Properties

Label 18.16.a.a
Level $18$
Weight $16$
Character orbit 18.a
Self dual yes
Analytic conductor $25.685$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [18,16,Mod(1,18)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(18, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 16, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("18.1");
 
S:= CuspForms(chi, 16);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 18 = 2 \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 16 \)
Character orbit: \([\chi]\) \(=\) 18.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(25.6848309180\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 6)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q - 128 q^{2} + 16384 q^{4} - 77646 q^{5} + 762104 q^{7} - 2097152 q^{8} + 9938688 q^{10} - 48011172 q^{11} + 285130118 q^{13} - 97549312 q^{14} + 268435456 q^{16} + 3173671566 q^{17} - 5895116260 q^{19}+ \cdots + 533345152400256 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
−128.000 0 16384.0 −77646.0 0 762104. −2.09715e6 0 9.93869e6
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(3\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 18.16.a.a 1
3.b odd 2 1 6.16.a.c 1
4.b odd 2 1 144.16.a.e 1
12.b even 2 1 48.16.a.b 1
15.d odd 2 1 150.16.a.a 1
15.e even 4 2 150.16.c.h 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
6.16.a.c 1 3.b odd 2 1
18.16.a.a 1 1.a even 1 1 trivial
48.16.a.b 1 12.b even 2 1
144.16.a.e 1 4.b odd 2 1
150.16.a.a 1 15.d odd 2 1
150.16.c.h 2 15.e even 4 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5} + 77646 \) acting on \(S_{16}^{\mathrm{new}}(\Gamma_0(18))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T + 128 \) Copy content Toggle raw display
$3$ \( T \) Copy content Toggle raw display
$5$ \( T + 77646 \) Copy content Toggle raw display
$7$ \( T - 762104 \) Copy content Toggle raw display
$11$ \( T + 48011172 \) Copy content Toggle raw display
$13$ \( T - 285130118 \) Copy content Toggle raw display
$17$ \( T - 3173671566 \) Copy content Toggle raw display
$19$ \( T + 5895116260 \) Copy content Toggle raw display
$23$ \( T - 333010392 \) Copy content Toggle raw display
$29$ \( T + 117285392310 \) Copy content Toggle raw display
$31$ \( T + 225821452768 \) Copy content Toggle raw display
$37$ \( T + 477657973906 \) Copy content Toggle raw display
$41$ \( T + 1196721561882 \) Copy content Toggle raw display
$43$ \( T - 1066802913668 \) Copy content Toggle raw display
$47$ \( T + 1324913565264 \) Copy content Toggle raw display
$53$ \( T - 6573181204962 \) Copy content Toggle raw display
$59$ \( T + 7973946241140 \) Copy content Toggle raw display
$61$ \( T - 14311350203222 \) Copy content Toggle raw display
$67$ \( T - 41052380998124 \) Copy content Toggle raw display
$71$ \( T + 67253761134072 \) Copy content Toggle raw display
$73$ \( T + 156200366359942 \) Copy content Toggle raw display
$79$ \( T + 138004701018640 \) Copy content Toggle raw display
$83$ \( T + 469396029824988 \) Copy content Toggle raw display
$89$ \( T - 422649074576790 \) Copy content Toggle raw display
$97$ \( T + 201862519502686 \) Copy content Toggle raw display
show more
show less