Properties

Label 1805.1.m.a.1512.1
Level 18051805
Weight 11
Character 1805.1512
Analytic conductor 0.9010.901
Analytic rank 00
Dimension 44
Projective image D4D_{4}
CM discriminant -19
Inner twists 88

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1805,1,Mod(68,1805)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1805, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([9, 8]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1805.68");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: N N == 1805=5192 1805 = 5 \cdot 19^{2}
Weight: k k == 1 1
Character orbit: [χ][\chi] == 1805.m (of order 1212, degree 44, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 0.9008123478030.900812347803
Analytic rank: 00
Dimension: 44
Coefficient field: Q(ζ12)\Q(\zeta_{12})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x4x2+1 x^{4} - x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a4]\Z[a_1, \ldots, a_{4}]
Coefficient ring index: 1 1
Twist minimal: yes
Projective image: D4D_{4}
Projective field: Galois closure of 4.2.2375.1

Embedding invariants

Embedding label 1512.1
Root 0.8660250.500000i-0.866025 - 0.500000i of defining polynomial
Character χ\chi == 1805.1512
Dual form 1805.1.m.a.653.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+(0.866025+0.500000i)q4+(0.5000000.866025i)q5+(1.00000+1.00000i)q7+(0.8660250.500000i)q9+(0.5000000.866025i)q16+(1.36603+0.366025i)q17+1.00000iq20+(1.36603+0.366025i)q23+(0.5000000.866025i)q25+(1.366030.366025i)q28+(1.366030.366025i)q35+(0.500000+0.866025i)q36+(0.366025+1.36603i)q431.00000iq45+(0.3660251.36603i)q47+1.00000iq49+(1.36603+0.366025i)q63+1.00000iq64+(1.000001.00000i)q68+(0.366025+1.36603i)q73+(0.5000000.866025i)q80+(0.5000000.866025i)q81+(1.000001.00000i)q83+(0.366025+1.36603i)q85+(1.36603+0.366025i)q92+O(q100)q+(-0.866025 + 0.500000i) q^{4} +(0.500000 - 0.866025i) q^{5} +(1.00000 + 1.00000i) q^{7} +(0.866025 - 0.500000i) q^{9} +(0.500000 - 0.866025i) q^{16} +(-1.36603 + 0.366025i) q^{17} +1.00000i q^{20} +(1.36603 + 0.366025i) q^{23} +(-0.500000 - 0.866025i) q^{25} +(-1.36603 - 0.366025i) q^{28} +(1.36603 - 0.366025i) q^{35} +(-0.500000 + 0.866025i) q^{36} +(0.366025 + 1.36603i) q^{43} -1.00000i q^{45} +(0.366025 - 1.36603i) q^{47} +1.00000i q^{49} +(1.36603 + 0.366025i) q^{63} +1.00000i q^{64} +(1.00000 - 1.00000i) q^{68} +(0.366025 + 1.36603i) q^{73} +(-0.500000 - 0.866025i) q^{80} +(0.500000 - 0.866025i) q^{81} +(1.00000 - 1.00000i) q^{83} +(-0.366025 + 1.36603i) q^{85} +(-1.36603 + 0.366025i) q^{92} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q+2q5+4q7+2q162q17+2q232q252q28+2q352q362q432q47+2q63+4q682q732q80+2q81+4q83+2q852q92+O(q100) 4 q + 2 q^{5} + 4 q^{7} + 2 q^{16} - 2 q^{17} + 2 q^{23} - 2 q^{25} - 2 q^{28} + 2 q^{35} - 2 q^{36} - 2 q^{43} - 2 q^{47} + 2 q^{63} + 4 q^{68} - 2 q^{73} - 2 q^{80} + 2 q^{81} + 4 q^{83} + 2 q^{85} - 2 q^{92}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/1805Z)×\left(\mathbb{Z}/1805\mathbb{Z}\right)^\times.

nn 362362 14461446
χ(n)\chi(n) e(14)e\left(\frac{1}{4}\right) e(23)e\left(\frac{2}{3}\right)

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 0 0 −0.258819 0.965926i 0.583333π-0.583333\pi
0.258819 + 0.965926i 0.416667π0.416667\pi
33 0 0 0.965926 0.258819i 0.0833333π-0.0833333\pi
−0.965926 + 0.258819i 0.916667π0.916667\pi
44 −0.866025 + 0.500000i −0.866025 + 0.500000i
55 0.500000 0.866025i 0.500000 0.866025i
66 0 0
77 1.00000 + 1.00000i 1.00000 + 1.00000i 1.00000 00
1.00000i 0.5π0.5\pi
88 0 0
99 0.866025 0.500000i 0.866025 0.500000i
1010 0 0
1111 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
1212 0 0
1313 0 0 0.258819 0.965926i 0.416667π-0.416667\pi
−0.258819 + 0.965926i 0.583333π0.583333\pi
1414 0 0
1515 0 0
1616 0.500000 0.866025i 0.500000 0.866025i
1717 −1.36603 + 0.366025i −1.36603 + 0.366025i −0.866025 0.500000i 0.833333π-0.833333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
1818 0 0
1919 0 0
2020 1.00000i 1.00000i
2121 0 0
2222 0 0
2323 1.36603 + 0.366025i 1.36603 + 0.366025i 0.866025 0.500000i 0.166667π-0.166667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
2424 0 0
2525 −0.500000 0.866025i −0.500000 0.866025i
2626 0 0
2727 0 0
2828 −1.36603 0.366025i −1.36603 0.366025i
2929 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
3030 0 0
3131 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
3232 0 0
3333 0 0
3434 0 0
3535 1.36603 0.366025i 1.36603 0.366025i
3636 −0.500000 + 0.866025i −0.500000 + 0.866025i
3737 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
3838 0 0
3939 0 0
4040 0 0
4141 0 0 −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
4242 0 0
4343 0.366025 + 1.36603i 0.366025 + 1.36603i 0.866025 + 0.500000i 0.166667π0.166667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
4444 0 0
4545 1.00000i 1.00000i
4646 0 0
4747 0.366025 1.36603i 0.366025 1.36603i −0.500000 0.866025i 0.666667π-0.666667\pi
0.866025 0.500000i 0.166667π-0.166667\pi
4848 0 0
4949 1.00000i 1.00000i
5050 0 0
5151 0 0
5252 0 0
5353 0 0 0.258819 0.965926i 0.416667π-0.416667\pi
−0.258819 + 0.965926i 0.583333π0.583333\pi
5454 0 0
5555 0 0
5656 0 0
5757 0 0
5858 0 0
5959 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
6060 0 0
6161 0 0 0.866025 0.500000i 0.166667π-0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
6262 0 0
6363 1.36603 + 0.366025i 1.36603 + 0.366025i
6464 1.00000i 1.00000i
6565 0 0
6666 0 0
6767 0 0 −0.965926 0.258819i 0.916667π-0.916667\pi
0.965926 + 0.258819i 0.0833333π0.0833333\pi
6868 1.00000 1.00000i 1.00000 1.00000i
6969 0 0
7070 0 0
7171 0 0 −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
7272 0 0
7373 0.366025 + 1.36603i 0.366025 + 1.36603i 0.866025 + 0.500000i 0.166667π0.166667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
7474 0 0
7575 0 0
7676 0 0
7777 0 0
7878 0 0
7979 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
8080 −0.500000 0.866025i −0.500000 0.866025i
8181 0.500000 0.866025i 0.500000 0.866025i
8282 0 0
8383 1.00000 1.00000i 1.00000 1.00000i 1.00000i 0.5π-0.5\pi
1.00000 00
8484 0 0
8585 −0.366025 + 1.36603i −0.366025 + 1.36603i
8686 0 0
8787 0 0
8888 0 0
8989 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
9090 0 0
9191 0 0
9292 −1.36603 + 0.366025i −1.36603 + 0.366025i
9393 0 0
9494 0 0
9595 0 0
9696 0 0
9797 0 0 −0.258819 0.965926i 0.583333π-0.583333\pi
0.258819 + 0.965926i 0.416667π0.416667\pi
9898 0 0
9999 0 0
100100 0.866025 + 0.500000i 0.866025 + 0.500000i
101101 0 0 0.866025 0.500000i 0.166667π-0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
102102 0 0
103103 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
104104 0 0
105105 0 0
106106 0 0
107107 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
108108 0 0
109109 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
110110 0 0
111111 0 0
112112 1.36603 0.366025i 1.36603 0.366025i
113113 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
114114 0 0
115115 1.00000 1.00000i 1.00000 1.00000i
116116 0 0
117117 0 0
118118 0 0
119119 −1.73205 1.00000i −1.73205 1.00000i
120120 0 0
121121 −1.00000 −1.00000
122122 0 0
123123 0 0
124124 0 0
125125 −1.00000 −1.00000
126126 0 0
127127 0 0 −0.965926 0.258819i 0.916667π-0.916667\pi
0.965926 + 0.258819i 0.0833333π0.0833333\pi
128128 0 0
129129 0 0
130130 0 0
131131 1.00000 1.73205i 1.00000 1.73205i 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 0.866025i 0.333333π-0.333333\pi
132132 0 0
133133 0 0
134134 0 0
135135 0 0
136136 0 0
137137 −0.366025 + 1.36603i −0.366025 + 1.36603i 0.500000 + 0.866025i 0.333333π0.333333\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
138138 0 0
139139 −1.73205 + 1.00000i −1.73205 + 1.00000i −0.866025 + 0.500000i 0.833333π0.833333\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
140140 −1.00000 + 1.00000i −1.00000 + 1.00000i
141141 0 0
142142 0 0
143143 0 0
144144 1.00000i 1.00000i
145145 0 0
146146 0 0
147147 0 0
148148 0 0
149149 −1.73205 1.00000i −1.73205 1.00000i −0.866025 0.500000i 0.833333π-0.833333\pi
−0.866025 0.500000i 0.833333π-0.833333\pi
150150 0 0
151151 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
152152 0 0
153153 −1.00000 + 1.00000i −1.00000 + 1.00000i
154154 0 0
155155 0 0
156156 0 0
157157 −1.36603 + 0.366025i −1.36603 + 0.366025i −0.866025 0.500000i 0.833333π-0.833333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
158158 0 0
159159 0 0
160160 0 0
161161 1.00000 + 1.73205i 1.00000 + 1.73205i
162162 0 0
163163 −1.00000 + 1.00000i −1.00000 + 1.00000i 1.00000i 0.5π0.5\pi
−1.00000 π\pi
164164 0 0
165165 0 0
166166 0 0
167167 0 0 −0.965926 0.258819i 0.916667π-0.916667\pi
0.965926 + 0.258819i 0.0833333π0.0833333\pi
168168 0 0
169169 −0.866025 0.500000i −0.866025 0.500000i
170170 0 0
171171 0 0
172172 −1.00000 1.00000i −1.00000 1.00000i
173173 0 0 0.965926 0.258819i 0.0833333π-0.0833333\pi
−0.965926 + 0.258819i 0.916667π0.916667\pi
174174 0 0
175175 0.366025 1.36603i 0.366025 1.36603i
176176 0 0
177177 0 0
178178 0 0
179179 0 0 1.00000 00
−1.00000 π\pi
180180 0.500000 + 0.866025i 0.500000 + 0.866025i
181181 0 0 0.866025 0.500000i 0.166667π-0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
182182 0 0
183183 0 0
184184 0 0
185185 0 0
186186 0 0
187187 0 0
188188 0.366025 + 1.36603i 0.366025 + 1.36603i
189189 0 0
190190 0 0
191191 −2.00000 −2.00000 −1.00000 π\pi
−1.00000 π\pi
192192 0 0
193193 0 0 0.965926 0.258819i 0.0833333π-0.0833333\pi
−0.965926 + 0.258819i 0.916667π0.916667\pi
194194 0 0
195195 0 0
196196 −0.500000 0.866025i −0.500000 0.866025i
197197 −1.00000 1.00000i −1.00000 1.00000i 1.00000i 0.5π-0.5\pi
−1.00000 π\pi
198198 0 0
199199 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
200200 0 0
201201 0 0
202202 0 0
203203 0 0
204204 0 0
205205 0 0
206206 0 0
207207 1.36603 0.366025i 1.36603 0.366025i
208208 0 0
209209 0 0
210210 0 0
211211 0 0 −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
212212 0 0
213213 0 0
214214 0 0
215215 1.36603 + 0.366025i 1.36603 + 0.366025i
216216 0 0
217217 0 0
218218 0 0
219219 0 0
220220 0 0
221221 0 0
222222 0 0
223223 0 0 0.965926 0.258819i 0.0833333π-0.0833333\pi
−0.965926 + 0.258819i 0.916667π0.916667\pi
224224 0 0
225225 −0.866025 0.500000i −0.866025 0.500000i
226226 0 0
227227 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
228228 0 0
229229 2.00000i 2.00000i 1.00000i 0.5π-0.5\pi
1.00000i 0.5π-0.5\pi
230230 0 0
231231 0 0
232232 0 0
233233 0.366025 + 1.36603i 0.366025 + 1.36603i 0.866025 + 0.500000i 0.166667π0.166667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
234234 0 0
235235 −1.00000 1.00000i −1.00000 1.00000i
236236 0 0
237237 0 0
238238 0 0
239239 0 0 1.00000 00
−1.00000 π\pi
240240 0 0
241241 0 0 0.866025 0.500000i 0.166667π-0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
242242 0 0
243243 0 0
244244 0 0
245245 0.866025 + 0.500000i 0.866025 + 0.500000i
246246 0 0
247247 0 0
248248 0 0
249249 0 0
250250 0 0
251251 −1.00000 1.73205i −1.00000 1.73205i −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 0.866025i 0.666667π-0.666667\pi
252252 −1.36603 + 0.366025i −1.36603 + 0.366025i
253253 0 0
254254 0 0
255255 0 0
256256 −0.500000 0.866025i −0.500000 0.866025i
257257 0 0 −0.965926 0.258819i 0.916667π-0.916667\pi
0.965926 + 0.258819i 0.0833333π0.0833333\pi
258258 0 0
259259 0 0
260260 0 0
261261 0 0
262262 0 0
263263 0.366025 + 1.36603i 0.366025 + 1.36603i 0.866025 + 0.500000i 0.166667π0.166667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
264264 0 0
265265 0 0
266266 0 0
267267 0 0
268268 0 0
269269 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
270270 0 0
271271 0 0 −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
272272 −0.366025 + 1.36603i −0.366025 + 1.36603i
273273 0 0
274274 0 0
275275 0 0
276276 0 0
277277 1.00000 + 1.00000i 1.00000 + 1.00000i 1.00000 00
1.00000i 0.5π0.5\pi
278278 0 0
279279 0 0
280280 0 0
281281 0 0 0.866025 0.500000i 0.166667π-0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
282282 0 0
283283 −0.366025 1.36603i −0.366025 1.36603i −0.866025 0.500000i 0.833333π-0.833333\pi
0.500000 0.866025i 0.333333π-0.333333\pi
284284 0 0
285285 0 0
286286 0 0
287287 0 0
288288 0 0
289289 0.866025 0.500000i 0.866025 0.500000i
290290 0 0
291291 0 0
292292 −1.00000 1.00000i −1.00000 1.00000i
293293 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
294294 0 0
295295 0 0
296296 0 0
297297 0 0
298298 0 0
299299 0 0
300300 0 0
301301 −1.00000 + 1.73205i −1.00000 + 1.73205i
302302 0 0
303303 0 0
304304 0 0
305305 0 0
306306 0 0
307307 0 0 −0.258819 0.965926i 0.583333π-0.583333\pi
0.258819 + 0.965926i 0.416667π0.416667\pi
308308 0 0
309309 0 0
310310 0 0
311311 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
312312 0 0
313313 −1.36603 0.366025i −1.36603 0.366025i −0.500000 0.866025i 0.666667π-0.666667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
314314 0 0
315315 1.00000 1.00000i 1.00000 1.00000i
316316 0 0
317317 0 0 −0.965926 0.258819i 0.916667π-0.916667\pi
0.965926 + 0.258819i 0.0833333π0.0833333\pi
318318 0 0
319319 0 0
320320 0.866025 + 0.500000i 0.866025 + 0.500000i
321321 0 0
322322 0 0
323323 0 0
324324 1.00000i 1.00000i
325325 0 0
326326 0 0
327327 0 0
328328 0 0
329329 1.73205 1.00000i 1.73205 1.00000i
330330 0 0
331331 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
332332 −0.366025 + 1.36603i −0.366025 + 1.36603i
333333 0 0
334334 0 0
335335 0 0
336336 0 0
337337 0 0 −0.258819 0.965926i 0.583333π-0.583333\pi
0.258819 + 0.965926i 0.416667π0.416667\pi
338338 0 0
339339 0 0
340340 −0.366025 1.36603i −0.366025 1.36603i
341341 0 0
342342 0 0
343343 0 0
344344 0 0
345345 0 0
346346 0 0
347347 1.36603 0.366025i 1.36603 0.366025i 0.500000 0.866025i 0.333333π-0.333333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
348348 0 0
349349 0 0 1.00000 00
−1.00000 π\pi
350350 0 0
351351 0 0
352352 0 0
353353 1.00000 1.00000i 1.00000 1.00000i 1.00000i 0.5π-0.5\pi
1.00000 00
354354 0 0
355355 0 0
356356 0 0
357357 0 0
358358 0 0
359359 1.73205 + 1.00000i 1.73205 + 1.00000i 0.866025 + 0.500000i 0.166667π0.166667\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
360360 0 0
361361 0 0
362362 0 0
363363 0 0
364364 0 0
365365 1.36603 + 0.366025i 1.36603 + 0.366025i
366366 0 0
367367 −0.366025 + 1.36603i −0.366025 + 1.36603i 0.500000 + 0.866025i 0.333333π0.333333\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
368368 1.00000 1.00000i 1.00000 1.00000i
369369 0 0
370370 0 0
371371 0 0
372372 0 0
373373 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
374374 0 0
375375 0 0
376376 0 0
377377 0 0
378378 0 0
379379 0 0 1.00000 00
−1.00000 π\pi
380380 0 0
381381 0 0
382382 0 0
383383 0 0 0.965926 0.258819i 0.0833333π-0.0833333\pi
−0.965926 + 0.258819i 0.916667π0.916667\pi
384384 0 0
385385 0 0
386386 0 0
387387 1.00000 + 1.00000i 1.00000 + 1.00000i
388388 0 0
389389 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
390390 0 0
391391 −2.00000 −2.00000
392392 0 0
393393 0 0
394394 0 0
395395 0 0
396396 0 0
397397 −1.36603 + 0.366025i −1.36603 + 0.366025i −0.866025 0.500000i 0.833333π-0.833333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
398398 0 0
399399 0 0
400400 −1.00000 −1.00000
401401 0 0 −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
402402 0 0
403403 0 0
404404 0 0
405405 −0.500000 0.866025i −0.500000 0.866025i
406406 0 0
407407 0 0
408408 0 0
409409 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
410410 0 0
411411 0 0
412412 0 0
413413 0 0
414414 0 0
415415 −0.366025 1.36603i −0.366025 1.36603i
416416 0 0
417417 0 0
418418 0 0
419419 0 0 1.00000 00
−1.00000 π\pi
420420 0 0
421421 0 0 −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
422422 0 0
423423 −0.366025 1.36603i −0.366025 1.36603i
424424 0 0
425425 1.00000 + 1.00000i 1.00000 + 1.00000i
426426 0 0
427427 0 0
428428 0 0
429429 0 0
430430 0 0
431431 0 0 0.866025 0.500000i 0.166667π-0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
432432 0 0
433433 0 0 0.258819 0.965926i 0.416667π-0.416667\pi
−0.258819 + 0.965926i 0.583333π0.583333\pi
434434 0 0
435435 0 0
436436 0 0
437437 0 0
438438 0 0
439439 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
440440 0 0
441441 0.500000 + 0.866025i 0.500000 + 0.866025i
442442 0 0
443443 −1.36603 0.366025i −1.36603 0.366025i −0.500000 0.866025i 0.666667π-0.666667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
444444 0 0
445445 0 0
446446 0 0
447447 0 0
448448 −1.00000 + 1.00000i −1.00000 + 1.00000i
449449 0 0 1.00000 00
−1.00000 π\pi
450450 0 0
451451 0 0
452452 0 0
453453 0 0
454454 0 0
455455 0 0
456456 0 0
457457 1.00000 + 1.00000i 1.00000 + 1.00000i 1.00000 00
1.00000i 0.5π0.5\pi
458458 0 0
459459 0 0
460460 −0.366025 + 1.36603i −0.366025 + 1.36603i
461461 −1.00000 + 1.73205i −1.00000 + 1.73205i −0.500000 + 0.866025i 0.666667π0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
462462 0 0
463463 −1.00000 + 1.00000i −1.00000 + 1.00000i 1.00000i 0.5π0.5\pi
−1.00000 π\pi
464464 0 0
465465 0 0
466466 0 0
467467 −1.00000 1.00000i −1.00000 1.00000i 1.00000i 0.5π-0.5\pi
−1.00000 π\pi
468468 0 0
469469 0 0
470470 0 0
471471 0 0
472472 0 0
473473 0 0
474474 0 0
475475 0 0
476476 2.00000 2.00000
477477 0 0
478478 0 0
479479 −1.73205 + 1.00000i −1.73205 + 1.00000i −0.866025 + 0.500000i 0.833333π0.833333\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
480480 0 0
481481 0 0
482482 0 0
483483 0 0
484484 0.866025 0.500000i 0.866025 0.500000i
485485 0 0
486486 0 0
487487 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
488488 0 0
489489 0 0
490490 0 0
491491 1.00000 1.73205i 1.00000 1.73205i 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 0.866025i 0.333333π-0.333333\pi
492492 0 0
493493 0 0
494494 0 0
495495 0 0
496496 0 0
497497 0 0
498498 0 0
499499 1.73205 + 1.00000i 1.73205 + 1.00000i 0.866025 + 0.500000i 0.166667π0.166667\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
500500 0.866025 0.500000i 0.866025 0.500000i
501501 0 0
502502 0 0
503503 1.36603 + 0.366025i 1.36603 + 0.366025i 0.866025 0.500000i 0.166667π-0.166667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
504504 0 0
505505 0 0
506506 0 0
507507 0 0
508508 0 0
509509 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
510510 0 0
511511 −1.00000 + 1.73205i −1.00000 + 1.73205i
512512 0 0
513513 0 0
514514 0 0
515515 0 0
516516 0 0
517517 0 0
518518 0 0
519519 0 0
520520 0 0
521521 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
522522 0 0
523523 0 0 0.258819 0.965926i 0.416667π-0.416667\pi
−0.258819 + 0.965926i 0.583333π0.583333\pi
524524 2.00000i 2.00000i
525525 0 0
526526 0 0
527527 0 0
528528 0 0
529529 0.866025 + 0.500000i 0.866025 + 0.500000i
530530 0 0
531531 0 0
532532 0 0
533533 0 0
534534 0 0
535535 0 0
536536 0 0
537537 0 0
538538 0 0
539539 0 0
540540 0 0
541541 0 0 0.866025 0.500000i 0.166667π-0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
542542 0 0
543543 0 0
544544 0 0
545545 0 0
546546 0 0
547547 0 0 −0.965926 0.258819i 0.916667π-0.916667\pi
0.965926 + 0.258819i 0.0833333π0.0833333\pi
548548 −0.366025 1.36603i −0.366025 1.36603i
549549 0 0
550550 0 0
551551 0 0
552552 0 0
553553 0 0
554554 0 0
555555 0 0
556556 1.00000 1.73205i 1.00000 1.73205i
557557 0.366025 1.36603i 0.366025 1.36603i −0.500000 0.866025i 0.666667π-0.666667\pi
0.866025 0.500000i 0.166667π-0.166667\pi
558558 0 0
559559 0 0
560560 0.366025 1.36603i 0.366025 1.36603i
561561 0 0
562562 0 0
563563 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
564564 0 0
565565 0 0
566566 0 0
567567 1.36603 0.366025i 1.36603 0.366025i
568568 0 0
569569 0 0 1.00000 00
−1.00000 π\pi
570570 0 0
571571 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
572572 0 0
573573 0 0
574574 0 0
575575 −0.366025 1.36603i −0.366025 1.36603i
576576 0.500000 + 0.866025i 0.500000 + 0.866025i
577577 1.00000 + 1.00000i 1.00000 + 1.00000i 1.00000 00
1.00000i 0.5π0.5\pi
578578 0 0
579579 0 0
580580 0 0
581581 2.00000 2.00000
582582 0 0
583583 0 0
584584 0 0
585585 0 0
586586 0 0
587587 −1.36603 + 0.366025i −1.36603 + 0.366025i −0.866025 0.500000i 0.833333π-0.833333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
588588 0 0
589589 0 0
590590 0 0
591591 0 0
592592 0 0
593593 −1.36603 0.366025i −1.36603 0.366025i −0.500000 0.866025i 0.666667π-0.666667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
594594 0 0
595595 −1.73205 + 1.00000i −1.73205 + 1.00000i
596596 2.00000 2.00000
597597 0 0
598598 0 0
599599 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
600600 0 0
601601 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
602602 0 0
603603 0 0
604604 0 0
605605 −0.500000 + 0.866025i −0.500000 + 0.866025i
606606 0 0
607607 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
608608 0 0
609609 0 0
610610 0 0
611611 0 0
612612 0.366025 1.36603i 0.366025 1.36603i
613613 −0.366025 1.36603i −0.366025 1.36603i −0.866025 0.500000i 0.833333π-0.833333\pi
0.500000 0.866025i 0.333333π-0.333333\pi
614614 0 0
615615 0 0
616616 0 0
617617 0.366025 1.36603i 0.366025 1.36603i −0.500000 0.866025i 0.666667π-0.666667\pi
0.866025 0.500000i 0.166667π-0.166667\pi
618618 0 0
619619 2.00000i 2.00000i 1.00000i 0.5π-0.5\pi
1.00000i 0.5π-0.5\pi
620620 0 0
621621 0 0
622622 0 0
623623 0 0
624624 0 0
625625 −0.500000 + 0.866025i −0.500000 + 0.866025i
626626 0 0
627627 0 0
628628 1.00000 1.00000i 1.00000 1.00000i
629629 0 0
630630 0 0
631631 0 0 0.866025 0.500000i 0.166667π-0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
632632 0 0
633633 0 0
634634 0 0
635635 0 0
636636 0 0
637637 0 0
638638 0 0
639639 0 0
640640 0 0
641641 0 0 −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
642642 0 0
643643 −0.366025 1.36603i −0.366025 1.36603i −0.866025 0.500000i 0.833333π-0.833333\pi
0.500000 0.866025i 0.333333π-0.333333\pi
644644 −1.73205 1.00000i −1.73205 1.00000i
645645 0 0
646646 0 0
647647 1.00000 + 1.00000i 1.00000 + 1.00000i 1.00000 00
1.00000i 0.5π0.5\pi
648648 0 0
649649 0 0
650650 0 0
651651 0 0
652652 0.366025 1.36603i 0.366025 1.36603i
653653 −1.00000 + 1.00000i −1.00000 + 1.00000i 1.00000i 0.5π0.5\pi
−1.00000 π\pi
654654 0 0
655655 −1.00000 1.73205i −1.00000 1.73205i
656656 0 0
657657 1.00000 + 1.00000i 1.00000 + 1.00000i
658658 0 0
659659 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
660660 0 0
661661 0 0 0.866025 0.500000i 0.166667π-0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
662662 0 0
663663 0 0
664664 0 0
665665 0 0
666666 0 0
667667 0 0
668668 0 0
669669 0 0
670670 0 0
671671 0 0
672672 0 0
673673 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
674674 0 0
675675 0 0
676676 1.00000 1.00000
677677 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
678678 0 0
679679 0 0
680680 0 0
681681 0 0
682682 0 0
683683 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
684684 0 0
685685 1.00000 + 1.00000i 1.00000 + 1.00000i
686686 0 0
687687 0 0
688688 1.36603 + 0.366025i 1.36603 + 0.366025i
689689 0 0
690690 0 0
691691 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
692692 0 0
693693 0 0
694694 0 0
695695 2.00000i 2.00000i
696696 0 0
697697 0 0
698698 0 0
699699 0 0
700700 0.366025 + 1.36603i 0.366025 + 1.36603i
701701 0 0 −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
702702 0 0
703703 0 0
704704 0 0
705705 0 0
706706 0 0
707707 0 0
708708 0 0
709709 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
710710 0 0
711711 0 0
712712 0 0
713713 0 0
714714 0 0
715715 0 0
716716 0 0
717717 0 0
718718 0 0
719719 1.73205 + 1.00000i 1.73205 + 1.00000i 0.866025 + 0.500000i 0.166667π0.166667\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
720720 −0.866025 0.500000i −0.866025 0.500000i
721721 0 0
722722 0 0
723723 0 0
724724 0 0
725725 0 0
726726 0 0
727727 1.36603 0.366025i 1.36603 0.366025i 0.500000 0.866025i 0.333333π-0.333333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
728728 0 0
729729 1.00000i 1.00000i
730730 0 0
731731 −1.00000 1.73205i −1.00000 1.73205i
732732 0 0
733733 1.00000 1.00000i 1.00000 1.00000i 1.00000i 0.5π-0.5\pi
1.00000 00
734734 0 0
735735 0 0
736736 0 0
737737 0 0
738738 0 0
739739 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
740740 0 0
741741 0 0
742742 0 0
743743 0 0 0.965926 0.258819i 0.0833333π-0.0833333\pi
−0.965926 + 0.258819i 0.916667π0.916667\pi
744744 0 0
745745 −1.73205 + 1.00000i −1.73205 + 1.00000i
746746 0 0
747747 0.366025 1.36603i 0.366025 1.36603i
748748 0 0
749749 0 0
750750 0 0
751751 0 0 0.866025 0.500000i 0.166667π-0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
752752 −1.00000 1.00000i −1.00000 1.00000i
753753 0 0
754754 0 0
755755 0 0
756756 0 0
757757 1.36603 0.366025i 1.36603 0.366025i 0.500000 0.866025i 0.333333π-0.333333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
758758 0 0
759759 0 0
760760 0 0
761761 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
762762 0 0
763763 0 0
764764 1.73205 1.00000i 1.73205 1.00000i
765765 0.366025 + 1.36603i 0.366025 + 1.36603i
766766 0 0
767767 0 0
768768 0 0
769769 −1.73205 + 1.00000i −1.73205 + 1.00000i −0.866025 + 0.500000i 0.833333π0.833333\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
770770 0 0
771771 0 0
772772 0 0
773773 0 0 0.258819 0.965926i 0.416667π-0.416667\pi
−0.258819 + 0.965926i 0.583333π0.583333\pi
774774 0 0
775775 0 0
776776 0 0
777777 0 0
778778 0 0
779779 0 0
780780 0 0
781781 0 0
782782 0 0
783783 0 0
784784 0.866025 + 0.500000i 0.866025 + 0.500000i
785785 −0.366025 + 1.36603i −0.366025 + 1.36603i
786786 0 0
787787 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
788788 1.36603 + 0.366025i 1.36603 + 0.366025i
789789 0 0
790790 0 0
791791 0 0
792792 0 0
793793 0 0
794794 0 0
795795 0 0
796796 0 0
797797 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
798798 0 0
799799 2.00000i 2.00000i
800800 0 0
801801 0 0
802802 0 0
803803 0 0
804804 0 0
805805 2.00000 2.00000
806806 0 0
807807 0 0
808808 0 0
809809 0 0 1.00000 00
−1.00000 π\pi
810810 0 0
811811 0 0 0.866025 0.500000i 0.166667π-0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
812812 0 0
813813 0 0
814814 0 0
815815 0.366025 + 1.36603i 0.366025 + 1.36603i
816816 0 0
817817 0 0
818818 0 0
819819 0 0
820820 0 0
821821 1.00000 + 1.73205i 1.00000 + 1.73205i 0.500000 + 0.866025i 0.333333π0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
822822 0 0
823823 1.36603 + 0.366025i 1.36603 + 0.366025i 0.866025 0.500000i 0.166667π-0.166667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
824824 0 0
825825 0 0
826826 0 0
827827 0 0 −0.965926 0.258819i 0.916667π-0.916667\pi
0.965926 + 0.258819i 0.0833333π0.0833333\pi
828828 −1.00000 + 1.00000i −1.00000 + 1.00000i
829829 0 0 1.00000 00
−1.00000 π\pi
830830 0 0
831831 0 0
832832 0 0
833833 −0.366025 1.36603i −0.366025 1.36603i
834834 0 0
835835 0 0
836836 0 0
837837 0 0
838838 0 0
839839 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
840840 0 0
841841 −0.500000 + 0.866025i −0.500000 + 0.866025i
842842 0 0
843843 0 0
844844 0 0
845845 −0.866025 + 0.500000i −0.866025 + 0.500000i
846846 0 0
847847 −1.00000 1.00000i −1.00000 1.00000i
848848 0 0
849849 0 0
850850 0 0
851851 0 0
852852 0 0
853853 0.366025 + 1.36603i 0.366025 + 1.36603i 0.866025 + 0.500000i 0.166667π0.166667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
854854 0 0
855855 0 0
856856 0 0
857857 0 0 −0.258819 0.965926i 0.583333π-0.583333\pi
0.258819 + 0.965926i 0.416667π0.416667\pi
858858 0 0
859859 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
860860 −1.36603 + 0.366025i −1.36603 + 0.366025i
861861 0 0
862862 0 0
863863 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
864864 0 0
865865 0 0
866866 0 0
867867 0 0
868868 0 0
869869 0 0
870870 0 0
871871 0 0
872872 0 0
873873 0 0
874874 0 0
875875 −1.00000 1.00000i −1.00000 1.00000i
876876 0 0
877877 0 0 −0.258819 0.965926i 0.583333π-0.583333\pi
0.258819 + 0.965926i 0.416667π0.416667\pi
878878 0 0
879879 0 0
880880 0 0
881881 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
882882 0 0
883883 1.36603 + 0.366025i 1.36603 + 0.366025i 0.866025 0.500000i 0.166667π-0.166667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
884884 0 0
885885 0 0
886886 0 0
887887 0 0 −0.965926 0.258819i 0.916667π-0.916667\pi
0.965926 + 0.258819i 0.0833333π0.0833333\pi
888888 0 0
889889 0 0
890890 0 0
891891 0 0
892892 0 0
893893 0 0
894894 0 0
895895 0 0
896896 0 0
897897 0 0
898898 0 0
899899 0 0
900900 1.00000 1.00000
901901 0 0
902902 0 0
903903 0 0
904904 0 0
905905 0 0
906906 0 0
907907 0 0 −0.258819 0.965926i 0.583333π-0.583333\pi
0.258819 + 0.965926i 0.416667π0.416667\pi
908908 0 0
909909 0 0
910910 0 0
911911 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
912912 0 0
913913 0 0
914914 0 0
915915 0 0
916916 1.00000 + 1.73205i 1.00000 + 1.73205i
917917 2.73205 0.732051i 2.73205 0.732051i
918918 0 0
919919 0 0 1.00000 00
−1.00000 π\pi
920920 0 0
921921 0 0
922922 0 0
923923 0 0
924924 0 0
925925 0 0
926926 0 0
927927 0 0
928928 0 0
929929 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
930930 0 0
931931 0 0
932932 −1.00000 1.00000i −1.00000 1.00000i
933933 0 0
934934 0 0
935935 0 0
936936 0 0
937937 0.366025 1.36603i 0.366025 1.36603i −0.500000 0.866025i 0.666667π-0.666667\pi
0.866025 0.500000i 0.166667π-0.166667\pi
938938 0 0
939939 0 0
940940 1.36603 + 0.366025i 1.36603 + 0.366025i
941941 0 0 0.866025 0.500000i 0.166667π-0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
942942 0 0
943943 0 0
944944 0 0
945945 0 0
946946 0 0
947947 −1.36603 + 0.366025i −1.36603 + 0.366025i −0.866025 0.500000i 0.833333π-0.833333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
948948 0 0
949949 0 0
950950 0 0
951951 0 0
952952 0 0
953953 0 0 0.965926 0.258819i 0.0833333π-0.0833333\pi
−0.965926 + 0.258819i 0.916667π0.916667\pi
954954 0 0
955955 −1.00000 + 1.73205i −1.00000 + 1.73205i
956956 0 0
957957 0 0
958958 0 0
959959 −1.73205 + 1.00000i −1.73205 + 1.00000i
960960 0 0
961961 −1.00000 −1.00000
962962 0 0
963963 0 0
964964 0 0
965965 0 0
966966 0 0
967967 1.36603 0.366025i 1.36603 0.366025i 0.500000 0.866025i 0.333333π-0.333333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
968968 0 0
969969 0 0
970970 0 0
971971 0 0 −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
972972 0 0
973973 −2.73205 0.732051i −2.73205 0.732051i
974974 0 0
975975 0 0
976976 0 0
977977 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
978978 0 0
979979 0 0
980980 −1.00000 −1.00000
981981 0 0
982982 0 0
983983 0 0 0.965926 0.258819i 0.0833333π-0.0833333\pi
−0.965926 + 0.258819i 0.916667π0.916667\pi
984984 0 0
985985 −1.36603 + 0.366025i −1.36603 + 0.366025i
986986 0 0
987987 0 0
988988 0 0
989989 2.00000i 2.00000i
990990 0 0
991991 0 0 −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
992992 0 0
993993 0 0
994994 0 0
995995 0 0
996996 0 0
997997 −0.366025 + 1.36603i −0.366025 + 1.36603i 0.500000 + 0.866025i 0.333333π0.333333\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
998998 0 0
999999 0 0
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1805.1.m.a.1512.1 4
5.3 odd 4 inner 1805.1.m.a.68.1 4
19.2 odd 18 1805.1.r.a.1317.1 12
19.3 odd 18 1805.1.r.a.1182.1 12
19.4 even 9 1805.1.r.a.62.1 12
19.5 even 9 1805.1.r.a.1472.1 12
19.6 even 9 1805.1.r.a.1137.1 12
19.7 even 3 inner 1805.1.m.a.292.1 4
19.8 odd 6 1805.1.f.a.362.1 2
19.9 even 9 1805.1.r.a.967.1 12
19.10 odd 18 1805.1.r.a.967.1 12
19.11 even 3 1805.1.f.a.362.1 2
19.12 odd 6 inner 1805.1.m.a.292.1 4
19.13 odd 18 1805.1.r.a.1137.1 12
19.14 odd 18 1805.1.r.a.1472.1 12
19.15 odd 18 1805.1.r.a.62.1 12
19.16 even 9 1805.1.r.a.1182.1 12
19.17 even 9 1805.1.r.a.1317.1 12
19.18 odd 2 CM 1805.1.m.a.1512.1 4
95.3 even 36 1805.1.r.a.1543.1 12
95.8 even 12 1805.1.f.a.723.1 yes 2
95.13 even 36 1805.1.r.a.1498.1 12
95.18 even 4 inner 1805.1.m.a.68.1 4
95.23 odd 36 1805.1.r.a.423.1 12
95.28 odd 36 1805.1.r.a.1328.1 12
95.33 even 36 1805.1.r.a.28.1 12
95.43 odd 36 1805.1.r.a.28.1 12
95.48 even 36 1805.1.r.a.1328.1 12
95.53 even 36 1805.1.r.a.423.1 12
95.63 odd 36 1805.1.r.a.1498.1 12
95.68 odd 12 1805.1.f.a.723.1 yes 2
95.73 odd 36 1805.1.r.a.1543.1 12
95.78 even 36 1805.1.r.a.1678.1 12
95.83 odd 12 inner 1805.1.m.a.653.1 4
95.88 even 12 inner 1805.1.m.a.653.1 4
95.93 odd 36 1805.1.r.a.1678.1 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1805.1.f.a.362.1 2 19.8 odd 6
1805.1.f.a.362.1 2 19.11 even 3
1805.1.f.a.723.1 yes 2 95.8 even 12
1805.1.f.a.723.1 yes 2 95.68 odd 12
1805.1.m.a.68.1 4 5.3 odd 4 inner
1805.1.m.a.68.1 4 95.18 even 4 inner
1805.1.m.a.292.1 4 19.7 even 3 inner
1805.1.m.a.292.1 4 19.12 odd 6 inner
1805.1.m.a.653.1 4 95.83 odd 12 inner
1805.1.m.a.653.1 4 95.88 even 12 inner
1805.1.m.a.1512.1 4 1.1 even 1 trivial
1805.1.m.a.1512.1 4 19.18 odd 2 CM
1805.1.r.a.28.1 12 95.33 even 36
1805.1.r.a.28.1 12 95.43 odd 36
1805.1.r.a.62.1 12 19.4 even 9
1805.1.r.a.62.1 12 19.15 odd 18
1805.1.r.a.423.1 12 95.23 odd 36
1805.1.r.a.423.1 12 95.53 even 36
1805.1.r.a.967.1 12 19.9 even 9
1805.1.r.a.967.1 12 19.10 odd 18
1805.1.r.a.1137.1 12 19.6 even 9
1805.1.r.a.1137.1 12 19.13 odd 18
1805.1.r.a.1182.1 12 19.3 odd 18
1805.1.r.a.1182.1 12 19.16 even 9
1805.1.r.a.1317.1 12 19.2 odd 18
1805.1.r.a.1317.1 12 19.17 even 9
1805.1.r.a.1328.1 12 95.28 odd 36
1805.1.r.a.1328.1 12 95.48 even 36
1805.1.r.a.1472.1 12 19.5 even 9
1805.1.r.a.1472.1 12 19.14 odd 18
1805.1.r.a.1498.1 12 95.13 even 36
1805.1.r.a.1498.1 12 95.63 odd 36
1805.1.r.a.1543.1 12 95.3 even 36
1805.1.r.a.1543.1 12 95.73 odd 36
1805.1.r.a.1678.1 12 95.78 even 36
1805.1.r.a.1678.1 12 95.93 odd 36