Properties

Label 1800.2.d.m
Level $1800$
Weight $2$
Character orbit 1800.d
Analytic conductor $14.373$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1800,2,Mod(1549,1800)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1800, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1800.1549");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1800 = 2^{3} \cdot 3^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1800.d (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(14.3730723638\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{7})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 3x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 200)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta_{3} + \beta_1) q^{2} + ( - \beta_{2} + 2) q^{4} + 4 \beta_{3} q^{7} + ( - 3 \beta_{3} + \beta_1) q^{8} + (2 \beta_{2} - 1) q^{11} + 4 \beta_{2} q^{14} + ( - 3 \beta_{2} + 2) q^{16} + 3 \beta_{3} q^{17}+ \cdots + (9 \beta_{3} - 9 \beta_1) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 6 q^{4} + 8 q^{14} + 2 q^{16} + 16 q^{31} + 6 q^{34} + 20 q^{41} + 14 q^{44} + 8 q^{46} - 36 q^{49} + 40 q^{56} - 18 q^{64} - 32 q^{71} - 56 q^{74} + 14 q^{76} - 16 q^{79} + 28 q^{86} - 4 q^{89} + 16 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - 3x^{2} + 4 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 1 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( \nu^{3} - \nu ) / 2 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 1 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 2\beta_{3} + \beta_1 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1800\mathbb{Z}\right)^\times\).

\(n\) \(577\) \(901\) \(1001\) \(1351\)
\(\chi(n)\) \(-1\) \(-1\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1549.1
−1.32288 + 0.500000i
−1.32288 0.500000i
1.32288 + 0.500000i
1.32288 0.500000i
−1.32288 0.500000i 0 1.50000 + 1.32288i 0 0 4.00000i −1.32288 2.50000i 0 0
1549.2 −1.32288 + 0.500000i 0 1.50000 1.32288i 0 0 4.00000i −1.32288 + 2.50000i 0 0
1549.3 1.32288 0.500000i 0 1.50000 1.32288i 0 0 4.00000i 1.32288 2.50000i 0 0
1549.4 1.32288 + 0.500000i 0 1.50000 + 1.32288i 0 0 4.00000i 1.32288 + 2.50000i 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner
8.b even 2 1 inner
40.f even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1800.2.d.m 4
3.b odd 2 1 200.2.f.d 4
4.b odd 2 1 7200.2.d.m 4
5.b even 2 1 inner 1800.2.d.m 4
5.c odd 4 1 1800.2.k.d 2
5.c odd 4 1 1800.2.k.f 2
8.b even 2 1 inner 1800.2.d.m 4
8.d odd 2 1 7200.2.d.m 4
12.b even 2 1 800.2.f.d 4
15.d odd 2 1 200.2.f.d 4
15.e even 4 1 200.2.d.b 2
15.e even 4 1 200.2.d.c yes 2
20.d odd 2 1 7200.2.d.m 4
20.e even 4 1 7200.2.k.b 2
20.e even 4 1 7200.2.k.i 2
24.f even 2 1 800.2.f.d 4
24.h odd 2 1 200.2.f.d 4
40.e odd 2 1 7200.2.d.m 4
40.f even 2 1 inner 1800.2.d.m 4
40.i odd 4 1 1800.2.k.d 2
40.i odd 4 1 1800.2.k.f 2
40.k even 4 1 7200.2.k.b 2
40.k even 4 1 7200.2.k.i 2
60.h even 2 1 800.2.f.d 4
60.l odd 4 1 800.2.d.a 2
60.l odd 4 1 800.2.d.d 2
120.i odd 2 1 200.2.f.d 4
120.m even 2 1 800.2.f.d 4
120.q odd 4 1 800.2.d.a 2
120.q odd 4 1 800.2.d.d 2
120.w even 4 1 200.2.d.b 2
120.w even 4 1 200.2.d.c yes 2
240.z odd 4 1 6400.2.a.bh 2
240.z odd 4 1 6400.2.a.cb 2
240.bb even 4 1 6400.2.a.bg 2
240.bb even 4 1 6400.2.a.cc 2
240.bd odd 4 1 6400.2.a.bh 2
240.bd odd 4 1 6400.2.a.cb 2
240.bf even 4 1 6400.2.a.bg 2
240.bf even 4 1 6400.2.a.cc 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
200.2.d.b 2 15.e even 4 1
200.2.d.b 2 120.w even 4 1
200.2.d.c yes 2 15.e even 4 1
200.2.d.c yes 2 120.w even 4 1
200.2.f.d 4 3.b odd 2 1
200.2.f.d 4 15.d odd 2 1
200.2.f.d 4 24.h odd 2 1
200.2.f.d 4 120.i odd 2 1
800.2.d.a 2 60.l odd 4 1
800.2.d.a 2 120.q odd 4 1
800.2.d.d 2 60.l odd 4 1
800.2.d.d 2 120.q odd 4 1
800.2.f.d 4 12.b even 2 1
800.2.f.d 4 24.f even 2 1
800.2.f.d 4 60.h even 2 1
800.2.f.d 4 120.m even 2 1
1800.2.d.m 4 1.a even 1 1 trivial
1800.2.d.m 4 5.b even 2 1 inner
1800.2.d.m 4 8.b even 2 1 inner
1800.2.d.m 4 40.f even 2 1 inner
1800.2.k.d 2 5.c odd 4 1
1800.2.k.d 2 40.i odd 4 1
1800.2.k.f 2 5.c odd 4 1
1800.2.k.f 2 40.i odd 4 1
6400.2.a.bg 2 240.bb even 4 1
6400.2.a.bg 2 240.bf even 4 1
6400.2.a.bh 2 240.z odd 4 1
6400.2.a.bh 2 240.bd odd 4 1
6400.2.a.cb 2 240.z odd 4 1
6400.2.a.cb 2 240.bd odd 4 1
6400.2.a.cc 2 240.bb even 4 1
6400.2.a.cc 2 240.bf even 4 1
7200.2.d.m 4 4.b odd 2 1
7200.2.d.m 4 8.d odd 2 1
7200.2.d.m 4 20.d odd 2 1
7200.2.d.m 4 40.e odd 2 1
7200.2.k.b 2 20.e even 4 1
7200.2.k.b 2 40.k even 4 1
7200.2.k.i 2 20.e even 4 1
7200.2.k.i 2 40.k even 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(1800, [\chi])\):

\( T_{7}^{2} + 16 \) Copy content Toggle raw display
\( T_{11}^{2} + 7 \) Copy content Toggle raw display
\( T_{13} \) Copy content Toggle raw display
\( T_{37}^{2} - 112 \) Copy content Toggle raw display
\( T_{41} - 5 \) Copy content Toggle raw display
\( T_{53}^{2} - 112 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} - 3T^{2} + 4 \) Copy content Toggle raw display
$3$ \( T^{4} \) Copy content Toggle raw display
$5$ \( T^{4} \) Copy content Toggle raw display
$7$ \( (T^{2} + 16)^{2} \) Copy content Toggle raw display
$11$ \( (T^{2} + 7)^{2} \) Copy content Toggle raw display
$13$ \( T^{4} \) Copy content Toggle raw display
$17$ \( (T^{2} + 9)^{2} \) Copy content Toggle raw display
$19$ \( (T^{2} + 7)^{2} \) Copy content Toggle raw display
$23$ \( (T^{2} + 16)^{2} \) Copy content Toggle raw display
$29$ \( T^{4} \) Copy content Toggle raw display
$31$ \( (T - 4)^{4} \) Copy content Toggle raw display
$37$ \( (T^{2} - 112)^{2} \) Copy content Toggle raw display
$41$ \( (T - 5)^{4} \) Copy content Toggle raw display
$43$ \( (T^{2} - 28)^{2} \) Copy content Toggle raw display
$47$ \( (T^{2} + 64)^{2} \) Copy content Toggle raw display
$53$ \( (T^{2} - 112)^{2} \) Copy content Toggle raw display
$59$ \( (T^{2} + 28)^{2} \) Copy content Toggle raw display
$61$ \( (T^{2} + 112)^{2} \) Copy content Toggle raw display
$67$ \( (T^{2} - 63)^{2} \) Copy content Toggle raw display
$71$ \( (T + 8)^{4} \) Copy content Toggle raw display
$73$ \( (T^{2} + 49)^{2} \) Copy content Toggle raw display
$79$ \( (T + 4)^{4} \) Copy content Toggle raw display
$83$ \( (T^{2} - 63)^{2} \) Copy content Toggle raw display
$89$ \( (T + 1)^{4} \) Copy content Toggle raw display
$97$ \( (T^{2} + 4)^{2} \) Copy content Toggle raw display
show more
show less