Properties

Label 756.2.bm.a.17.7
Level $756$
Weight $2$
Character 756.17
Analytic conductor $6.037$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [756,2,Mod(17,756)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(756, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 5, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("756.17");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 756 = 2^{2} \cdot 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 756.bm (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.03669039281\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 2 x^{15} + 5 x^{14} - 17 x^{13} + 22 x^{12} - 31 x^{11} + 62 x^{10} - 52 x^{9} + 52 x^{8} + \cdots + 6561 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 3^{6} \)
Twist minimal: no (minimal twist has level 252)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 17.7
Root \(1.68042 - 0.419752i\) of defining polynomial
Character \(\chi\) \(=\) 756.17
Dual form 756.2.bm.a.89.7

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.96988 q^{5} +(2.38485 + 1.14563i) q^{7} -4.72811i q^{11} +(3.54045 + 2.04408i) q^{13} +(-0.835278 + 1.44674i) q^{17} +(-4.25377 + 2.45592i) q^{19} -4.91090i q^{23} +3.82018 q^{25} +(-0.238557 + 0.137731i) q^{29} +(-1.38847 + 0.801636i) q^{31} +(7.08273 + 3.40239i) q^{35} +(-1.69681 - 2.93896i) q^{37} +(-3.55632 + 6.15972i) q^{41} +(5.22930 + 9.05742i) q^{43} +(5.49885 - 9.52430i) q^{47} +(4.37505 + 5.46433i) q^{49} +(0.707381 + 0.408407i) q^{53} -14.0419i q^{55} +(-1.37428 - 2.38032i) q^{59} +(-6.23807 - 3.60155i) q^{61} +(10.5147 + 6.07067i) q^{65} +(-5.80513 - 10.0548i) q^{67} +10.4406i q^{71} +(13.6493 + 7.88042i) q^{73} +(5.41668 - 11.2759i) q^{77} +(6.15163 - 10.6549i) q^{79} +(-4.03981 - 6.99715i) q^{83} +(-2.48067 + 4.29665i) q^{85} +(4.60872 + 7.98254i) q^{89} +(6.10169 + 8.93089i) q^{91} +(-12.6332 + 7.29377i) q^{95} +(-7.00772 + 4.04591i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - q^{7} + 3 q^{13} + 9 q^{17} + 16 q^{25} - 6 q^{29} + 6 q^{31} - 15 q^{35} + q^{37} - 6 q^{41} - 2 q^{43} + 18 q^{47} + 13 q^{49} + 15 q^{59} + 3 q^{61} + 39 q^{65} - 7 q^{67} + 45 q^{77} - q^{79}+ \cdots + 3 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/756\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(325\) \(379\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{6}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 2.96988 1.32817 0.664085 0.747657i \(-0.268821\pi\)
0.664085 + 0.747657i \(0.268821\pi\)
\(6\) 0 0
\(7\) 2.38485 + 1.14563i 0.901390 + 0.433009i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 4.72811i 1.42558i −0.701378 0.712790i \(-0.747431\pi\)
0.701378 0.712790i \(-0.252569\pi\)
\(12\) 0 0
\(13\) 3.54045 + 2.04408i 0.981945 + 0.566926i 0.902857 0.429942i \(-0.141466\pi\)
0.0790880 + 0.996868i \(0.474799\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −0.835278 + 1.44674i −0.202585 + 0.350887i −0.949360 0.314189i \(-0.898267\pi\)
0.746776 + 0.665076i \(0.231601\pi\)
\(18\) 0 0
\(19\) −4.25377 + 2.45592i −0.975882 + 0.563426i −0.901024 0.433768i \(-0.857184\pi\)
−0.0748577 + 0.997194i \(0.523850\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 4.91090i 1.02399i −0.858987 0.511997i \(-0.828906\pi\)
0.858987 0.511997i \(-0.171094\pi\)
\(24\) 0 0
\(25\) 3.82018 0.764036
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −0.238557 + 0.137731i −0.0442989 + 0.0255760i −0.521986 0.852954i \(-0.674809\pi\)
0.477687 + 0.878530i \(0.341475\pi\)
\(30\) 0 0
\(31\) −1.38847 + 0.801636i −0.249377 + 0.143978i −0.619479 0.785013i \(-0.712656\pi\)
0.370102 + 0.928991i \(0.379323\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 7.08273 + 3.40239i 1.19720 + 0.575109i
\(36\) 0 0
\(37\) −1.69681 2.93896i −0.278954 0.483162i 0.692171 0.721733i \(-0.256654\pi\)
−0.971125 + 0.238571i \(0.923321\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −3.55632 + 6.15972i −0.555404 + 0.961987i 0.442468 + 0.896784i \(0.354103\pi\)
−0.997872 + 0.0652031i \(0.979230\pi\)
\(42\) 0 0
\(43\) 5.22930 + 9.05742i 0.797461 + 1.38124i 0.921265 + 0.388936i \(0.127157\pi\)
−0.123804 + 0.992307i \(0.539509\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 5.49885 9.52430i 0.802090 1.38926i −0.116148 0.993232i \(-0.537055\pi\)
0.918238 0.396029i \(-0.129612\pi\)
\(48\) 0 0
\(49\) 4.37505 + 5.46433i 0.625007 + 0.780619i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 0.707381 + 0.408407i 0.0971663 + 0.0560990i 0.547796 0.836612i \(-0.315467\pi\)
−0.450629 + 0.892711i \(0.648800\pi\)
\(54\) 0 0
\(55\) 14.0419i 1.89341i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −1.37428 2.38032i −0.178916 0.309891i 0.762594 0.646878i \(-0.223926\pi\)
−0.941509 + 0.336986i \(0.890592\pi\)
\(60\) 0 0
\(61\) −6.23807 3.60155i −0.798703 0.461131i 0.0443147 0.999018i \(-0.485890\pi\)
−0.843017 + 0.537886i \(0.819223\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 10.5147 + 6.07067i 1.30419 + 0.752974i
\(66\) 0 0
\(67\) −5.80513 10.0548i −0.709210 1.22839i −0.965151 0.261695i \(-0.915719\pi\)
0.255941 0.966692i \(-0.417615\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 10.4406i 1.23907i 0.784968 + 0.619537i \(0.212680\pi\)
−0.784968 + 0.619537i \(0.787320\pi\)
\(72\) 0 0
\(73\) 13.6493 + 7.88042i 1.59753 + 0.922334i 0.991962 + 0.126539i \(0.0403870\pi\)
0.605567 + 0.795794i \(0.292946\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 5.41668 11.2759i 0.617288 1.28500i
\(78\) 0 0
\(79\) 6.15163 10.6549i 0.692112 1.19877i −0.279032 0.960282i \(-0.590014\pi\)
0.971145 0.238492i \(-0.0766530\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −4.03981 6.99715i −0.443426 0.768037i 0.554515 0.832174i \(-0.312904\pi\)
−0.997941 + 0.0641368i \(0.979571\pi\)
\(84\) 0 0
\(85\) −2.48067 + 4.29665i −0.269067 + 0.466037i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 4.60872 + 7.98254i 0.488523 + 0.846147i 0.999913 0.0132019i \(-0.00420240\pi\)
−0.511390 + 0.859349i \(0.670869\pi\)
\(90\) 0 0
\(91\) 6.10169 + 8.93089i 0.639631 + 0.936212i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −12.6332 + 7.29377i −1.29614 + 0.748325i
\(96\) 0 0
\(97\) −7.00772 + 4.04591i −0.711527 + 0.410800i −0.811626 0.584177i \(-0.801417\pi\)
0.100099 + 0.994977i \(0.468084\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 7.30730 0.727103 0.363552 0.931574i \(-0.381564\pi\)
0.363552 + 0.931574i \(0.381564\pi\)
\(102\) 0 0
\(103\) 7.02530i 0.692224i 0.938193 + 0.346112i \(0.112498\pi\)
−0.938193 + 0.346112i \(0.887502\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −12.2618 + 7.07938i −1.18540 + 0.684389i −0.957257 0.289239i \(-0.906598\pi\)
−0.228140 + 0.973628i \(0.573265\pi\)
\(108\) 0 0
\(109\) −2.82203 + 4.88789i −0.270301 + 0.468175i −0.968939 0.247300i \(-0.920457\pi\)
0.698638 + 0.715476i \(0.253790\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −11.6411 6.72099i −1.09510 0.632258i −0.160172 0.987089i \(-0.551205\pi\)
−0.934930 + 0.354831i \(0.884538\pi\)
\(114\) 0 0
\(115\) 14.5848i 1.36004i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −3.64945 + 2.49335i −0.334545 + 0.228565i
\(120\) 0 0
\(121\) −11.3550 −1.03228
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −3.50392 −0.313400
\(126\) 0 0
\(127\) −12.7730 −1.13342 −0.566712 0.823916i \(-0.691785\pi\)
−0.566712 + 0.823916i \(0.691785\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −13.4178 −1.17232 −0.586159 0.810196i \(-0.699361\pi\)
−0.586159 + 0.810196i \(0.699361\pi\)
\(132\) 0 0
\(133\) −12.9582 + 0.983737i −1.12362 + 0.0853008i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 9.00030i 0.768948i −0.923136 0.384474i \(-0.874383\pi\)
0.923136 0.384474i \(-0.125617\pi\)
\(138\) 0 0
\(139\) −1.54902 0.894326i −0.131386 0.0758557i 0.432866 0.901458i \(-0.357502\pi\)
−0.564252 + 0.825602i \(0.690836\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 9.66464 16.7397i 0.808198 1.39984i
\(144\) 0 0
\(145\) −0.708485 + 0.409044i −0.0588365 + 0.0339693i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 12.9072i 1.05740i 0.848810 + 0.528698i \(0.177320\pi\)
−0.848810 + 0.528698i \(0.822680\pi\)
\(150\) 0 0
\(151\) −12.9673 −1.05526 −0.527631 0.849473i \(-0.676920\pi\)
−0.527631 + 0.849473i \(0.676920\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −4.12360 + 2.38076i −0.331216 + 0.191227i
\(156\) 0 0
\(157\) 14.8720 8.58638i 1.18692 0.685268i 0.229314 0.973353i \(-0.426352\pi\)
0.957605 + 0.288085i \(0.0930185\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 5.62609 11.7118i 0.443398 0.923017i
\(162\) 0 0
\(163\) 2.53107 + 4.38394i 0.198249 + 0.343377i 0.947961 0.318387i \(-0.103141\pi\)
−0.749712 + 0.661764i \(0.769808\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −5.79673 + 10.0402i −0.448564 + 0.776936i −0.998293 0.0584072i \(-0.981398\pi\)
0.549729 + 0.835343i \(0.314731\pi\)
\(168\) 0 0
\(169\) 1.85653 + 3.21561i 0.142810 + 0.247354i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −3.13346 + 5.42730i −0.238232 + 0.412630i −0.960207 0.279289i \(-0.909901\pi\)
0.721975 + 0.691919i \(0.243235\pi\)
\(174\) 0 0
\(175\) 9.11057 + 4.37653i 0.688694 + 0.330834i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −12.7668 7.37089i −0.954233 0.550927i −0.0598395 0.998208i \(-0.519059\pi\)
−0.894393 + 0.447281i \(0.852392\pi\)
\(180\) 0 0
\(181\) 0.0833642i 0.00619641i 0.999995 + 0.00309821i \(0.000986191\pi\)
−0.999995 + 0.00309821i \(0.999014\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −5.03932 8.72835i −0.370498 0.641721i
\(186\) 0 0
\(187\) 6.84036 + 3.94929i 0.500217 + 0.288800i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −13.3672 7.71754i −0.967214 0.558421i −0.0688282 0.997629i \(-0.521926\pi\)
−0.898386 + 0.439207i \(0.855259\pi\)
\(192\) 0 0
\(193\) −10.7779 18.6678i −0.775808 1.34374i −0.934339 0.356385i \(-0.884009\pi\)
0.158532 0.987354i \(-0.449324\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 9.88306i 0.704139i 0.935974 + 0.352069i \(0.114522\pi\)
−0.935974 + 0.352069i \(0.885478\pi\)
\(198\) 0 0
\(199\) −9.14623 5.28058i −0.648359 0.374330i 0.139468 0.990227i \(-0.455461\pi\)
−0.787827 + 0.615896i \(0.788794\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −0.726712 + 0.0551692i −0.0510052 + 0.00387212i
\(204\) 0 0
\(205\) −10.5618 + 18.2936i −0.737670 + 1.27768i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 11.6118 + 20.1123i 0.803208 + 1.39120i
\(210\) 0 0
\(211\) 6.08453 10.5387i 0.418876 0.725514i −0.576951 0.816779i \(-0.695758\pi\)
0.995827 + 0.0912645i \(0.0290909\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 15.5304 + 26.8994i 1.05916 + 1.83453i
\(216\) 0 0
\(217\) −4.22969 + 0.321102i −0.287130 + 0.0217978i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −5.91452 + 3.41475i −0.397854 + 0.229701i
\(222\) 0 0
\(223\) −0.714485 + 0.412508i −0.0478455 + 0.0276236i −0.523732 0.851883i \(-0.675461\pi\)
0.475886 + 0.879507i \(0.342127\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −0.333557 −0.0221390 −0.0110695 0.999939i \(-0.503524\pi\)
−0.0110695 + 0.999939i \(0.503524\pi\)
\(228\) 0 0
\(229\) 14.4214i 0.952996i −0.879176 0.476498i \(-0.841906\pi\)
0.879176 0.476498i \(-0.158094\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −12.7953 + 7.38739i −0.838250 + 0.483964i −0.856669 0.515867i \(-0.827470\pi\)
0.0184192 + 0.999830i \(0.494137\pi\)
\(234\) 0 0
\(235\) 16.3309 28.2860i 1.06531 1.84518i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 22.5339 + 13.0100i 1.45760 + 0.841545i 0.998893 0.0470423i \(-0.0149795\pi\)
0.458707 + 0.888588i \(0.348313\pi\)
\(240\) 0 0
\(241\) 1.92021i 0.123692i 0.998086 + 0.0618458i \(0.0196987\pi\)
−0.998086 + 0.0618458i \(0.980301\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 12.9934 + 16.2284i 0.830116 + 1.03680i
\(246\) 0 0
\(247\) −20.0804 −1.27768
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 9.97663 0.629719 0.314860 0.949138i \(-0.398043\pi\)
0.314860 + 0.949138i \(0.398043\pi\)
\(252\) 0 0
\(253\) −23.2193 −1.45978
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −15.0073 −0.936129 −0.468064 0.883694i \(-0.655048\pi\)
−0.468064 + 0.883694i \(0.655048\pi\)
\(258\) 0 0
\(259\) −0.679670 8.95291i −0.0422327 0.556306i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 7.05534i 0.435051i 0.976055 + 0.217525i \(0.0697985\pi\)
−0.976055 + 0.217525i \(0.930202\pi\)
\(264\) 0 0
\(265\) 2.10084 + 1.21292i 0.129053 + 0.0745090i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 14.8898 25.7898i 0.907844 1.57243i 0.0907911 0.995870i \(-0.471060\pi\)
0.817053 0.576562i \(-0.195606\pi\)
\(270\) 0 0
\(271\) −2.41462 + 1.39408i −0.146677 + 0.0846843i −0.571543 0.820572i \(-0.693655\pi\)
0.424865 + 0.905257i \(0.360321\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 18.0622i 1.08919i
\(276\) 0 0
\(277\) 13.5815 0.816032 0.408016 0.912975i \(-0.366221\pi\)
0.408016 + 0.912975i \(0.366221\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 3.95777 2.28502i 0.236101 0.136313i −0.377283 0.926098i \(-0.623141\pi\)
0.613383 + 0.789785i \(0.289808\pi\)
\(282\) 0 0
\(283\) 17.6685 10.2009i 1.05029 0.606383i 0.127556 0.991831i \(-0.459287\pi\)
0.922729 + 0.385449i \(0.125953\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −15.5381 + 10.6158i −0.917184 + 0.626631i
\(288\) 0 0
\(289\) 7.10462 + 12.3056i 0.417919 + 0.723857i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 6.41037 11.1031i 0.374498 0.648649i −0.615754 0.787939i \(-0.711148\pi\)
0.990252 + 0.139289i \(0.0444818\pi\)
\(294\) 0 0
\(295\) −4.08144 7.06926i −0.237631 0.411589i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 10.0383 17.3868i 0.580529 1.00551i
\(300\) 0 0
\(301\) 2.09464 + 27.5915i 0.120733 + 1.59035i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −18.5263 10.6962i −1.06081 0.612461i
\(306\) 0 0
\(307\) 1.93411i 0.110386i 0.998476 + 0.0551928i \(0.0175773\pi\)
−0.998476 + 0.0551928i \(0.982423\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −1.04458 1.80926i −0.0592326 0.102594i 0.834889 0.550419i \(-0.185532\pi\)
−0.894121 + 0.447825i \(0.852199\pi\)
\(312\) 0 0
\(313\) 19.4066 + 11.2044i 1.09692 + 0.633309i 0.935411 0.353562i \(-0.115030\pi\)
0.161512 + 0.986871i \(0.448363\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 3.01788 + 1.74237i 0.169501 + 0.0978614i 0.582350 0.812938i \(-0.302133\pi\)
−0.412850 + 0.910799i \(0.635466\pi\)
\(318\) 0 0
\(319\) 0.651207 + 1.12792i 0.0364606 + 0.0631516i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 8.20549i 0.456565i
\(324\) 0 0
\(325\) 13.5252 + 7.80876i 0.750241 + 0.433152i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 24.0253 16.4144i 1.32456 0.904954i
\(330\) 0 0
\(331\) 2.28857 3.96392i 0.125791 0.217877i −0.796251 0.604967i \(-0.793186\pi\)
0.922042 + 0.387090i \(0.126520\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −17.2405 29.8615i −0.941951 1.63151i
\(336\) 0 0
\(337\) −14.7062 + 25.4720i −0.801100 + 1.38755i 0.117793 + 0.993038i \(0.462418\pi\)
−0.918893 + 0.394508i \(0.870915\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 3.79023 + 6.56486i 0.205252 + 0.355507i
\(342\) 0 0
\(343\) 4.17373 + 18.0438i 0.225360 + 0.974276i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −17.0245 + 9.82911i −0.913924 + 0.527654i −0.881692 0.471826i \(-0.843595\pi\)
−0.0322323 + 0.999480i \(0.510262\pi\)
\(348\) 0 0
\(349\) 8.47286 4.89181i 0.453542 0.261852i −0.255783 0.966734i \(-0.582333\pi\)
0.709325 + 0.704882i \(0.249000\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −25.0645 −1.33405 −0.667023 0.745037i \(-0.732432\pi\)
−0.667023 + 0.745037i \(0.732432\pi\)
\(354\) 0 0
\(355\) 31.0074i 1.64570i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −8.09861 + 4.67574i −0.427428 + 0.246776i −0.698251 0.715853i \(-0.746038\pi\)
0.270822 + 0.962629i \(0.412704\pi\)
\(360\) 0 0
\(361\) 2.56305 4.43933i 0.134897 0.233649i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 40.5367 + 23.4039i 2.12179 + 1.22502i
\(366\) 0 0
\(367\) 21.8850i 1.14239i 0.820815 + 0.571194i \(0.193520\pi\)
−0.820815 + 0.571194i \(0.806480\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 1.21912 + 1.78439i 0.0632934 + 0.0926409i
\(372\) 0 0
\(373\) 4.61644 0.239030 0.119515 0.992832i \(-0.461866\pi\)
0.119515 + 0.992832i \(0.461866\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −1.12613 −0.0579988
\(378\) 0 0
\(379\) −6.22396 −0.319703 −0.159852 0.987141i \(-0.551102\pi\)
−0.159852 + 0.987141i \(0.551102\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 21.9977 1.12403 0.562015 0.827127i \(-0.310026\pi\)
0.562015 + 0.827127i \(0.310026\pi\)
\(384\) 0 0
\(385\) 16.0869 33.4879i 0.819864 1.70670i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 9.82776i 0.498287i −0.968467 0.249144i \(-0.919851\pi\)
0.968467 0.249144i \(-0.0801491\pi\)
\(390\) 0 0
\(391\) 7.10481 + 4.10197i 0.359306 + 0.207445i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 18.2696 31.6439i 0.919243 1.59218i
\(396\) 0 0
\(397\) 4.55324 2.62881i 0.228520 0.131936i −0.381369 0.924423i \(-0.624547\pi\)
0.609889 + 0.792487i \(0.291214\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 17.0719i 0.852529i −0.904598 0.426265i \(-0.859829\pi\)
0.904598 0.426265i \(-0.140171\pi\)
\(402\) 0 0
\(403\) −6.55444 −0.326500
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −13.8957 + 8.02270i −0.688786 + 0.397671i
\(408\) 0 0
\(409\) 16.9484 9.78516i 0.838044 0.483845i −0.0185546 0.999828i \(-0.505906\pi\)
0.856599 + 0.515983i \(0.172573\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −0.550478 7.25114i −0.0270873 0.356805i
\(414\) 0 0
\(415\) −11.9977 20.7807i −0.588946 1.02008i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 10.3073 17.8529i 0.503547 0.872169i −0.496445 0.868068i \(-0.665361\pi\)
0.999992 0.00410056i \(-0.00130525\pi\)
\(420\) 0 0
\(421\) 0.704748 + 1.22066i 0.0343473 + 0.0594913i 0.882688 0.469959i \(-0.155731\pi\)
−0.848341 + 0.529451i \(0.822398\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −3.19091 + 5.52682i −0.154782 + 0.268090i
\(426\) 0 0
\(427\) −10.7508 15.7357i −0.520268 0.761504i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 11.6666 + 6.73569i 0.561959 + 0.324447i 0.753931 0.656953i \(-0.228155\pi\)
−0.191973 + 0.981400i \(0.561488\pi\)
\(432\) 0 0
\(433\) 12.9356i 0.621646i 0.950468 + 0.310823i \(0.100605\pi\)
−0.950468 + 0.310823i \(0.899395\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 12.0608 + 20.8899i 0.576944 + 0.999297i
\(438\) 0 0
\(439\) 8.75023 + 5.05195i 0.417626 + 0.241116i 0.694061 0.719916i \(-0.255820\pi\)
−0.276435 + 0.961033i \(0.589153\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 25.1220 + 14.5042i 1.19358 + 0.689115i 0.959117 0.283009i \(-0.0913326\pi\)
0.234466 + 0.972124i \(0.424666\pi\)
\(444\) 0 0
\(445\) 13.6873 + 23.7072i 0.648842 + 1.12383i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 7.94881i 0.375127i 0.982252 + 0.187564i \(0.0600591\pi\)
−0.982252 + 0.187564i \(0.939941\pi\)
\(450\) 0 0
\(451\) 29.1239 + 16.8147i 1.37139 + 0.791772i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 18.1213 + 26.5237i 0.849539 + 1.24345i
\(456\) 0 0
\(457\) 6.98084 12.0912i 0.326550 0.565601i −0.655275 0.755391i \(-0.727447\pi\)
0.981825 + 0.189789i \(0.0607805\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −16.4030 28.4108i −0.763964 1.32322i −0.940793 0.338983i \(-0.889917\pi\)
0.176829 0.984242i \(-0.443416\pi\)
\(462\) 0 0
\(463\) −13.8812 + 24.0429i −0.645112 + 1.11737i 0.339163 + 0.940727i \(0.389856\pi\)
−0.984276 + 0.176640i \(0.943477\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −11.4311 19.7992i −0.528966 0.916196i −0.999429 0.0337767i \(-0.989247\pi\)
0.470463 0.882420i \(-0.344087\pi\)
\(468\) 0 0
\(469\) −2.32529 30.6297i −0.107372 1.41435i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 42.8245 24.7247i 1.96907 1.13684i
\(474\) 0 0
\(475\) −16.2502 + 9.38204i −0.745609 + 0.430478i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −2.42425 −0.110767 −0.0553834 0.998465i \(-0.517638\pi\)
−0.0553834 + 0.998465i \(0.517638\pi\)
\(480\) 0 0
\(481\) 13.8737i 0.632584i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −20.8121 + 12.0159i −0.945028 + 0.545612i
\(486\) 0 0
\(487\) 5.19651 9.00061i 0.235476 0.407857i −0.723935 0.689868i \(-0.757668\pi\)
0.959411 + 0.282012i \(0.0910017\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 2.93014 + 1.69172i 0.132235 + 0.0763462i 0.564658 0.825325i \(-0.309008\pi\)
−0.432423 + 0.901671i \(0.642341\pi\)
\(492\) 0 0
\(493\) 0.460174i 0.0207252i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −11.9611 + 24.8993i −0.536530 + 1.11689i
\(498\) 0 0
\(499\) 39.5603 1.77096 0.885481 0.464676i \(-0.153829\pi\)
0.885481 + 0.464676i \(0.153829\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 14.5476 0.648645 0.324323 0.945947i \(-0.394864\pi\)
0.324323 + 0.945947i \(0.394864\pi\)
\(504\) 0 0
\(505\) 21.7018 0.965717
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −20.3916 −0.903841 −0.451921 0.892058i \(-0.649261\pi\)
−0.451921 + 0.892058i \(0.649261\pi\)
\(510\) 0 0
\(511\) 23.5235 + 34.4307i 1.04062 + 1.52313i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 20.8643i 0.919391i
\(516\) 0 0
\(517\) −45.0319 25.9992i −1.98050 1.14344i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −7.75122 + 13.4255i −0.339587 + 0.588182i −0.984355 0.176196i \(-0.943621\pi\)
0.644768 + 0.764379i \(0.276954\pi\)
\(522\) 0 0
\(523\) 9.35989 5.40394i 0.409280 0.236298i −0.281201 0.959649i \(-0.590733\pi\)
0.690480 + 0.723351i \(0.257399\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 2.67836i 0.116671i
\(528\) 0 0
\(529\) −1.11695 −0.0485631
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −25.1819 + 14.5388i −1.09075 + 0.629745i
\(534\) 0 0
\(535\) −36.4162 + 21.0249i −1.57441 + 0.908986i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 25.8360 20.6857i 1.11283 0.890997i
\(540\) 0 0
\(541\) −8.79357 15.2309i −0.378065 0.654828i 0.612716 0.790303i \(-0.290077\pi\)
−0.990781 + 0.135476i \(0.956744\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −8.38108 + 14.5165i −0.359006 + 0.621817i
\(546\) 0 0
\(547\) −5.72451 9.91513i −0.244762 0.423940i 0.717303 0.696762i \(-0.245377\pi\)
−0.962065 + 0.272821i \(0.912043\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 0.676511 1.17175i 0.0288203 0.0499183i
\(552\) 0 0
\(553\) 26.8774 18.3629i 1.14294 0.780871i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −32.9159 19.0040i −1.39469 0.805226i −0.400863 0.916138i \(-0.631290\pi\)
−0.993830 + 0.110912i \(0.964623\pi\)
\(558\) 0 0
\(559\) 42.7565i 1.80841i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 8.88438 + 15.3882i 0.374432 + 0.648535i 0.990242 0.139360i \(-0.0445044\pi\)
−0.615810 + 0.787895i \(0.711171\pi\)
\(564\) 0 0
\(565\) −34.5727 19.9605i −1.45448 0.839746i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 33.7404 + 19.4801i 1.41447 + 0.816646i 0.995806 0.0914936i \(-0.0291641\pi\)
0.418667 + 0.908140i \(0.362497\pi\)
\(570\) 0 0
\(571\) −8.45245 14.6401i −0.353724 0.612668i 0.633175 0.774009i \(-0.281752\pi\)
−0.986899 + 0.161341i \(0.948418\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 18.7605i 0.782368i
\(576\) 0 0
\(577\) −40.9329 23.6326i −1.70406 0.983840i −0.941555 0.336858i \(-0.890636\pi\)
−0.762506 0.646982i \(-0.776031\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −1.61818 21.3153i −0.0671333 0.884308i
\(582\) 0 0
\(583\) 1.93099 3.34458i 0.0799736 0.138518i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 11.6343 + 20.1513i 0.480200 + 0.831731i 0.999742 0.0227138i \(-0.00723065\pi\)
−0.519542 + 0.854445i \(0.673897\pi\)
\(588\) 0 0
\(589\) 3.93750 6.81995i 0.162242 0.281011i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −18.5962 32.2095i −0.763654 1.32269i −0.940955 0.338530i \(-0.890070\pi\)
0.177302 0.984157i \(-0.443263\pi\)
\(594\) 0 0
\(595\) −10.8384 + 7.40494i −0.444332 + 0.303573i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −27.9591 + 16.1422i −1.14238 + 0.659552i −0.947018 0.321180i \(-0.895921\pi\)
−0.195359 + 0.980732i \(0.562587\pi\)
\(600\) 0 0
\(601\) 14.7559 8.51933i 0.601906 0.347511i −0.167885 0.985807i \(-0.553694\pi\)
0.769791 + 0.638296i \(0.220360\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −33.7231 −1.37104
\(606\) 0 0
\(607\) 9.75021i 0.395749i −0.980227 0.197874i \(-0.936596\pi\)
0.980227 0.197874i \(-0.0634038\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 38.9369 22.4802i 1.57522 0.909452i
\(612\) 0 0
\(613\) −6.86332 + 11.8876i −0.277207 + 0.480136i −0.970690 0.240337i \(-0.922742\pi\)
0.693483 + 0.720473i \(0.256075\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 2.84301 + 1.64141i 0.114455 + 0.0660807i 0.556135 0.831092i \(-0.312284\pi\)
−0.441680 + 0.897173i \(0.645617\pi\)
\(618\) 0 0
\(619\) 17.3098i 0.695740i −0.937543 0.347870i \(-0.886905\pi\)
0.937543 0.347870i \(-0.113095\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 1.84606 + 24.3171i 0.0739608 + 0.974243i
\(624\) 0 0
\(625\) −29.5071 −1.18028
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 5.66923 0.226047
\(630\) 0 0
\(631\) −6.27821 −0.249932 −0.124966 0.992161i \(-0.539882\pi\)
−0.124966 + 0.992161i \(0.539882\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −37.9344 −1.50538
\(636\) 0 0
\(637\) 4.32011 + 28.2892i 0.171169 + 1.12086i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 20.7601i 0.819976i −0.912091 0.409988i \(-0.865533\pi\)
0.912091 0.409988i \(-0.134467\pi\)
\(642\) 0 0
\(643\) 17.2553 + 9.96236i 0.680483 + 0.392877i 0.800037 0.599950i \(-0.204813\pi\)
−0.119554 + 0.992828i \(0.538146\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −14.7670 + 25.5772i −0.580551 + 1.00554i 0.414863 + 0.909884i \(0.363830\pi\)
−0.995414 + 0.0956605i \(0.969504\pi\)
\(648\) 0 0
\(649\) −11.2544 + 6.49774i −0.441775 + 0.255059i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 15.9250i 0.623193i −0.950215 0.311596i \(-0.899136\pi\)
0.950215 0.311596i \(-0.100864\pi\)
\(654\) 0 0
\(655\) −39.8493 −1.55704
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −2.80283 + 1.61822i −0.109183 + 0.0630368i −0.553597 0.832785i \(-0.686745\pi\)
0.444414 + 0.895821i \(0.353412\pi\)
\(660\) 0 0
\(661\) 7.71194 4.45249i 0.299960 0.173182i −0.342465 0.939531i \(-0.611262\pi\)
0.642425 + 0.766349i \(0.277928\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −38.4843 + 2.92158i −1.49236 + 0.113294i
\(666\) 0 0
\(667\) 0.676383 + 1.17153i 0.0261896 + 0.0453618i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −17.0285 + 29.4943i −0.657379 + 1.13861i
\(672\) 0 0
\(673\) −13.2311 22.9169i −0.510021 0.883382i −0.999933 0.0116101i \(-0.996304\pi\)
0.489912 0.871772i \(-0.337029\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −4.46424 + 7.73229i −0.171575 + 0.297176i −0.938971 0.343997i \(-0.888219\pi\)
0.767396 + 0.641174i \(0.221552\pi\)
\(678\) 0 0
\(679\) −21.3475 + 1.62062i −0.819243 + 0.0621938i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 32.7902 + 18.9314i 1.25468 + 0.724390i 0.972035 0.234834i \(-0.0754547\pi\)
0.282645 + 0.959225i \(0.408788\pi\)
\(684\) 0 0
\(685\) 26.7298i 1.02129i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 1.66963 + 2.89189i 0.0636080 + 0.110172i
\(690\) 0 0
\(691\) −4.94211 2.85333i −0.188007 0.108546i 0.403042 0.915181i \(-0.367953\pi\)
−0.591049 + 0.806636i \(0.701286\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −4.60039 2.65604i −0.174503 0.100749i
\(696\) 0 0
\(697\) −5.94103 10.2902i −0.225032 0.389768i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 8.19949i 0.309690i −0.987939 0.154845i \(-0.950512\pi\)
0.987939 0.154845i \(-0.0494879\pi\)
\(702\) 0 0
\(703\) 14.4357 + 8.33444i 0.544452 + 0.314339i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 17.4268 + 8.37148i 0.655403 + 0.314842i
\(708\) 0 0
\(709\) −10.0757 + 17.4517i −0.378402 + 0.655412i −0.990830 0.135115i \(-0.956860\pi\)
0.612428 + 0.790527i \(0.290193\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 3.93676 + 6.81866i 0.147433 + 0.255361i
\(714\) 0 0
\(715\) 28.7028 49.7147i 1.07342 1.85923i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 25.5996 + 44.3397i 0.954702 + 1.65359i 0.735048 + 0.678015i \(0.237159\pi\)
0.219654 + 0.975578i \(0.429507\pi\)
\(720\) 0 0
\(721\) −8.04842 + 16.7543i −0.299739 + 0.623963i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −0.911330 + 0.526157i −0.0338460 + 0.0195410i
\(726\) 0 0
\(727\) −13.7848 + 7.95865i −0.511249 + 0.295170i −0.733347 0.679854i \(-0.762043\pi\)
0.222098 + 0.975024i \(0.428710\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −17.4717 −0.646213
\(732\) 0 0
\(733\) 4.24025i 0.156617i −0.996929 0.0783086i \(-0.975048\pi\)
0.996929 0.0783086i \(-0.0249519\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −47.5401 + 27.4473i −1.75116 + 1.01103i
\(738\) 0 0
\(739\) −14.1835 + 24.5665i −0.521747 + 0.903693i 0.477933 + 0.878397i \(0.341386\pi\)
−0.999680 + 0.0252966i \(0.991947\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −21.8850 12.6353i −0.802884 0.463545i 0.0415945 0.999135i \(-0.486756\pi\)
−0.844479 + 0.535589i \(0.820090\pi\)
\(744\) 0 0
\(745\) 38.3327i 1.40440i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −37.3531 + 2.83570i −1.36485 + 0.103614i
\(750\) 0 0
\(751\) 47.5460 1.73498 0.867490 0.497455i \(-0.165732\pi\)
0.867490 + 0.497455i \(0.165732\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −38.5113 −1.40157
\(756\) 0 0
\(757\) 37.3922 1.35904 0.679521 0.733656i \(-0.262188\pi\)
0.679521 + 0.733656i \(0.262188\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 8.24283 0.298802 0.149401 0.988777i \(-0.452265\pi\)
0.149401 + 0.988777i \(0.452265\pi\)
\(762\) 0 0
\(763\) −12.3299 + 8.42390i −0.446371 + 0.304966i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 11.2365i 0.405728i
\(768\) 0 0
\(769\) 20.2182 + 11.6730i 0.729086 + 0.420938i 0.818088 0.575094i \(-0.195034\pi\)
−0.0890020 + 0.996031i \(0.528368\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 17.2201 29.8261i 0.619364 1.07277i −0.370238 0.928937i \(-0.620724\pi\)
0.989602 0.143833i \(-0.0459428\pi\)
\(774\) 0 0
\(775\) −5.30422 + 3.06240i −0.190533 + 0.110004i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 34.9361i 1.25171i
\(780\) 0 0
\(781\) 49.3644 1.76640
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 44.1682 25.5005i 1.57643 0.910152i
\(786\) 0 0
\(787\) −7.19975 + 4.15678i −0.256643 + 0.148173i −0.622802 0.782379i \(-0.714006\pi\)
0.366159 + 0.930552i \(0.380673\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −20.0625 29.3650i −0.713341 1.04410i
\(792\) 0 0
\(793\) −14.7237 25.5022i −0.522854 0.905610i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −0.426036 + 0.737916i −0.0150910 + 0.0261383i −0.873472 0.486874i \(-0.838137\pi\)
0.858381 + 0.513012i \(0.171470\pi\)
\(798\) 0 0
\(799\) 9.18614 + 15.9109i 0.324982 + 0.562886i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 37.2595 64.5354i 1.31486 2.27740i
\(804\) 0 0
\(805\) 16.7088 34.7826i 0.588908 1.22592i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 31.5580 + 18.2200i 1.10952 + 0.640581i 0.938705 0.344722i \(-0.112027\pi\)
0.170814 + 0.985303i \(0.445360\pi\)
\(810\) 0 0
\(811\) 1.08986i 0.0382702i −0.999817 0.0191351i \(-0.993909\pi\)
0.999817 0.0191351i \(-0.00609126\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 7.51697 + 13.0198i 0.263308 + 0.456063i
\(816\) 0 0
\(817\) −44.4885 25.6855i −1.55646 0.898620i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 20.9748 + 12.1098i 0.732025 + 0.422635i 0.819163 0.573561i \(-0.194439\pi\)
−0.0871374 + 0.996196i \(0.527772\pi\)
\(822\) 0 0
\(823\) −2.85592 4.94660i −0.0995512 0.172428i 0.811948 0.583730i \(-0.198407\pi\)
−0.911499 + 0.411302i \(0.865074\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 36.4579i 1.26777i −0.773429 0.633883i \(-0.781460\pi\)
0.773429 0.633883i \(-0.218540\pi\)
\(828\) 0 0
\(829\) −0.498269 0.287676i −0.0173056 0.00999140i 0.491322 0.870978i \(-0.336514\pi\)
−0.508628 + 0.860986i \(0.669847\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −11.5599 + 1.76534i −0.400526 + 0.0611653i
\(834\) 0 0
\(835\) −17.2156 + 29.8183i −0.595770 + 1.03190i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 23.9341 + 41.4550i 0.826295 + 1.43119i 0.900925 + 0.433974i \(0.142889\pi\)
−0.0746300 + 0.997211i \(0.523778\pi\)
\(840\) 0 0
\(841\) −14.4621 + 25.0490i −0.498692 + 0.863759i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 5.51368 + 9.54997i 0.189676 + 0.328529i
\(846\) 0 0
\(847\) −27.0801 13.0087i −0.930483 0.446985i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −14.4329 + 8.33286i −0.494755 + 0.285647i
\(852\) 0 0
\(853\) 40.5393 23.4054i 1.38804 0.801385i 0.394945 0.918705i \(-0.370764\pi\)
0.993094 + 0.117320i \(0.0374303\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −9.56441 −0.326714 −0.163357 0.986567i \(-0.552232\pi\)
−0.163357 + 0.986567i \(0.552232\pi\)
\(858\) 0 0
\(859\) 5.40759i 0.184505i 0.995736 + 0.0922523i \(0.0294066\pi\)
−0.995736 + 0.0922523i \(0.970593\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −35.5402 + 20.5191i −1.20980 + 0.698480i −0.962716 0.270514i \(-0.912806\pi\)
−0.247086 + 0.968994i \(0.579473\pi\)
\(864\) 0 0
\(865\) −9.30598 + 16.1184i −0.316413 + 0.548043i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −50.3777 29.0856i −1.70895 0.986661i
\(870\) 0 0
\(871\) 47.4646i 1.60828i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −8.35633 4.01421i −0.282496 0.135705i
\(876\) 0 0
\(877\) −14.6502 −0.494701 −0.247351 0.968926i \(-0.579560\pi\)
−0.247351 + 0.968926i \(0.579560\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 44.8295 1.51034 0.755172 0.655527i \(-0.227553\pi\)
0.755172 + 0.655527i \(0.227553\pi\)
\(882\) 0 0
\(883\) 33.8527 1.13923 0.569617 0.821910i \(-0.307091\pi\)
0.569617 + 0.821910i \(0.307091\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 26.6844 0.895973 0.447987 0.894040i \(-0.352141\pi\)
0.447987 + 0.894040i \(0.352141\pi\)
\(888\) 0 0
\(889\) −30.4618 14.6332i −1.02166 0.490783i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 54.0189i 1.80767i
\(894\) 0 0
\(895\) −37.9157 21.8907i −1.26738 0.731724i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0.220820 0.382472i 0.00736476 0.0127561i
\(900\) 0 0
\(901\) −1.18172 + 0.682266i −0.0393688 + 0.0227296i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0.247582i 0.00822989i
\(906\) 0 0
\(907\) −15.9442 −0.529419 −0.264710 0.964328i \(-0.585276\pi\)
−0.264710 + 0.964328i \(0.585276\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −40.9207 + 23.6256i −1.35576 + 0.782750i −0.989050 0.147584i \(-0.952850\pi\)
−0.366713 + 0.930334i \(0.619517\pi\)
\(912\) 0 0
\(913\) −33.0833 + 19.1007i −1.09490 + 0.632140i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −31.9995 15.3719i −1.05672 0.507624i
\(918\) 0 0
\(919\) 14.8163 + 25.6625i 0.488743 + 0.846528i 0.999916 0.0129500i \(-0.00412223\pi\)
−0.511173 + 0.859478i \(0.670789\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −21.3415 + 36.9645i −0.702463 + 1.21670i
\(924\) 0 0
\(925\) −6.48212 11.2274i −0.213131 0.369153i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −16.6186 + 28.7842i −0.545238 + 0.944380i 0.453354 + 0.891331i \(0.350227\pi\)
−0.998592 + 0.0530496i \(0.983106\pi\)
\(930\) 0 0
\(931\) −32.0304 12.4993i −1.04975 0.409647i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 20.3151 + 11.7289i 0.664373 + 0.383576i
\(936\) 0 0
\(937\) 23.8190i 0.778134i −0.921209 0.389067i \(-0.872797\pi\)
0.921209 0.389067i \(-0.127203\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 27.1201 + 46.9734i 0.884091 + 1.53129i 0.846752 + 0.531988i \(0.178555\pi\)
0.0373389 + 0.999303i \(0.488112\pi\)
\(942\) 0 0
\(943\) 30.2498 + 17.4647i 0.985069 + 0.568730i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −18.2427 10.5324i −0.592807 0.342257i 0.173399 0.984852i \(-0.444525\pi\)
−0.766207 + 0.642594i \(0.777858\pi\)
\(948\) 0 0
\(949\) 32.2164 + 55.8005i 1.04579 + 1.81136i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 4.50028i 0.145778i −0.997340 0.0728892i \(-0.976778\pi\)
0.997340 0.0728892i \(-0.0232219\pi\)
\(954\) 0 0
\(955\) −39.6989 22.9201i −1.28462 0.741679i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 10.3110 21.4644i 0.332961 0.693122i
\(960\) 0 0
\(961\) −14.2148 + 24.6207i −0.458541 + 0.794216i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −32.0090 55.4411i −1.03040 1.78471i
\(966\) 0 0
\(967\) −10.8811 + 18.8466i −0.349912 + 0.606065i −0.986233 0.165359i \(-0.947122\pi\)
0.636322 + 0.771424i \(0.280455\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 23.5222 + 40.7416i 0.754862 + 1.30746i 0.945443 + 0.325788i \(0.105629\pi\)
−0.190581 + 0.981671i \(0.561037\pi\)
\(972\) 0 0
\(973\) −2.66961 3.90744i −0.0855838 0.125267i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 21.7766 12.5727i 0.696695 0.402237i −0.109420 0.993996i \(-0.534899\pi\)
0.806115 + 0.591758i \(0.201566\pi\)
\(978\) 0 0
\(979\) 37.7423 21.7905i 1.20625 0.696429i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 36.2142 1.15505 0.577527 0.816372i \(-0.304018\pi\)
0.577527 + 0.816372i \(0.304018\pi\)
\(984\) 0 0
\(985\) 29.3515i 0.935216i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 44.4801 25.6806i 1.41438 0.816595i
\(990\) 0 0
\(991\) −9.32769 + 16.1560i −0.296304 + 0.513213i −0.975287 0.220940i \(-0.929087\pi\)
0.678984 + 0.734153i \(0.262421\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −27.1632 15.6827i −0.861131 0.497174i
\(996\) 0 0
\(997\) 17.4836i 0.553712i −0.960911 0.276856i \(-0.910708\pi\)
0.960911 0.276856i \(-0.0892925\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 756.2.bm.a.17.7 16
3.2 odd 2 252.2.bm.a.185.1 yes 16
4.3 odd 2 3024.2.df.d.17.7 16
7.2 even 3 5292.2.w.b.1097.2 16
7.3 odd 6 5292.2.x.a.881.7 16
7.4 even 3 5292.2.x.b.881.2 16
7.5 odd 6 756.2.w.a.341.7 16
7.6 odd 2 5292.2.bm.a.2285.2 16
9.2 odd 6 756.2.w.a.521.7 16
9.4 even 3 2268.2.t.b.1781.2 16
9.5 odd 6 2268.2.t.a.1781.7 16
9.7 even 3 252.2.w.a.101.3 yes 16
12.11 even 2 1008.2.df.d.689.8 16
21.2 odd 6 1764.2.w.b.509.6 16
21.5 even 6 252.2.w.a.5.3 16
21.11 odd 6 1764.2.x.b.293.5 16
21.17 even 6 1764.2.x.a.293.4 16
21.20 even 2 1764.2.bm.a.1697.8 16
28.19 even 6 3024.2.ca.d.2609.7 16
36.7 odd 6 1008.2.ca.d.353.6 16
36.11 even 6 3024.2.ca.d.2033.7 16
63.2 odd 6 5292.2.bm.a.4625.2 16
63.5 even 6 2268.2.t.b.2105.2 16
63.11 odd 6 5292.2.x.a.4409.7 16
63.16 even 3 1764.2.bm.a.1685.8 16
63.20 even 6 5292.2.w.b.521.2 16
63.25 even 3 1764.2.x.a.1469.4 16
63.34 odd 6 1764.2.w.b.1109.6 16
63.38 even 6 5292.2.x.b.4409.2 16
63.40 odd 6 2268.2.t.a.2105.7 16
63.47 even 6 inner 756.2.bm.a.89.7 16
63.52 odd 6 1764.2.x.b.1469.5 16
63.61 odd 6 252.2.bm.a.173.1 yes 16
84.47 odd 6 1008.2.ca.d.257.6 16
252.47 odd 6 3024.2.df.d.1601.7 16
252.187 even 6 1008.2.df.d.929.8 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
252.2.w.a.5.3 16 21.5 even 6
252.2.w.a.101.3 yes 16 9.7 even 3
252.2.bm.a.173.1 yes 16 63.61 odd 6
252.2.bm.a.185.1 yes 16 3.2 odd 2
756.2.w.a.341.7 16 7.5 odd 6
756.2.w.a.521.7 16 9.2 odd 6
756.2.bm.a.17.7 16 1.1 even 1 trivial
756.2.bm.a.89.7 16 63.47 even 6 inner
1008.2.ca.d.257.6 16 84.47 odd 6
1008.2.ca.d.353.6 16 36.7 odd 6
1008.2.df.d.689.8 16 12.11 even 2
1008.2.df.d.929.8 16 252.187 even 6
1764.2.w.b.509.6 16 21.2 odd 6
1764.2.w.b.1109.6 16 63.34 odd 6
1764.2.x.a.293.4 16 21.17 even 6
1764.2.x.a.1469.4 16 63.25 even 3
1764.2.x.b.293.5 16 21.11 odd 6
1764.2.x.b.1469.5 16 63.52 odd 6
1764.2.bm.a.1685.8 16 63.16 even 3
1764.2.bm.a.1697.8 16 21.20 even 2
2268.2.t.a.1781.7 16 9.5 odd 6
2268.2.t.a.2105.7 16 63.40 odd 6
2268.2.t.b.1781.2 16 9.4 even 3
2268.2.t.b.2105.2 16 63.5 even 6
3024.2.ca.d.2033.7 16 36.11 even 6
3024.2.ca.d.2609.7 16 28.19 even 6
3024.2.df.d.17.7 16 4.3 odd 2
3024.2.df.d.1601.7 16 252.47 odd 6
5292.2.w.b.521.2 16 63.20 even 6
5292.2.w.b.1097.2 16 7.2 even 3
5292.2.x.a.881.7 16 7.3 odd 6
5292.2.x.a.4409.7 16 63.11 odd 6
5292.2.x.b.881.2 16 7.4 even 3
5292.2.x.b.4409.2 16 63.38 even 6
5292.2.bm.a.2285.2 16 7.6 odd 2
5292.2.bm.a.4625.2 16 63.2 odd 6