Properties

Label 18.15.b.b.17.2
Level $18$
Weight $15$
Character 18.17
Analytic conductor $22.379$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [18,15,Mod(17,18)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(18, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1]))
 
N = Newforms(chi, 15, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("18.17");
 
S:= CuspForms(chi, 15);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 18 = 2 \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 15 \)
Character orbit: \([\chi]\) \(=\) 18.b (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(22.3792142673\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\mathbb{Q}[x]/(x^{4} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 2x^{3} - 44875x^{2} + 44876x + 503643366 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 2^{7}\cdot 3^{8} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 17.2
Root \(150.301 - 1.41421i\) of defining polynomial
Character \(\chi\) \(=\) 18.17
Dual form 18.15.b.b.17.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-90.5097i q^{2} -8192.00 q^{4} +141636. i q^{5} -305793. q^{7} +741455. i q^{8} +1.28194e7 q^{10} -3.26518e7i q^{11} -3.64244e7 q^{13} +2.76772e7i q^{14} +6.71089e7 q^{16} -4.11602e8i q^{17} +5.42773e8 q^{19} -1.16028e9i q^{20} -2.95530e9 q^{22} +1.04179e9i q^{23} -1.39573e10 q^{25} +3.29676e9i q^{26} +2.50505e9 q^{28} -3.04021e10i q^{29} -3.36638e10 q^{31} -6.07400e9i q^{32} -3.72540e10 q^{34} -4.33113e10i q^{35} -2.33075e10 q^{37} -4.91262e10i q^{38} -1.05017e11 q^{40} -1.96280e11i q^{41} +4.39368e11 q^{43} +2.67483e11i q^{44} +9.42917e10 q^{46} +6.50358e11i q^{47} -5.84714e11 q^{49} +1.26327e12i q^{50} +2.98389e11 q^{52} -9.88636e11i q^{53} +4.62467e12 q^{55} -2.26731e11i q^{56} -2.75169e12 q^{58} -3.21661e11i q^{59} +2.51765e12 q^{61} +3.04690e12i q^{62} -5.49756e11 q^{64} -5.15901e12i q^{65} -7.51002e12 q^{67} +3.37184e12i q^{68} -3.92009e12 q^{70} -1.69163e13i q^{71} -5.98095e12 q^{73} +2.10955e12i q^{74} -4.44639e12 q^{76} +9.98467e12i q^{77} -2.06435e13 q^{79} +9.50504e12i q^{80} -1.77652e13 q^{82} -1.20159e12i q^{83} +5.82977e13 q^{85} -3.97671e13i q^{86} +2.42098e13 q^{88} -7.62718e12i q^{89} +1.11383e13 q^{91} -8.53431e12i q^{92} +5.88637e13 q^{94} +7.68762e13i q^{95} -4.73358e13 q^{97} +5.29223e13i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 32768 q^{4} + 2659664 q^{7} + 1577472 q^{10} + 60092672 q^{13} + 268435456 q^{16} - 220734784 q^{19} - 6354180096 q^{22} - 51043883876 q^{25} - 21787967488 q^{28} - 106337705584 q^{31} - 139572822528 q^{34}+ \cdots + 67539358987904 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/18\mathbb{Z}\right)^\times\).

\(n\) \(11\)
\(\chi(n)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) − 90.5097i − 0.707107i
\(3\) 0 0
\(4\) −8192.00 −0.500000
\(5\) 141636.i 1.81294i 0.422268 + 0.906471i \(0.361234\pi\)
−0.422268 + 0.906471i \(0.638766\pi\)
\(6\) 0 0
\(7\) −305793. −0.371313 −0.185657 0.982615i \(-0.559441\pi\)
−0.185657 + 0.982615i \(0.559441\pi\)
\(8\) 741455.i 0.353553i
\(9\) 0 0
\(10\) 1.28194e7 1.28194
\(11\) − 3.26518e7i − 1.67555i −0.546013 0.837777i \(-0.683855\pi\)
0.546013 0.837777i \(-0.316145\pi\)
\(12\) 0 0
\(13\) −3.64244e7 −0.580482 −0.290241 0.956954i \(-0.593735\pi\)
−0.290241 + 0.956954i \(0.593735\pi\)
\(14\) 2.76772e7i 0.262558i
\(15\) 0 0
\(16\) 6.71089e7 0.250000
\(17\) − 4.11602e8i − 1.00308i −0.865135 0.501539i \(-0.832767\pi\)
0.865135 0.501539i \(-0.167233\pi\)
\(18\) 0 0
\(19\) 5.42773e8 0.607215 0.303608 0.952797i \(-0.401809\pi\)
0.303608 + 0.952797i \(0.401809\pi\)
\(20\) − 1.16028e9i − 0.906471i
\(21\) 0 0
\(22\) −2.95530e9 −1.18479
\(23\) 1.04179e9i 0.305973i 0.988228 + 0.152987i \(0.0488892\pi\)
−0.988228 + 0.152987i \(0.951111\pi\)
\(24\) 0 0
\(25\) −1.39573e10 −2.28676
\(26\) 3.29676e9i 0.410463i
\(27\) 0 0
\(28\) 2.50505e9 0.185657
\(29\) − 3.04021e10i − 1.76245i −0.472693 0.881227i \(-0.656718\pi\)
0.472693 0.881227i \(-0.343282\pi\)
\(30\) 0 0
\(31\) −3.36638e10 −1.22358 −0.611789 0.791021i \(-0.709550\pi\)
−0.611789 + 0.791021i \(0.709550\pi\)
\(32\) − 6.07400e9i − 0.176777i
\(33\) 0 0
\(34\) −3.72540e10 −0.709284
\(35\) − 4.33113e10i − 0.673170i
\(36\) 0 0
\(37\) −2.33075e10 −0.245518 −0.122759 0.992436i \(-0.539174\pi\)
−0.122759 + 0.992436i \(0.539174\pi\)
\(38\) − 4.91262e10i − 0.429366i
\(39\) 0 0
\(40\) −1.05017e11 −0.640972
\(41\) − 1.96280e11i − 1.00783i −0.863752 0.503917i \(-0.831892\pi\)
0.863752 0.503917i \(-0.168108\pi\)
\(42\) 0 0
\(43\) 4.39368e11 1.61640 0.808201 0.588906i \(-0.200441\pi\)
0.808201 + 0.588906i \(0.200441\pi\)
\(44\) 2.67483e11i 0.837777i
\(45\) 0 0
\(46\) 9.42917e10 0.216356
\(47\) 6.50358e11i 1.28371i 0.766825 + 0.641856i \(0.221835\pi\)
−0.766825 + 0.641856i \(0.778165\pi\)
\(48\) 0 0
\(49\) −5.84714e11 −0.862126
\(50\) 1.26327e12i 1.61698i
\(51\) 0 0
\(52\) 2.98389e11 0.290241
\(53\) − 9.88636e11i − 0.841599i −0.907154 0.420800i \(-0.861750\pi\)
0.907154 0.420800i \(-0.138250\pi\)
\(54\) 0 0
\(55\) 4.62467e12 3.03768
\(56\) − 2.26731e11i − 0.131279i
\(57\) 0 0
\(58\) −2.75169e12 −1.24624
\(59\) − 3.21661e11i − 0.129251i −0.997910 0.0646255i \(-0.979415\pi\)
0.997910 0.0646255i \(-0.0205853\pi\)
\(60\) 0 0
\(61\) 2.51765e12 0.801101 0.400551 0.916275i \(-0.368819\pi\)
0.400551 + 0.916275i \(0.368819\pi\)
\(62\) 3.04690e12i 0.865200i
\(63\) 0 0
\(64\) −5.49756e11 −0.125000
\(65\) − 5.15901e12i − 1.05238i
\(66\) 0 0
\(67\) −7.51002e12 −1.23913 −0.619566 0.784945i \(-0.712691\pi\)
−0.619566 + 0.784945i \(0.712691\pi\)
\(68\) 3.37184e12i 0.501539i
\(69\) 0 0
\(70\) −3.92009e12 −0.476003
\(71\) − 1.69163e13i − 1.85993i −0.367646 0.929966i \(-0.619836\pi\)
0.367646 0.929966i \(-0.380164\pi\)
\(72\) 0 0
\(73\) −5.98095e12 −0.541390 −0.270695 0.962665i \(-0.587254\pi\)
−0.270695 + 0.962665i \(0.587254\pi\)
\(74\) 2.10955e12i 0.173608i
\(75\) 0 0
\(76\) −4.44639e12 −0.303608
\(77\) 9.98467e12i 0.622155i
\(78\) 0 0
\(79\) −2.06435e13 −1.07496 −0.537482 0.843275i \(-0.680624\pi\)
−0.537482 + 0.843275i \(0.680624\pi\)
\(80\) 9.50504e12i 0.453236i
\(81\) 0 0
\(82\) −1.77652e13 −0.712646
\(83\) − 1.20159e12i − 0.0442800i −0.999755 0.0221400i \(-0.992952\pi\)
0.999755 0.0221400i \(-0.00704796\pi\)
\(84\) 0 0
\(85\) 5.82977e13 1.81852
\(86\) − 3.97671e13i − 1.14297i
\(87\) 0 0
\(88\) 2.42098e13 0.592397
\(89\) − 7.62718e12i − 0.172438i −0.996276 0.0862192i \(-0.972521\pi\)
0.996276 0.0862192i \(-0.0274786\pi\)
\(90\) 0 0
\(91\) 1.11383e13 0.215541
\(92\) − 8.53431e12i − 0.152987i
\(93\) 0 0
\(94\) 5.88637e13 0.907722
\(95\) 7.68762e13i 1.10085i
\(96\) 0 0
\(97\) −4.73358e13 −0.585852 −0.292926 0.956135i \(-0.594629\pi\)
−0.292926 + 0.956135i \(0.594629\pi\)
\(98\) 5.29223e13i 0.609615i
\(99\) 0 0
\(100\) 1.14338e14 1.14338
\(101\) 1.72827e14i 1.61198i 0.591926 + 0.805992i \(0.298368\pi\)
−0.591926 + 0.805992i \(0.701632\pi\)
\(102\) 0 0
\(103\) 1.89084e13 0.153743 0.0768715 0.997041i \(-0.475507\pi\)
0.0768715 + 0.997041i \(0.475507\pi\)
\(104\) − 2.70070e13i − 0.205231i
\(105\) 0 0
\(106\) −8.94811e13 −0.595101
\(107\) 5.00344e13i 0.311589i 0.987790 + 0.155794i \(0.0497937\pi\)
−0.987790 + 0.155794i \(0.950206\pi\)
\(108\) 0 0
\(109\) −2.57177e13 −0.140684 −0.0703422 0.997523i \(-0.522409\pi\)
−0.0703422 + 0.997523i \(0.522409\pi\)
\(110\) − 4.18578e14i − 2.14796i
\(111\) 0 0
\(112\) −2.05214e13 −0.0928283
\(113\) − 6.88029e13i − 0.292454i −0.989251 0.146227i \(-0.953287\pi\)
0.989251 0.146227i \(-0.0467130\pi\)
\(114\) 0 0
\(115\) −1.47555e14 −0.554712
\(116\) 2.49054e14i 0.881227i
\(117\) 0 0
\(118\) −2.91134e13 −0.0913942
\(119\) 1.25865e14i 0.372457i
\(120\) 0 0
\(121\) −6.86390e14 −1.80748
\(122\) − 2.27872e14i − 0.566464i
\(123\) 0 0
\(124\) 2.75774e14 0.611789
\(125\) − 1.11238e15i − 2.33282i
\(126\) 0 0
\(127\) 5.48895e14 1.03006 0.515031 0.857171i \(-0.327780\pi\)
0.515031 + 0.857171i \(0.327780\pi\)
\(128\) 4.97582e13i 0.0883883i
\(129\) 0 0
\(130\) −4.66940e14 −0.744145
\(131\) − 1.05117e14i − 0.158773i −0.996844 0.0793863i \(-0.974704\pi\)
0.996844 0.0793863i \(-0.0252961\pi\)
\(132\) 0 0
\(133\) −1.65976e14 −0.225467
\(134\) 6.79729e14i 0.876198i
\(135\) 0 0
\(136\) 3.05185e14 0.354642
\(137\) 6.72926e14i 0.742888i 0.928455 + 0.371444i \(0.121137\pi\)
−0.928455 + 0.371444i \(0.878863\pi\)
\(138\) 0 0
\(139\) −7.24414e14 −0.722575 −0.361288 0.932454i \(-0.617663\pi\)
−0.361288 + 0.932454i \(0.617663\pi\)
\(140\) 3.54806e14i 0.336585i
\(141\) 0 0
\(142\) −1.53109e15 −1.31517
\(143\) 1.18932e15i 0.972628i
\(144\) 0 0
\(145\) 4.30604e15 3.19523
\(146\) 5.41334e14i 0.382821i
\(147\) 0 0
\(148\) 1.90935e14 0.122759
\(149\) 3.96437e14i 0.243148i 0.992582 + 0.121574i \(0.0387941\pi\)
−0.992582 + 0.121574i \(0.961206\pi\)
\(150\) 0 0
\(151\) 7.45907e14 0.416722 0.208361 0.978052i \(-0.433187\pi\)
0.208361 + 0.978052i \(0.433187\pi\)
\(152\) 4.02442e14i 0.214683i
\(153\) 0 0
\(154\) 9.03710e14 0.439930
\(155\) − 4.76801e15i − 2.21827i
\(156\) 0 0
\(157\) 1.86875e15 0.794791 0.397395 0.917648i \(-0.369914\pi\)
0.397395 + 0.917648i \(0.369914\pi\)
\(158\) 1.86844e15i 0.760114i
\(159\) 0 0
\(160\) 8.60298e14 0.320486
\(161\) − 3.18570e14i − 0.113612i
\(162\) 0 0
\(163\) −5.26008e15 −1.72060 −0.860299 0.509790i \(-0.829723\pi\)
−0.860299 + 0.509790i \(0.829723\pi\)
\(164\) 1.60793e15i 0.503917i
\(165\) 0 0
\(166\) −1.08755e14 −0.0313107
\(167\) 3.79444e15i 1.04745i 0.851888 + 0.523723i \(0.175457\pi\)
−0.851888 + 0.523723i \(0.824543\pi\)
\(168\) 0 0
\(169\) −2.61064e15 −0.663041
\(170\) − 5.27651e15i − 1.28589i
\(171\) 0 0
\(172\) −3.59930e15 −0.808201
\(173\) − 5.74435e15i − 1.23856i −0.785169 0.619281i \(-0.787424\pi\)
0.785169 0.619281i \(-0.212576\pi\)
\(174\) 0 0
\(175\) 4.26803e15 0.849104
\(176\) − 2.19122e15i − 0.418888i
\(177\) 0 0
\(178\) −6.90334e14 −0.121932
\(179\) 7.92944e15i 1.34670i 0.739323 + 0.673351i \(0.235146\pi\)
−0.739323 + 0.673351i \(0.764854\pi\)
\(180\) 0 0
\(181\) −6.66038e15 −1.04652 −0.523262 0.852172i \(-0.675285\pi\)
−0.523262 + 0.852172i \(0.675285\pi\)
\(182\) − 1.00812e15i − 0.152410i
\(183\) 0 0
\(184\) −7.72438e14 −0.108178
\(185\) − 3.30119e15i − 0.445110i
\(186\) 0 0
\(187\) −1.34395e16 −1.68071
\(188\) − 5.32774e15i − 0.641856i
\(189\) 0 0
\(190\) 6.95804e15 0.778416
\(191\) 6.78546e15i 0.731721i 0.930670 + 0.365861i \(0.119225\pi\)
−0.930670 + 0.365861i \(0.880775\pi\)
\(192\) 0 0
\(193\) −4.51288e15 −0.452431 −0.226216 0.974077i \(-0.572635\pi\)
−0.226216 + 0.974077i \(0.572635\pi\)
\(194\) 4.28435e15i 0.414260i
\(195\) 0 0
\(196\) 4.78998e15 0.431063
\(197\) − 2.05504e15i − 0.178466i −0.996011 0.0892332i \(-0.971558\pi\)
0.996011 0.0892332i \(-0.0284416\pi\)
\(198\) 0 0
\(199\) 1.42689e16 1.15457 0.577285 0.816543i \(-0.304112\pi\)
0.577285 + 0.816543i \(0.304112\pi\)
\(200\) − 1.03487e16i − 0.808492i
\(201\) 0 0
\(202\) 1.56425e16 1.13985
\(203\) 9.29674e15i 0.654423i
\(204\) 0 0
\(205\) 2.78003e16 1.82714
\(206\) − 1.71140e15i − 0.108713i
\(207\) 0 0
\(208\) −2.44440e15 −0.145121
\(209\) − 1.77225e16i − 1.01742i
\(210\) 0 0
\(211\) −1.56308e16 −0.839465 −0.419733 0.907648i \(-0.637876\pi\)
−0.419733 + 0.907648i \(0.637876\pi\)
\(212\) 8.09891e15i 0.420800i
\(213\) 0 0
\(214\) 4.52859e15 0.220327
\(215\) 6.22304e16i 2.93044i
\(216\) 0 0
\(217\) 1.02941e16 0.454331
\(218\) 2.32770e15i 0.0994789i
\(219\) 0 0
\(220\) −3.78853e16 −1.51884
\(221\) 1.49924e16i 0.582269i
\(222\) 0 0
\(223\) 7.21422e15 0.263060 0.131530 0.991312i \(-0.458011\pi\)
0.131530 + 0.991312i \(0.458011\pi\)
\(224\) 1.85738e15i 0.0656396i
\(225\) 0 0
\(226\) −6.22732e15 −0.206796
\(227\) − 5.84982e16i − 1.88348i −0.336339 0.941741i \(-0.609189\pi\)
0.336339 0.941741i \(-0.390811\pi\)
\(228\) 0 0
\(229\) 2.09468e16 0.634264 0.317132 0.948381i \(-0.397280\pi\)
0.317132 + 0.948381i \(0.397280\pi\)
\(230\) 1.33551e16i 0.392241i
\(231\) 0 0
\(232\) 2.25418e16 0.623122
\(233\) − 6.38524e16i − 1.71272i −0.516382 0.856359i \(-0.672721\pi\)
0.516382 0.856359i \(-0.327279\pi\)
\(234\) 0 0
\(235\) −9.21142e16 −2.32730
\(236\) 2.63504e15i 0.0646255i
\(237\) 0 0
\(238\) 1.13920e16 0.263367
\(239\) 1.11462e16i 0.250231i 0.992142 + 0.125115i \(0.0399301\pi\)
−0.992142 + 0.125115i \(0.960070\pi\)
\(240\) 0 0
\(241\) 3.07220e16 0.650623 0.325312 0.945607i \(-0.394531\pi\)
0.325312 + 0.945607i \(0.394531\pi\)
\(242\) 6.21249e16i 1.27808i
\(243\) 0 0
\(244\) −2.06246e16 −0.400551
\(245\) − 8.28166e16i − 1.56299i
\(246\) 0 0
\(247\) −1.97702e16 −0.352478
\(248\) − 2.49602e16i − 0.432600i
\(249\) 0 0
\(250\) −1.00681e17 −1.64955
\(251\) − 2.22039e16i − 0.353764i −0.984232 0.176882i \(-0.943399\pi\)
0.984232 0.176882i \(-0.0566011\pi\)
\(252\) 0 0
\(253\) 3.40162e16 0.512675
\(254\) − 4.96803e16i − 0.728364i
\(255\) 0 0
\(256\) 4.50360e15 0.0625000
\(257\) 2.15775e16i 0.291386i 0.989330 + 0.145693i \(0.0465412\pi\)
−0.989330 + 0.145693i \(0.953459\pi\)
\(258\) 0 0
\(259\) 7.12726e15 0.0911642
\(260\) 4.22626e16i 0.526190i
\(261\) 0 0
\(262\) −9.51414e15 −0.112269
\(263\) 6.35073e15i 0.0729682i 0.999334 + 0.0364841i \(0.0116158\pi\)
−0.999334 + 0.0364841i \(0.988384\pi\)
\(264\) 0 0
\(265\) 1.40027e17 1.52577
\(266\) 1.50224e16i 0.159429i
\(267\) 0 0
\(268\) 6.15221e16 0.619566
\(269\) − 2.46504e16i − 0.241856i −0.992661 0.120928i \(-0.961413\pi\)
0.992661 0.120928i \(-0.0385871\pi\)
\(270\) 0 0
\(271\) −7.97252e16 −0.742695 −0.371348 0.928494i \(-0.621104\pi\)
−0.371348 + 0.928494i \(0.621104\pi\)
\(272\) − 2.76221e16i − 0.250770i
\(273\) 0 0
\(274\) 6.09063e16 0.525301
\(275\) 4.55730e17i 3.83159i
\(276\) 0 0
\(277\) −1.03675e17 −0.828544 −0.414272 0.910153i \(-0.635964\pi\)
−0.414272 + 0.910153i \(0.635964\pi\)
\(278\) 6.55664e16i 0.510938i
\(279\) 0 0
\(280\) 3.21134e16 0.238001
\(281\) − 1.68452e17i − 1.21768i −0.793294 0.608838i \(-0.791636\pi\)
0.793294 0.608838i \(-0.208364\pi\)
\(282\) 0 0
\(283\) 1.39346e17 0.958495 0.479247 0.877680i \(-0.340910\pi\)
0.479247 + 0.877680i \(0.340910\pi\)
\(284\) 1.38578e17i 0.929966i
\(285\) 0 0
\(286\) 1.07645e17 0.687752
\(287\) 6.00209e16i 0.374222i
\(288\) 0 0
\(289\) −1.03846e15 −0.00616742
\(290\) − 3.89738e17i − 2.25937i
\(291\) 0 0
\(292\) 4.89960e16 0.270695
\(293\) − 1.86786e17i − 1.00756i −0.863832 0.503780i \(-0.831942\pi\)
0.863832 0.503780i \(-0.168058\pi\)
\(294\) 0 0
\(295\) 4.55587e16 0.234324
\(296\) − 1.72815e16i − 0.0868038i
\(297\) 0 0
\(298\) 3.58814e16 0.171931
\(299\) − 3.79464e16i − 0.177612i
\(300\) 0 0
\(301\) −1.34356e17 −0.600192
\(302\) − 6.75118e16i − 0.294667i
\(303\) 0 0
\(304\) 3.64249e16 0.151804
\(305\) 3.56591e17i 1.45235i
\(306\) 0 0
\(307\) 6.73138e16 0.261900 0.130950 0.991389i \(-0.458197\pi\)
0.130950 + 0.991389i \(0.458197\pi\)
\(308\) − 8.17944e16i − 0.311078i
\(309\) 0 0
\(310\) −4.31551e17 −1.56856
\(311\) 1.58977e17i 0.564953i 0.959274 + 0.282476i \(0.0911559\pi\)
−0.959274 + 0.282476i \(0.908844\pi\)
\(312\) 0 0
\(313\) −1.88505e17 −0.640492 −0.320246 0.947334i \(-0.603766\pi\)
−0.320246 + 0.947334i \(0.603766\pi\)
\(314\) − 1.69140e17i − 0.562002i
\(315\) 0 0
\(316\) 1.69112e17 0.537482
\(317\) − 2.12672e17i − 0.661142i −0.943781 0.330571i \(-0.892759\pi\)
0.943781 0.330571i \(-0.107241\pi\)
\(318\) 0 0
\(319\) −9.92683e17 −2.95309
\(320\) − 7.78653e16i − 0.226618i
\(321\) 0 0
\(322\) −2.88337e16 −0.0803358
\(323\) − 2.23406e17i − 0.609085i
\(324\) 0 0
\(325\) 5.08385e17 1.32742
\(326\) 4.76088e17i 1.21665i
\(327\) 0 0
\(328\) 1.45533e17 0.356323
\(329\) − 1.98875e17i − 0.476660i
\(330\) 0 0
\(331\) −3.85352e17 −0.885241 −0.442621 0.896709i \(-0.645951\pi\)
−0.442621 + 0.896709i \(0.645951\pi\)
\(332\) 9.84339e15i 0.0221400i
\(333\) 0 0
\(334\) 3.43433e17 0.740656
\(335\) − 1.06369e18i − 2.24647i
\(336\) 0 0
\(337\) 2.35431e17 0.476929 0.238465 0.971151i \(-0.423356\pi\)
0.238465 + 0.971151i \(0.423356\pi\)
\(338\) 2.36288e17i 0.468841i
\(339\) 0 0
\(340\) −4.77575e17 −0.909262
\(341\) 1.09918e18i 2.05017i
\(342\) 0 0
\(343\) 3.86197e17 0.691432
\(344\) 3.25772e17i 0.571485i
\(345\) 0 0
\(346\) −5.19919e17 −0.875796
\(347\) 7.65501e17i 1.26369i 0.775096 + 0.631844i \(0.217701\pi\)
−0.775096 + 0.631844i \(0.782299\pi\)
\(348\) 0 0
\(349\) 6.36950e17 1.01001 0.505007 0.863115i \(-0.331490\pi\)
0.505007 + 0.863115i \(0.331490\pi\)
\(350\) − 3.86298e17i − 0.600407i
\(351\) 0 0
\(352\) −1.98327e17 −0.296199
\(353\) − 5.61287e17i − 0.821792i −0.911682 0.410896i \(-0.865216\pi\)
0.911682 0.410896i \(-0.134784\pi\)
\(354\) 0 0
\(355\) 2.39596e18 3.37195
\(356\) 6.24819e16i 0.0862192i
\(357\) 0 0
\(358\) 7.17691e17 0.952262
\(359\) − 4.77260e17i − 0.621003i −0.950573 0.310502i \(-0.899503\pi\)
0.950573 0.310502i \(-0.100497\pi\)
\(360\) 0 0
\(361\) −5.04404e17 −0.631289
\(362\) 6.02829e17i 0.740004i
\(363\) 0 0
\(364\) −9.12450e16 −0.107770
\(365\) − 8.47119e17i − 0.981509i
\(366\) 0 0
\(367\) −1.43733e17 −0.160285 −0.0801425 0.996783i \(-0.525538\pi\)
−0.0801425 + 0.996783i \(0.525538\pi\)
\(368\) 6.99131e16i 0.0764934i
\(369\) 0 0
\(370\) −2.98789e17 −0.314741
\(371\) 3.02318e17i 0.312497i
\(372\) 0 0
\(373\) −3.64226e17 −0.362584 −0.181292 0.983429i \(-0.558028\pi\)
−0.181292 + 0.983429i \(0.558028\pi\)
\(374\) 1.21641e18i 1.18844i
\(375\) 0 0
\(376\) −4.82212e17 −0.453861
\(377\) 1.10738e18i 1.02307i
\(378\) 0 0
\(379\) −7.31187e17 −0.650959 −0.325480 0.945549i \(-0.605526\pi\)
−0.325480 + 0.945549i \(0.605526\pi\)
\(380\) − 6.29770e17i − 0.550423i
\(381\) 0 0
\(382\) 6.14150e17 0.517405
\(383\) − 1.78744e17i − 0.147856i −0.997264 0.0739281i \(-0.976446\pi\)
0.997264 0.0739281i \(-0.0235535\pi\)
\(384\) 0 0
\(385\) −1.41419e18 −1.12793
\(386\) 4.08459e17i 0.319917i
\(387\) 0 0
\(388\) 3.87775e17 0.292926
\(389\) 1.31562e18i 0.976078i 0.872822 + 0.488039i \(0.162288\pi\)
−0.872822 + 0.488039i \(0.837712\pi\)
\(390\) 0 0
\(391\) 4.28801e17 0.306916
\(392\) − 4.33539e17i − 0.304808i
\(393\) 0 0
\(394\) −1.86001e17 −0.126195
\(395\) − 2.92386e18i − 1.94885i
\(396\) 0 0
\(397\) −2.49426e18 −1.60475 −0.802375 0.596820i \(-0.796431\pi\)
−0.802375 + 0.596820i \(0.796431\pi\)
\(398\) − 1.29148e18i − 0.816404i
\(399\) 0 0
\(400\) −9.36657e17 −0.571690
\(401\) − 7.73789e17i − 0.464100i −0.972704 0.232050i \(-0.925457\pi\)
0.972704 0.232050i \(-0.0745433\pi\)
\(402\) 0 0
\(403\) 1.22618e18 0.710264
\(404\) − 1.41580e18i − 0.805992i
\(405\) 0 0
\(406\) 8.41445e17 0.462747
\(407\) 7.61032e17i 0.411379i
\(408\) 0 0
\(409\) −4.10157e16 −0.0214233 −0.0107117 0.999943i \(-0.503410\pi\)
−0.0107117 + 0.999943i \(0.503410\pi\)
\(410\) − 2.51620e18i − 1.29199i
\(411\) 0 0
\(412\) −1.54898e17 −0.0768715
\(413\) 9.83614e16i 0.0479926i
\(414\) 0 0
\(415\) 1.70188e17 0.0802772
\(416\) 2.21242e17i 0.102616i
\(417\) 0 0
\(418\) −1.60406e18 −0.719426
\(419\) 7.76233e17i 0.342369i 0.985239 + 0.171184i \(0.0547594\pi\)
−0.985239 + 0.171184i \(0.945241\pi\)
\(420\) 0 0
\(421\) −2.20820e18 −0.942027 −0.471014 0.882126i \(-0.656112\pi\)
−0.471014 + 0.882126i \(0.656112\pi\)
\(422\) 1.41473e18i 0.593592i
\(423\) 0 0
\(424\) 7.33030e17 0.297550
\(425\) 5.74484e18i 2.29380i
\(426\) 0 0
\(427\) −7.69880e17 −0.297460
\(428\) − 4.09881e17i − 0.155794i
\(429\) 0 0
\(430\) 5.63245e18 2.07214
\(431\) − 3.01395e18i − 1.09093i −0.838135 0.545463i \(-0.816354\pi\)
0.838135 0.545463i \(-0.183646\pi\)
\(432\) 0 0
\(433\) 6.88938e17 0.241415 0.120708 0.992688i \(-0.461484\pi\)
0.120708 + 0.992688i \(0.461484\pi\)
\(434\) − 9.31719e17i − 0.321260i
\(435\) 0 0
\(436\) 2.10679e17 0.0703422
\(437\) 5.65453e17i 0.185792i
\(438\) 0 0
\(439\) 4.08732e18 1.30073 0.650365 0.759622i \(-0.274616\pi\)
0.650365 + 0.759622i \(0.274616\pi\)
\(440\) 3.42899e18i 1.07398i
\(441\) 0 0
\(442\) 1.35695e18 0.411727
\(443\) − 5.29962e17i − 0.158277i −0.996864 0.0791387i \(-0.974783\pi\)
0.996864 0.0791387i \(-0.0252170\pi\)
\(444\) 0 0
\(445\) 1.08028e18 0.312621
\(446\) − 6.52957e17i − 0.186012i
\(447\) 0 0
\(448\) 1.68111e17 0.0464142
\(449\) 4.27608e18i 1.16231i 0.813794 + 0.581154i \(0.197399\pi\)
−0.813794 + 0.581154i \(0.802601\pi\)
\(450\) 0 0
\(451\) −6.40889e18 −1.68868
\(452\) 5.63633e17i 0.146227i
\(453\) 0 0
\(454\) −5.29465e18 −1.33182
\(455\) 1.57759e18i 0.390763i
\(456\) 0 0
\(457\) 5.18206e18 1.24477 0.622385 0.782712i \(-0.286164\pi\)
0.622385 + 0.782712i \(0.286164\pi\)
\(458\) − 1.89589e18i − 0.448493i
\(459\) 0 0
\(460\) 1.20877e18 0.277356
\(461\) 8.17907e18i 1.84841i 0.381901 + 0.924203i \(0.375270\pi\)
−0.381901 + 0.924203i \(0.624730\pi\)
\(462\) 0 0
\(463\) 8.52422e18 1.86891 0.934454 0.356085i \(-0.115889\pi\)
0.934454 + 0.356085i \(0.115889\pi\)
\(464\) − 2.04025e18i − 0.440614i
\(465\) 0 0
\(466\) −5.77926e18 −1.21107
\(467\) − 7.76114e18i − 1.60217i −0.598554 0.801083i \(-0.704258\pi\)
0.598554 0.801083i \(-0.295742\pi\)
\(468\) 0 0
\(469\) 2.29651e18 0.460106
\(470\) 8.33723e18i 1.64565i
\(471\) 0 0
\(472\) 2.38497e17 0.0456971
\(473\) − 1.43462e19i − 2.70837i
\(474\) 0 0
\(475\) −7.57563e18 −1.38856
\(476\) − 1.03108e18i − 0.186228i
\(477\) 0 0
\(478\) 1.00884e18 0.176940
\(479\) − 1.65919e18i − 0.286780i −0.989666 0.143390i \(-0.954200\pi\)
0.989666 0.143390i \(-0.0458003\pi\)
\(480\) 0 0
\(481\) 8.48962e17 0.142519
\(482\) − 2.78063e18i − 0.460060i
\(483\) 0 0
\(484\) 5.62290e18 0.903739
\(485\) − 6.70447e18i − 1.06212i
\(486\) 0 0
\(487\) 3.18312e18 0.489948 0.244974 0.969530i \(-0.421221\pi\)
0.244974 + 0.969530i \(0.421221\pi\)
\(488\) 1.86673e18i 0.283232i
\(489\) 0 0
\(490\) −7.49570e18 −1.10520
\(491\) − 5.12632e18i − 0.745136i −0.928005 0.372568i \(-0.878477\pi\)
0.928005 0.372568i \(-0.121523\pi\)
\(492\) 0 0
\(493\) −1.25136e19 −1.76788
\(494\) 1.78939e18i 0.249239i
\(495\) 0 0
\(496\) −2.25914e18 −0.305894
\(497\) 5.17288e18i 0.690618i
\(498\) 0 0
\(499\) 4.15318e18 0.539110 0.269555 0.962985i \(-0.413123\pi\)
0.269555 + 0.962985i \(0.413123\pi\)
\(500\) 9.11258e18i 1.16641i
\(501\) 0 0
\(502\) −2.00967e18 −0.250149
\(503\) 7.46116e18i 0.915863i 0.888987 + 0.457932i \(0.151410\pi\)
−0.888987 + 0.457932i \(0.848590\pi\)
\(504\) 0 0
\(505\) −2.44785e19 −2.92244
\(506\) − 3.07879e18i − 0.362516i
\(507\) 0 0
\(508\) −4.49655e18 −0.515031
\(509\) − 9.48090e18i − 1.07109i −0.844507 0.535544i \(-0.820107\pi\)
0.844507 0.535544i \(-0.179893\pi\)
\(510\) 0 0
\(511\) 1.82893e18 0.201025
\(512\) − 4.07619e17i − 0.0441942i
\(513\) 0 0
\(514\) 1.95297e18 0.206041
\(515\) 2.67812e18i 0.278727i
\(516\) 0 0
\(517\) 2.12354e19 2.15093
\(518\) − 6.45086e17i − 0.0644628i
\(519\) 0 0
\(520\) 3.82517e18 0.372073
\(521\) − 2.62455e18i − 0.251878i −0.992038 0.125939i \(-0.959806\pi\)
0.992038 0.125939i \(-0.0401944\pi\)
\(522\) 0 0
\(523\) 1.43596e19 1.34162 0.670812 0.741627i \(-0.265946\pi\)
0.670812 + 0.741627i \(0.265946\pi\)
\(524\) 8.61122e17i 0.0793863i
\(525\) 0 0
\(526\) 5.74803e17 0.0515963
\(527\) 1.38561e19i 1.22734i
\(528\) 0 0
\(529\) 1.05075e19 0.906380
\(530\) − 1.26738e19i − 1.07888i
\(531\) 0 0
\(532\) 1.35967e18 0.112734
\(533\) 7.14938e18i 0.585029i
\(534\) 0 0
\(535\) −7.08667e18 −0.564892
\(536\) − 5.56834e18i − 0.438099i
\(537\) 0 0
\(538\) −2.23110e18 −0.171018
\(539\) 1.90920e19i 1.44454i
\(540\) 0 0
\(541\) 7.66465e18 0.565082 0.282541 0.959255i \(-0.408823\pi\)
0.282541 + 0.959255i \(0.408823\pi\)
\(542\) 7.21590e18i 0.525165i
\(543\) 0 0
\(544\) −2.50007e18 −0.177321
\(545\) − 3.64255e18i − 0.255053i
\(546\) 0 0
\(547\) −1.82201e19 −1.24348 −0.621741 0.783223i \(-0.713574\pi\)
−0.621741 + 0.783223i \(0.713574\pi\)
\(548\) − 5.51261e18i − 0.371444i
\(549\) 0 0
\(550\) 4.12480e19 2.70934
\(551\) − 1.65014e19i − 1.07019i
\(552\) 0 0
\(553\) 6.31263e18 0.399148
\(554\) 9.38359e18i 0.585869i
\(555\) 0 0
\(556\) 5.93440e18 0.361288
\(557\) 6.47551e18i 0.389303i 0.980872 + 0.194651i \(0.0623576\pi\)
−0.980872 + 0.194651i \(0.937642\pi\)
\(558\) 0 0
\(559\) −1.60037e19 −0.938293
\(560\) − 2.90657e18i − 0.168292i
\(561\) 0 0
\(562\) −1.52465e19 −0.861027
\(563\) 2.07968e19i 1.15994i 0.814636 + 0.579972i \(0.196937\pi\)
−0.814636 + 0.579972i \(0.803063\pi\)
\(564\) 0 0
\(565\) 9.74497e18 0.530202
\(566\) − 1.26122e19i − 0.677758i
\(567\) 0 0
\(568\) 1.25427e19 0.657585
\(569\) − 4.21373e18i − 0.218213i −0.994030 0.109106i \(-0.965201\pi\)
0.994030 0.109106i \(-0.0347989\pi\)
\(570\) 0 0
\(571\) −2.22631e19 −1.12495 −0.562476 0.826814i \(-0.690151\pi\)
−0.562476 + 0.826814i \(0.690151\pi\)
\(572\) − 9.74292e18i − 0.486314i
\(573\) 0 0
\(574\) 5.43247e18 0.264615
\(575\) − 1.45405e19i − 0.699688i
\(576\) 0 0
\(577\) 3.10071e19 1.45623 0.728116 0.685454i \(-0.240396\pi\)
0.728116 + 0.685454i \(0.240396\pi\)
\(578\) 9.39904e16i 0.00436102i
\(579\) 0 0
\(580\) −3.52751e19 −1.59761
\(581\) 3.67436e17i 0.0164418i
\(582\) 0 0
\(583\) −3.22807e19 −1.41014
\(584\) − 4.43461e18i − 0.191410i
\(585\) 0 0
\(586\) −1.69059e19 −0.712453
\(587\) 3.87372e19i 1.61310i 0.591164 + 0.806551i \(0.298669\pi\)
−0.591164 + 0.806551i \(0.701331\pi\)
\(588\) 0 0
\(589\) −1.82718e19 −0.742975
\(590\) − 4.12351e18i − 0.165692i
\(591\) 0 0
\(592\) −1.56414e18 −0.0613796
\(593\) 1.35053e19i 0.523747i 0.965102 + 0.261874i \(0.0843403\pi\)
−0.965102 + 0.261874i \(0.915660\pi\)
\(594\) 0 0
\(595\) −1.78270e19 −0.675242
\(596\) − 3.24761e18i − 0.121574i
\(597\) 0 0
\(598\) −3.43452e18 −0.125591
\(599\) − 8.77507e18i − 0.317149i −0.987347 0.158574i \(-0.949310\pi\)
0.987347 0.158574i \(-0.0506897\pi\)
\(600\) 0 0
\(601\) −2.76952e19 −0.977874 −0.488937 0.872319i \(-0.662615\pi\)
−0.488937 + 0.872319i \(0.662615\pi\)
\(602\) 1.21605e19i 0.424400i
\(603\) 0 0
\(604\) −6.11047e18 −0.208361
\(605\) − 9.72175e19i − 3.27685i
\(606\) 0 0
\(607\) 4.45270e19 1.46657 0.733285 0.679922i \(-0.237986\pi\)
0.733285 + 0.679922i \(0.237986\pi\)
\(608\) − 3.29680e18i − 0.107342i
\(609\) 0 0
\(610\) 3.22749e19 1.02697
\(611\) − 2.36889e19i − 0.745172i
\(612\) 0 0
\(613\) −2.30024e19 −0.707214 −0.353607 0.935394i \(-0.615045\pi\)
−0.353607 + 0.935394i \(0.615045\pi\)
\(614\) − 6.09255e18i − 0.185191i
\(615\) 0 0
\(616\) −7.40319e18 −0.219965
\(617\) − 2.09667e19i − 0.615934i −0.951397 0.307967i \(-0.900351\pi\)
0.951397 0.307967i \(-0.0996486\pi\)
\(618\) 0 0
\(619\) 4.78696e19 1.37475 0.687377 0.726301i \(-0.258762\pi\)
0.687377 + 0.726301i \(0.258762\pi\)
\(620\) 3.90595e19i 1.10914i
\(621\) 0 0
\(622\) 1.43890e19 0.399482
\(623\) 2.33234e18i 0.0640287i
\(624\) 0 0
\(625\) 7.23641e19 1.94251
\(626\) 1.70616e19i 0.452896i
\(627\) 0 0
\(628\) −1.53088e19 −0.397395
\(629\) 9.59342e18i 0.246274i
\(630\) 0 0
\(631\) −6.94907e19 −1.74470 −0.872351 0.488881i \(-0.837405\pi\)
−0.872351 + 0.488881i \(0.837405\pi\)
\(632\) − 1.53062e19i − 0.380057i
\(633\) 0 0
\(634\) −1.92488e19 −0.467498
\(635\) 7.77434e19i 1.86744i
\(636\) 0 0
\(637\) 2.12978e19 0.500449
\(638\) 8.98475e19i 2.08815i
\(639\) 0 0
\(640\) −7.04756e18 −0.160243
\(641\) − 3.16065e19i − 0.710837i −0.934707 0.355419i \(-0.884338\pi\)
0.934707 0.355419i \(-0.115662\pi\)
\(642\) 0 0
\(643\) 7.05010e19 1.55138 0.775691 0.631113i \(-0.217402\pi\)
0.775691 + 0.631113i \(0.217402\pi\)
\(644\) 2.60973e18i 0.0568060i
\(645\) 0 0
\(646\) −2.02204e19 −0.430688
\(647\) − 6.78089e18i − 0.142875i −0.997445 0.0714376i \(-0.977241\pi\)
0.997445 0.0714376i \(-0.0227587\pi\)
\(648\) 0 0
\(649\) −1.05028e19 −0.216567
\(650\) − 4.60138e19i − 0.938630i
\(651\) 0 0
\(652\) 4.30906e19 0.860299
\(653\) 6.63074e19i 1.30969i 0.755762 + 0.654847i \(0.227267\pi\)
−0.755762 + 0.654847i \(0.772733\pi\)
\(654\) 0 0
\(655\) 1.48884e19 0.287846
\(656\) − 1.31721e19i − 0.251958i
\(657\) 0 0
\(658\) −1.80001e19 −0.337049
\(659\) 3.49308e19i 0.647159i 0.946201 + 0.323579i \(0.104886\pi\)
−0.946201 + 0.323579i \(0.895114\pi\)
\(660\) 0 0
\(661\) 4.67299e19 0.847587 0.423793 0.905759i \(-0.360698\pi\)
0.423793 + 0.905759i \(0.360698\pi\)
\(662\) 3.48781e19i 0.625960i
\(663\) 0 0
\(664\) 8.90922e17 0.0156554
\(665\) − 2.35082e19i − 0.408759i
\(666\) 0 0
\(667\) 3.16725e19 0.539264
\(668\) − 3.10840e19i − 0.523723i
\(669\) 0 0
\(670\) −9.62742e19 −1.58850
\(671\) − 8.22059e19i − 1.34229i
\(672\) 0 0
\(673\) −3.45172e19 −0.551989 −0.275994 0.961159i \(-0.589007\pi\)
−0.275994 + 0.961159i \(0.589007\pi\)
\(674\) − 2.13088e19i − 0.337240i
\(675\) 0 0
\(676\) 2.13864e19 0.331520
\(677\) 2.12460e18i 0.0325954i 0.999867 + 0.0162977i \(0.00518795\pi\)
−0.999867 + 0.0162977i \(0.994812\pi\)
\(678\) 0 0
\(679\) 1.44749e19 0.217535
\(680\) 4.32251e19i 0.642945i
\(681\) 0 0
\(682\) 9.94867e19 1.44969
\(683\) 7.50880e19i 1.08299i 0.840703 + 0.541497i \(0.182142\pi\)
−0.840703 + 0.541497i \(0.817858\pi\)
\(684\) 0 0
\(685\) −9.53106e19 −1.34681
\(686\) − 3.49545e19i − 0.488917i
\(687\) 0 0
\(688\) 2.94855e19 0.404101
\(689\) 3.60105e19i 0.488533i
\(690\) 0 0
\(691\) −1.37137e20 −1.82310 −0.911548 0.411194i \(-0.865112\pi\)
−0.911548 + 0.411194i \(0.865112\pi\)
\(692\) 4.70577e19i 0.619281i
\(693\) 0 0
\(694\) 6.92853e19 0.893562
\(695\) − 1.02603e20i − 1.30999i
\(696\) 0 0
\(697\) −8.07892e19 −1.01094
\(698\) − 5.76501e19i − 0.714187i
\(699\) 0 0
\(700\) −3.49637e19 −0.424552
\(701\) − 1.11819e20i − 1.34428i −0.740423 0.672141i \(-0.765375\pi\)
0.740423 0.672141i \(-0.234625\pi\)
\(702\) 0 0
\(703\) −1.26507e19 −0.149082
\(704\) 1.79505e19i 0.209444i
\(705\) 0 0
\(706\) −5.08019e19 −0.581094
\(707\) − 5.28491e19i − 0.598552i
\(708\) 0 0
\(709\) 1.37741e20 1.52947 0.764735 0.644345i \(-0.222870\pi\)
0.764735 + 0.644345i \(0.222870\pi\)
\(710\) − 2.16858e20i − 2.38433i
\(711\) 0 0
\(712\) 5.65522e18 0.0609662
\(713\) − 3.50705e19i − 0.374382i
\(714\) 0 0
\(715\) −1.68451e20 −1.76332
\(716\) − 6.49580e19i − 0.673351i
\(717\) 0 0
\(718\) −4.31966e19 −0.439116
\(719\) 8.44075e19i 0.849726i 0.905258 + 0.424863i \(0.139678\pi\)
−0.905258 + 0.424863i \(0.860322\pi\)
\(720\) 0 0
\(721\) −5.78206e18 −0.0570868
\(722\) 4.56535e19i 0.446389i
\(723\) 0 0
\(724\) 5.45618e19 0.523262
\(725\) 4.24331e20i 4.03031i
\(726\) 0 0
\(727\) 1.69431e20 1.57853 0.789265 0.614053i \(-0.210462\pi\)
0.789265 + 0.614053i \(0.210462\pi\)
\(728\) 8.25855e18i 0.0762052i
\(729\) 0 0
\(730\) −7.66725e19 −0.694032
\(731\) − 1.80845e20i − 1.62138i
\(732\) 0 0
\(733\) −1.02023e20 −0.897366 −0.448683 0.893691i \(-0.648107\pi\)
−0.448683 + 0.893691i \(0.648107\pi\)
\(734\) 1.30092e19i 0.113339i
\(735\) 0 0
\(736\) 6.32781e18 0.0540890
\(737\) 2.45215e20i 2.07623i
\(738\) 0 0
\(739\) −7.22807e19 −0.600498 −0.300249 0.953861i \(-0.597070\pi\)
−0.300249 + 0.953861i \(0.597070\pi\)
\(740\) 2.70433e19i 0.222555i
\(741\) 0 0
\(742\) 2.73627e19 0.220969
\(743\) − 1.06884e20i − 0.855047i −0.904004 0.427524i \(-0.859386\pi\)
0.904004 0.427524i \(-0.140614\pi\)
\(744\) 0 0
\(745\) −5.61498e19 −0.440813
\(746\) 3.29660e19i 0.256386i
\(747\) 0 0
\(748\) 1.10097e20 0.840356
\(749\) − 1.53001e19i − 0.115697i
\(750\) 0 0
\(751\) 1.37977e20 1.02406 0.512031 0.858967i \(-0.328893\pi\)
0.512031 + 0.858967i \(0.328893\pi\)
\(752\) 4.36448e19i 0.320928i
\(753\) 0 0
\(754\) 1.00228e20 0.723422
\(755\) 1.05647e20i 0.755493i
\(756\) 0 0
\(757\) 1.88357e20 1.32224 0.661122 0.750279i \(-0.270081\pi\)
0.661122 + 0.750279i \(0.270081\pi\)
\(758\) 6.61795e19i 0.460298i
\(759\) 0 0
\(760\) −5.70003e19 −0.389208
\(761\) − 2.00035e20i − 1.35336i −0.736278 0.676680i \(-0.763418\pi\)
0.736278 0.676680i \(-0.236582\pi\)
\(762\) 0 0
\(763\) 7.86427e18 0.0522380
\(764\) − 5.55865e19i − 0.365861i
\(765\) 0 0
\(766\) −1.61780e19 −0.104550
\(767\) 1.17163e19i 0.0750278i
\(768\) 0 0
\(769\) 6.35757e19 0.399767 0.199883 0.979820i \(-0.435944\pi\)
0.199883 + 0.979820i \(0.435944\pi\)
\(770\) 1.27998e20i 0.797568i
\(771\) 0 0
\(772\) 3.69695e19 0.226216
\(773\) − 2.19200e20i − 1.32918i −0.747208 0.664591i \(-0.768606\pi\)
0.747208 0.664591i \(-0.231394\pi\)
\(774\) 0 0
\(775\) 4.69855e20 2.79803
\(776\) − 3.50974e19i − 0.207130i
\(777\) 0 0
\(778\) 1.19077e20 0.690192
\(779\) − 1.06535e20i − 0.611972i
\(780\) 0 0
\(781\) −5.52348e20 −3.11641
\(782\) − 3.88107e19i − 0.217022i
\(783\) 0 0
\(784\) −3.92395e19 −0.215532
\(785\) 2.64682e20i 1.44091i
\(786\) 0 0
\(787\) 2.03403e20 1.08776 0.543880 0.839163i \(-0.316955\pi\)
0.543880 + 0.839163i \(0.316955\pi\)
\(788\) 1.68349e19i 0.0892332i
\(789\) 0 0
\(790\) −2.64638e20 −1.37804
\(791\) 2.10394e19i 0.108592i
\(792\) 0 0
\(793\) −9.17040e19 −0.465025
\(794\) 2.25754e20i 1.13473i
\(795\) 0 0
\(796\) −1.16891e20 −0.577285
\(797\) − 8.46452e19i − 0.414375i −0.978301 0.207188i \(-0.933569\pi\)
0.978301 0.207188i \(-0.0664311\pi\)
\(798\) 0 0
\(799\) 2.67689e20 1.28766
\(800\) 8.47765e19i 0.404246i
\(801\) 0 0
\(802\) −7.00353e19 −0.328168
\(803\) 1.95289e20i 0.907128i
\(804\) 0 0
\(805\) 4.51211e19 0.205972
\(806\) − 1.10981e20i − 0.502233i
\(807\) 0 0
\(808\) −1.28143e20 −0.569923
\(809\) − 1.68171e20i − 0.741502i −0.928732 0.370751i \(-0.879100\pi\)
0.928732 0.370751i \(-0.120900\pi\)
\(810\) 0 0
\(811\) −4.27825e20 −1.85405 −0.927023 0.375004i \(-0.877641\pi\)
−0.927023 + 0.375004i \(0.877641\pi\)
\(812\) − 7.61589e19i − 0.327211i
\(813\) 0 0
\(814\) 6.88807e19 0.290889
\(815\) − 7.45018e20i − 3.11935i
\(816\) 0 0
\(817\) 2.38477e20 0.981505
\(818\) 3.71232e18i 0.0151486i
\(819\) 0 0
\(820\) −2.27740e20 −0.913572
\(821\) 2.05817e19i 0.0818613i 0.999162 + 0.0409307i \(0.0130323\pi\)
−0.999162 + 0.0409307i \(0.986968\pi\)
\(822\) 0 0
\(823\) −8.31992e19 −0.325327 −0.162664 0.986682i \(-0.552009\pi\)
−0.162664 + 0.986682i \(0.552009\pi\)
\(824\) 1.40198e19i 0.0543563i
\(825\) 0 0
\(826\) 8.90266e18 0.0339359
\(827\) 7.97132e19i 0.301295i 0.988588 + 0.150647i \(0.0481358\pi\)
−0.988588 + 0.150647i \(0.951864\pi\)
\(828\) 0 0
\(829\) −1.10972e20 −0.412412 −0.206206 0.978509i \(-0.566112\pi\)
−0.206206 + 0.978509i \(0.566112\pi\)
\(830\) − 1.54036e19i − 0.0567645i
\(831\) 0 0
\(832\) 2.00245e19 0.0725603
\(833\) 2.40670e20i 0.864781i
\(834\) 0 0
\(835\) −5.37429e20 −1.89896
\(836\) 1.45183e20i 0.508711i
\(837\) 0 0
\(838\) 7.02566e19 0.242091
\(839\) 1.12401e20i 0.384094i 0.981386 + 0.192047i \(0.0615125\pi\)
−0.981386 + 0.192047i \(0.938487\pi\)
\(840\) 0 0
\(841\) −6.26730e20 −2.10624
\(842\) 1.99863e20i 0.666114i
\(843\) 0 0
\(844\) 1.28047e20 0.419733
\(845\) − 3.69761e20i − 1.20205i
\(846\) 0 0
\(847\) 2.09893e20 0.671141
\(848\) − 6.63463e19i − 0.210400i
\(849\) 0 0
\(850\) 5.19964e20 1.62196
\(851\) − 2.42814e19i − 0.0751221i
\(852\) 0 0
\(853\) 4.76544e20 1.45031 0.725153 0.688588i \(-0.241769\pi\)
0.725153 + 0.688588i \(0.241769\pi\)
\(854\) 6.96816e19i 0.210336i
\(855\) 0 0
\(856\) −3.70982e19 −0.110163
\(857\) 4.54483e20i 1.33860i 0.742990 + 0.669302i \(0.233407\pi\)
−0.742990 + 0.669302i \(0.766593\pi\)
\(858\) 0 0
\(859\) −1.14099e20 −0.330621 −0.165311 0.986242i \(-0.552863\pi\)
−0.165311 + 0.986242i \(0.552863\pi\)
\(860\) − 5.09792e20i − 1.46522i
\(861\) 0 0
\(862\) −2.72791e20 −0.771401
\(863\) − 6.19780e20i − 1.73845i −0.494417 0.869225i \(-0.664618\pi\)
0.494417 0.869225i \(-0.335382\pi\)
\(864\) 0 0
\(865\) 8.13607e20 2.24544
\(866\) − 6.23555e19i − 0.170706i
\(867\) 0 0
\(868\) −8.43296e19 −0.227165
\(869\) 6.74047e20i 1.80116i
\(870\) 0 0
\(871\) 2.73548e20 0.719293
\(872\) − 1.90685e19i − 0.0497395i
\(873\) 0 0
\(874\) 5.11790e19 0.131375
\(875\) 3.40156e20i 0.866208i
\(876\) 0 0
\(877\) 1.97307e20 0.494476 0.247238 0.968955i \(-0.420477\pi\)
0.247238 + 0.968955i \(0.420477\pi\)
\(878\) − 3.69942e20i − 0.919755i
\(879\) 0 0
\(880\) 3.10357e20 0.759420
\(881\) 2.14957e18i 0.00521820i 0.999997 + 0.00260910i \(0.000830503\pi\)
−0.999997 + 0.00260910i \(0.999169\pi\)
\(882\) 0 0
\(883\) 4.69149e20 1.12095 0.560474 0.828172i \(-0.310619\pi\)
0.560474 + 0.828172i \(0.310619\pi\)
\(884\) − 1.22817e20i − 0.291135i
\(885\) 0 0
\(886\) −4.79667e19 −0.111919
\(887\) 2.81772e20i 0.652278i 0.945322 + 0.326139i \(0.105748\pi\)
−0.945322 + 0.326139i \(0.894252\pi\)
\(888\) 0 0
\(889\) −1.67848e20 −0.382476
\(890\) − 9.77762e19i − 0.221056i
\(891\) 0 0
\(892\) −5.90989e19 −0.131530
\(893\) 3.52997e20i 0.779490i
\(894\) 0 0
\(895\) −1.12310e21 −2.44149
\(896\) − 1.52157e19i − 0.0328198i
\(897\) 0 0
\(898\) 3.87026e20 0.821876
\(899\) 1.02345e21i 2.15650i
\(900\) 0 0
\(901\) −4.06925e20 −0.844191
\(902\) 5.80067e20i 1.19408i
\(903\) 0 0
\(904\) 5.10142e19 0.103398
\(905\) − 9.43350e20i − 1.89729i
\(906\) 0 0
\(907\) 1.74753e20 0.346077 0.173039 0.984915i \(-0.444641\pi\)
0.173039 + 0.984915i \(0.444641\pi\)
\(908\) 4.79217e20i 0.941741i
\(909\) 0 0
\(910\) 1.42787e20 0.276311
\(911\) 6.03814e20i 1.15951i 0.814791 + 0.579755i \(0.196852\pi\)
−0.814791 + 0.579755i \(0.803148\pi\)
\(912\) 0 0
\(913\) −3.92339e19 −0.0741936
\(914\) − 4.69026e20i − 0.880185i
\(915\) 0 0
\(916\) −1.71597e20 −0.317132
\(917\) 3.21441e19i 0.0589544i
\(918\) 0 0
\(919\) 9.04375e19 0.163358 0.0816790 0.996659i \(-0.473972\pi\)
0.0816790 + 0.996659i \(0.473972\pi\)
\(920\) − 1.09405e20i − 0.196120i
\(921\) 0 0
\(922\) 7.40285e20 1.30702
\(923\) 6.16166e20i 1.07966i
\(924\) 0 0
\(925\) 3.25309e20 0.561441
\(926\) − 7.71524e20i − 1.32152i
\(927\) 0 0
\(928\) −1.84662e20 −0.311561
\(929\) − 7.02021e20i − 1.17555i −0.809025 0.587774i \(-0.800005\pi\)
0.809025 0.587774i \(-0.199995\pi\)
\(930\) 0 0
\(931\) −3.17367e20 −0.523496
\(932\) 5.23079e20i 0.856359i
\(933\) 0 0
\(934\) −7.02458e20 −1.13290
\(935\) − 1.90352e21i − 3.04703i
\(936\) 0 0
\(937\) −8.05744e20 −1.27063 −0.635316 0.772252i \(-0.719130\pi\)
−0.635316 + 0.772252i \(0.719130\pi\)
\(938\) − 2.07856e20i − 0.325344i
\(939\) 0 0
\(940\) 7.54600e20 1.16365
\(941\) − 1.02365e21i − 1.56684i −0.621494 0.783419i \(-0.713474\pi\)
0.621494 0.783419i \(-0.286526\pi\)
\(942\) 0 0
\(943\) 2.04482e20 0.308370
\(944\) − 2.15863e19i − 0.0323127i
\(945\) 0 0
\(946\) −1.29847e21 −1.91511
\(947\) 9.74103e20i 1.42612i 0.701104 + 0.713059i \(0.252691\pi\)
−0.701104 + 0.713059i \(0.747309\pi\)
\(948\) 0 0
\(949\) 2.17853e20 0.314267
\(950\) 6.85668e20i 0.981857i
\(951\) 0 0
\(952\) −9.33231e19 −0.131683
\(953\) 1.36890e20i 0.191743i 0.995394 + 0.0958716i \(0.0305638\pi\)
−0.995394 + 0.0958716i \(0.969436\pi\)
\(954\) 0 0
\(955\) −9.61066e20 −1.32657
\(956\) − 9.13095e19i − 0.125115i
\(957\) 0 0
\(958\) −1.50173e20 −0.202784
\(959\) − 2.05776e20i − 0.275844i
\(960\) 0 0
\(961\) 3.76308e20 0.497141
\(962\) − 7.68392e19i − 0.100776i
\(963\) 0 0
\(964\) −2.51674e20 −0.325312
\(965\) − 6.39186e20i − 0.820231i
\(966\) 0 0
\(967\) 9.51200e20 1.20306 0.601529 0.798851i \(-0.294558\pi\)
0.601529 + 0.798851i \(0.294558\pi\)
\(968\) − 5.08927e20i − 0.639040i
\(969\) 0 0
\(970\) −6.06819e20 −0.751030
\(971\) 1.16400e21i 1.43027i 0.698987 + 0.715134i \(0.253634\pi\)
−0.698987 + 0.715134i \(0.746366\pi\)
\(972\) 0 0
\(973\) 2.21520e20 0.268302
\(974\) − 2.88103e20i − 0.346445i
\(975\) 0 0
\(976\) 1.68957e20 0.200275
\(977\) − 1.27929e21i − 1.50559i −0.658253 0.752796i \(-0.728704\pi\)
0.658253 0.752796i \(-0.271296\pi\)
\(978\) 0 0
\(979\) −2.49041e20 −0.288930
\(980\) 6.78434e20i 0.781493i
\(981\) 0 0
\(982\) −4.63982e20 −0.526890
\(983\) − 1.39777e21i − 1.57602i −0.615660 0.788012i \(-0.711111\pi\)
0.615660 0.788012i \(-0.288889\pi\)
\(984\) 0 0
\(985\) 2.91068e20 0.323549
\(986\) 1.13260e21i 1.25008i
\(987\) 0 0
\(988\) 1.61957e20 0.176239
\(989\) 4.57728e20i 0.494576i
\(990\) 0 0
\(991\) 2.30863e20 0.245945 0.122972 0.992410i \(-0.460757\pi\)
0.122972 + 0.992410i \(0.460757\pi\)
\(992\) 2.04474e20i 0.216300i
\(993\) 0 0
\(994\) 4.68196e20 0.488340
\(995\) 2.02100e21i 2.09317i
\(996\) 0 0
\(997\) 6.42123e20 0.655771 0.327885 0.944718i \(-0.393664\pi\)
0.327885 + 0.944718i \(0.393664\pi\)
\(998\) − 3.75903e20i − 0.381208i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 18.15.b.b.17.2 4
3.2 odd 2 inner 18.15.b.b.17.3 yes 4
4.3 odd 2 144.15.e.b.17.4 4
12.11 even 2 144.15.e.b.17.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
18.15.b.b.17.2 4 1.1 even 1 trivial
18.15.b.b.17.3 yes 4 3.2 odd 2 inner
144.15.e.b.17.1 4 12.11 even 2
144.15.e.b.17.4 4 4.3 odd 2