Properties

Label 200.2.f.d
Level $200$
Weight $2$
Character orbit 200.f
Analytic conductor $1.597$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [200,2,Mod(149,200)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(200, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("200.149");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 200 = 2^{3} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 200.f (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.59700804043\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{7})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 3x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_1 q^{2} + (\beta_{3} - 2 \beta_1) q^{3} + (\beta_{2} + 1) q^{4} + ( - \beta_{2} - 3) q^{6} + 4 \beta_{3} q^{7} + (2 \beta_{3} + \beta_1) q^{8} + 4 q^{9} + (2 \beta_{2} - 1) q^{11} + ( - 2 \beta_{3} - 3 \beta_1) q^{12}+ \cdots + (8 \beta_{2} - 4) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 6 q^{4} - 14 q^{6} + 16 q^{9} - 8 q^{14} + 2 q^{16} - 14 q^{24} + 16 q^{31} + 6 q^{34} + 24 q^{36} - 20 q^{41} - 14 q^{44} + 8 q^{46} - 36 q^{49} - 14 q^{54} - 40 q^{56} - 18 q^{64} + 14 q^{66} + 32 q^{71}+ \cdots + 14 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - 3x^{2} + 4 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 1 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( \nu^{3} - \nu ) / 2 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 1 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 2\beta_{3} + \beta_1 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/200\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(151\) \(177\)
\(\chi(n)\) \(-1\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
149.1
−1.32288 0.500000i
−1.32288 + 0.500000i
1.32288 0.500000i
1.32288 + 0.500000i
−1.32288 0.500000i 2.64575 1.50000 + 1.32288i 0 −3.50000 1.32288i 4.00000i −1.32288 2.50000i 4.00000 0
149.2 −1.32288 + 0.500000i 2.64575 1.50000 1.32288i 0 −3.50000 + 1.32288i 4.00000i −1.32288 + 2.50000i 4.00000 0
149.3 1.32288 0.500000i −2.64575 1.50000 1.32288i 0 −3.50000 + 1.32288i 4.00000i 1.32288 2.50000i 4.00000 0
149.4 1.32288 + 0.500000i −2.64575 1.50000 + 1.32288i 0 −3.50000 1.32288i 4.00000i 1.32288 + 2.50000i 4.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner
8.b even 2 1 inner
40.f even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 200.2.f.d 4
3.b odd 2 1 1800.2.d.m 4
4.b odd 2 1 800.2.f.d 4
5.b even 2 1 inner 200.2.f.d 4
5.c odd 4 1 200.2.d.b 2
5.c odd 4 1 200.2.d.c yes 2
8.b even 2 1 inner 200.2.f.d 4
8.d odd 2 1 800.2.f.d 4
12.b even 2 1 7200.2.d.m 4
15.d odd 2 1 1800.2.d.m 4
15.e even 4 1 1800.2.k.d 2
15.e even 4 1 1800.2.k.f 2
20.d odd 2 1 800.2.f.d 4
20.e even 4 1 800.2.d.a 2
20.e even 4 1 800.2.d.d 2
24.f even 2 1 7200.2.d.m 4
24.h odd 2 1 1800.2.d.m 4
40.e odd 2 1 800.2.f.d 4
40.f even 2 1 inner 200.2.f.d 4
40.i odd 4 1 200.2.d.b 2
40.i odd 4 1 200.2.d.c yes 2
40.k even 4 1 800.2.d.a 2
40.k even 4 1 800.2.d.d 2
60.h even 2 1 7200.2.d.m 4
60.l odd 4 1 7200.2.k.b 2
60.l odd 4 1 7200.2.k.i 2
80.i odd 4 1 6400.2.a.bg 2
80.i odd 4 1 6400.2.a.cc 2
80.j even 4 1 6400.2.a.bh 2
80.j even 4 1 6400.2.a.cb 2
80.s even 4 1 6400.2.a.bh 2
80.s even 4 1 6400.2.a.cb 2
80.t odd 4 1 6400.2.a.bg 2
80.t odd 4 1 6400.2.a.cc 2
120.i odd 2 1 1800.2.d.m 4
120.m even 2 1 7200.2.d.m 4
120.q odd 4 1 7200.2.k.b 2
120.q odd 4 1 7200.2.k.i 2
120.w even 4 1 1800.2.k.d 2
120.w even 4 1 1800.2.k.f 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
200.2.d.b 2 5.c odd 4 1
200.2.d.b 2 40.i odd 4 1
200.2.d.c yes 2 5.c odd 4 1
200.2.d.c yes 2 40.i odd 4 1
200.2.f.d 4 1.a even 1 1 trivial
200.2.f.d 4 5.b even 2 1 inner
200.2.f.d 4 8.b even 2 1 inner
200.2.f.d 4 40.f even 2 1 inner
800.2.d.a 2 20.e even 4 1
800.2.d.a 2 40.k even 4 1
800.2.d.d 2 20.e even 4 1
800.2.d.d 2 40.k even 4 1
800.2.f.d 4 4.b odd 2 1
800.2.f.d 4 8.d odd 2 1
800.2.f.d 4 20.d odd 2 1
800.2.f.d 4 40.e odd 2 1
1800.2.d.m 4 3.b odd 2 1
1800.2.d.m 4 15.d odd 2 1
1800.2.d.m 4 24.h odd 2 1
1800.2.d.m 4 120.i odd 2 1
1800.2.k.d 2 15.e even 4 1
1800.2.k.d 2 120.w even 4 1
1800.2.k.f 2 15.e even 4 1
1800.2.k.f 2 120.w even 4 1
6400.2.a.bg 2 80.i odd 4 1
6400.2.a.bg 2 80.t odd 4 1
6400.2.a.bh 2 80.j even 4 1
6400.2.a.bh 2 80.s even 4 1
6400.2.a.cb 2 80.j even 4 1
6400.2.a.cb 2 80.s even 4 1
6400.2.a.cc 2 80.i odd 4 1
6400.2.a.cc 2 80.t odd 4 1
7200.2.d.m 4 12.b even 2 1
7200.2.d.m 4 24.f even 2 1
7200.2.d.m 4 60.h even 2 1
7200.2.d.m 4 120.m even 2 1
7200.2.k.b 2 60.l odd 4 1
7200.2.k.b 2 120.q odd 4 1
7200.2.k.i 2 60.l odd 4 1
7200.2.k.i 2 120.q odd 4 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{2} - 7 \) acting on \(S_{2}^{\mathrm{new}}(200, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} - 3T^{2} + 4 \) Copy content Toggle raw display
$3$ \( (T^{2} - 7)^{2} \) Copy content Toggle raw display
$5$ \( T^{4} \) Copy content Toggle raw display
$7$ \( (T^{2} + 16)^{2} \) Copy content Toggle raw display
$11$ \( (T^{2} + 7)^{2} \) Copy content Toggle raw display
$13$ \( T^{4} \) Copy content Toggle raw display
$17$ \( (T^{2} + 9)^{2} \) Copy content Toggle raw display
$19$ \( (T^{2} + 7)^{2} \) Copy content Toggle raw display
$23$ \( (T^{2} + 16)^{2} \) Copy content Toggle raw display
$29$ \( T^{4} \) Copy content Toggle raw display
$31$ \( (T - 4)^{4} \) Copy content Toggle raw display
$37$ \( (T^{2} - 112)^{2} \) Copy content Toggle raw display
$41$ \( (T + 5)^{4} \) Copy content Toggle raw display
$43$ \( (T^{2} - 28)^{2} \) Copy content Toggle raw display
$47$ \( (T^{2} + 64)^{2} \) Copy content Toggle raw display
$53$ \( (T^{2} - 112)^{2} \) Copy content Toggle raw display
$59$ \( (T^{2} + 28)^{2} \) Copy content Toggle raw display
$61$ \( (T^{2} + 112)^{2} \) Copy content Toggle raw display
$67$ \( (T^{2} - 63)^{2} \) Copy content Toggle raw display
$71$ \( (T - 8)^{4} \) Copy content Toggle raw display
$73$ \( (T^{2} + 49)^{2} \) Copy content Toggle raw display
$79$ \( (T + 4)^{4} \) Copy content Toggle raw display
$83$ \( (T^{2} - 63)^{2} \) Copy content Toggle raw display
$89$ \( (T - 1)^{4} \) Copy content Toggle raw display
$97$ \( (T^{2} + 4)^{2} \) Copy content Toggle raw display
show more
show less