.b.1097.2 16 63.59 even 6
5292.2.x.a.881.7 16 9.5 odd 6
5292.2.x.a.4409.7 16 7.6 odd 2
5292.2.x.b.881.2 16 63.41 even 6 inner
5292.2.x.b.4409.2 16 1.1 even 1 trivial
5292.2.bm.a.2285.2 16 63.23 odd 6
5292.2.bm.a.4625.2 16 7.3 odd 6