Properties

Label 18.15.b.b.17.2
Level 1818
Weight 1515
Character 18.17
Analytic conductor 22.37922.379
Analytic rank 00
Dimension 44
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [18,15,Mod(17,18)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(18, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1]))
 
N = Newforms(chi, 15, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("18.17");
 
S:= CuspForms(chi, 15);
 
N := Newforms(S);
 
Level: N N == 18=232 18 = 2 \cdot 3^{2}
Weight: k k == 15 15
Character orbit: [χ][\chi] == 18.b (of order 22, degree 11, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 22.379214267322.3792142673
Analytic rank: 00
Dimension: 44
Coefficient field: Q[x]/(x4)\mathbb{Q}[x]/(x^{4} - \cdots)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x42x344875x2+44876x+503643366 x^{4} - 2x^{3} - 44875x^{2} + 44876x + 503643366 Copy content Toggle raw display
Coefficient ring: Z[a1,,a17]\Z[a_1, \ldots, a_{17}]
Coefficient ring index: 2738 2^{7}\cdot 3^{8}
Twist minimal: yes
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

Embedding invariants

Embedding label 17.2
Root 150.3011.41421i150.301 - 1.41421i of defining polynomial
Character χ\chi == 18.17
Dual form 18.15.b.b.17.3

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q90.5097iq28192.00q4+141636.iq5305793.q7+741455.iq8+1.28194e7q103.26518e7iq113.64244e7q13+2.76772e7iq14+6.71089e7q164.11602e8iq17+5.42773e8q191.16028e9iq202.95530e9q22+1.04179e9iq231.39573e10q25+3.29676e9iq26+2.50505e9q283.04021e10iq293.36638e10q316.07400e9iq323.72540e10q344.33113e10iq352.33075e10q374.91262e10iq381.05017e11q401.96280e11iq41+4.39368e11q43+2.67483e11iq44+9.42917e10q46+6.50358e11iq475.84714e11q49+1.26327e12iq50+2.98389e11q529.88636e11iq53+4.62467e12q552.26731e11iq562.75169e12q583.21661e11iq59+2.51765e12q61+3.04690e12iq625.49756e11q645.15901e12iq657.51002e12q67+3.37184e12iq683.92009e12q701.69163e13iq715.98095e12q73+2.10955e12iq744.44639e12q76+9.98467e12iq772.06435e13q79+9.50504e12iq801.77652e13q821.20159e12iq83+5.82977e13q853.97671e13iq86+2.42098e13q887.62718e12iq89+1.11383e13q918.53431e12iq92+5.88637e13q94+7.68762e13iq954.73358e13q97+5.29223e13iq98+O(q100)q-90.5097i q^{2} -8192.00 q^{4} +141636. i q^{5} -305793. q^{7} +741455. i q^{8} +1.28194e7 q^{10} -3.26518e7i q^{11} -3.64244e7 q^{13} +2.76772e7i q^{14} +6.71089e7 q^{16} -4.11602e8i q^{17} +5.42773e8 q^{19} -1.16028e9i q^{20} -2.95530e9 q^{22} +1.04179e9i q^{23} -1.39573e10 q^{25} +3.29676e9i q^{26} +2.50505e9 q^{28} -3.04021e10i q^{29} -3.36638e10 q^{31} -6.07400e9i q^{32} -3.72540e10 q^{34} -4.33113e10i q^{35} -2.33075e10 q^{37} -4.91262e10i q^{38} -1.05017e11 q^{40} -1.96280e11i q^{41} +4.39368e11 q^{43} +2.67483e11i q^{44} +9.42917e10 q^{46} +6.50358e11i q^{47} -5.84714e11 q^{49} +1.26327e12i q^{50} +2.98389e11 q^{52} -9.88636e11i q^{53} +4.62467e12 q^{55} -2.26731e11i q^{56} -2.75169e12 q^{58} -3.21661e11i q^{59} +2.51765e12 q^{61} +3.04690e12i q^{62} -5.49756e11 q^{64} -5.15901e12i q^{65} -7.51002e12 q^{67} +3.37184e12i q^{68} -3.92009e12 q^{70} -1.69163e13i q^{71} -5.98095e12 q^{73} +2.10955e12i q^{74} -4.44639e12 q^{76} +9.98467e12i q^{77} -2.06435e13 q^{79} +9.50504e12i q^{80} -1.77652e13 q^{82} -1.20159e12i q^{83} +5.82977e13 q^{85} -3.97671e13i q^{86} +2.42098e13 q^{88} -7.62718e12i q^{89} +1.11383e13 q^{91} -8.53431e12i q^{92} +5.88637e13 q^{94} +7.68762e13i q^{95} -4.73358e13 q^{97} +5.29223e13i q^{98} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q32768q4+2659664q7+1577472q10+60092672q13+268435456q16220734784q196354180096q2251043883876q2521787967488q28106337705584q31139572822528q34++67539358987904q97+O(q100) 4 q - 32768 q^{4} + 2659664 q^{7} + 1577472 q^{10} + 60092672 q^{13} + 268435456 q^{16} - 220734784 q^{19} - 6354180096 q^{22} - 51043883876 q^{25} - 21787967488 q^{28} - 106337705584 q^{31} - 139572822528 q^{34}+ \cdots + 67539358987904 q^{97}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/18Z)×\left(\mathbb{Z}/18\mathbb{Z}\right)^\times.

nn 1111
χ(n)\chi(n) 1-1

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 − 90.5097i − 0.707107i
33 0 0
44 −8192.00 −0.500000
55 141636.i 1.81294i 0.422268 + 0.906471i 0.361234π0.361234\pi
−0.422268 + 0.906471i 0.638766π0.638766\pi
66 0 0
77 −305793. −0.371313 −0.185657 0.982615i 0.559441π-0.559441\pi
−0.185657 + 0.982615i 0.559441π0.559441\pi
88 741455.i 0.353553i
99 0 0
1010 1.28194e7 1.28194
1111 − 3.26518e7i − 1.67555i −0.546013 0.837777i 0.683855π-0.683855\pi
0.546013 0.837777i 0.316145π-0.316145\pi
1212 0 0
1313 −3.64244e7 −0.580482 −0.290241 0.956954i 0.593735π-0.593735\pi
−0.290241 + 0.956954i 0.593735π0.593735\pi
1414 2.76772e7i 0.262558i
1515 0 0
1616 6.71089e7 0.250000
1717 − 4.11602e8i − 1.00308i −0.865135 0.501539i 0.832767π-0.832767\pi
0.865135 0.501539i 0.167233π-0.167233\pi
1818 0 0
1919 5.42773e8 0.607215 0.303608 0.952797i 0.401809π-0.401809\pi
0.303608 + 0.952797i 0.401809π0.401809\pi
2020 − 1.16028e9i − 0.906471i
2121 0 0
2222 −2.95530e9 −1.18479
2323 1.04179e9i 0.305973i 0.988228 + 0.152987i 0.0488892π0.0488892\pi
−0.988228 + 0.152987i 0.951111π0.951111\pi
2424 0 0
2525 −1.39573e10 −2.28676
2626 3.29676e9i 0.410463i
2727 0 0
2828 2.50505e9 0.185657
2929 − 3.04021e10i − 1.76245i −0.472693 0.881227i 0.656718π-0.656718\pi
0.472693 0.881227i 0.343282π-0.343282\pi
3030 0 0
3131 −3.36638e10 −1.22358 −0.611789 0.791021i 0.709550π-0.709550\pi
−0.611789 + 0.791021i 0.709550π0.709550\pi
3232 − 6.07400e9i − 0.176777i
3333 0 0
3434 −3.72540e10 −0.709284
3535 − 4.33113e10i − 0.673170i
3636 0 0
3737 −2.33075e10 −0.245518 −0.122759 0.992436i 0.539174π-0.539174\pi
−0.122759 + 0.992436i 0.539174π0.539174\pi
3838 − 4.91262e10i − 0.429366i
3939 0 0
4040 −1.05017e11 −0.640972
4141 − 1.96280e11i − 1.00783i −0.863752 0.503917i 0.831892π-0.831892\pi
0.863752 0.503917i 0.168108π-0.168108\pi
4242 0 0
4343 4.39368e11 1.61640 0.808201 0.588906i 0.200441π-0.200441\pi
0.808201 + 0.588906i 0.200441π0.200441\pi
4444 2.67483e11i 0.837777i
4545 0 0
4646 9.42917e10 0.216356
4747 6.50358e11i 1.28371i 0.766825 + 0.641856i 0.221835π0.221835\pi
−0.766825 + 0.641856i 0.778165π0.778165\pi
4848 0 0
4949 −5.84714e11 −0.862126
5050 1.26327e12i 1.61698i
5151 0 0
5252 2.98389e11 0.290241
5353 − 9.88636e11i − 0.841599i −0.907154 0.420800i 0.861750π-0.861750\pi
0.907154 0.420800i 0.138250π-0.138250\pi
5454 0 0
5555 4.62467e12 3.03768
5656 − 2.26731e11i − 0.131279i
5757 0 0
5858 −2.75169e12 −1.24624
5959 − 3.21661e11i − 0.129251i −0.997910 0.0646255i 0.979415π-0.979415\pi
0.997910 0.0646255i 0.0205853π-0.0205853\pi
6060 0 0
6161 2.51765e12 0.801101 0.400551 0.916275i 0.368819π-0.368819\pi
0.400551 + 0.916275i 0.368819π0.368819\pi
6262 3.04690e12i 0.865200i
6363 0 0
6464 −5.49756e11 −0.125000
6565 − 5.15901e12i − 1.05238i
6666 0 0
6767 −7.51002e12 −1.23913 −0.619566 0.784945i 0.712691π-0.712691\pi
−0.619566 + 0.784945i 0.712691π0.712691\pi
6868 3.37184e12i 0.501539i
6969 0 0
7070 −3.92009e12 −0.476003
7171 − 1.69163e13i − 1.85993i −0.367646 0.929966i 0.619836π-0.619836\pi
0.367646 0.929966i 0.380164π-0.380164\pi
7272 0 0
7373 −5.98095e12 −0.541390 −0.270695 0.962665i 0.587254π-0.587254\pi
−0.270695 + 0.962665i 0.587254π0.587254\pi
7474 2.10955e12i 0.173608i
7575 0 0
7676 −4.44639e12 −0.303608
7777 9.98467e12i 0.622155i
7878 0 0
7979 −2.06435e13 −1.07496 −0.537482 0.843275i 0.680624π-0.680624\pi
−0.537482 + 0.843275i 0.680624π0.680624\pi
8080 9.50504e12i 0.453236i
8181 0 0
8282 −1.77652e13 −0.712646
8383 − 1.20159e12i − 0.0442800i −0.999755 0.0221400i 0.992952π-0.992952\pi
0.999755 0.0221400i 0.00704796π-0.00704796\pi
8484 0 0
8585 5.82977e13 1.81852
8686 − 3.97671e13i − 1.14297i
8787 0 0
8888 2.42098e13 0.592397
8989 − 7.62718e12i − 0.172438i −0.996276 0.0862192i 0.972521π-0.972521\pi
0.996276 0.0862192i 0.0274786π-0.0274786\pi
9090 0 0
9191 1.11383e13 0.215541
9292 − 8.53431e12i − 0.152987i
9393 0 0
9494 5.88637e13 0.907722
9595 7.68762e13i 1.10085i
9696 0 0
9797 −4.73358e13 −0.585852 −0.292926 0.956135i 0.594629π-0.594629\pi
−0.292926 + 0.956135i 0.594629π0.594629\pi
9898 5.29223e13i 0.609615i
9999 0 0
100100 1.14338e14 1.14338
101101 1.72827e14i 1.61198i 0.591926 + 0.805992i 0.298368π0.298368\pi
−0.591926 + 0.805992i 0.701632π0.701632\pi
102102 0 0
103103 1.89084e13 0.153743 0.0768715 0.997041i 0.475507π-0.475507\pi
0.0768715 + 0.997041i 0.475507π0.475507\pi
104104 − 2.70070e13i − 0.205231i
105105 0 0
106106 −8.94811e13 −0.595101
107107 5.00344e13i 0.311589i 0.987790 + 0.155794i 0.0497937π0.0497937\pi
−0.987790 + 0.155794i 0.950206π0.950206\pi
108108 0 0
109109 −2.57177e13 −0.140684 −0.0703422 0.997523i 0.522409π-0.522409\pi
−0.0703422 + 0.997523i 0.522409π0.522409\pi
110110 − 4.18578e14i − 2.14796i
111111 0 0
112112 −2.05214e13 −0.0928283
113113 − 6.88029e13i − 0.292454i −0.989251 0.146227i 0.953287π-0.953287\pi
0.989251 0.146227i 0.0467130π-0.0467130\pi
114114 0 0
115115 −1.47555e14 −0.554712
116116 2.49054e14i 0.881227i
117117 0 0
118118 −2.91134e13 −0.0913942
119119 1.25865e14i 0.372457i
120120 0 0
121121 −6.86390e14 −1.80748
122122 − 2.27872e14i − 0.566464i
123123 0 0
124124 2.75774e14 0.611789
125125 − 1.11238e15i − 2.33282i
126126 0 0
127127 5.48895e14 1.03006 0.515031 0.857171i 0.327780π-0.327780\pi
0.515031 + 0.857171i 0.327780π0.327780\pi
128128 4.97582e13i 0.0883883i
129129 0 0
130130 −4.66940e14 −0.744145
131131 − 1.05117e14i − 0.158773i −0.996844 0.0793863i 0.974704π-0.974704\pi
0.996844 0.0793863i 0.0252961π-0.0252961\pi
132132 0 0
133133 −1.65976e14 −0.225467
134134 6.79729e14i 0.876198i
135135 0 0
136136 3.05185e14 0.354642
137137 6.72926e14i 0.742888i 0.928455 + 0.371444i 0.121137π0.121137\pi
−0.928455 + 0.371444i 0.878863π0.878863\pi
138138 0 0
139139 −7.24414e14 −0.722575 −0.361288 0.932454i 0.617663π-0.617663\pi
−0.361288 + 0.932454i 0.617663π0.617663\pi
140140 3.54806e14i 0.336585i
141141 0 0
142142 −1.53109e15 −1.31517
143143 1.18932e15i 0.972628i
144144 0 0
145145 4.30604e15 3.19523
146146 5.41334e14i 0.382821i
147147 0 0
148148 1.90935e14 0.122759
149149 3.96437e14i 0.243148i 0.992582 + 0.121574i 0.0387941π0.0387941\pi
−0.992582 + 0.121574i 0.961206π0.961206\pi
150150 0 0
151151 7.45907e14 0.416722 0.208361 0.978052i 0.433187π-0.433187\pi
0.208361 + 0.978052i 0.433187π0.433187\pi
152152 4.02442e14i 0.214683i
153153 0 0
154154 9.03710e14 0.439930
155155 − 4.76801e15i − 2.21827i
156156 0 0
157157 1.86875e15 0.794791 0.397395 0.917648i 0.369914π-0.369914\pi
0.397395 + 0.917648i 0.369914π0.369914\pi
158158 1.86844e15i 0.760114i
159159 0 0
160160 8.60298e14 0.320486
161161 − 3.18570e14i − 0.113612i
162162 0 0
163163 −5.26008e15 −1.72060 −0.860299 0.509790i 0.829723π-0.829723\pi
−0.860299 + 0.509790i 0.829723π0.829723\pi
164164 1.60793e15i 0.503917i
165165 0 0
166166 −1.08755e14 −0.0313107
167167 3.79444e15i 1.04745i 0.851888 + 0.523723i 0.175457π0.175457\pi
−0.851888 + 0.523723i 0.824543π0.824543\pi
168168 0 0
169169 −2.61064e15 −0.663041
170170 − 5.27651e15i − 1.28589i
171171 0 0
172172 −3.59930e15 −0.808201
173173 − 5.74435e15i − 1.23856i −0.785169 0.619281i 0.787424π-0.787424\pi
0.785169 0.619281i 0.212576π-0.212576\pi
174174 0 0
175175 4.26803e15 0.849104
176176 − 2.19122e15i − 0.418888i
177177 0 0
178178 −6.90334e14 −0.121932
179179 7.92944e15i 1.34670i 0.739323 + 0.673351i 0.235146π0.235146\pi
−0.739323 + 0.673351i 0.764854π0.764854\pi
180180 0 0
181181 −6.66038e15 −1.04652 −0.523262 0.852172i 0.675285π-0.675285\pi
−0.523262 + 0.852172i 0.675285π0.675285\pi
182182 − 1.00812e15i − 0.152410i
183183 0 0
184184 −7.72438e14 −0.108178
185185 − 3.30119e15i − 0.445110i
186186 0 0
187187 −1.34395e16 −1.68071
188188 − 5.32774e15i − 0.641856i
189189 0 0
190190 6.95804e15 0.778416
191191 6.78546e15i 0.731721i 0.930670 + 0.365861i 0.119225π0.119225\pi
−0.930670 + 0.365861i 0.880775π0.880775\pi
192192 0 0
193193 −4.51288e15 −0.452431 −0.226216 0.974077i 0.572635π-0.572635\pi
−0.226216 + 0.974077i 0.572635π0.572635\pi
194194 4.28435e15i 0.414260i
195195 0 0
196196 4.78998e15 0.431063
197197 − 2.05504e15i − 0.178466i −0.996011 0.0892332i 0.971558π-0.971558\pi
0.996011 0.0892332i 0.0284416π-0.0284416\pi
198198 0 0
199199 1.42689e16 1.15457 0.577285 0.816543i 0.304112π-0.304112\pi
0.577285 + 0.816543i 0.304112π0.304112\pi
200200 − 1.03487e16i − 0.808492i
201201 0 0
202202 1.56425e16 1.13985
203203 9.29674e15i 0.654423i
204204 0 0
205205 2.78003e16 1.82714
206206 − 1.71140e15i − 0.108713i
207207 0 0
208208 −2.44440e15 −0.145121
209209 − 1.77225e16i − 1.01742i
210210 0 0
211211 −1.56308e16 −0.839465 −0.419733 0.907648i 0.637876π-0.637876\pi
−0.419733 + 0.907648i 0.637876π0.637876\pi
212212 8.09891e15i 0.420800i
213213 0 0
214214 4.52859e15 0.220327
215215 6.22304e16i 2.93044i
216216 0 0
217217 1.02941e16 0.454331
218218 2.32770e15i 0.0994789i
219219 0 0
220220 −3.78853e16 −1.51884
221221 1.49924e16i 0.582269i
222222 0 0
223223 7.21422e15 0.263060 0.131530 0.991312i 0.458011π-0.458011\pi
0.131530 + 0.991312i 0.458011π0.458011\pi
224224 1.85738e15i 0.0656396i
225225 0 0
226226 −6.22732e15 −0.206796
227227 − 5.84982e16i − 1.88348i −0.336339 0.941741i 0.609189π-0.609189\pi
0.336339 0.941741i 0.390811π-0.390811\pi
228228 0 0
229229 2.09468e16 0.634264 0.317132 0.948381i 0.397280π-0.397280\pi
0.317132 + 0.948381i 0.397280π0.397280\pi
230230 1.33551e16i 0.392241i
231231 0 0
232232 2.25418e16 0.623122
233233 − 6.38524e16i − 1.71272i −0.516382 0.856359i 0.672721π-0.672721\pi
0.516382 0.856359i 0.327279π-0.327279\pi
234234 0 0
235235 −9.21142e16 −2.32730
236236 2.63504e15i 0.0646255i
237237 0 0
238238 1.13920e16 0.263367
239239 1.11462e16i 0.250231i 0.992142 + 0.125115i 0.0399301π0.0399301\pi
−0.992142 + 0.125115i 0.960070π0.960070\pi
240240 0 0
241241 3.07220e16 0.650623 0.325312 0.945607i 0.394531π-0.394531\pi
0.325312 + 0.945607i 0.394531π0.394531\pi
242242 6.21249e16i 1.27808i
243243 0 0
244244 −2.06246e16 −0.400551
245245 − 8.28166e16i − 1.56299i
246246 0 0
247247 −1.97702e16 −0.352478
248248 − 2.49602e16i − 0.432600i
249249 0 0
250250 −1.00681e17 −1.64955
251251 − 2.22039e16i − 0.353764i −0.984232 0.176882i 0.943399π-0.943399\pi
0.984232 0.176882i 0.0566011π-0.0566011\pi
252252 0 0
253253 3.40162e16 0.512675
254254 − 4.96803e16i − 0.728364i
255255 0 0
256256 4.50360e15 0.0625000
257257 2.15775e16i 0.291386i 0.989330 + 0.145693i 0.0465412π0.0465412\pi
−0.989330 + 0.145693i 0.953459π0.953459\pi
258258 0 0
259259 7.12726e15 0.0911642
260260 4.22626e16i 0.526190i
261261 0 0
262262 −9.51414e15 −0.112269
263263 6.35073e15i 0.0729682i 0.999334 + 0.0364841i 0.0116158π0.0116158\pi
−0.999334 + 0.0364841i 0.988384π0.988384\pi
264264 0 0
265265 1.40027e17 1.52577
266266 1.50224e16i 0.159429i
267267 0 0
268268 6.15221e16 0.619566
269269 − 2.46504e16i − 0.241856i −0.992661 0.120928i 0.961413π-0.961413\pi
0.992661 0.120928i 0.0385871π-0.0385871\pi
270270 0 0
271271 −7.97252e16 −0.742695 −0.371348 0.928494i 0.621104π-0.621104\pi
−0.371348 + 0.928494i 0.621104π0.621104\pi
272272 − 2.76221e16i − 0.250770i
273273 0 0
274274 6.09063e16 0.525301
275275 4.55730e17i 3.83159i
276276 0 0
277277 −1.03675e17 −0.828544 −0.414272 0.910153i 0.635964π-0.635964\pi
−0.414272 + 0.910153i 0.635964π0.635964\pi
278278 6.55664e16i 0.510938i
279279 0 0
280280 3.21134e16 0.238001
281281 − 1.68452e17i − 1.21768i −0.793294 0.608838i 0.791636π-0.791636\pi
0.793294 0.608838i 0.208364π-0.208364\pi
282282 0 0
283283 1.39346e17 0.958495 0.479247 0.877680i 0.340910π-0.340910\pi
0.479247 + 0.877680i 0.340910π0.340910\pi
284284 1.38578e17i 0.929966i
285285 0 0
286286 1.07645e17 0.687752
287287 6.00209e16i 0.374222i
288288 0 0
289289 −1.03846e15 −0.00616742
290290 − 3.89738e17i − 2.25937i
291291 0 0
292292 4.89960e16 0.270695
293293 − 1.86786e17i − 1.00756i −0.863832 0.503780i 0.831942π-0.831942\pi
0.863832 0.503780i 0.168058π-0.168058\pi
294294 0 0
295295 4.55587e16 0.234324
296296 − 1.72815e16i − 0.0868038i
297297 0 0
298298 3.58814e16 0.171931
299299 − 3.79464e16i − 0.177612i
300300 0 0
301301 −1.34356e17 −0.600192
302302 − 6.75118e16i − 0.294667i
303303 0 0
304304 3.64249e16 0.151804
305305 3.56591e17i 1.45235i
306306 0 0
307307 6.73138e16 0.261900 0.130950 0.991389i 0.458197π-0.458197\pi
0.130950 + 0.991389i 0.458197π0.458197\pi
308308 − 8.17944e16i − 0.311078i
309309 0 0
310310 −4.31551e17 −1.56856
311311 1.58977e17i 0.564953i 0.959274 + 0.282476i 0.0911559π0.0911559\pi
−0.959274 + 0.282476i 0.908844π0.908844\pi
312312 0 0
313313 −1.88505e17 −0.640492 −0.320246 0.947334i 0.603766π-0.603766\pi
−0.320246 + 0.947334i 0.603766π0.603766\pi
314314 − 1.69140e17i − 0.562002i
315315 0 0
316316 1.69112e17 0.537482
317317 − 2.12672e17i − 0.661142i −0.943781 0.330571i 0.892759π-0.892759\pi
0.943781 0.330571i 0.107241π-0.107241\pi
318318 0 0
319319 −9.92683e17 −2.95309
320320 − 7.78653e16i − 0.226618i
321321 0 0
322322 −2.88337e16 −0.0803358
323323 − 2.23406e17i − 0.609085i
324324 0 0
325325 5.08385e17 1.32742
326326 4.76088e17i 1.21665i
327327 0 0
328328 1.45533e17 0.356323
329329 − 1.98875e17i − 0.476660i
330330 0 0
331331 −3.85352e17 −0.885241 −0.442621 0.896709i 0.645951π-0.645951\pi
−0.442621 + 0.896709i 0.645951π0.645951\pi
332332 9.84339e15i 0.0221400i
333333 0 0
334334 3.43433e17 0.740656
335335 − 1.06369e18i − 2.24647i
336336 0 0
337337 2.35431e17 0.476929 0.238465 0.971151i 0.423356π-0.423356\pi
0.238465 + 0.971151i 0.423356π0.423356\pi
338338 2.36288e17i 0.468841i
339339 0 0
340340 −4.77575e17 −0.909262
341341 1.09918e18i 2.05017i
342342 0 0
343343 3.86197e17 0.691432
344344 3.25772e17i 0.571485i
345345 0 0
346346 −5.19919e17 −0.875796
347347 7.65501e17i 1.26369i 0.775096 + 0.631844i 0.217701π0.217701\pi
−0.775096 + 0.631844i 0.782299π0.782299\pi
348348 0 0
349349 6.36950e17 1.01001 0.505007 0.863115i 0.331490π-0.331490\pi
0.505007 + 0.863115i 0.331490π0.331490\pi
350350 − 3.86298e17i − 0.600407i
351351 0 0
352352 −1.98327e17 −0.296199
353353 − 5.61287e17i − 0.821792i −0.911682 0.410896i 0.865216π-0.865216\pi
0.911682 0.410896i 0.134784π-0.134784\pi
354354 0 0
355355 2.39596e18 3.37195
356356 6.24819e16i 0.0862192i
357357 0 0
358358 7.17691e17 0.952262
359359 − 4.77260e17i − 0.621003i −0.950573 0.310502i 0.899503π-0.899503\pi
0.950573 0.310502i 0.100497π-0.100497\pi
360360 0 0
361361 −5.04404e17 −0.631289
362362 6.02829e17i 0.740004i
363363 0 0
364364 −9.12450e16 −0.107770
365365 − 8.47119e17i − 0.981509i
366366 0 0
367367 −1.43733e17 −0.160285 −0.0801425 0.996783i 0.525538π-0.525538\pi
−0.0801425 + 0.996783i 0.525538π0.525538\pi
368368 6.99131e16i 0.0764934i
369369 0 0
370370 −2.98789e17 −0.314741
371371 3.02318e17i 0.312497i
372372 0 0
373373 −3.64226e17 −0.362584 −0.181292 0.983429i 0.558028π-0.558028\pi
−0.181292 + 0.983429i 0.558028π0.558028\pi
374374 1.21641e18i 1.18844i
375375 0 0
376376 −4.82212e17 −0.453861
377377 1.10738e18i 1.02307i
378378 0 0
379379 −7.31187e17 −0.650959 −0.325480 0.945549i 0.605526π-0.605526\pi
−0.325480 + 0.945549i 0.605526π0.605526\pi
380380 − 6.29770e17i − 0.550423i
381381 0 0
382382 6.14150e17 0.517405
383383 − 1.78744e17i − 0.147856i −0.997264 0.0739281i 0.976446π-0.976446\pi
0.997264 0.0739281i 0.0235535π-0.0235535\pi
384384 0 0
385385 −1.41419e18 −1.12793
386386 4.08459e17i 0.319917i
387387 0 0
388388 3.87775e17 0.292926
389389 1.31562e18i 0.976078i 0.872822 + 0.488039i 0.162288π0.162288\pi
−0.872822 + 0.488039i 0.837712π0.837712\pi
390390 0 0
391391 4.28801e17 0.306916
392392 − 4.33539e17i − 0.304808i
393393 0 0
394394 −1.86001e17 −0.126195
395395 − 2.92386e18i − 1.94885i
396396 0 0
397397 −2.49426e18 −1.60475 −0.802375 0.596820i 0.796431π-0.796431\pi
−0.802375 + 0.596820i 0.796431π0.796431\pi
398398 − 1.29148e18i − 0.816404i
399399 0 0
400400 −9.36657e17 −0.571690
401401 − 7.73789e17i − 0.464100i −0.972704 0.232050i 0.925457π-0.925457\pi
0.972704 0.232050i 0.0745433π-0.0745433\pi
402402 0 0
403403 1.22618e18 0.710264
404404 − 1.41580e18i − 0.805992i
405405 0 0
406406 8.41445e17 0.462747
407407 7.61032e17i 0.411379i
408408 0 0
409409 −4.10157e16 −0.0214233 −0.0107117 0.999943i 0.503410π-0.503410\pi
−0.0107117 + 0.999943i 0.503410π0.503410\pi
410410 − 2.51620e18i − 1.29199i
411411 0 0
412412 −1.54898e17 −0.0768715
413413 9.83614e16i 0.0479926i
414414 0 0
415415 1.70188e17 0.0802772
416416 2.21242e17i 0.102616i
417417 0 0
418418 −1.60406e18 −0.719426
419419 7.76233e17i 0.342369i 0.985239 + 0.171184i 0.0547594π0.0547594\pi
−0.985239 + 0.171184i 0.945241π0.945241\pi
420420 0 0
421421 −2.20820e18 −0.942027 −0.471014 0.882126i 0.656112π-0.656112\pi
−0.471014 + 0.882126i 0.656112π0.656112\pi
422422 1.41473e18i 0.593592i
423423 0 0
424424 7.33030e17 0.297550
425425 5.74484e18i 2.29380i
426426 0 0
427427 −7.69880e17 −0.297460
428428 − 4.09881e17i − 0.155794i
429429 0 0
430430 5.63245e18 2.07214
431431 − 3.01395e18i − 1.09093i −0.838135 0.545463i 0.816354π-0.816354\pi
0.838135 0.545463i 0.183646π-0.183646\pi
432432 0 0
433433 6.88938e17 0.241415 0.120708 0.992688i 0.461484π-0.461484\pi
0.120708 + 0.992688i 0.461484π0.461484\pi
434434 − 9.31719e17i − 0.321260i
435435 0 0
436436 2.10679e17 0.0703422
437437 5.65453e17i 0.185792i
438438 0 0
439439 4.08732e18 1.30073 0.650365 0.759622i 0.274616π-0.274616\pi
0.650365 + 0.759622i 0.274616π0.274616\pi
440440 3.42899e18i 1.07398i
441441 0 0
442442 1.35695e18 0.411727
443443 − 5.29962e17i − 0.158277i −0.996864 0.0791387i 0.974783π-0.974783\pi
0.996864 0.0791387i 0.0252170π-0.0252170\pi
444444 0 0
445445 1.08028e18 0.312621
446446 − 6.52957e17i − 0.186012i
447447 0 0
448448 1.68111e17 0.0464142
449449 4.27608e18i 1.16231i 0.813794 + 0.581154i 0.197399π0.197399\pi
−0.813794 + 0.581154i 0.802601π0.802601\pi
450450 0 0
451451 −6.40889e18 −1.68868
452452 5.63633e17i 0.146227i
453453 0 0
454454 −5.29465e18 −1.33182
455455 1.57759e18i 0.390763i
456456 0 0
457457 5.18206e18 1.24477 0.622385 0.782712i 0.286164π-0.286164\pi
0.622385 + 0.782712i 0.286164π0.286164\pi
458458 − 1.89589e18i − 0.448493i
459459 0 0
460460 1.20877e18 0.277356
461461 8.17907e18i 1.84841i 0.381901 + 0.924203i 0.375270π0.375270\pi
−0.381901 + 0.924203i 0.624730π0.624730\pi
462462 0 0
463463 8.52422e18 1.86891 0.934454 0.356085i 0.115889π-0.115889\pi
0.934454 + 0.356085i 0.115889π0.115889\pi
464464 − 2.04025e18i − 0.440614i
465465 0 0
466466 −5.77926e18 −1.21107
467467 − 7.76114e18i − 1.60217i −0.598554 0.801083i 0.704258π-0.704258\pi
0.598554 0.801083i 0.295742π-0.295742\pi
468468 0 0
469469 2.29651e18 0.460106
470470 8.33723e18i 1.64565i
471471 0 0
472472 2.38497e17 0.0456971
473473 − 1.43462e19i − 2.70837i
474474 0 0
475475 −7.57563e18 −1.38856
476476 − 1.03108e18i − 0.186228i
477477 0 0
478478 1.00884e18 0.176940
479479 − 1.65919e18i − 0.286780i −0.989666 0.143390i 0.954200π-0.954200\pi
0.989666 0.143390i 0.0458003π-0.0458003\pi
480480 0 0
481481 8.48962e17 0.142519
482482 − 2.78063e18i − 0.460060i
483483 0 0
484484 5.62290e18 0.903739
485485 − 6.70447e18i − 1.06212i
486486 0 0
487487 3.18312e18 0.489948 0.244974 0.969530i 0.421221π-0.421221\pi
0.244974 + 0.969530i 0.421221π0.421221\pi
488488 1.86673e18i 0.283232i
489489 0 0
490490 −7.49570e18 −1.10520
491491 − 5.12632e18i − 0.745136i −0.928005 0.372568i 0.878477π-0.878477\pi
0.928005 0.372568i 0.121523π-0.121523\pi
492492 0 0
493493 −1.25136e19 −1.76788
494494 1.78939e18i 0.249239i
495495 0 0
496496 −2.25914e18 −0.305894
497497 5.17288e18i 0.690618i
498498 0 0
499499 4.15318e18 0.539110 0.269555 0.962985i 0.413123π-0.413123\pi
0.269555 + 0.962985i 0.413123π0.413123\pi
500500 9.11258e18i 1.16641i
501501 0 0
502502 −2.00967e18 −0.250149
503503 7.46116e18i 0.915863i 0.888987 + 0.457932i 0.151410π0.151410\pi
−0.888987 + 0.457932i 0.848590π0.848590\pi
504504 0 0
505505 −2.44785e19 −2.92244
506506 − 3.07879e18i − 0.362516i
507507 0 0
508508 −4.49655e18 −0.515031
509509 − 9.48090e18i − 1.07109i −0.844507 0.535544i 0.820107π-0.820107\pi
0.844507 0.535544i 0.179893π-0.179893\pi
510510 0 0
511511 1.82893e18 0.201025
512512 − 4.07619e17i − 0.0441942i
513513 0 0
514514 1.95297e18 0.206041
515515 2.67812e18i 0.278727i
516516 0 0
517517 2.12354e19 2.15093
518518 − 6.45086e17i − 0.0644628i
519519 0 0
520520 3.82517e18 0.372073
521521 − 2.62455e18i − 0.251878i −0.992038 0.125939i 0.959806π-0.959806\pi
0.992038 0.125939i 0.0401944π-0.0401944\pi
522522 0 0
523523 1.43596e19 1.34162 0.670812 0.741627i 0.265946π-0.265946\pi
0.670812 + 0.741627i 0.265946π0.265946\pi
524524 8.61122e17i 0.0793863i
525525 0 0
526526 5.74803e17 0.0515963
527527 1.38561e19i 1.22734i
528528 0 0
529529 1.05075e19 0.906380
530530 − 1.26738e19i − 1.07888i
531531 0 0
532532 1.35967e18 0.112734
533533 7.14938e18i 0.585029i
534534 0 0
535535 −7.08667e18 −0.564892
536536 − 5.56834e18i − 0.438099i
537537 0 0
538538 −2.23110e18 −0.171018
539539 1.90920e19i 1.44454i
540540 0 0
541541 7.66465e18 0.565082 0.282541 0.959255i 0.408823π-0.408823\pi
0.282541 + 0.959255i 0.408823π0.408823\pi
542542 7.21590e18i 0.525165i
543543 0 0
544544 −2.50007e18 −0.177321
545545 − 3.64255e18i − 0.255053i
546546 0 0
547547 −1.82201e19 −1.24348 −0.621741 0.783223i 0.713574π-0.713574\pi
−0.621741 + 0.783223i 0.713574π0.713574\pi
548548 − 5.51261e18i − 0.371444i
549549 0 0
550550 4.12480e19 2.70934
551551 − 1.65014e19i − 1.07019i
552552 0 0
553553 6.31263e18 0.399148
554554 9.38359e18i 0.585869i
555555 0 0
556556 5.93440e18 0.361288
557557 6.47551e18i 0.389303i 0.980872 + 0.194651i 0.0623576π0.0623576\pi
−0.980872 + 0.194651i 0.937642π0.937642\pi
558558 0 0
559559 −1.60037e19 −0.938293
560560 − 2.90657e18i − 0.168292i
561561 0 0
562562 −1.52465e19 −0.861027
563563 2.07968e19i 1.15994i 0.814636 + 0.579972i 0.196937π0.196937\pi
−0.814636 + 0.579972i 0.803063π0.803063\pi
564564 0 0
565565 9.74497e18 0.530202
566566 − 1.26122e19i − 0.677758i
567567 0 0
568568 1.25427e19 0.657585
569569 − 4.21373e18i − 0.218213i −0.994030 0.109106i 0.965201π-0.965201\pi
0.994030 0.109106i 0.0347989π-0.0347989\pi
570570 0 0
571571 −2.22631e19 −1.12495 −0.562476 0.826814i 0.690151π-0.690151\pi
−0.562476 + 0.826814i 0.690151π0.690151\pi
572572 − 9.74292e18i − 0.486314i
573573 0 0
574574 5.43247e18 0.264615
575575 − 1.45405e19i − 0.699688i
576576 0 0
577577 3.10071e19 1.45623 0.728116 0.685454i 0.240396π-0.240396\pi
0.728116 + 0.685454i 0.240396π0.240396\pi
578578 9.39904e16i 0.00436102i
579579 0 0
580580 −3.52751e19 −1.59761
581581 3.67436e17i 0.0164418i
582582 0 0
583583 −3.22807e19 −1.41014
584584 − 4.43461e18i − 0.191410i
585585 0 0
586586 −1.69059e19 −0.712453
587587 3.87372e19i 1.61310i 0.591164 + 0.806551i 0.298669π0.298669\pi
−0.591164 + 0.806551i 0.701331π0.701331\pi
588588 0 0
589589 −1.82718e19 −0.742975
590590 − 4.12351e18i − 0.165692i
591591 0 0
592592 −1.56414e18 −0.0613796
593593 1.35053e19i 0.523747i 0.965102 + 0.261874i 0.0843403π0.0843403\pi
−0.965102 + 0.261874i 0.915660π0.915660\pi
594594 0 0
595595 −1.78270e19 −0.675242
596596 − 3.24761e18i − 0.121574i
597597 0 0
598598 −3.43452e18 −0.125591
599599 − 8.77507e18i − 0.317149i −0.987347 0.158574i 0.949310π-0.949310\pi
0.987347 0.158574i 0.0506897π-0.0506897\pi
600600 0 0
601601 −2.76952e19 −0.977874 −0.488937 0.872319i 0.662615π-0.662615\pi
−0.488937 + 0.872319i 0.662615π0.662615\pi
602602 1.21605e19i 0.424400i
603603 0 0
604604 −6.11047e18 −0.208361
605605 − 9.72175e19i − 3.27685i
606606 0 0
607607 4.45270e19 1.46657 0.733285 0.679922i 0.237986π-0.237986\pi
0.733285 + 0.679922i 0.237986π0.237986\pi
608608 − 3.29680e18i − 0.107342i
609609 0 0
610610 3.22749e19 1.02697
611611 − 2.36889e19i − 0.745172i
612612 0 0
613613 −2.30024e19 −0.707214 −0.353607 0.935394i 0.615045π-0.615045\pi
−0.353607 + 0.935394i 0.615045π0.615045\pi
614614 − 6.09255e18i − 0.185191i
615615 0 0
616616 −7.40319e18 −0.219965
617617 − 2.09667e19i − 0.615934i −0.951397 0.307967i 0.900351π-0.900351\pi
0.951397 0.307967i 0.0996486π-0.0996486\pi
618618 0 0
619619 4.78696e19 1.37475 0.687377 0.726301i 0.258762π-0.258762\pi
0.687377 + 0.726301i 0.258762π0.258762\pi
620620 3.90595e19i 1.10914i
621621 0 0
622622 1.43890e19 0.399482
623623 2.33234e18i 0.0640287i
624624 0 0
625625 7.23641e19 1.94251
626626 1.70616e19i 0.452896i
627627 0 0
628628 −1.53088e19 −0.397395
629629 9.59342e18i 0.246274i
630630 0 0
631631 −6.94907e19 −1.74470 −0.872351 0.488881i 0.837405π-0.837405\pi
−0.872351 + 0.488881i 0.837405π0.837405\pi
632632 − 1.53062e19i − 0.380057i
633633 0 0
634634 −1.92488e19 −0.467498
635635 7.77434e19i 1.86744i
636636 0 0
637637 2.12978e19 0.500449
638638 8.98475e19i 2.08815i
639639 0 0
640640 −7.04756e18 −0.160243
641641 − 3.16065e19i − 0.710837i −0.934707 0.355419i 0.884338π-0.884338\pi
0.934707 0.355419i 0.115662π-0.115662\pi
642642 0 0
643643 7.05010e19 1.55138 0.775691 0.631113i 0.217402π-0.217402\pi
0.775691 + 0.631113i 0.217402π0.217402\pi
644644 2.60973e18i 0.0568060i
645645 0 0
646646 −2.02204e19 −0.430688
647647 − 6.78089e18i − 0.142875i −0.997445 0.0714376i 0.977241π-0.977241\pi
0.997445 0.0714376i 0.0227587π-0.0227587\pi
648648 0 0
649649 −1.05028e19 −0.216567
650650 − 4.60138e19i − 0.938630i
651651 0 0
652652 4.30906e19 0.860299
653653 6.63074e19i 1.30969i 0.755762 + 0.654847i 0.227267π0.227267\pi
−0.755762 + 0.654847i 0.772733π0.772733\pi
654654 0 0
655655 1.48884e19 0.287846
656656 − 1.31721e19i − 0.251958i
657657 0 0
658658 −1.80001e19 −0.337049
659659 3.49308e19i 0.647159i 0.946201 + 0.323579i 0.104886π0.104886\pi
−0.946201 + 0.323579i 0.895114π0.895114\pi
660660 0 0
661661 4.67299e19 0.847587 0.423793 0.905759i 0.360698π-0.360698\pi
0.423793 + 0.905759i 0.360698π0.360698\pi
662662 3.48781e19i 0.625960i
663663 0 0
664664 8.90922e17 0.0156554
665665 − 2.35082e19i − 0.408759i
666666 0 0
667667 3.16725e19 0.539264
668668 − 3.10840e19i − 0.523723i
669669 0 0
670670 −9.62742e19 −1.58850
671671 − 8.22059e19i − 1.34229i
672672 0 0
673673 −3.45172e19 −0.551989 −0.275994 0.961159i 0.589007π-0.589007\pi
−0.275994 + 0.961159i 0.589007π0.589007\pi
674674 − 2.13088e19i − 0.337240i
675675 0 0
676676 2.13864e19 0.331520
677677 2.12460e18i 0.0325954i 0.999867 + 0.0162977i 0.00518795π0.00518795\pi
−0.999867 + 0.0162977i 0.994812π0.994812\pi
678678 0 0
679679 1.44749e19 0.217535
680680 4.32251e19i 0.642945i
681681 0 0
682682 9.94867e19 1.44969
683683 7.50880e19i 1.08299i 0.840703 + 0.541497i 0.182142π0.182142\pi
−0.840703 + 0.541497i 0.817858π0.817858\pi
684684 0 0
685685 −9.53106e19 −1.34681
686686 − 3.49545e19i − 0.488917i
687687 0 0
688688 2.94855e19 0.404101
689689 3.60105e19i 0.488533i
690690 0 0
691691 −1.37137e20 −1.82310 −0.911548 0.411194i 0.865112π-0.865112\pi
−0.911548 + 0.411194i 0.865112π0.865112\pi
692692 4.70577e19i 0.619281i
693693 0 0
694694 6.92853e19 0.893562
695695 − 1.02603e20i − 1.30999i
696696 0 0
697697 −8.07892e19 −1.01094
698698 − 5.76501e19i − 0.714187i
699699 0 0
700700 −3.49637e19 −0.424552
701701 − 1.11819e20i − 1.34428i −0.740423 0.672141i 0.765375π-0.765375\pi
0.740423 0.672141i 0.234625π-0.234625\pi
702702 0 0
703703 −1.26507e19 −0.149082
704704 1.79505e19i 0.209444i
705705 0 0
706706 −5.08019e19 −0.581094
707707 − 5.28491e19i − 0.598552i
708708 0 0
709709 1.37741e20 1.52947 0.764735 0.644345i 0.222870π-0.222870\pi
0.764735 + 0.644345i 0.222870π0.222870\pi
710710 − 2.16858e20i − 2.38433i
711711 0 0
712712 5.65522e18 0.0609662
713713 − 3.50705e19i − 0.374382i
714714 0 0
715715 −1.68451e20 −1.76332
716716 − 6.49580e19i − 0.673351i
717717 0 0
718718 −4.31966e19 −0.439116
719719 8.44075e19i 0.849726i 0.905258 + 0.424863i 0.139678π0.139678\pi
−0.905258 + 0.424863i 0.860322π0.860322\pi
720720 0 0
721721 −5.78206e18 −0.0570868
722722 4.56535e19i 0.446389i
723723 0 0
724724 5.45618e19 0.523262
725725 4.24331e20i 4.03031i
726726 0 0
727727 1.69431e20 1.57853 0.789265 0.614053i 0.210462π-0.210462\pi
0.789265 + 0.614053i 0.210462π0.210462\pi
728728 8.25855e18i 0.0762052i
729729 0 0
730730 −7.66725e19 −0.694032
731731 − 1.80845e20i − 1.62138i
732732 0 0
733733 −1.02023e20 −0.897366 −0.448683 0.893691i 0.648107π-0.648107\pi
−0.448683 + 0.893691i 0.648107π0.648107\pi
734734 1.30092e19i 0.113339i
735735 0 0
736736 6.32781e18 0.0540890
737737 2.45215e20i 2.07623i
738738 0 0
739739 −7.22807e19 −0.600498 −0.300249 0.953861i 0.597070π-0.597070\pi
−0.300249 + 0.953861i 0.597070π0.597070\pi
740740 2.70433e19i 0.222555i
741741 0 0
742742 2.73627e19 0.220969
743743 − 1.06884e20i − 0.855047i −0.904004 0.427524i 0.859386π-0.859386\pi
0.904004 0.427524i 0.140614π-0.140614\pi
744744 0 0
745745 −5.61498e19 −0.440813
746746 3.29660e19i 0.256386i
747747 0 0
748748 1.10097e20 0.840356
749749 − 1.53001e19i − 0.115697i
750750 0 0
751751 1.37977e20 1.02406 0.512031 0.858967i 0.328893π-0.328893\pi
0.512031 + 0.858967i 0.328893π0.328893\pi
752752 4.36448e19i 0.320928i
753753 0 0
754754 1.00228e20 0.723422
755755 1.05647e20i 0.755493i
756756 0 0
757757 1.88357e20 1.32224 0.661122 0.750279i 0.270081π-0.270081\pi
0.661122 + 0.750279i 0.270081π0.270081\pi
758758 6.61795e19i 0.460298i
759759 0 0
760760 −5.70003e19 −0.389208
761761 − 2.00035e20i − 1.35336i −0.736278 0.676680i 0.763418π-0.763418\pi
0.736278 0.676680i 0.236582π-0.236582\pi
762762 0 0
763763 7.86427e18 0.0522380
764764 − 5.55865e19i − 0.365861i
765765 0 0
766766 −1.61780e19 −0.104550
767767 1.17163e19i 0.0750278i
768768 0 0
769769 6.35757e19 0.399767 0.199883 0.979820i 0.435944π-0.435944\pi
0.199883 + 0.979820i 0.435944π0.435944\pi
770770 1.27998e20i 0.797568i
771771 0 0
772772 3.69695e19 0.226216
773773 − 2.19200e20i − 1.32918i −0.747208 0.664591i 0.768606π-0.768606\pi
0.747208 0.664591i 0.231394π-0.231394\pi
774774 0 0
775775 4.69855e20 2.79803
776776 − 3.50974e19i − 0.207130i
777777 0 0
778778 1.19077e20 0.690192
779779 − 1.06535e20i − 0.611972i
780780 0 0
781781 −5.52348e20 −3.11641
782782 − 3.88107e19i − 0.217022i
783783 0 0
784784 −3.92395e19 −0.215532
785785 2.64682e20i 1.44091i
786786 0 0
787787 2.03403e20 1.08776 0.543880 0.839163i 0.316955π-0.316955\pi
0.543880 + 0.839163i 0.316955π0.316955\pi
788788 1.68349e19i 0.0892332i
789789 0 0
790790 −2.64638e20 −1.37804
791791 2.10394e19i 0.108592i
792792 0 0
793793 −9.17040e19 −0.465025
794794 2.25754e20i 1.13473i
795795 0 0
796796 −1.16891e20 −0.577285
797797 − 8.46452e19i − 0.414375i −0.978301 0.207188i 0.933569π-0.933569\pi
0.978301 0.207188i 0.0664311π-0.0664311\pi
798798 0 0
799799 2.67689e20 1.28766
800800 8.47765e19i 0.404246i
801801 0 0
802802 −7.00353e19 −0.328168
803803 1.95289e20i 0.907128i
804804 0 0
805805 4.51211e19 0.205972
806806 − 1.10981e20i − 0.502233i
807807 0 0
808808 −1.28143e20 −0.569923
809809 − 1.68171e20i − 0.741502i −0.928732 0.370751i 0.879100π-0.879100\pi
0.928732 0.370751i 0.120900π-0.120900\pi
810810 0 0
811811 −4.27825e20 −1.85405 −0.927023 0.375004i 0.877641π-0.877641\pi
−0.927023 + 0.375004i 0.877641π0.877641\pi
812812 − 7.61589e19i − 0.327211i
813813 0 0
814814 6.88807e19 0.290889
815815 − 7.45018e20i − 3.11935i
816816 0 0
817817 2.38477e20 0.981505
818818 3.71232e18i 0.0151486i
819819 0 0
820820 −2.27740e20 −0.913572
821821 2.05817e19i 0.0818613i 0.999162 + 0.0409307i 0.0130323π0.0130323\pi
−0.999162 + 0.0409307i 0.986968π0.986968\pi
822822 0 0
823823 −8.31992e19 −0.325327 −0.162664 0.986682i 0.552009π-0.552009\pi
−0.162664 + 0.986682i 0.552009π0.552009\pi
824824 1.40198e19i 0.0543563i
825825 0 0
826826 8.90266e18 0.0339359
827827 7.97132e19i 0.301295i 0.988588 + 0.150647i 0.0481358π0.0481358\pi
−0.988588 + 0.150647i 0.951864π0.951864\pi
828828 0 0
829829 −1.10972e20 −0.412412 −0.206206 0.978509i 0.566112π-0.566112\pi
−0.206206 + 0.978509i 0.566112π0.566112\pi
830830 − 1.54036e19i − 0.0567645i
831831 0 0
832832 2.00245e19 0.0725603
833833 2.40670e20i 0.864781i
834834 0 0
835835 −5.37429e20 −1.89896
836836 1.45183e20i 0.508711i
837837 0 0
838838 7.02566e19 0.242091
839839 1.12401e20i 0.384094i 0.981386 + 0.192047i 0.0615125π0.0615125\pi
−0.981386 + 0.192047i 0.938487π0.938487\pi
840840 0 0
841841 −6.26730e20 −2.10624
842842 1.99863e20i 0.666114i
843843 0 0
844844 1.28047e20 0.419733
845845 − 3.69761e20i − 1.20205i
846846 0 0
847847 2.09893e20 0.671141
848848 − 6.63463e19i − 0.210400i
849849 0 0
850850 5.19964e20 1.62196
851851 − 2.42814e19i − 0.0751221i
852852 0 0
853853 4.76544e20 1.45031 0.725153 0.688588i 0.241769π-0.241769\pi
0.725153 + 0.688588i 0.241769π0.241769\pi
854854 6.96816e19i 0.210336i
855855 0 0
856856 −3.70982e19 −0.110163
857857 4.54483e20i 1.33860i 0.742990 + 0.669302i 0.233407π0.233407\pi
−0.742990 + 0.669302i 0.766593π0.766593\pi
858858 0 0
859859 −1.14099e20 −0.330621 −0.165311 0.986242i 0.552863π-0.552863\pi
−0.165311 + 0.986242i 0.552863π0.552863\pi
860860 − 5.09792e20i − 1.46522i
861861 0 0
862862 −2.72791e20 −0.771401
863863 − 6.19780e20i − 1.73845i −0.494417 0.869225i 0.664618π-0.664618\pi
0.494417 0.869225i 0.335382π-0.335382\pi
864864 0 0
865865 8.13607e20 2.24544
866866 − 6.23555e19i − 0.170706i
867867 0 0
868868 −8.43296e19 −0.227165
869869 6.74047e20i 1.80116i
870870 0 0
871871 2.73548e20 0.719293
872872 − 1.90685e19i − 0.0497395i
873873 0 0
874874 5.11790e19 0.131375
875875 3.40156e20i 0.866208i
876876 0 0
877877 1.97307e20 0.494476 0.247238 0.968955i 0.420477π-0.420477\pi
0.247238 + 0.968955i 0.420477π0.420477\pi
878878 − 3.69942e20i − 0.919755i
879879 0 0
880880 3.10357e20 0.759420
881881 2.14957e18i 0.00521820i 0.999997 + 0.00260910i 0.000830503π0.000830503\pi
−0.999997 + 0.00260910i 0.999169π0.999169\pi
882882 0 0
883883 4.69149e20 1.12095 0.560474 0.828172i 0.310619π-0.310619\pi
0.560474 + 0.828172i 0.310619π0.310619\pi
884884 − 1.22817e20i − 0.291135i
885885 0 0
886886 −4.79667e19 −0.111919
887887 2.81772e20i 0.652278i 0.945322 + 0.326139i 0.105748π0.105748\pi
−0.945322 + 0.326139i 0.894252π0.894252\pi
888888 0 0
889889 −1.67848e20 −0.382476
890890 − 9.77762e19i − 0.221056i
891891 0 0
892892 −5.90989e19 −0.131530
893893 3.52997e20i 0.779490i
894894 0 0
895895 −1.12310e21 −2.44149
896896 − 1.52157e19i − 0.0328198i
897897 0 0
898898 3.87026e20 0.821876
899899 1.02345e21i 2.15650i
900900 0 0
901901 −4.06925e20 −0.844191
902902 5.80067e20i 1.19408i
903903 0 0
904904 5.10142e19 0.103398
905905 − 9.43350e20i − 1.89729i
906906 0 0
907907 1.74753e20 0.346077 0.173039 0.984915i 0.444641π-0.444641\pi
0.173039 + 0.984915i 0.444641π0.444641\pi
908908 4.79217e20i 0.941741i
909909 0 0
910910 1.42787e20 0.276311
911911 6.03814e20i 1.15951i 0.814791 + 0.579755i 0.196852π0.196852\pi
−0.814791 + 0.579755i 0.803148π0.803148\pi
912912 0 0
913913 −3.92339e19 −0.0741936
914914 − 4.69026e20i − 0.880185i
915915 0 0
916916 −1.71597e20 −0.317132
917917 3.21441e19i 0.0589544i
918918 0 0
919919 9.04375e19 0.163358 0.0816790 0.996659i 0.473972π-0.473972\pi
0.0816790 + 0.996659i 0.473972π0.473972\pi
920920 − 1.09405e20i − 0.196120i
921921 0 0
922922 7.40285e20 1.30702
923923 6.16166e20i 1.07966i
924924 0 0
925925 3.25309e20 0.561441
926926 − 7.71524e20i − 1.32152i
927927 0 0
928928 −1.84662e20 −0.311561
929929 − 7.02021e20i − 1.17555i −0.809025 0.587774i 0.800005π-0.800005\pi
0.809025 0.587774i 0.199995π-0.199995\pi
930930 0 0
931931 −3.17367e20 −0.523496
932932 5.23079e20i 0.856359i
933933 0 0
934934 −7.02458e20 −1.13290
935935 − 1.90352e21i − 3.04703i
936936 0 0
937937 −8.05744e20 −1.27063 −0.635316 0.772252i 0.719130π-0.719130\pi
−0.635316 + 0.772252i 0.719130π0.719130\pi
938938 − 2.07856e20i − 0.325344i
939939 0 0
940940 7.54600e20 1.16365
941941 − 1.02365e21i − 1.56684i −0.621494 0.783419i 0.713474π-0.713474\pi
0.621494 0.783419i 0.286526π-0.286526\pi
942942 0 0
943943 2.04482e20 0.308370
944944 − 2.15863e19i − 0.0323127i
945945 0 0
946946 −1.29847e21 −1.91511
947947 9.74103e20i 1.42612i 0.701104 + 0.713059i 0.252691π0.252691\pi
−0.701104 + 0.713059i 0.747309π0.747309\pi
948948 0 0
949949 2.17853e20 0.314267
950950 6.85668e20i 0.981857i
951951 0 0
952952 −9.33231e19 −0.131683
953953 1.36890e20i 0.191743i 0.995394 + 0.0958716i 0.0305638π0.0305638\pi
−0.995394 + 0.0958716i 0.969436π0.969436\pi
954954 0 0
955955 −9.61066e20 −1.32657
956956 − 9.13095e19i − 0.125115i
957957 0 0
958958 −1.50173e20 −0.202784
959959 − 2.05776e20i − 0.275844i
960960 0 0
961961 3.76308e20 0.497141
962962 − 7.68392e19i − 0.100776i
963963 0 0
964964 −2.51674e20 −0.325312
965965 − 6.39186e20i − 0.820231i
966966 0 0
967967 9.51200e20 1.20306 0.601529 0.798851i 0.294558π-0.294558\pi
0.601529 + 0.798851i 0.294558π0.294558\pi
968968 − 5.08927e20i − 0.639040i
969969 0 0
970970 −6.06819e20 −0.751030
971971 1.16400e21i 1.43027i 0.698987 + 0.715134i 0.253634π0.253634\pi
−0.698987 + 0.715134i 0.746366π0.746366\pi
972972 0 0
973973 2.21520e20 0.268302
974974 − 2.88103e20i − 0.346445i
975975 0 0
976976 1.68957e20 0.200275
977977 − 1.27929e21i − 1.50559i −0.658253 0.752796i 0.728704π-0.728704\pi
0.658253 0.752796i 0.271296π-0.271296\pi
978978 0 0
979979 −2.49041e20 −0.288930
980980 6.78434e20i 0.781493i
981981 0 0
982982 −4.63982e20 −0.526890
983983 − 1.39777e21i − 1.57602i −0.615660 0.788012i 0.711111π-0.711111\pi
0.615660 0.788012i 0.288889π-0.288889\pi
984984 0 0
985985 2.91068e20 0.323549
986986 1.13260e21i 1.25008i
987987 0 0
988988 1.61957e20 0.176239
989989 4.57728e20i 0.494576i
990990 0 0
991991 2.30863e20 0.245945 0.122972 0.992410i 0.460757π-0.460757\pi
0.122972 + 0.992410i 0.460757π0.460757\pi
992992 2.04474e20i 0.216300i
993993 0 0
994994 4.68196e20 0.488340
995995 2.02100e21i 2.09317i
996996 0 0
997997 6.42123e20 0.655771 0.327885 0.944718i 0.393664π-0.393664\pi
0.327885 + 0.944718i 0.393664π0.393664\pi
998998 − 3.75903e20i − 0.381208i
999999 0 0
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 18.15.b.b.17.2 4
3.2 odd 2 inner 18.15.b.b.17.3 yes 4
4.3 odd 2 144.15.e.b.17.4 4
12.11 even 2 144.15.e.b.17.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
18.15.b.b.17.2 4 1.1 even 1 trivial
18.15.b.b.17.3 yes 4 3.2 odd 2 inner
144.15.e.b.17.1 4 12.11 even 2
144.15.e.b.17.4 4 4.3 odd 2