Properties

Label 800.2.d.d
Level 800800
Weight 22
Character orbit 800.d
Analytic conductor 6.3886.388
Analytic rank 00
Dimension 22
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [800,2,Mod(401,800)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(800, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("800.401");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 800=2552 800 = 2^{5} \cdot 5^{2}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 800.d (of order 22, degree 11, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 6.388032161706.38803216170
Analytic rank: 00
Dimension: 22
Coefficient field: Q(7)\Q(\sqrt{-7})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x2x+2 x^{2} - x + 2 Copy content Toggle raw display
Coefficient ring: Z[a1,a2,a3]\Z[a_1, a_2, a_3]
Coefficient ring index: 2 2
Twist minimal: no (minimal twist has level 200)
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of β=7\beta = \sqrt{-7}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == qβq3+4q74q9βq11+3q17βq194βq21+4q23+βq274q317q33+4βq375q412βq438q47+9q49++4βq99+O(q100) q - \beta q^{3} + 4 q^{7} - 4 q^{9} - \beta q^{11} + 3 q^{17} - \beta q^{19} - 4 \beta q^{21} + 4 q^{23} + \beta q^{27} - 4 q^{31} - 7 q^{33} + 4 \beta q^{37} - 5 q^{41} - 2 \beta q^{43} - 8 q^{47} + 9 q^{49} + \cdots + 4 \beta q^{99} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q+8q78q9+6q17+8q238q3114q3310q4116q47+18q4914q5732q6316q71+14q738q7910q812q89+4q97+O(q100) 2 q + 8 q^{7} - 8 q^{9} + 6 q^{17} + 8 q^{23} - 8 q^{31} - 14 q^{33} - 10 q^{41} - 16 q^{47} + 18 q^{49} - 14 q^{57} - 32 q^{63} - 16 q^{71} + 14 q^{73} - 8 q^{79} - 10 q^{81} - 2 q^{89} + 4 q^{97}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/800Z)×\left(\mathbb{Z}/800\mathbb{Z}\right)^\times.

nn 101101 351351 577577
χ(n)\chi(n) 1-1 11 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
401.1
0.500000 + 1.32288i
0.500000 1.32288i
0 2.64575i 0 0 0 4.00000 0 −4.00000 0
401.2 0 2.64575i 0 0 0 4.00000 0 −4.00000 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
8.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 800.2.d.d 2
3.b odd 2 1 7200.2.k.i 2
4.b odd 2 1 200.2.d.b 2
5.b even 2 1 800.2.d.a 2
5.c odd 4 2 800.2.f.d 4
8.b even 2 1 inner 800.2.d.d 2
8.d odd 2 1 200.2.d.b 2
12.b even 2 1 1800.2.k.f 2
15.d odd 2 1 7200.2.k.b 2
15.e even 4 2 7200.2.d.m 4
16.e even 4 2 6400.2.a.bh 2
16.f odd 4 2 6400.2.a.cc 2
20.d odd 2 1 200.2.d.c yes 2
20.e even 4 2 200.2.f.d 4
24.f even 2 1 1800.2.k.f 2
24.h odd 2 1 7200.2.k.i 2
40.e odd 2 1 200.2.d.c yes 2
40.f even 2 1 800.2.d.a 2
40.i odd 4 2 800.2.f.d 4
40.k even 4 2 200.2.f.d 4
60.h even 2 1 1800.2.k.d 2
60.l odd 4 2 1800.2.d.m 4
80.k odd 4 2 6400.2.a.bg 2
80.q even 4 2 6400.2.a.cb 2
120.i odd 2 1 7200.2.k.b 2
120.m even 2 1 1800.2.k.d 2
120.q odd 4 2 1800.2.d.m 4
120.w even 4 2 7200.2.d.m 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
200.2.d.b 2 4.b odd 2 1
200.2.d.b 2 8.d odd 2 1
200.2.d.c yes 2 20.d odd 2 1
200.2.d.c yes 2 40.e odd 2 1
200.2.f.d 4 20.e even 4 2
200.2.f.d 4 40.k even 4 2
800.2.d.a 2 5.b even 2 1
800.2.d.a 2 40.f even 2 1
800.2.d.d 2 1.a even 1 1 trivial
800.2.d.d 2 8.b even 2 1 inner
800.2.f.d 4 5.c odd 4 2
800.2.f.d 4 40.i odd 4 2
1800.2.d.m 4 60.l odd 4 2
1800.2.d.m 4 120.q odd 4 2
1800.2.k.d 2 60.h even 2 1
1800.2.k.d 2 120.m even 2 1
1800.2.k.f 2 12.b even 2 1
1800.2.k.f 2 24.f even 2 1
6400.2.a.bg 2 80.k odd 4 2
6400.2.a.bh 2 16.e even 4 2
6400.2.a.cb 2 80.q even 4 2
6400.2.a.cc 2 16.f odd 4 2
7200.2.d.m 4 15.e even 4 2
7200.2.d.m 4 120.w even 4 2
7200.2.k.b 2 15.d odd 2 1
7200.2.k.b 2 120.i odd 2 1
7200.2.k.i 2 3.b odd 2 1
7200.2.k.i 2 24.h odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(800,[χ])S_{2}^{\mathrm{new}}(800, [\chi]):

T32+7 T_{3}^{2} + 7 Copy content Toggle raw display
T74 T_{7} - 4 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T2 T^{2} Copy content Toggle raw display
33 T2+7 T^{2} + 7 Copy content Toggle raw display
55 T2 T^{2} Copy content Toggle raw display
77 (T4)2 (T - 4)^{2} Copy content Toggle raw display
1111 T2+7 T^{2} + 7 Copy content Toggle raw display
1313 T2 T^{2} Copy content Toggle raw display
1717 (T3)2 (T - 3)^{2} Copy content Toggle raw display
1919 T2+7 T^{2} + 7 Copy content Toggle raw display
2323 (T4)2 (T - 4)^{2} Copy content Toggle raw display
2929 T2 T^{2} Copy content Toggle raw display
3131 (T+4)2 (T + 4)^{2} Copy content Toggle raw display
3737 T2+112 T^{2} + 112 Copy content Toggle raw display
4141 (T+5)2 (T + 5)^{2} Copy content Toggle raw display
4343 T2+28 T^{2} + 28 Copy content Toggle raw display
4747 (T+8)2 (T + 8)^{2} Copy content Toggle raw display
5353 T2+112 T^{2} + 112 Copy content Toggle raw display
5959 T2+28 T^{2} + 28 Copy content Toggle raw display
6161 T2+112 T^{2} + 112 Copy content Toggle raw display
6767 T2+63 T^{2} + 63 Copy content Toggle raw display
7171 (T+8)2 (T + 8)^{2} Copy content Toggle raw display
7373 (T7)2 (T - 7)^{2} Copy content Toggle raw display
7979 (T+4)2 (T + 4)^{2} Copy content Toggle raw display
8383 T2+63 T^{2} + 63 Copy content Toggle raw display
8989 (T+1)2 (T + 1)^{2} Copy content Toggle raw display
9797 (T2)2 (T - 2)^{2} Copy content Toggle raw display
show more
show less