Properties

Label 800.2.d.d
Level $800$
Weight $2$
Character orbit 800.d
Analytic conductor $6.388$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [800,2,Mod(401,800)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(800, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("800.401");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 800 = 2^{5} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 800.d (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.38803216170\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-7}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 200)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \sqrt{-7}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta q^{3} + 4 q^{7} - 4 q^{9} - \beta q^{11} + 3 q^{17} - \beta q^{19} - 4 \beta q^{21} + 4 q^{23} + \beta q^{27} - 4 q^{31} - 7 q^{33} + 4 \beta q^{37} - 5 q^{41} - 2 \beta q^{43} - 8 q^{47} + 9 q^{49} + \cdots + 4 \beta q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 8 q^{7} - 8 q^{9} + 6 q^{17} + 8 q^{23} - 8 q^{31} - 14 q^{33} - 10 q^{41} - 16 q^{47} + 18 q^{49} - 14 q^{57} - 32 q^{63} - 16 q^{71} + 14 q^{73} - 8 q^{79} - 10 q^{81} - 2 q^{89} + 4 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/800\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(351\) \(577\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
401.1
0.500000 + 1.32288i
0.500000 1.32288i
0 2.64575i 0 0 0 4.00000 0 −4.00000 0
401.2 0 2.64575i 0 0 0 4.00000 0 −4.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
8.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 800.2.d.d 2
3.b odd 2 1 7200.2.k.i 2
4.b odd 2 1 200.2.d.b 2
5.b even 2 1 800.2.d.a 2
5.c odd 4 2 800.2.f.d 4
8.b even 2 1 inner 800.2.d.d 2
8.d odd 2 1 200.2.d.b 2
12.b even 2 1 1800.2.k.f 2
15.d odd 2 1 7200.2.k.b 2
15.e even 4 2 7200.2.d.m 4
16.e even 4 2 6400.2.a.bh 2
16.f odd 4 2 6400.2.a.cc 2
20.d odd 2 1 200.2.d.c yes 2
20.e even 4 2 200.2.f.d 4
24.f even 2 1 1800.2.k.f 2
24.h odd 2 1 7200.2.k.i 2
40.e odd 2 1 200.2.d.c yes 2
40.f even 2 1 800.2.d.a 2
40.i odd 4 2 800.2.f.d 4
40.k even 4 2 200.2.f.d 4
60.h even 2 1 1800.2.k.d 2
60.l odd 4 2 1800.2.d.m 4
80.k odd 4 2 6400.2.a.bg 2
80.q even 4 2 6400.2.a.cb 2
120.i odd 2 1 7200.2.k.b 2
120.m even 2 1 1800.2.k.d 2
120.q odd 4 2 1800.2.d.m 4
120.w even 4 2 7200.2.d.m 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
200.2.d.b 2 4.b odd 2 1
200.2.d.b 2 8.d odd 2 1
200.2.d.c yes 2 20.d odd 2 1
200.2.d.c yes 2 40.e odd 2 1
200.2.f.d 4 20.e even 4 2
200.2.f.d 4 40.k even 4 2
800.2.d.a 2 5.b even 2 1
800.2.d.a 2 40.f even 2 1
800.2.d.d 2 1.a even 1 1 trivial
800.2.d.d 2 8.b even 2 1 inner
800.2.f.d 4 5.c odd 4 2
800.2.f.d 4 40.i odd 4 2
1800.2.d.m 4 60.l odd 4 2
1800.2.d.m 4 120.q odd 4 2
1800.2.k.d 2 60.h even 2 1
1800.2.k.d 2 120.m even 2 1
1800.2.k.f 2 12.b even 2 1
1800.2.k.f 2 24.f even 2 1
6400.2.a.bg 2 80.k odd 4 2
6400.2.a.bh 2 16.e even 4 2
6400.2.a.cb 2 80.q even 4 2
6400.2.a.cc 2 16.f odd 4 2
7200.2.d.m 4 15.e even 4 2
7200.2.d.m 4 120.w even 4 2
7200.2.k.b 2 15.d odd 2 1
7200.2.k.b 2 120.i odd 2 1
7200.2.k.i 2 3.b odd 2 1
7200.2.k.i 2 24.h odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(800, [\chi])\):

\( T_{3}^{2} + 7 \) Copy content Toggle raw display
\( T_{7} - 4 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} + 7 \) Copy content Toggle raw display
$5$ \( T^{2} \) Copy content Toggle raw display
$7$ \( (T - 4)^{2} \) Copy content Toggle raw display
$11$ \( T^{2} + 7 \) Copy content Toggle raw display
$13$ \( T^{2} \) Copy content Toggle raw display
$17$ \( (T - 3)^{2} \) Copy content Toggle raw display
$19$ \( T^{2} + 7 \) Copy content Toggle raw display
$23$ \( (T - 4)^{2} \) Copy content Toggle raw display
$29$ \( T^{2} \) Copy content Toggle raw display
$31$ \( (T + 4)^{2} \) Copy content Toggle raw display
$37$ \( T^{2} + 112 \) Copy content Toggle raw display
$41$ \( (T + 5)^{2} \) Copy content Toggle raw display
$43$ \( T^{2} + 28 \) Copy content Toggle raw display
$47$ \( (T + 8)^{2} \) Copy content Toggle raw display
$53$ \( T^{2} + 112 \) Copy content Toggle raw display
$59$ \( T^{2} + 28 \) Copy content Toggle raw display
$61$ \( T^{2} + 112 \) Copy content Toggle raw display
$67$ \( T^{2} + 63 \) Copy content Toggle raw display
$71$ \( (T + 8)^{2} \) Copy content Toggle raw display
$73$ \( (T - 7)^{2} \) Copy content Toggle raw display
$79$ \( (T + 4)^{2} \) Copy content Toggle raw display
$83$ \( T^{2} + 63 \) Copy content Toggle raw display
$89$ \( (T + 1)^{2} \) Copy content Toggle raw display
$97$ \( (T - 2)^{2} \) Copy content Toggle raw display
show more
show less