Properties

Label 18.16.a.a
Level 1818
Weight 1616
Character orbit 18.a
Self dual yes
Analytic conductor 25.68525.685
Analytic rank 11
Dimension 11
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [18,16,Mod(1,18)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(18, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 16, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("18.1");
 
S:= CuspForms(chi, 16);
 
N := Newforms(S);
 
Level: N N == 18=232 18 = 2 \cdot 3^{2}
Weight: k k == 16 16
Character orbit: [χ][\chi] == 18.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 25.684830918025.6848309180
Analytic rank: 11
Dimension: 11
Coefficient field: Q\mathbb{Q}
Coefficient ring: Z\mathbb{Z}
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 6)
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q128q2+16384q477646q5+762104q72097152q8+9938688q1048011172q11+285130118q1397549312q14+268435456q16+3173671566q175895116260q19++533345152400256q98+O(q100) q - 128 q^{2} + 16384 q^{4} - 77646 q^{5} + 762104 q^{7} - 2097152 q^{8} + 9938688 q^{10} - 48011172 q^{11} + 285130118 q^{13} - 97549312 q^{14} + 268435456 q^{16} + 3173671566 q^{17} - 5895116260 q^{19}+ \cdots + 533345152400256 q^{98}+O(q^{100}) Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
0
−128.000 0 16384.0 −77646.0 0 762104. −2.09715e6 0 9.93869e6
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
22 +1 +1
33 1 -1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 18.16.a.a 1
3.b odd 2 1 6.16.a.c 1
4.b odd 2 1 144.16.a.e 1
12.b even 2 1 48.16.a.b 1
15.d odd 2 1 150.16.a.a 1
15.e even 4 2 150.16.c.h 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
6.16.a.c 1 3.b odd 2 1
18.16.a.a 1 1.a even 1 1 trivial
48.16.a.b 1 12.b even 2 1
144.16.a.e 1 4.b odd 2 1
150.16.a.a 1 15.d odd 2 1
150.16.c.h 2 15.e even 4 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T5+77646 T_{5} + 77646 acting on S16new(Γ0(18))S_{16}^{\mathrm{new}}(\Gamma_0(18)). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T+128 T + 128 Copy content Toggle raw display
33 T T Copy content Toggle raw display
55 T+77646 T + 77646 Copy content Toggle raw display
77 T762104 T - 762104 Copy content Toggle raw display
1111 T+48011172 T + 48011172 Copy content Toggle raw display
1313 T285130118 T - 285130118 Copy content Toggle raw display
1717 T3173671566 T - 3173671566 Copy content Toggle raw display
1919 T+5895116260 T + 5895116260 Copy content Toggle raw display
2323 T333010392 T - 333010392 Copy content Toggle raw display
2929 T+117285392310 T + 117285392310 Copy content Toggle raw display
3131 T+225821452768 T + 225821452768 Copy content Toggle raw display
3737 T+477657973906 T + 477657973906 Copy content Toggle raw display
4141 T+1196721561882 T + 1196721561882 Copy content Toggle raw display
4343 T1066802913668 T - 1066802913668 Copy content Toggle raw display
4747 T+1324913565264 T + 1324913565264 Copy content Toggle raw display
5353 T6573181204962 T - 6573181204962 Copy content Toggle raw display
5959 T+7973946241140 T + 7973946241140 Copy content Toggle raw display
6161 T14311350203222 T - 14311350203222 Copy content Toggle raw display
6767 T41052380998124 T - 41052380998124 Copy content Toggle raw display
7171 T+67253761134072 T + 67253761134072 Copy content Toggle raw display
7373 T+156200366359942 T + 156200366359942 Copy content Toggle raw display
7979 T+138004701018640 T + 138004701018640 Copy content Toggle raw display
8383 T+469396029824988 T + 469396029824988 Copy content Toggle raw display
8989 T422649074576790 T - 422649074576790 Copy content Toggle raw display
9797 T+201862519502686 T + 201862519502686 Copy content Toggle raw display
show more
show less