Properties

Label 5292.2.x.b.4409.2
Level 52925292
Weight 22
Character 5292.4409
Analytic conductor 42.25742.257
Analytic rank 00
Dimension 1616
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [5292,2,Mod(881,5292)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(5292, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 5, 3])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("5292.881"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: N N == 5292=223372 5292 = 2^{2} \cdot 3^{3} \cdot 7^{2}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 5292.x (of order 66, degree 22, not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,0,0,0,0,0,0,0,-6,0,3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 42.256832749742.2568327497
Analytic rank: 00
Dimension: 1616
Relative dimension: 88 over Q(ζ6)\Q(\zeta_{6})
Coefficient field: Q[x]/(x16)\mathbb{Q}[x]/(x^{16} - \cdots)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x162x15+5x1417x13+22x1231x11+62x1052x9+52x8++6561 x^{16} - 2 x^{15} + 5 x^{14} - 17 x^{13} + 22 x^{12} - 31 x^{11} + 62 x^{10} - 52 x^{9} + 52 x^{8} + \cdots + 6561 Copy content Toggle raw display
Coefficient ring: Z[a1,,a19]\Z[a_1, \ldots, a_{19}]
Coefficient ring index: 36 3^{6}
Twist minimal: no (minimal twist has level 252)
Sato-Tate group: SU(2)[C6]\mathrm{SU}(2)[C_{6}]

Embedding invariants

Embedding label 4409.2
Root 1.680420.419752i1.68042 - 0.419752i of defining polynomial
Character χ\chi == 5292.4409
Dual form 5292.2.x.b.881.2

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
f(q)f(q) == q+(1.484942.57199i)q5+(4.094662.36406i)q11+(3.540452.04408i)q13+1.67056q17+4.91183iq19+(4.252972.45545i)q23+(1.91009+3.30837i)q25+(0.2385570.137731i)q29+(1.388470.801636i)q31+3.39362q37+(3.556326.15972i)q41+(5.229309.05742i)q43+(5.498859.52430i)q47+0.816814iq53+14.0419iq55+(1.374282.38032i)q59+(6.23807+3.60155i)q61+(10.51476.07067i)q65+(5.8051310.0548i)q6710.4406iq71+15.7608iq73+(6.1516310.6549i)q79+(4.03981+6.99715i)q83+(2.480674.29665i)q859.21744q89+(12.63327.29377i)q95+(7.007724.04591i)q97+O(q100)q+(-1.48494 - 2.57199i) q^{5} +(-4.09466 - 2.36406i) q^{11} +(3.54045 - 2.04408i) q^{13} +1.67056 q^{17} +4.91183i q^{19} +(4.25297 - 2.45545i) q^{23} +(-1.91009 + 3.30837i) q^{25} +(-0.238557 - 0.137731i) q^{29} +(1.38847 - 0.801636i) q^{31} +3.39362 q^{37} +(-3.55632 - 6.15972i) q^{41} +(5.22930 - 9.05742i) q^{43} +(5.49885 - 9.52430i) q^{47} +0.816814i q^{53} +14.0419i q^{55} +(-1.37428 - 2.38032i) q^{59} +(6.23807 + 3.60155i) q^{61} +(-10.5147 - 6.07067i) q^{65} +(-5.80513 - 10.0548i) q^{67} -10.4406i q^{71} +15.7608i q^{73} +(6.15163 - 10.6549i) q^{79} +(-4.03981 + 6.99715i) q^{83} +(-2.48067 - 4.29665i) q^{85} -9.21744 q^{89} +(12.6332 - 7.29377i) q^{95} +(-7.00772 - 4.04591i) q^{97} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 16q6q11+3q1318q17+21q238q256q296q312q376q412q43+18q47+15q593q6139q657q67q79+6q8542q89++3q97+O(q100) 16 q - 6 q^{11} + 3 q^{13} - 18 q^{17} + 21 q^{23} - 8 q^{25} - 6 q^{29} - 6 q^{31} - 2 q^{37} - 6 q^{41} - 2 q^{43} + 18 q^{47} + 15 q^{59} - 3 q^{61} - 39 q^{65} - 7 q^{67} - q^{79} + 6 q^{85} - 42 q^{89}+ \cdots + 3 q^{97}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/5292Z)×\left(\mathbb{Z}/5292\mathbb{Z}\right)^\times.

nn 785785 10811081 26472647
χ(n)\chi(n) e(16)e\left(\frac{1}{6}\right) 1-1 11

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 0 0
33 0 0
44 0 0
55 −1.48494 2.57199i −0.664085 1.15023i −0.979532 0.201286i 0.935488π-0.935488\pi
0.315447 0.948943i 0.397845π-0.397845\pi
66 0 0
77 0 0
88 0 0
99 0 0
1010 0 0
1111 −4.09466 2.36406i −1.23459 0.712790i −0.266605 0.963806i 0.585902π-0.585902\pi
−0.967983 + 0.251016i 0.919235π0.919235\pi
1212 0 0
1313 3.54045 2.04408i 0.981945 0.566926i 0.0790880 0.996868i 0.474799π-0.474799\pi
0.902857 + 0.429942i 0.141466π0.141466\pi
1414 0 0
1515 0 0
1616 0 0
1717 1.67056 0.405169 0.202585 0.979265i 0.435066π-0.435066\pi
0.202585 + 0.979265i 0.435066π0.435066\pi
1818 0 0
1919 4.91183i 1.12685i 0.826167 + 0.563426i 0.190517π0.190517\pi
−0.826167 + 0.563426i 0.809483π0.809483\pi
2020 0 0
2121 0 0
2222 0 0
2323 4.25297 2.45545i 0.886805 0.511997i 0.0139086 0.999903i 0.495573π-0.495573\pi
0.872896 + 0.487906i 0.162239π0.162239\pi
2424 0 0
2525 −1.91009 + 3.30837i −0.382018 + 0.661675i
2626 0 0
2727 0 0
2828 0 0
2929 −0.238557 0.137731i −0.0442989 0.0255760i 0.477687 0.878530i 0.341475π-0.341475\pi
−0.521986 + 0.852954i 0.674809π0.674809\pi
3030 0 0
3131 1.38847 0.801636i 0.249377 0.143978i −0.370102 0.928991i 0.620677π-0.620677\pi
0.619479 + 0.785013i 0.287344π0.287344\pi
3232 0 0
3333 0 0
3434 0 0
3535 0 0
3636 0 0
3737 3.39362 0.557907 0.278954 0.960305i 0.410012π-0.410012\pi
0.278954 + 0.960305i 0.410012π0.410012\pi
3838 0 0
3939 0 0
4040 0 0
4141 −3.55632 6.15972i −0.555404 0.961987i −0.997872 0.0652031i 0.979230π-0.979230\pi
0.442468 0.896784i 0.354103π-0.354103\pi
4242 0 0
4343 5.22930 9.05742i 0.797461 1.38124i −0.123804 0.992307i 0.539509π-0.539509\pi
0.921265 0.388936i 0.127157π-0.127157\pi
4444 0 0
4545 0 0
4646 0 0
4747 5.49885 9.52430i 0.802090 1.38926i −0.116148 0.993232i 0.537055π-0.537055\pi
0.918238 0.396029i 0.129612π-0.129612\pi
4848 0 0
4949 0 0
5050 0 0
5151 0 0
5252 0 0
5353 0.816814i 0.112198i 0.998425 + 0.0560990i 0.0178662π0.0178662\pi
−0.998425 + 0.0560990i 0.982134π0.982134\pi
5454 0 0
5555 14.0419i 1.89341i
5656 0 0
5757 0 0
5858 0 0
5959 −1.37428 2.38032i −0.178916 0.309891i 0.762594 0.646878i 0.223926π-0.223926\pi
−0.941509 + 0.336986i 0.890592π0.890592\pi
6060 0 0
6161 6.23807 + 3.60155i 0.798703 + 0.461131i 0.843017 0.537886i 0.180777π-0.180777\pi
−0.0443147 + 0.999018i 0.514110π0.514110\pi
6262 0 0
6363 0 0
6464 0 0
6565 −10.5147 6.07067i −1.30419 0.752974i
6666 0 0
6767 −5.80513 10.0548i −0.709210 1.22839i −0.965151 0.261695i 0.915719π-0.915719\pi
0.255941 0.966692i 0.417615π-0.417615\pi
6868 0 0
6969 0 0
7070 0 0
7171 10.4406i 1.23907i −0.784968 0.619537i 0.787320π-0.787320\pi
0.784968 0.619537i 0.212680π-0.212680\pi
7272 0 0
7373 15.7608i 1.84467i 0.386395 + 0.922334i 0.373720π0.373720\pi
−0.386395 + 0.922334i 0.626280π0.626280\pi
7474 0 0
7575 0 0
7676 0 0
7777 0 0
7878 0 0
7979 6.15163 10.6549i 0.692112 1.19877i −0.279032 0.960282i 0.590014π-0.590014\pi
0.971145 0.238492i 0.0766530π-0.0766530\pi
8080 0 0
8181 0 0
8282 0 0
8383 −4.03981 + 6.99715i −0.443426 + 0.768037i −0.997941 0.0641368i 0.979571π-0.979571\pi
0.554515 + 0.832174i 0.312904π0.312904\pi
8484 0 0
8585 −2.48067 4.29665i −0.269067 0.466037i
8686 0 0
8787 0 0
8888 0 0
8989 −9.21744 −0.977047 −0.488523 0.872551i 0.662464π-0.662464\pi
−0.488523 + 0.872551i 0.662464π0.662464\pi
9090 0 0
9191 0 0
9292 0 0
9393 0 0
9494 0 0
9595 12.6332 7.29377i 1.29614 0.748325i
9696 0 0
9797 −7.00772 4.04591i −0.711527 0.410800i 0.100099 0.994977i 0.468084π-0.468084\pi
−0.811626 + 0.584177i 0.801417π0.801417\pi
9898 0 0
9999 0 0
100100 0 0
101101 −3.65365 + 6.32831i −0.363552 + 0.629690i −0.988543 0.150942i 0.951769π-0.951769\pi
0.624991 + 0.780632i 0.285103π0.285103\pi
102102 0 0
103103 −6.08409 + 3.51265i −0.599483 + 0.346112i −0.768838 0.639443i 0.779165π-0.779165\pi
0.169355 + 0.985555i 0.445832π0.445832\pi
104104 0 0
105105 0 0
106106 0 0
107107 14.1588i 1.36878i 0.729117 + 0.684389i 0.239931π0.239931\pi
−0.729117 + 0.684389i 0.760069π0.760069\pi
108108 0 0
109109 5.64405 0.540602 0.270301 0.962776i 0.412877π-0.412877\pi
0.270301 + 0.962776i 0.412877π0.412877\pi
110110 0 0
111111 0 0
112112 0 0
113113 −11.6411 + 6.72099i −1.09510 + 0.632258i −0.934930 0.354831i 0.884538π-0.884538\pi
−0.160172 + 0.987089i 0.551205π0.551205\pi
114114 0 0
115115 −12.6308 7.29239i −1.17783 0.680019i
116116 0 0
117117 0 0
118118 0 0
119119 0 0
120120 0 0
121121 5.67752 + 9.83375i 0.516138 + 0.893977i
122122 0 0
123123 0 0
124124 0 0
125125 −3.50392 −0.313400
126126 0 0
127127 −12.7730 −1.13342 −0.566712 0.823916i 0.691785π-0.691785\pi
−0.566712 + 0.823916i 0.691785π0.691785\pi
128128 0 0
129129 0 0
130130 0 0
131131 6.70890 + 11.6202i 0.586159 + 1.01526i 0.994730 + 0.102531i 0.0326941π0.0326941\pi
−0.408570 + 0.912727i 0.633973π0.633973\pi
132132 0 0
133133 0 0
134134 0 0
135135 0 0
136136 0 0
137137 −7.79449 4.50015i −0.665928 0.384474i 0.128604 0.991696i 0.458950π-0.458950\pi
−0.794532 + 0.607222i 0.792284π0.792284\pi
138138 0 0
139139 −1.54902 + 0.894326i −0.131386 + 0.0758557i −0.564252 0.825602i 0.690836π-0.690836\pi
0.432866 + 0.901458i 0.357502π0.357502\pi
140140 0 0
141141 0 0
142142 0 0
143143 −19.3293 −1.61640
144144 0 0
145145 0.818088i 0.0679385i
146146 0 0
147147 0 0
148148 0 0
149149 −11.1779 + 6.45358i −0.915732 + 0.528698i −0.882271 0.470742i 0.843986π-0.843986\pi
−0.0334609 + 0.999440i 0.510653π0.510653\pi
150150 0 0
151151 6.48364 11.2300i 0.527631 0.913884i −0.471850 0.881679i 0.656414π-0.656414\pi
0.999481 0.0322054i 0.0102531π-0.0102531\pi
152152 0 0
153153 0 0
154154 0 0
155155 −4.12360 2.38076i −0.331216 0.191227i
156156 0 0
157157 −14.8720 + 8.58638i −1.18692 + 0.685268i −0.957605 0.288085i 0.906981π-0.906981\pi
−0.229314 + 0.973353i 0.573648π0.573648\pi
158158 0 0
159159 0 0
160160 0 0
161161 0 0
162162 0 0
163163 −5.06214 −0.396497 −0.198249 0.980152i 0.563525π-0.563525\pi
−0.198249 + 0.980152i 0.563525π0.563525\pi
164164 0 0
165165 0 0
166166 0 0
167167 −5.79673 10.0402i −0.448564 0.776936i 0.549729 0.835343i 0.314731π-0.314731\pi
−0.998293 + 0.0584072i 0.981398π0.981398\pi
168168 0 0
169169 1.85653 3.21561i 0.142810 0.247354i
170170 0 0
171171 0 0
172172 0 0
173173 −3.13346 + 5.42730i −0.238232 + 0.412630i −0.960207 0.279289i 0.909901π-0.909901\pi
0.721975 + 0.691919i 0.243235π0.243235\pi
174174 0 0
175175 0 0
176176 0 0
177177 0 0
178178 0 0
179179 14.7418i 1.10185i −0.834554 0.550927i 0.814274π-0.814274\pi
0.834554 0.550927i 0.185726π-0.185726\pi
180180 0 0
181181 0.0833642i 0.00619641i −0.999995 0.00309821i 0.999014π-0.999014\pi
0.999995 0.00309821i 0.000986191π-0.000986191\pi
182182 0 0
183183 0 0
184184 0 0
185185 −5.03932 8.72835i −0.370498 0.641721i
186186 0 0
187187 −6.84036 3.94929i −0.500217 0.288800i
188188 0 0
189189 0 0
190190 0 0
191191 13.3672 + 7.71754i 0.967214 + 0.558421i 0.898386 0.439207i 0.144741π-0.144741\pi
0.0688282 + 0.997629i 0.478074π0.478074\pi
192192 0 0
193193 −10.7779 18.6678i −0.775808 1.34374i −0.934339 0.356385i 0.884009π-0.884009\pi
0.158532 0.987354i 0.449324π-0.449324\pi
194194 0 0
195195 0 0
196196 0 0
197197 9.88306i 0.704139i −0.935974 0.352069i 0.885478π-0.885478\pi
0.935974 0.352069i 0.114522π-0.114522\pi
198198 0 0
199199 10.5612i 0.748660i −0.927295 0.374330i 0.877873π-0.877873\pi
0.927295 0.374330i 0.122127π-0.122127\pi
200200 0 0
201201 0 0
202202 0 0
203203 0 0
204204 0 0
205205 −10.5618 + 18.2936i −0.737670 + 1.27768i
206206 0 0
207207 0 0
208208 0 0
209209 11.6118 20.1123i 0.803208 1.39120i
210210 0 0
211211 6.08453 + 10.5387i 0.418876 + 0.725514i 0.995827 0.0912645i 0.0290909π-0.0290909\pi
−0.576951 + 0.816779i 0.695758π0.695758\pi
212212 0 0
213213 0 0
214214 0 0
215215 −31.0608 −2.11833
216216 0 0
217217 0 0
218218 0 0
219219 0 0
220220 0 0
221221 5.91452 3.41475i 0.397854 0.229701i
222222 0 0
223223 −0.714485 0.412508i −0.0478455 0.0276236i 0.475886 0.879507i 0.342127π-0.342127\pi
−0.523732 + 0.851883i 0.675461π0.675461\pi
224224 0 0
225225 0 0
226226 0 0
227227 0.166778 0.288869i 0.0110695 0.0191729i −0.860438 0.509556i 0.829810π-0.829810\pi
0.871507 + 0.490383i 0.163143π0.163143\pi
228228 0 0
229229 12.4893 7.21072i 0.825319 0.476498i −0.0269285 0.999637i 0.508573π-0.508573\pi
0.852247 + 0.523139i 0.175239π0.175239\pi
230230 0 0
231231 0 0
232232 0 0
233233 14.7748i 0.967927i 0.875088 + 0.483964i 0.160803π0.160803\pi
−0.875088 + 0.483964i 0.839197π0.839197\pi
234234 0 0
235235 −32.6619 −2.13063
236236 0 0
237237 0 0
238238 0 0
239239 22.5339 13.0100i 1.45760 0.841545i 0.458707 0.888588i 0.348313π-0.348313\pi
0.998893 + 0.0470423i 0.0149795π0.0149795\pi
240240 0 0
241241 1.66295 + 0.960105i 0.107120 + 0.0618458i 0.552603 0.833445i 0.313635π-0.313635\pi
−0.445483 + 0.895290i 0.646968π0.646968\pi
242242 0 0
243243 0 0
244244 0 0
245245 0 0
246246 0 0
247247 10.0402 + 17.3901i 0.638841 + 1.10651i
248248 0 0
249249 0 0
250250 0 0
251251 9.97663 0.629719 0.314860 0.949138i 0.398043π-0.398043\pi
0.314860 + 0.949138i 0.398043π0.398043\pi
252252 0 0
253253 −23.2193 −1.45978
254254 0 0
255255 0 0
256256 0 0
257257 7.50364 + 12.9967i 0.468064 + 0.810711i 0.999334 0.0364915i 0.0116182π-0.0116182\pi
−0.531270 + 0.847203i 0.678285π0.678285\pi
258258 0 0
259259 0 0
260260 0 0
261261 0 0
262262 0 0
263263 6.11010 + 3.52767i 0.376765 + 0.217525i 0.676410 0.736525i 0.263535π-0.263535\pi
−0.299645 + 0.954051i 0.596868π0.596868\pi
264264 0 0
265265 2.10084 1.21292i 0.129053 0.0745090i
266266 0 0
267267 0 0
268268 0 0
269269 −29.7795 −1.81569 −0.907844 0.419308i 0.862273π-0.862273\pi
−0.907844 + 0.419308i 0.862273π0.862273\pi
270270 0 0
271271 2.78816i 0.169369i 0.996408 + 0.0846843i 0.0269882π0.0269882\pi
−0.996408 + 0.0846843i 0.973012π0.973012\pi
272272 0 0
273273 0 0
274274 0 0
275275 15.6424 9.03112i 0.943270 0.544597i
276276 0 0
277277 −6.79074 + 11.7619i −0.408016 + 0.706705i −0.994667 0.103135i 0.967113π-0.967113\pi
0.586651 + 0.809840i 0.300446π0.300446\pi
278278 0 0
279279 0 0
280280 0 0
281281 3.95777 + 2.28502i 0.236101 + 0.136313i 0.613383 0.789785i 0.289808π-0.289808\pi
−0.377283 + 0.926098i 0.623141π0.623141\pi
282282 0 0
283283 −17.6685 + 10.2009i −1.05029 + 0.606383i −0.922729 0.385449i 0.874047π-0.874047\pi
−0.127556 + 0.991831i 0.540713π0.540713\pi
284284 0 0
285285 0 0
286286 0 0
287287 0 0
288288 0 0
289289 −14.2092 −0.835838
290290 0 0
291291 0 0
292292 0 0
293293 6.41037 + 11.1031i 0.374498 + 0.648649i 0.990252 0.139289i 0.0444818π-0.0444818\pi
−0.615754 + 0.787939i 0.711148π0.711148\pi
294294 0 0
295295 −4.08144 + 7.06926i −0.237631 + 0.411589i
296296 0 0
297297 0 0
298298 0 0
299299 10.0383 17.3868i 0.580529 1.00551i
300300 0 0
301301 0 0
302302 0 0
303303 0 0
304304 0 0
305305 21.3923i 1.22492i
306306 0 0
307307 1.93411i 0.110386i −0.998476 0.0551928i 0.982423π-0.982423\pi
0.998476 0.0551928i 0.0175773π-0.0175773\pi
308308 0 0
309309 0 0
310310 0 0
311311 −1.04458 1.80926i −0.0592326 0.102594i 0.834889 0.550419i 0.185532π-0.185532\pi
−0.894121 + 0.447825i 0.852199π0.852199\pi
312312 0 0
313313 −19.4066 11.2044i −1.09692 0.633309i −0.161512 0.986871i 0.551637π-0.551637\pi
−0.935411 + 0.353562i 0.884970π0.884970\pi
314314 0 0
315315 0 0
316316 0 0
317317 −3.01788 1.74237i −0.169501 0.0978614i 0.412850 0.910799i 0.364534π-0.364534\pi
−0.582350 + 0.812938i 0.697867π0.697867\pi
318318 0 0
319319 0.651207 + 1.12792i 0.0364606 + 0.0631516i
320320 0 0
321321 0 0
322322 0 0
323323 8.20549i 0.456565i
324324 0 0
325325 15.6175i 0.866304i
326326 0 0
327327 0 0
328328 0 0
329329 0 0
330330 0 0
331331 2.28857 3.96392i 0.125791 0.217877i −0.796251 0.604967i 0.793186π-0.793186\pi
0.922042 + 0.387090i 0.126520π0.126520\pi
332332 0 0
333333 0 0
334334 0 0
335335 −17.2405 + 29.8615i −0.941951 + 1.63151i
336336 0 0
337337 −14.7062 25.4720i −0.801100 1.38755i −0.918893 0.394508i 0.870915π-0.870915\pi
0.117793 0.993038i 0.462418π-0.462418\pi
338338 0 0
339339 0 0
340340 0 0
341341 −7.58045 −0.410504
342342 0 0
343343 0 0
344344 0 0
345345 0 0
346346 0 0
347347 17.0245 9.82911i 0.913924 0.527654i 0.0322323 0.999480i 0.489738π-0.489738\pi
0.881692 + 0.471826i 0.156405π0.156405\pi
348348 0 0
349349 8.47286 + 4.89181i 0.453542 + 0.261852i 0.709325 0.704882i 0.249000π-0.249000\pi
−0.255783 + 0.966734i 0.582333π0.582333\pi
350350 0 0
351351 0 0
352352 0 0
353353 12.5322 21.7065i 0.667023 1.15532i −0.311709 0.950178i 0.600901π-0.600901\pi
0.978733 0.205141i 0.0657652π-0.0657652\pi
354354 0 0
355355 −26.8532 + 15.5037i −1.42522 + 0.822850i
356356 0 0
357357 0 0
358358 0 0
359359 9.35147i 0.493552i 0.969073 + 0.246776i 0.0793712π0.0793712\pi
−0.969073 + 0.246776i 0.920629π0.920629\pi
360360 0 0
361361 −5.12609 −0.269794
362362 0 0
363363 0 0
364364 0 0
365365 40.5367 23.4039i 2.12179 1.22502i
366366 0 0
367367 18.9530 + 10.9425i 0.989337 + 0.571194i 0.905076 0.425250i 0.139814π-0.139814\pi
0.0842608 + 0.996444i 0.473147π0.473147\pi
368368 0 0
369369 0 0
370370 0 0
371371 0 0
372372 0 0
373373 −2.30822 3.99795i −0.119515 0.207006i 0.800061 0.599919i 0.204801π-0.204801\pi
−0.919576 + 0.392913i 0.871467π0.871467\pi
374374 0 0
375375 0 0
376376 0 0
377377 −1.12613 −0.0579988
378378 0 0
379379 −6.22396 −0.319703 −0.159852 0.987141i 0.551102π-0.551102\pi
−0.159852 + 0.987141i 0.551102π0.551102\pi
380380 0 0
381381 0 0
382382 0 0
383383 −10.9989 19.0506i −0.562015 0.973439i −0.997321 0.0731560i 0.976693π-0.976693\pi
0.435305 0.900283i 0.356640π-0.356640\pi
384384 0 0
385385 0 0
386386 0 0
387387 0 0
388388 0 0
389389 −8.51109 4.91388i −0.431529 0.249144i 0.268469 0.963288i 0.413482π-0.413482\pi
−0.699998 + 0.714145i 0.746816π0.746816\pi
390390 0 0
391391 7.10481 4.10197i 0.359306 0.207445i
392392 0 0
393393 0 0
394394 0 0
395395 −36.5392 −1.83849
396396 0 0
397397 5.25762i 0.263873i −0.991258 0.131936i 0.957881π-0.957881\pi
0.991258 0.131936i 0.0421194π-0.0421194\pi
398398 0 0
399399 0 0
400400 0 0
401401 14.7847 8.53594i 0.738312 0.426265i −0.0831432 0.996538i 0.526496π-0.526496\pi
0.821455 + 0.570273i 0.193163π0.193163\pi
402402 0 0
403403 3.27722 5.67631i 0.163250 0.282757i
404404 0 0
405405 0 0
406406 0 0
407407 −13.8957 8.02270i −0.688786 0.397671i
408408 0 0
409409 −16.9484 + 9.78516i −0.838044 + 0.483845i −0.856599 0.515983i 0.827427π-0.827427\pi
0.0185546 + 0.999828i 0.494094π0.494094\pi
410410 0 0
411411 0 0
412412 0 0
413413 0 0
414414 0 0
415415 23.9955 1.17789
416416 0 0
417417 0 0
418418 0 0
419419 10.3073 + 17.8529i 0.503547 + 0.872169i 0.999992 + 0.00410056i 0.00130525π0.00130525\pi
−0.496445 + 0.868068i 0.665361π0.665361\pi
420420 0 0
421421 0.704748 1.22066i 0.0343473 0.0594913i −0.848341 0.529451i 0.822398π-0.822398\pi
0.882688 + 0.469959i 0.155731π0.155731\pi
422422 0 0
423423 0 0
424424 0 0
425425 −3.19091 + 5.52682i −0.154782 + 0.268090i
426426 0 0
427427 0 0
428428 0 0
429429 0 0
430430 0 0
431431 13.4714i 0.648894i 0.945904 + 0.324447i 0.105178π0.105178\pi
−0.945904 + 0.324447i 0.894822π0.894822\pi
432432 0 0
433433 12.9356i 0.621646i −0.950468 0.310823i 0.899395π-0.899395\pi
0.950468 0.310823i 0.100605π-0.100605\pi
434434 0 0
435435 0 0
436436 0 0
437437 12.0608 + 20.8899i 0.576944 + 0.999297i
438438 0 0
439439 −8.75023 5.05195i −0.417626 0.241116i 0.276435 0.961033i 0.410847π-0.410847\pi
−0.694061 + 0.719916i 0.744180π0.744180\pi
440440 0 0
441441 0 0
442442 0 0
443443 −25.1220 14.5042i −1.19358 0.689115i −0.234466 0.972124i 0.575334π-0.575334\pi
−0.959117 + 0.283009i 0.908667π0.908667\pi
444444 0 0
445445 13.6873 + 23.7072i 0.648842 + 1.12383i
446446 0 0
447447 0 0
448448 0 0
449449 7.94881i 0.375127i −0.982252 0.187564i 0.939941π-0.939941\pi
0.982252 0.187564i 0.0600591π-0.0600591\pi
450450 0 0
451451 33.6293i 1.58354i
452452 0 0
453453 0 0
454454 0 0
455455 0 0
456456 0 0
457457 6.98084 12.0912i 0.326550 0.565601i −0.655275 0.755391i 0.727447π-0.727447\pi
0.981825 + 0.189789i 0.0607805π0.0607805\pi
458458 0 0
459459 0 0
460460 0 0
461461 −16.4030 + 28.4108i −0.763964 + 1.32322i 0.176829 + 0.984242i 0.443416π0.443416\pi
−0.940793 + 0.338983i 0.889917π0.889917\pi
462462 0 0
463463 −13.8812 24.0429i −0.645112 1.11737i −0.984276 0.176640i 0.943477π-0.943477\pi
0.339163 0.940727i 0.389856π-0.389856\pi
464464 0 0
465465 0 0
466466 0 0
467467 22.8621 1.05793 0.528966 0.848643i 0.322580π-0.322580\pi
0.528966 + 0.848643i 0.322580π0.322580\pi
468468 0 0
469469 0 0
470470 0 0
471471 0 0
472472 0 0
473473 −42.8245 + 24.7247i −1.96907 + 1.13684i
474474 0 0
475475 −16.2502 9.38204i −0.745609 0.430478i
476476 0 0
477477 0 0
478478 0 0
479479 1.21212 2.09946i 0.0553834 0.0959269i −0.837004 0.547196i 0.815695π-0.815695\pi
0.892388 + 0.451269i 0.149029π0.149029\pi
480480 0 0
481481 12.0149 6.93683i 0.547834 0.316292i
482482 0 0
483483 0 0
484484 0 0
485485 24.0317i 1.09122i
486486 0 0
487487 −10.3930 −0.470952 −0.235476 0.971880i 0.575665π-0.575665\pi
−0.235476 + 0.971880i 0.575665π0.575665\pi
488488 0 0
489489 0 0
490490 0 0
491491 2.93014 1.69172i 0.132235 0.0763462i −0.432423 0.901671i 0.642341π-0.642341\pi
0.564658 + 0.825325i 0.309008π0.309008\pi
492492 0 0
493493 −0.398522 0.230087i −0.0179485 0.0103626i
494494 0 0
495495 0 0
496496 0 0
497497 0 0
498498 0 0
499499 −19.7801 34.2602i −0.885481 1.53370i −0.845162 0.534511i 0.820496π-0.820496\pi
−0.0403188 0.999187i 0.512837π-0.512837\pi
500500 0 0
501501 0 0
502502 0 0
503503 14.5476 0.648645 0.324323 0.945947i 0.394864π-0.394864\pi
0.324323 + 0.945947i 0.394864π0.394864\pi
504504 0 0
505505 21.7018 0.965717
506506 0 0
507507 0 0
508508 0 0
509509 10.1958 + 17.6596i 0.451921 + 0.782750i 0.998505 0.0546542i 0.0174057π-0.0174057\pi
−0.546585 + 0.837404i 0.684072π0.684072\pi
510510 0 0
511511 0 0
512512 0 0
513513 0 0
514514 0 0
515515 18.0690 + 10.4322i 0.796216 + 0.459696i
516516 0 0
517517 −45.0319 + 25.9992i −1.98050 + 1.14344i
518518 0 0
519519 0 0
520520 0 0
521521 15.5024 0.679175 0.339587 0.940575i 0.389713π-0.389713\pi
0.339587 + 0.940575i 0.389713π0.389713\pi
522522 0 0
523523 10.8079i 0.472595i −0.971681 0.236298i 0.924066π-0.924066\pi
0.971681 0.236298i 0.0759340π-0.0759340\pi
524524 0 0
525525 0 0
526526 0 0
527527 2.31952 1.33918i 0.101040 0.0583355i
528528 0 0
529529 0.558476 0.967309i 0.0242816 0.0420569i
530530 0 0
531531 0 0
532532 0 0
533533 −25.1819 14.5388i −1.09075 0.629745i
534534 0 0
535535 36.4162 21.0249i 1.57441 0.908986i
536536 0 0
537537 0 0
538538 0 0
539539 0 0
540540 0 0
541541 17.5871 0.756130 0.378065 0.925779i 0.376590π-0.376590\pi
0.378065 + 0.925779i 0.376590π0.376590\pi
542542 0 0
543543 0 0
544544 0 0
545545 −8.38108 14.5165i −0.359006 0.621817i
546546 0 0
547547 −5.72451 + 9.91513i −0.244762 + 0.423940i −0.962065 0.272821i 0.912043π-0.912043\pi
0.717303 + 0.696762i 0.245377π0.245377\pi
548548 0 0
549549 0 0
550550 0 0
551551 0.676511 1.17175i 0.0288203 0.0499183i
552552 0 0
553553 0 0
554554 0 0
555555 0 0
556556 0 0
557557 38.0080i 1.61045i −0.592968 0.805226i 0.702044π-0.702044\pi
0.592968 0.805226i 0.297956π-0.297956\pi
558558 0 0
559559 42.7565i 1.80841i
560560 0 0
561561 0 0
562562 0 0
563563 8.88438 + 15.3882i 0.374432 + 0.648535i 0.990242 0.139360i 0.0445044π-0.0445044\pi
−0.615810 + 0.787895i 0.711171π0.711171\pi
564564 0 0
565565 34.5727 + 19.9605i 1.45448 + 0.839746i
566566 0 0
567567 0 0
568568 0 0
569569 −33.7404 19.4801i −1.41447 0.816646i −0.418667 0.908140i 0.637503π-0.637503\pi
−0.995806 + 0.0914936i 0.970836π0.970836\pi
570570 0 0
571571 −8.45245 14.6401i −0.353724 0.612668i 0.633175 0.774009i 0.281752π-0.281752\pi
−0.986899 + 0.161341i 0.948418π0.948418\pi
572572 0 0
573573 0 0
574574 0 0
575575 18.7605i 0.782368i
576576 0 0
577577 47.2653i 1.96768i −0.179050 0.983840i 0.557302π-0.557302\pi
0.179050 0.983840i 0.442698π-0.442698\pi
578578 0 0
579579 0 0
580580 0 0
581581 0 0
582582 0 0
583583 1.93099 3.34458i 0.0799736 0.138518i
584584 0 0
585585 0 0
586586 0 0
587587 11.6343 20.1513i 0.480200 0.831731i −0.519542 0.854445i 0.673897π-0.673897\pi
0.999742 + 0.0227138i 0.00723065π0.00723065\pi
588588 0 0
589589 3.93750 + 6.81995i 0.162242 + 0.281011i
590590 0 0
591591 0 0
592592 0 0
593593 37.1924 1.52731 0.763654 0.645626i 0.223404π-0.223404\pi
0.763654 + 0.645626i 0.223404π0.223404\pi
594594 0 0
595595 0 0
596596 0 0
597597 0 0
598598 0 0
599599 27.9591 16.1422i 1.14238 0.659552i 0.195359 0.980732i 0.437413π-0.437413\pi
0.947018 + 0.321180i 0.104079π0.104079\pi
600600 0 0
601601 14.7559 + 8.51933i 0.601906 + 0.347511i 0.769791 0.638296i 0.220360π-0.220360\pi
−0.167885 + 0.985807i 0.553694π0.553694\pi
602602 0 0
603603 0 0
604604 0 0
605605 16.8615 29.2051i 0.685519 1.18735i
606606 0 0
607607 8.44393 4.87510i 0.342728 0.197874i −0.318749 0.947839i 0.603263π-0.603263\pi
0.661478 + 0.749965i 0.269930π0.269930\pi
608608 0 0
609609 0 0
610610 0 0
611611 44.9604i 1.81890i
612612 0 0
613613 13.7266 0.554414 0.277207 0.960810i 0.410591π-0.410591\pi
0.277207 + 0.960810i 0.410591π0.410591\pi
614614 0 0
615615 0 0
616616 0 0
617617 2.84301 1.64141i 0.114455 0.0660807i −0.441680 0.897173i 0.645617π-0.645617\pi
0.556135 + 0.831092i 0.312284π0.312284\pi
618618 0 0
619619 −14.9907 8.65490i −0.602528 0.347870i 0.167507 0.985871i 0.446428π-0.446428\pi
−0.770036 + 0.638001i 0.779762π0.779762\pi
620620 0 0
621621 0 0
622622 0 0
623623 0 0
624624 0 0
625625 14.7536 + 25.5539i 0.590142 + 1.02216i
626626 0 0
627627 0 0
628628 0 0
629629 5.66923 0.226047
630630 0 0
631631 −6.27821 −0.249932 −0.124966 0.992161i 0.539882π-0.539882\pi
−0.124966 + 0.992161i 0.539882π0.539882\pi
632632 0 0
633633 0 0
634634 0 0
635635 18.9672 + 32.8522i 0.752691 + 1.30370i
636636 0 0
637637 0 0
638638 0 0
639639 0 0
640640 0 0
641641 −17.9788 10.3801i −0.710120 0.409988i 0.100986 0.994888i 0.467800π-0.467800\pi
−0.811105 + 0.584900i 0.801134π0.801134\pi
642642 0 0
643643 17.2553 9.96236i 0.680483 0.392877i −0.119554 0.992828i 0.538146π-0.538146\pi
0.800037 + 0.599950i 0.204813π0.204813\pi
644644 0 0
645645 0 0
646646 0 0
647647 29.5340 1.16110 0.580551 0.814224i 0.302837π-0.302837\pi
0.580551 + 0.814224i 0.302837π0.302837\pi
648648 0 0
649649 12.9955i 0.510118i
650650 0 0
651651 0 0
652652 0 0
653653 13.7914 7.96249i 0.539701 0.311596i −0.205257 0.978708i 0.565803π-0.565803\pi
0.744958 + 0.667112i 0.232470π0.232470\pi
654654 0 0
655655 19.9246 34.5105i 0.778520 1.34844i
656656 0 0
657657 0 0
658658 0 0
659659 −2.80283 1.61822i −0.109183 0.0630368i 0.444414 0.895821i 0.353412π-0.353412\pi
−0.553597 + 0.832785i 0.686745π0.686745\pi
660660 0 0
661661 −7.71194 + 4.45249i −0.299960 + 0.173182i −0.642425 0.766349i 0.722072π-0.722072\pi
0.342465 + 0.939531i 0.388738π0.388738\pi
662662 0 0
663663 0 0
664664 0 0
665665 0 0
666666 0 0
667667 −1.35277 −0.0523793
668668 0 0
669669 0 0
670670 0 0
671671 −17.0285 29.4943i −0.657379 1.13861i
672672 0 0
673673 −13.2311 + 22.9169i −0.510021 + 0.883382i 0.489912 + 0.871772i 0.337029π0.337029\pi
−0.999933 + 0.0116101i 0.996304π0.996304\pi
674674 0 0
675675 0 0
676676 0 0
677677 −4.46424 + 7.73229i −0.171575 + 0.297176i −0.938971 0.343997i 0.888219π-0.888219\pi
0.767396 + 0.641174i 0.221552π0.221552\pi
678678 0 0
679679 0 0
680680 0 0
681681 0 0
682682 0 0
683683 37.8628i 1.44878i 0.689390 + 0.724390i 0.257879π0.257879\pi
−0.689390 + 0.724390i 0.742121π0.742121\pi
684684 0 0
685685 26.7298i 1.02129i
686686 0 0
687687 0 0
688688 0 0
689689 1.66963 + 2.89189i 0.0636080 + 0.110172i
690690 0 0
691691 4.94211 + 2.85333i 0.188007 + 0.108546i 0.591049 0.806636i 0.298714π-0.298714\pi
−0.403042 + 0.915181i 0.632047π0.632047\pi
692692 0 0
693693 0 0
694694 0 0
695695 4.60039 + 2.65604i 0.174503 + 0.100749i
696696 0 0
697697 −5.94103 10.2902i −0.225032 0.389768i
698698 0 0
699699 0 0
700700 0 0
701701 8.19949i 0.309690i 0.987939 + 0.154845i 0.0494879π0.0494879\pi
−0.987939 + 0.154845i 0.950512π0.950512\pi
702702 0 0
703703 16.6689i 0.628679i
704704 0 0
705705 0 0
706706 0 0
707707 0 0
708708 0 0
709709 −10.0757 + 17.4517i −0.378402 + 0.655412i −0.990830 0.135115i 0.956860π-0.956860\pi
0.612428 + 0.790527i 0.290193π0.290193\pi
710710 0 0
711711 0 0
712712 0 0
713713 3.93676 6.81866i 0.147433 0.255361i
714714 0 0
715715 28.7028 + 49.7147i 1.07342 + 1.85923i
716716 0 0
717717 0 0
718718 0 0
719719 −51.1991 −1.90940 −0.954702 0.297563i 0.903826π-0.903826\pi
−0.954702 + 0.297563i 0.903826π0.903826\pi
720720 0 0
721721 0 0
722722 0 0
723723 0 0
724724 0 0
725725 0.911330 0.526157i 0.0338460 0.0195410i
726726 0 0
727727 −13.7848 7.95865i −0.511249 0.295170i 0.222098 0.975024i 0.428710π-0.428710\pi
−0.733347 + 0.679854i 0.762043π0.762043\pi
728728 0 0
729729 0 0
730730 0 0
731731 8.73584 15.1309i 0.323107 0.559637i
732732 0 0
733733 3.67216 2.12012i 0.135634 0.0783086i −0.430647 0.902520i 0.641715π-0.641715\pi
0.566282 + 0.824212i 0.308381π0.308381\pi
734734 0 0
735735 0 0
736736 0 0
737737 54.8946i 2.02207i
738738 0 0
739739 28.3669 1.04349 0.521747 0.853100i 0.325280π-0.325280\pi
0.521747 + 0.853100i 0.325280π0.325280\pi
740740 0 0
741741 0 0
742742 0 0
743743 −21.8850 + 12.6353i −0.802884 + 0.463545i −0.844479 0.535589i 0.820090π-0.820090\pi
0.0415945 + 0.999135i 0.486756π0.486756\pi
744744 0 0
745745 33.1971 + 19.1664i 1.21625 + 0.702201i
746746 0 0
747747 0 0
748748 0 0
749749 0 0
750750 0 0
751751 −23.7730 41.1761i −0.867490 1.50254i −0.864554 0.502540i 0.832399π-0.832399\pi
−0.00293597 0.999996i 0.500935π-0.500935\pi
752752 0 0
753753 0 0
754754 0 0
755755 −38.5113 −1.40157
756756 0 0
757757 37.3922 1.35904 0.679521 0.733656i 0.262188π-0.262188\pi
0.679521 + 0.733656i 0.262188π0.262188\pi
758758 0 0
759759 0 0
760760 0 0
761761 −4.12142 7.13850i −0.149401 0.258770i 0.781605 0.623774i 0.214401π-0.214401\pi
−0.931006 + 0.365003i 0.881068π0.881068\pi
762762 0 0
763763 0 0
764764 0 0
765765 0 0
766766 0 0
767767 −9.73114 5.61827i −0.351371 0.202864i
768768 0 0
769769 20.2182 11.6730i 0.729086 0.420938i −0.0890020 0.996031i 0.528368π-0.528368\pi
0.818088 + 0.575094i 0.195034π0.195034\pi
770770 0 0
771771 0 0
772772 0 0
773773 −34.4402 −1.23873 −0.619364 0.785104i 0.712609π-0.712609\pi
−0.619364 + 0.785104i 0.712609π0.712609\pi
774774 0 0
775775 6.12479i 0.220009i
776776 0 0
777777 0 0
778778 0 0
779779 30.2555 17.4680i 1.08402 0.625857i
780780 0 0
781781 −24.6822 + 42.7508i −0.883199 + 1.52975i
782782 0 0
783783 0 0
784784 0 0
785785 44.1682 + 25.5005i 1.57643 + 0.910152i
786786 0 0
787787 7.19975 4.15678i 0.256643 0.148173i −0.366159 0.930552i 0.619327π-0.619327\pi
0.622802 + 0.782379i 0.285994π0.285994\pi
788788 0 0
789789 0 0
790790 0 0
791791 0 0
792792 0 0
793793 29.4474 1.04571
794794 0 0
795795 0 0
796796 0 0
797797 −0.426036 0.737916i −0.0150910 0.0261383i 0.858381 0.513012i 0.171470π-0.171470\pi
−0.873472 + 0.486874i 0.838137π0.838137\pi
798798 0 0
799799 9.18614 15.9109i 0.324982 0.562886i
800800 0 0
801801 0 0
802802 0 0
803803 37.2595 64.5354i 1.31486 2.27740i
804804 0 0
805805 0 0
806806 0 0
807807 0 0
808808 0 0
809809 36.4400i 1.28116i 0.767891 + 0.640581i 0.221306π0.221306\pi
−0.767891 + 0.640581i 0.778694π0.778694\pi
810810 0 0
811811 1.08986i 0.0382702i 0.999817 + 0.0191351i 0.00609126π0.00609126\pi
−0.999817 + 0.0191351i 0.993909π0.993909\pi
812812 0 0
813813 0 0
814814 0 0
815815 7.51697 + 13.0198i 0.263308 + 0.456063i
816816 0 0
817817 44.4885 + 25.6855i 1.55646 + 0.898620i
818818 0 0
819819 0 0
820820 0 0
821821 −20.9748 12.1098i −0.732025 0.422635i 0.0871374 0.996196i 0.472228π-0.472228\pi
−0.819163 + 0.573561i 0.805561π0.805561\pi
822822 0 0
823823 −2.85592 4.94660i −0.0995512 0.172428i 0.811948 0.583730i 0.198407π-0.198407\pi
−0.911499 + 0.411302i 0.865074π0.865074\pi
824824 0 0
825825 0 0
826826 0 0
827827 36.4579i 1.26777i 0.773429 + 0.633883i 0.218540π0.218540\pi
−0.773429 + 0.633883i 0.781460π0.781460\pi
828828 0 0
829829 0.575352i 0.0199828i −0.999950 0.00999140i 0.996820π-0.996820\pi
0.999950 0.00999140i 0.00318041π-0.00318041\pi
830830 0 0
831831 0 0
832832 0 0
833833 0 0
834834 0 0
835835 −17.2156 + 29.8183i −0.595770 + 1.03190i
836836 0 0
837837 0 0
838838 0 0
839839 23.9341 41.4550i 0.826295 1.43119i −0.0746300 0.997211i 0.523778π-0.523778\pi
0.900925 0.433974i 0.142889π-0.142889\pi
840840 0 0
841841 −14.4621 25.0490i −0.498692 0.863759i
842842 0 0
843843 0 0
844844 0 0
845845 −11.0274 −0.379352
846846 0 0
847847 0 0
848848 0 0
849849 0 0
850850 0 0
851851 14.4329 8.33286i 0.494755 0.285647i
852852 0 0
853853 40.5393 + 23.4054i 1.38804 + 0.801385i 0.993094 0.117320i 0.0374303π-0.0374303\pi
0.394945 + 0.918705i 0.370764π0.370764\pi
854854 0 0
855855 0 0
856856 0 0
857857 4.78220 8.28302i 0.163357 0.282943i −0.772714 0.634755i 0.781101π-0.781101\pi
0.936071 + 0.351812i 0.114434π0.114434\pi
858858 0 0
859859 −4.68311 + 2.70379i −0.159786 + 0.0922523i −0.577761 0.816206i 0.696073π-0.696073\pi
0.417975 + 0.908459i 0.362740π0.362740\pi
860860 0 0
861861 0 0
862862 0 0
863863 41.0383i 1.39696i 0.715630 + 0.698480i 0.246140π0.246140\pi
−0.715630 + 0.698480i 0.753860π0.753860\pi
864864 0 0
865865 18.6120 0.632826
866866 0 0
867867 0 0
868868 0 0
869869 −50.3777 + 29.0856i −1.70895 + 0.986661i
870870 0 0
871871 −41.1056 23.7323i −1.39281 0.804139i
872872 0 0
873873 0 0
874874 0 0
875875 0 0
876876 0 0
877877 7.32509 + 12.6874i 0.247351 + 0.428424i 0.962790 0.270251i 0.0871067π-0.0871067\pi
−0.715439 + 0.698675i 0.753773π0.753773\pi
878878 0 0
879879 0 0
880880 0 0
881881 44.8295 1.51034 0.755172 0.655527i 0.227553π-0.227553\pi
0.755172 + 0.655527i 0.227553π0.227553\pi
882882 0 0
883883 33.8527 1.13923 0.569617 0.821910i 0.307091π-0.307091\pi
0.569617 + 0.821910i 0.307091π0.307091\pi
884884 0 0
885885 0 0
886886 0 0
887887 −13.3422 23.1093i −0.447987 0.775936i 0.550268 0.834988i 0.314525π-0.314525\pi
−0.998255 + 0.0590523i 0.981192π0.981192\pi
888888 0 0
889889 0 0
890890 0 0
891891 0 0
892892 0 0
893893 46.7817 + 27.0094i 1.56549 + 0.903837i
894894 0 0
895895 −37.9157 + 21.8907i −1.26738 + 0.731724i
896896 0 0
897897 0 0
898898 0 0
899899 −0.441640 −0.0147295
900900 0 0
901901 1.36453i 0.0454592i
902902 0 0
903903 0 0
904904 0 0
905905 −0.214412 + 0.123791i −0.00712729 + 0.00411494i
906906 0 0
907907 7.97211 13.8081i 0.264710 0.458490i −0.702778 0.711409i 0.748057π-0.748057\pi
0.967487 + 0.252919i 0.0813906π0.0813906\pi
908908 0 0
909909 0 0
910910 0 0
911911 −40.9207 23.6256i −1.35576 0.782750i −0.366713 0.930334i 0.619517π-0.619517\pi
−0.989050 + 0.147584i 0.952850π0.952850\pi
912912 0 0
913913 33.0833 19.1007i 1.09490 0.632140i
914914 0 0
915915 0 0
916916 0 0
917917 0 0
918918 0 0
919919 −29.6325 −0.977486 −0.488743 0.872428i 0.662544π-0.662544\pi
−0.488743 + 0.872428i 0.662544π0.662544\pi
920920 0 0
921921 0 0
922922 0 0
923923 −21.3415 36.9645i −0.702463 1.21670i
924924 0 0
925925 −6.48212 + 11.2274i −0.213131 + 0.369153i
926926 0 0
927927 0 0
928928 0 0
929929 −16.6186 + 28.7842i −0.545238 + 0.944380i 0.453354 + 0.891331i 0.350227π0.350227\pi
−0.998592 + 0.0530496i 0.983106π0.983106\pi
930930 0 0
931931 0 0
932932 0 0
933933 0 0
934934 0 0
935935 23.4578i 0.767152i
936936 0 0
937937 23.8190i 0.778134i 0.921209 + 0.389067i 0.127203π0.127203\pi
−0.921209 + 0.389067i 0.872797π0.872797\pi
938938 0 0
939939 0 0
940940 0 0
941941 27.1201 + 46.9734i 0.884091 + 1.53129i 0.846752 + 0.531988i 0.178555π0.178555\pi
0.0373389 + 0.999303i 0.488112π0.488112\pi
942942 0 0
943943 −30.2498 17.4647i −0.985069 0.568730i
944944 0 0
945945 0 0
946946 0 0
947947 18.2427 + 10.5324i 0.592807 + 0.342257i 0.766207 0.642594i 0.222142π-0.222142\pi
−0.173399 + 0.984852i 0.555475π0.555475\pi
948948 0 0
949949 32.2164 + 55.8005i 1.04579 + 1.81136i
950950 0 0
951951 0 0
952952 0 0
953953 4.50028i 0.145778i 0.997340 + 0.0728892i 0.0232219π0.0232219\pi
−0.997340 + 0.0728892i 0.976778π0.976778\pi
954954 0 0
955955 45.8403i 1.48336i
956956 0 0
957957 0 0
958958 0 0
959959 0 0
960960 0 0
961961 −14.2148 + 24.6207i −0.458541 + 0.794216i
962962 0 0
963963 0 0
964964 0 0
965965 −32.0090 + 55.4411i −1.03040 + 1.78471i
966966 0 0
967967 −10.8811 18.8466i −0.349912 0.606065i 0.636322 0.771424i 0.280455π-0.280455\pi
−0.986233 + 0.165359i 0.947122π0.947122\pi
968968 0 0
969969 0 0
970970 0 0
971971 −47.0443 −1.50972 −0.754862 0.655884i 0.772296π-0.772296\pi
−0.754862 + 0.655884i 0.772296π0.772296\pi
972972 0 0
973973 0 0
974974 0 0
975975 0 0
976976 0 0
977977 −21.7766 + 12.5727i −0.696695 + 0.402237i −0.806115 0.591758i 0.798434π-0.798434\pi
0.109420 + 0.993996i 0.465101π0.465101\pi
978978 0 0
979979 37.7423 + 21.7905i 1.20625 + 0.696429i
980980 0 0
981981 0 0
982982 0 0
983983 −18.1071 + 31.3624i −0.577527 + 1.00031i 0.418235 + 0.908339i 0.362649π0.362649\pi
−0.995762 + 0.0919674i 0.970684π0.970684\pi
984984 0 0
985985 −25.4191 + 14.6757i −0.809921 + 0.467608i
986986 0 0
987987 0 0
988988 0 0
989989 51.3612i 1.63319i
990990 0 0
991991 18.6554 0.592608 0.296304 0.955094i 0.404246π-0.404246\pi
0.296304 + 0.955094i 0.404246π0.404246\pi
992992 0 0
993993 0 0
994994 0 0
995995 −27.1632 + 15.6827i −0.861131 + 0.497174i
996996 0 0
997997 −15.1413 8.74181i −0.479528 0.276856i 0.240691 0.970602i 0.422626π-0.422626\pi
−0.720220 + 0.693746i 0.755959π0.755959\pi
998998 0 0
999999 0 0
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 5292.2.x.b.4409.2 16
3.2 odd 2 1764.2.x.b.1469.5 16
7.2 even 3 5292.2.w.b.521.2 16
7.3 odd 6 5292.2.bm.a.4625.2 16
7.4 even 3 756.2.bm.a.89.7 16
7.5 odd 6 756.2.w.a.521.7 16
7.6 odd 2 5292.2.x.a.4409.7 16
9.4 even 3 1764.2.x.a.293.4 16
9.5 odd 6 5292.2.x.a.881.7 16
21.2 odd 6 1764.2.w.b.1109.6 16
21.5 even 6 252.2.w.a.101.3 yes 16
21.11 odd 6 252.2.bm.a.173.1 yes 16
21.17 even 6 1764.2.bm.a.1685.8 16
21.20 even 2 1764.2.x.a.1469.4 16
28.11 odd 6 3024.2.df.d.1601.7 16
28.19 even 6 3024.2.ca.d.2033.7 16
63.4 even 3 252.2.w.a.5.3 16
63.5 even 6 756.2.bm.a.17.7 16
63.11 odd 6 2268.2.t.a.2105.7 16
63.13 odd 6 1764.2.x.b.293.5 16
63.23 odd 6 5292.2.bm.a.2285.2 16
63.25 even 3 2268.2.t.b.2105.2 16
63.31 odd 6 1764.2.w.b.509.6 16
63.32 odd 6 756.2.w.a.341.7 16
63.40 odd 6 252.2.bm.a.185.1 yes 16
63.41 even 6 inner 5292.2.x.b.881.2 16
63.47 even 6 2268.2.t.b.1781.2 16
63.58 even 3 1764.2.bm.a.1697.8 16
63.59 even 6 5292.2.w.b.1097.2 16
63.61 odd 6 2268.2.t.a.1781.7 16
84.11 even 6 1008.2.df.d.929.8 16
84.47 odd 6 1008.2.ca.d.353.6 16
252.67 odd 6 1008.2.ca.d.257.6 16
252.95 even 6 3024.2.ca.d.2609.7 16
252.103 even 6 1008.2.df.d.689.8 16
252.131 odd 6 3024.2.df.d.17.7 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
252.2.w.a.5.3 16 63.4 even 3
252.2.w.a.101.3 yes 16 21.5 even 6
252.2.bm.a.173.1 yes 16 21.11 odd 6
252.2.bm.a.185.1 yes 16 63.40 odd 6
756.2.w.a.341.7 16 63.32 odd 6
756.2.w.a.521.7 16 7.5 odd 6
756.2.bm.a.17.7 16 63.5 even 6
756.2.bm.a.89.7 16 7.4 even 3
1008.2.ca.d.257.6 16 252.67 odd 6
1008.2.ca.d.353.6 16 84.47 odd 6
1008.2.df.d.689.8 16 252.103 even 6
1008.2.df.d.929.8 16 84.11 even 6
1764.2.w.b.509.6 16 63.31 odd 6
1764.2.w.b.1109.6 16 21.2 odd 6
1764.2.x.a.293.4 16 9.4 even 3
1764.2.x.a.1469.4 16 21.20 even 2
1764.2.x.b.293.5 16 63.13 odd 6
1764.2.x.b.1469.5 16 3.2 odd 2
1764.2.bm.a.1685.8 16 21.17 even 6
1764.2.bm.a.1697.8 16 63.58 even 3
2268.2.t.a.1781.7 16 63.61 odd 6
2268.2.t.a.2105.7 16 63.11 odd 6
2268.2.t.b.1781.2 16 63.47 even 6
2268.2.t.b.2105.2 16 63.25 even 3
3024.2.ca.d.2033.7 16 28.19 even 6
3024.2.ca.d.2609.7 16 252.95 even 6
3024.2.df.d.17.7 16 252.131 odd 6
3024.2.df.d.1601.7 16 28.11 odd 6
5292.2.w.b.521.2 16 7.2 even 3
5292.2.w.b.1097.2 16 63.59 even 6
5292.2.x.a.881.7 16 9.5 odd 6
5292.2.x.a.4409.7 16 7.6 odd 2
5292.2.x.b.881.2 16 63.41 even 6 inner
5292.2.x.b.4409.2 16 1.1 even 1 trivial
5292.2.bm.a.2285.2 16 63.23 odd 6
5292.2.bm.a.4625.2 16 7.3 odd 6