Properties

Label 1805.1.r.a.1543.1
Level 18051805
Weight 11
Character 1805.1543
Analytic conductor 0.9010.901
Analytic rank 00
Dimension 1212
Projective image D4D_{4}
CM discriminant -19
Inner twists 2424

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1805,1,Mod(28,1805)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1805, base_ring=CyclotomicField(36))
 
chi = DirichletCharacter(H, H._module([27, 16]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1805.28");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: N N == 1805=5192 1805 = 5 \cdot 19^{2}
Weight: k k == 1 1
Character orbit: [χ][\chi] == 1805.r (of order 3636, degree 1212, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 0.9008123478030.900812347803
Analytic rank: 00
Dimension: 1212
Coefficient field: Q(ζ36)\Q(\zeta_{36})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x12x6+1 x^{12} - x^{6} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a4]\Z[a_1, \ldots, a_{4}]
Coefficient ring index: 1 1
Twist minimal: yes
Projective image: D4D_{4}
Projective field: Galois closure of 4.2.2375.1

Embedding invariants

Embedding label 1543.1
Root 0.3420200.939693i-0.342020 - 0.939693i of defining polynomial
Character χ\chi == 1805.1543
Dual form 1805.1.r.a.62.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+(0.642788+0.766044i)q4+(0.766044+0.642788i)q5+(0.366025+1.36603i)q7+(0.342020+0.939693i)q9+(0.1736480.984808i)q16+(1.28171+0.597672i)q171.00000iq20+(0.1232571.40883i)q23+(0.1736480.984808i)q25+(1.281710.597672i)q28+(1.158460.811160i)q35+(0.9396930.342020i)q36+(1.40883+0.123257i)q43+(0.8660250.500000i)q45+(0.597672+1.28171i)q47+(0.866025+0.500000i)q49+(1.15846+0.811160i)q63+(0.866025+0.500000i)q64+(0.3660251.36603i)q68+(0.811160+1.15846i)q73+(0.766044+0.642788i)q80+(0.766044+0.642788i)q81+(1.36603+0.366025i)q83+(0.5976721.28171i)q85+(1.15846+0.811160i)q92+O(q100)q+(-0.642788 + 0.766044i) q^{4} +(-0.766044 + 0.642788i) q^{5} +(0.366025 + 1.36603i) q^{7} +(0.342020 + 0.939693i) q^{9} +(-0.173648 - 0.984808i) q^{16} +(-1.28171 + 0.597672i) q^{17} -1.00000i q^{20} +(-0.123257 - 1.40883i) q^{23} +(0.173648 - 0.984808i) q^{25} +(-1.28171 - 0.597672i) q^{28} +(-1.15846 - 0.811160i) q^{35} +(-0.939693 - 0.342020i) q^{36} +(1.40883 + 0.123257i) q^{43} +(-0.866025 - 0.500000i) q^{45} +(-0.597672 + 1.28171i) q^{47} +(-0.866025 + 0.500000i) q^{49} +(-1.15846 + 0.811160i) q^{63} +(0.866025 + 0.500000i) q^{64} +(0.366025 - 1.36603i) q^{68} +(-0.811160 + 1.15846i) q^{73} +(0.766044 + 0.642788i) q^{80} +(-0.766044 + 0.642788i) q^{81} +(-1.36603 + 0.366025i) q^{83} +(0.597672 - 1.28171i) q^{85} +(1.15846 + 0.811160i) q^{92} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 12q6q76q686q83+O(q100) 12 q - 6 q^{7} - 6 q^{68} - 6 q^{83}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/1805Z)×\left(\mathbb{Z}/1805\mathbb{Z}\right)^\times.

nn 362362 14461446
χ(n)\chi(n) e(34)e\left(\frac{3}{4}\right) e(19)e\left(\frac{1}{9}\right)

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 0 0 −0.422618 0.906308i 0.638889π-0.638889\pi
0.422618 + 0.906308i 0.361111π0.361111\pi
33 0 0 −0.819152 0.573576i 0.805556π-0.805556\pi
0.819152 + 0.573576i 0.194444π0.194444\pi
44 −0.642788 + 0.766044i −0.642788 + 0.766044i
55 −0.766044 + 0.642788i −0.766044 + 0.642788i
66 0 0
77 0.366025 + 1.36603i 0.366025 + 1.36603i 0.866025 + 0.500000i 0.166667π0.166667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
88 0 0
99 0.342020 + 0.939693i 0.342020 + 0.939693i
1010 0 0
1111 0 0 0.866025 0.500000i 0.166667π-0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
1212 0 0
1313 0 0 −0.573576 0.819152i 0.694444π-0.694444\pi
0.573576 + 0.819152i 0.305556π0.305556\pi
1414 0 0
1515 0 0
1616 −0.173648 0.984808i −0.173648 0.984808i
1717 −1.28171 + 0.597672i −1.28171 + 0.597672i −0.939693 0.342020i 0.888889π-0.888889\pi
−0.342020 + 0.939693i 0.611111π0.611111\pi
1818 0 0
1919 0 0
2020 1.00000i 1.00000i
2121 0 0
2222 0 0
2323 −0.123257 1.40883i −0.123257 1.40883i −0.766044 0.642788i 0.777778π-0.777778\pi
0.642788 0.766044i 0.277778π-0.277778\pi
2424 0 0
2525 0.173648 0.984808i 0.173648 0.984808i
2626 0 0
2727 0 0
2828 −1.28171 0.597672i −1.28171 0.597672i
2929 0 0 0.939693 0.342020i 0.111111π-0.111111\pi
−0.939693 + 0.342020i 0.888889π0.888889\pi
3030 0 0
3131 0 0 −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
3232 0 0
3333 0 0
3434 0 0
3535 −1.15846 0.811160i −1.15846 0.811160i
3636 −0.939693 0.342020i −0.939693 0.342020i
3737 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
3838 0 0
3939 0 0
4040 0 0
4141 0 0 0.984808 0.173648i 0.0555556π-0.0555556\pi
−0.984808 + 0.173648i 0.944444π0.944444\pi
4242 0 0
4343 1.40883 + 0.123257i 1.40883 + 0.123257i 0.766044 0.642788i 0.222222π-0.222222\pi
0.642788 + 0.766044i 0.277778π0.277778\pi
4444 0 0
4545 −0.866025 0.500000i −0.866025 0.500000i
4646 0 0
4747 −0.597672 + 1.28171i −0.597672 + 1.28171i 0.342020 + 0.939693i 0.388889π0.388889\pi
−0.939693 + 0.342020i 0.888889π0.888889\pi
4848 0 0
4949 −0.866025 + 0.500000i −0.866025 + 0.500000i
5050 0 0
5151 0 0
5252 0 0
5353 0 0 0.996195 0.0871557i 0.0277778π-0.0277778\pi
−0.996195 + 0.0871557i 0.972222π0.972222\pi
5454 0 0
5555 0 0
5656 0 0
5757 0 0
5858 0 0
5959 0 0 −0.939693 0.342020i 0.888889π-0.888889\pi
0.939693 + 0.342020i 0.111111π0.111111\pi
6060 0 0
6161 0 0 0.642788 0.766044i 0.277778π-0.277778\pi
−0.642788 + 0.766044i 0.722222π0.722222\pi
6262 0 0
6363 −1.15846 + 0.811160i −1.15846 + 0.811160i
6464 0.866025 + 0.500000i 0.866025 + 0.500000i
6565 0 0
6666 0 0
6767 0 0 −0.906308 0.422618i 0.861111π-0.861111\pi
0.906308 + 0.422618i 0.138889π0.138889\pi
6868 0.366025 1.36603i 0.366025 1.36603i
6969 0 0
7070 0 0
7171 0 0 −0.642788 0.766044i 0.722222π-0.722222\pi
0.642788 + 0.766044i 0.277778π0.277778\pi
7272 0 0
7373 −0.811160 + 1.15846i −0.811160 + 1.15846i 0.173648 + 0.984808i 0.444444π0.444444\pi
−0.984808 + 0.173648i 0.944444π0.944444\pi
7474 0 0
7575 0 0
7676 0 0
7777 0 0
7878 0 0
7979 0 0 −0.173648 0.984808i 0.555556π-0.555556\pi
0.173648 + 0.984808i 0.444444π0.444444\pi
8080 0.766044 + 0.642788i 0.766044 + 0.642788i
8181 −0.766044 + 0.642788i −0.766044 + 0.642788i
8282 0 0
8383 −1.36603 + 0.366025i −1.36603 + 0.366025i −0.866025 0.500000i 0.833333π-0.833333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
8484 0 0
8585 0.597672 1.28171i 0.597672 1.28171i
8686 0 0
8787 0 0
8888 0 0
8989 0 0 0.173648 0.984808i 0.444444π-0.444444\pi
−0.173648 + 0.984808i 0.555556π0.555556\pi
9090 0 0
9191 0 0
9292 1.15846 + 0.811160i 1.15846 + 0.811160i
9393 0 0
9494 0 0
9595 0 0
9696 0 0
9797 0 0 −0.422618 0.906308i 0.638889π-0.638889\pi
0.422618 + 0.906308i 0.361111π0.361111\pi
9898 0 0
9999 0 0
100100 0.642788 + 0.766044i 0.642788 + 0.766044i
101101 0 0 −0.984808 0.173648i 0.944444π-0.944444\pi
0.984808 + 0.173648i 0.0555556π0.0555556\pi
102102 0 0
103103 0 0 −0.965926 0.258819i 0.916667π-0.916667\pi
0.965926 + 0.258819i 0.0833333π0.0833333\pi
104104 0 0
105105 0 0
106106 0 0
107107 0 0 0.965926 0.258819i 0.0833333π-0.0833333\pi
−0.965926 + 0.258819i 0.916667π0.916667\pi
108108 0 0
109109 0 0 0.766044 0.642788i 0.222222π-0.222222\pi
−0.766044 + 0.642788i 0.777778π0.777778\pi
110110 0 0
111111 0 0
112112 1.28171 0.597672i 1.28171 0.597672i
113113 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
114114 0 0
115115 1.00000 + 1.00000i 1.00000 + 1.00000i
116116 0 0
117117 0 0
118118 0 0
119119 −1.28558 1.53209i −1.28558 1.53209i
120120 0 0
121121 0.500000 0.866025i 0.500000 0.866025i
122122 0 0
123123 0 0
124124 0 0
125125 0.500000 + 0.866025i 0.500000 + 0.866025i
126126 0 0
127127 0 0 0.819152 0.573576i 0.194444π-0.194444\pi
−0.819152 + 0.573576i 0.805556π0.805556\pi
128128 0 0
129129 0 0
130130 0 0
131131 1.87939 + 0.684040i 1.87939 + 0.684040i 0.939693 + 0.342020i 0.111111π0.111111\pi
0.939693 + 0.342020i 0.111111π0.111111\pi
132132 0 0
133133 0 0
134134 0 0
135135 0 0
136136 0 0
137137 −1.40883 + 0.123257i −1.40883 + 0.123257i −0.766044 0.642788i 0.777778π-0.777778\pi
−0.642788 + 0.766044i 0.722222π0.722222\pi
138138 0 0
139139 1.96962 + 0.347296i 1.96962 + 0.347296i 0.984808 + 0.173648i 0.0555556π0.0555556\pi
0.984808 + 0.173648i 0.0555556π0.0555556\pi
140140 1.36603 0.366025i 1.36603 0.366025i
141141 0 0
142142 0 0
143143 0 0
144144 0.866025 0.500000i 0.866025 0.500000i
145145 0 0
146146 0 0
147147 0 0
148148 0 0
149149 1.96962 0.347296i 1.96962 0.347296i 0.984808 0.173648i 0.0555556π-0.0555556\pi
0.984808 0.173648i 0.0555556π-0.0555556\pi
150150 0 0
151151 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
152152 0 0
153153 −1.00000 1.00000i −1.00000 1.00000i
154154 0 0
155155 0 0
156156 0 0
157157 0.123257 1.40883i 0.123257 1.40883i −0.642788 0.766044i 0.722222π-0.722222\pi
0.766044 0.642788i 0.222222π-0.222222\pi
158158 0 0
159159 0 0
160160 0 0
161161 1.87939 0.684040i 1.87939 0.684040i
162162 0 0
163163 −0.366025 + 1.36603i −0.366025 + 1.36603i 0.500000 + 0.866025i 0.333333π0.333333\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
164164 0 0
165165 0 0
166166 0 0
167167 0 0 −0.0871557 0.996195i 0.527778π-0.527778\pi
0.0871557 + 0.996195i 0.472222π0.472222\pi
168168 0 0
169169 −0.342020 + 0.939693i −0.342020 + 0.939693i
170170 0 0
171171 0 0
172172 −1.00000 + 1.00000i −1.00000 + 1.00000i
173173 0 0 0.906308 0.422618i 0.138889π-0.138889\pi
−0.906308 + 0.422618i 0.861111π0.861111\pi
174174 0 0
175175 1.40883 0.123257i 1.40883 0.123257i
176176 0 0
177177 0 0
178178 0 0
179179 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
180180 0.939693 0.342020i 0.939693 0.342020i
181181 0 0 −0.342020 0.939693i 0.611111π-0.611111\pi
0.342020 + 0.939693i 0.388889π0.388889\pi
182182 0 0
183183 0 0
184184 0 0
185185 0 0
186186 0 0
187187 0 0
188188 −0.597672 1.28171i −0.597672 1.28171i
189189 0 0
190190 0 0
191191 −2.00000 −2.00000 −1.00000 π\pi
−1.00000 π\pi
192192 0 0
193193 0 0 −0.819152 0.573576i 0.805556π-0.805556\pi
0.819152 + 0.573576i 0.194444π0.194444\pi
194194 0 0
195195 0 0
196196 0.173648 0.984808i 0.173648 0.984808i
197197 −0.366025 1.36603i −0.366025 1.36603i −0.866025 0.500000i 0.833333π-0.833333\pi
0.500000 0.866025i 0.333333π-0.333333\pi
198198 0 0
199199 0 0 0.939693 0.342020i 0.111111π-0.111111\pi
−0.939693 + 0.342020i 0.888889π0.888889\pi
200200 0 0
201201 0 0
202202 0 0
203203 0 0
204204 0 0
205205 0 0
206206 0 0
207207 1.28171 0.597672i 1.28171 0.597672i
208208 0 0
209209 0 0
210210 0 0
211211 0 0 0.342020 0.939693i 0.388889π-0.388889\pi
−0.342020 + 0.939693i 0.611111π0.611111\pi
212212 0 0
213213 0 0
214214 0 0
215215 −1.15846 + 0.811160i −1.15846 + 0.811160i
216216 0 0
217217 0 0
218218 0 0
219219 0 0
220220 0 0
221221 0 0
222222 0 0
223223 0 0 0.0871557 0.996195i 0.472222π-0.472222\pi
−0.0871557 + 0.996195i 0.527778π0.527778\pi
224224 0 0
225225 0.984808 0.173648i 0.984808 0.173648i
226226 0 0
227227 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
228228 0 0
229229 2.00000i 2.00000i 1.00000i 0.5π0.5\pi
1.00000i 0.5π0.5\pi
230230 0 0
231231 0 0
232232 0 0
233233 1.40883 + 0.123257i 1.40883 + 0.123257i 0.766044 0.642788i 0.222222π-0.222222\pi
0.642788 + 0.766044i 0.277778π0.277778\pi
234234 0 0
235235 −0.366025 1.36603i −0.366025 1.36603i
236236 0 0
237237 0 0
238238 0 0
239239 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
240240 0 0
241241 0 0 −0.984808 0.173648i 0.944444π-0.944444\pi
0.984808 + 0.173648i 0.0555556π0.0555556\pi
242242 0 0
243243 0 0
244244 0 0
245245 0.342020 0.939693i 0.342020 0.939693i
246246 0 0
247247 0 0
248248 0 0
249249 0 0
250250 0 0
251251 1.53209 + 1.28558i 1.53209 + 1.28558i 0.766044 + 0.642788i 0.222222π0.222222\pi
0.766044 + 0.642788i 0.222222π0.222222\pi
252252 0.123257 1.40883i 0.123257 1.40883i
253253 0 0
254254 0 0
255255 0 0
256256 −0.939693 + 0.342020i −0.939693 + 0.342020i
257257 0 0 −0.906308 0.422618i 0.861111π-0.861111\pi
0.906308 + 0.422618i 0.138889π0.138889\pi
258258 0 0
259259 0 0
260260 0 0
261261 0 0
262262 0 0
263263 −0.811160 + 1.15846i −0.811160 + 1.15846i 0.173648 + 0.984808i 0.444444π0.444444\pi
−0.984808 + 0.173648i 0.944444π0.944444\pi
264264 0 0
265265 0 0
266266 0 0
267267 0 0
268268 0 0
269269 0 0 −0.173648 0.984808i 0.555556π-0.555556\pi
0.173648 + 0.984808i 0.444444π0.444444\pi
270270 0 0
271271 0 0 −0.642788 0.766044i 0.722222π-0.722222\pi
0.642788 + 0.766044i 0.277778π0.277778\pi
272272 0.811160 + 1.15846i 0.811160 + 1.15846i
273273 0 0
274274 0 0
275275 0 0
276276 0 0
277277 −1.36603 0.366025i −1.36603 0.366025i −0.500000 0.866025i 0.666667π-0.666667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
278278 0 0
279279 0 0
280280 0 0
281281 0 0 0.642788 0.766044i 0.277778π-0.277778\pi
−0.642788 + 0.766044i 0.722222π0.722222\pi
282282 0 0
283283 0.597672 + 1.28171i 0.597672 + 1.28171i 0.939693 + 0.342020i 0.111111π0.111111\pi
−0.342020 + 0.939693i 0.611111π0.611111\pi
284284 0 0
285285 0 0
286286 0 0
287287 0 0
288288 0 0
289289 0.642788 0.766044i 0.642788 0.766044i
290290 0 0
291291 0 0
292292 −0.366025 1.36603i −0.366025 1.36603i
293293 0 0 −0.965926 0.258819i 0.916667π-0.916667\pi
0.965926 + 0.258819i 0.0833333π0.0833333\pi
294294 0 0
295295 0 0
296296 0 0
297297 0 0
298298 0 0
299299 0 0
300300 0 0
301301 0.347296 + 1.96962i 0.347296 + 1.96962i
302302 0 0
303303 0 0
304304 0 0
305305 0 0
306306 0 0
307307 0 0 0.573576 0.819152i 0.305556π-0.305556\pi
−0.573576 + 0.819152i 0.694444π0.694444\pi
308308 0 0
309309 0 0
310310 0 0
311311 0 0 −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
312312 0 0
313313 −1.28171 0.597672i −1.28171 0.597672i −0.342020 0.939693i 0.611111π-0.611111\pi
−0.939693 + 0.342020i 0.888889π0.888889\pi
314314 0 0
315315 0.366025 1.36603i 0.366025 1.36603i
316316 0 0
317317 0 0 0.819152 0.573576i 0.194444π-0.194444\pi
−0.819152 + 0.573576i 0.805556π0.805556\pi
318318 0 0
319319 0 0
320320 −0.984808 + 0.173648i −0.984808 + 0.173648i
321321 0 0
322322 0 0
323323 0 0
324324 1.00000i 1.00000i
325325 0 0
326326 0 0
327327 0 0
328328 0 0
329329 −1.96962 0.347296i −1.96962 0.347296i
330330 0 0
331331 0 0 0.866025 0.500000i 0.166667π-0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
332332 0.597672 1.28171i 0.597672 1.28171i
333333 0 0
334334 0 0
335335 0 0
336336 0 0
337337 0 0 −0.996195 0.0871557i 0.972222π-0.972222\pi
0.996195 + 0.0871557i 0.0277778π0.0277778\pi
338338 0 0
339339 0 0
340340 0.597672 + 1.28171i 0.597672 + 1.28171i
341341 0 0
342342 0 0
343343 0 0
344344 0 0
345345 0 0
346346 0 0
347347 −0.123257 + 1.40883i −0.123257 + 1.40883i 0.642788 + 0.766044i 0.277778π0.277778\pi
−0.766044 + 0.642788i 0.777778π0.777778\pi
348348 0 0
349349 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
350350 0 0
351351 0 0
352352 0 0
353353 0.366025 1.36603i 0.366025 1.36603i −0.500000 0.866025i 0.666667π-0.666667\pi
0.866025 0.500000i 0.166667π-0.166667\pi
354354 0 0
355355 0 0
356356 0 0
357357 0 0
358358 0 0
359359 0.684040 1.87939i 0.684040 1.87939i 0.342020 0.939693i 0.388889π-0.388889\pi
0.342020 0.939693i 0.388889π-0.388889\pi
360360 0 0
361361 0 0
362362 0 0
363363 0 0
364364 0 0
365365 −0.123257 1.40883i −0.123257 1.40883i
366366 0 0
367367 0.811160 + 1.15846i 0.811160 + 1.15846i 0.984808 + 0.173648i 0.0555556π0.0555556\pi
−0.173648 + 0.984808i 0.555556π0.555556\pi
368368 −1.36603 + 0.366025i −1.36603 + 0.366025i
369369 0 0
370370 0 0
371371 0 0
372372 0 0
373373 0 0 −0.258819 0.965926i 0.583333π-0.583333\pi
0.258819 + 0.965926i 0.416667π0.416667\pi
374374 0 0
375375 0 0
376376 0 0
377377 0 0
378378 0 0
379379 0 0 1.00000 00
−1.00000 π\pi
380380 0 0
381381 0 0
382382 0 0
383383 0 0 −0.819152 0.573576i 0.805556π-0.805556\pi
0.819152 + 0.573576i 0.194444π0.194444\pi
384384 0 0
385385 0 0
386386 0 0
387387 0.366025 + 1.36603i 0.366025 + 1.36603i
388388 0 0
389389 0 0 0.939693 0.342020i 0.111111π-0.111111\pi
−0.939693 + 0.342020i 0.888889π0.888889\pi
390390 0 0
391391 1.00000 + 1.73205i 1.00000 + 1.73205i
392392 0 0
393393 0 0
394394 0 0
395395 0 0
396396 0 0
397397 −1.28171 + 0.597672i −1.28171 + 0.597672i −0.939693 0.342020i 0.888889π-0.888889\pi
−0.342020 + 0.939693i 0.611111π0.611111\pi
398398 0 0
399399 0 0
400400 −1.00000 −1.00000
401401 0 0 0.342020 0.939693i 0.388889π-0.388889\pi
−0.342020 + 0.939693i 0.611111π0.611111\pi
402402 0 0
403403 0 0
404404 0 0
405405 0.173648 0.984808i 0.173648 0.984808i
406406 0 0
407407 0 0
408408 0 0
409409 0 0 0.939693 0.342020i 0.111111π-0.111111\pi
−0.939693 + 0.342020i 0.888889π0.888889\pi
410410 0 0
411411 0 0
412412 0 0
413413 0 0
414414 0 0
415415 0.811160 1.15846i 0.811160 1.15846i
416416 0 0
417417 0 0
418418 0 0
419419 0 0 1.00000 00
−1.00000 π\pi
420420 0 0
421421 0 0 0.984808 0.173648i 0.0555556π-0.0555556\pi
−0.984808 + 0.173648i 0.944444π0.944444\pi
422422 0 0
423423 −1.40883 0.123257i −1.40883 0.123257i
424424 0 0
425425 0.366025 + 1.36603i 0.366025 + 1.36603i
426426 0 0
427427 0 0
428428 0 0
429429 0 0
430430 0 0
431431 0 0 −0.984808 0.173648i 0.944444π-0.944444\pi
0.984808 + 0.173648i 0.0555556π0.0555556\pi
432432 0 0
433433 0 0 0.996195 0.0871557i 0.0277778π-0.0277778\pi
−0.996195 + 0.0871557i 0.972222π0.972222\pi
434434 0 0
435435 0 0
436436 0 0
437437 0 0
438438 0 0
439439 0 0 −0.939693 0.342020i 0.888889π-0.888889\pi
0.939693 + 0.342020i 0.111111π0.111111\pi
440440 0 0
441441 −0.766044 0.642788i −0.766044 0.642788i
442442 0 0
443443 1.15846 0.811160i 1.15846 0.811160i 0.173648 0.984808i 0.444444π-0.444444\pi
0.984808 + 0.173648i 0.0555556π0.0555556\pi
444444 0 0
445445 0 0
446446 0 0
447447 0 0
448448 −0.366025 + 1.36603i −0.366025 + 1.36603i
449449 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
450450 0 0
451451 0 0
452452 0 0
453453 0 0
454454 0 0
455455 0 0
456456 0 0
457457 1.00000 1.00000i 1.00000 1.00000i 1.00000i 0.5π-0.5\pi
1.00000 00
458458 0 0
459459 0 0
460460 −1.40883 + 0.123257i −1.40883 + 0.123257i
461461 1.53209 1.28558i 1.53209 1.28558i 0.766044 0.642788i 0.222222π-0.222222\pi
0.766044 0.642788i 0.222222π-0.222222\pi
462462 0 0
463463 1.36603 0.366025i 1.36603 0.366025i 0.500000 0.866025i 0.333333π-0.333333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
464464 0 0
465465 0 0
466466 0 0
467467 1.36603 + 0.366025i 1.36603 + 0.366025i 0.866025 0.500000i 0.166667π-0.166667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
468468 0 0
469469 0 0
470470 0 0
471471 0 0
472472 0 0
473473 0 0
474474 0 0
475475 0 0
476476 2.00000 2.00000
477477 0 0
478478 0 0
479479 −1.28558 + 1.53209i −1.28558 + 1.53209i −0.642788 + 0.766044i 0.722222π0.722222\pi
−0.642788 + 0.766044i 0.722222π0.722222\pi
480480 0 0
481481 0 0
482482 0 0
483483 0 0
484484 0.342020 + 0.939693i 0.342020 + 0.939693i
485485 0 0
486486 0 0
487487 0 0 0.965926 0.258819i 0.0833333π-0.0833333\pi
−0.965926 + 0.258819i 0.916667π0.916667\pi
488488 0 0
489489 0 0
490490 0 0
491491 −0.347296 1.96962i −0.347296 1.96962i −0.173648 0.984808i 0.555556π-0.555556\pi
−0.173648 0.984808i 0.555556π-0.555556\pi
492492 0 0
493493 0 0
494494 0 0
495495 0 0
496496 0 0
497497 0 0
498498 0 0
499499 1.28558 + 1.53209i 1.28558 + 1.53209i 0.642788 + 0.766044i 0.277778π0.277778\pi
0.642788 + 0.766044i 0.277778π0.277778\pi
500500 −0.984808 0.173648i −0.984808 0.173648i
501501 0 0
502502 0 0
503503 1.28171 + 0.597672i 1.28171 + 0.597672i 0.939693 0.342020i 0.111111π-0.111111\pi
0.342020 + 0.939693i 0.388889π0.388889\pi
504504 0 0
505505 0 0
506506 0 0
507507 0 0
508508 0 0
509509 0 0 −0.766044 0.642788i 0.777778π-0.777778\pi
0.766044 + 0.642788i 0.222222π0.222222\pi
510510 0 0
511511 −1.87939 0.684040i −1.87939 0.684040i
512512 0 0
513513 0 0
514514 0 0
515515 0 0
516516 0 0
517517 0 0
518518 0 0
519519 0 0
520520 0 0
521521 0 0 0.866025 0.500000i 0.166667π-0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
522522 0 0
523523 0 0 0.422618 0.906308i 0.361111π-0.361111\pi
−0.422618 + 0.906308i 0.638889π0.638889\pi
524524 −1.73205 + 1.00000i −1.73205 + 1.00000i
525525 0 0
526526 0 0
527527 0 0
528528 0 0
529529 −0.984808 + 0.173648i −0.984808 + 0.173648i
530530 0 0
531531 0 0
532532 0 0
533533 0 0
534534 0 0
535535 0 0
536536 0 0
537537 0 0
538538 0 0
539539 0 0
540540 0 0
541541 0 0 −0.342020 0.939693i 0.611111π-0.611111\pi
0.342020 + 0.939693i 0.388889π0.388889\pi
542542 0 0
543543 0 0
544544 0 0
545545 0 0
546546 0 0
547547 0 0 −0.0871557 0.996195i 0.527778π-0.527778\pi
0.0871557 + 0.996195i 0.472222π0.472222\pi
548548 0.811160 1.15846i 0.811160 1.15846i
549549 0 0
550550 0 0
551551 0 0
552552 0 0
553553 0 0
554554 0 0
555555 0 0
556556 −1.53209 + 1.28558i −1.53209 + 1.28558i
557557 −0.811160 1.15846i −0.811160 1.15846i −0.984808 0.173648i 0.944444π-0.944444\pi
0.173648 0.984808i 0.444444π-0.444444\pi
558558 0 0
559559 0 0
560560 −0.597672 + 1.28171i −0.597672 + 1.28171i
561561 0 0
562562 0 0
563563 0 0 −0.258819 0.965926i 0.583333π-0.583333\pi
0.258819 + 0.965926i 0.416667π0.416667\pi
564564 0 0
565565 0 0
566566 0 0
567567 −1.15846 0.811160i −1.15846 0.811160i
568568 0 0
569569 0 0 1.00000 00
−1.00000 π\pi
570570 0 0
571571 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
572572 0 0
573573 0 0
574574 0 0
575575 −1.40883 0.123257i −1.40883 0.123257i
576576 −0.173648 + 0.984808i −0.173648 + 0.984808i
577577 0.366025 + 1.36603i 0.366025 + 1.36603i 0.866025 + 0.500000i 0.166667π0.166667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
578578 0 0
579579 0 0
580580 0 0
581581 −1.00000 1.73205i −1.00000 1.73205i
582582 0 0
583583 0 0
584584 0 0
585585 0 0
586586 0 0
587587 −1.28171 + 0.597672i −1.28171 + 0.597672i −0.939693 0.342020i 0.888889π-0.888889\pi
−0.342020 + 0.939693i 0.611111π0.611111\pi
588588 0 0
589589 0 0
590590 0 0
591591 0 0
592592 0 0
593593 0.123257 + 1.40883i 0.123257 + 1.40883i 0.766044 + 0.642788i 0.222222π0.222222\pi
−0.642788 + 0.766044i 0.722222π0.722222\pi
594594 0 0
595595 1.96962 + 0.347296i 1.96962 + 0.347296i
596596 −1.00000 + 1.73205i −1.00000 + 1.73205i
597597 0 0
598598 0 0
599599 0 0 0.939693 0.342020i 0.111111π-0.111111\pi
−0.939693 + 0.342020i 0.888889π0.888889\pi
600600 0 0
601601 0 0 −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
602602 0 0
603603 0 0
604604 0 0
605605 0.173648 + 0.984808i 0.173648 + 0.984808i
606606 0 0
607607 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
608608 0 0
609609 0 0
610610 0 0
611611 0 0
612612 1.40883 0.123257i 1.40883 0.123257i
613613 −1.40883 0.123257i −1.40883 0.123257i −0.642788 0.766044i 0.722222π-0.722222\pi
−0.766044 + 0.642788i 0.777778π0.777778\pi
614614 0 0
615615 0 0
616616 0 0
617617 −0.597672 + 1.28171i −0.597672 + 1.28171i 0.342020 + 0.939693i 0.388889π0.388889\pi
−0.939693 + 0.342020i 0.888889π0.888889\pi
618618 0 0
619619 1.73205 1.00000i 1.73205 1.00000i 0.866025 0.500000i 0.166667π-0.166667\pi
0.866025 0.500000i 0.166667π-0.166667\pi
620620 0 0
621621 0 0
622622 0 0
623623 0 0
624624 0 0
625625 −0.939693 0.342020i −0.939693 0.342020i
626626 0 0
627627 0 0
628628 1.00000 + 1.00000i 1.00000 + 1.00000i
629629 0 0
630630 0 0
631631 0 0 0.642788 0.766044i 0.277778π-0.277778\pi
−0.642788 + 0.766044i 0.722222π0.722222\pi
632632 0 0
633633 0 0
634634 0 0
635635 0 0
636636 0 0
637637 0 0
638638 0 0
639639 0 0
640640 0 0
641641 0 0 −0.642788 0.766044i 0.722222π-0.722222\pi
0.642788 + 0.766044i 0.277778π0.277778\pi
642642 0 0
643643 0.811160 1.15846i 0.811160 1.15846i −0.173648 0.984808i 0.555556π-0.555556\pi
0.984808 0.173648i 0.0555556π-0.0555556\pi
644644 −0.684040 + 1.87939i −0.684040 + 1.87939i
645645 0 0
646646 0 0
647647 1.00000 1.00000i 1.00000 1.00000i 1.00000i 0.5π-0.5\pi
1.00000 00
648648 0 0
649649 0 0
650650 0 0
651651 0 0
652652 −0.811160 1.15846i −0.811160 1.15846i
653653 1.36603 0.366025i 1.36603 0.366025i 0.500000 0.866025i 0.333333π-0.333333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
654654 0 0
655655 −1.87939 + 0.684040i −1.87939 + 0.684040i
656656 0 0
657657 −1.36603 0.366025i −1.36603 0.366025i
658658 0 0
659659 0 0 0.173648 0.984808i 0.444444π-0.444444\pi
−0.173648 + 0.984808i 0.555556π0.555556\pi
660660 0 0
661661 0 0 0.642788 0.766044i 0.277778π-0.277778\pi
−0.642788 + 0.766044i 0.722222π0.722222\pi
662662 0 0
663663 0 0
664664 0 0
665665 0 0
666666 0 0
667667 0 0
668668 0 0
669669 0 0
670670 0 0
671671 0 0
672672 0 0
673673 0 0 −0.965926 0.258819i 0.916667π-0.916667\pi
0.965926 + 0.258819i 0.0833333π0.0833333\pi
674674 0 0
675675 0 0
676676 −0.500000 0.866025i −0.500000 0.866025i
677677 0 0 0.965926 0.258819i 0.0833333π-0.0833333\pi
−0.965926 + 0.258819i 0.916667π0.916667\pi
678678 0 0
679679 0 0
680680 0 0
681681 0 0
682682 0 0
683683 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
684684 0 0
685685 1.00000 1.00000i 1.00000 1.00000i
686686 0 0
687687 0 0
688688 −0.123257 1.40883i −0.123257 1.40883i
689689 0 0
690690 0 0
691691 0 0 −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
692692 0 0
693693 0 0
694694 0 0
695695 −1.73205 + 1.00000i −1.73205 + 1.00000i
696696 0 0
697697 0 0
698698 0 0
699699 0 0
700700 −0.811160 + 1.15846i −0.811160 + 1.15846i
701701 0 0 0.342020 0.939693i 0.388889π-0.388889\pi
−0.342020 + 0.939693i 0.611111π0.611111\pi
702702 0 0
703703 0 0
704704 0 0
705705 0 0
706706 0 0
707707 0 0
708708 0 0
709709 0 0 0.173648 0.984808i 0.444444π-0.444444\pi
−0.173648 + 0.984808i 0.555556π0.555556\pi
710710 0 0
711711 0 0
712712 0 0
713713 0 0
714714 0 0
715715 0 0
716716 0 0
717717 0 0
718718 0 0
719719 −1.96962 + 0.347296i −1.96962 + 0.347296i −0.984808 + 0.173648i 0.944444π0.944444\pi
−0.984808 + 0.173648i 0.944444π0.944444\pi
720720 −0.342020 + 0.939693i −0.342020 + 0.939693i
721721 0 0
722722 0 0
723723 0 0
724724 0 0
725725 0 0
726726 0 0
727727 −0.123257 + 1.40883i −0.123257 + 1.40883i 0.642788 + 0.766044i 0.277778π0.277778\pi
−0.766044 + 0.642788i 0.777778π0.777778\pi
728728 0 0
729729 −0.866025 0.500000i −0.866025 0.500000i
730730 0 0
731731 −1.87939 + 0.684040i −1.87939 + 0.684040i
732732 0 0
733733 0.366025 1.36603i 0.366025 1.36603i −0.500000 0.866025i 0.666667π-0.666667\pi
0.866025 0.500000i 0.166667π-0.166667\pi
734734 0 0
735735 0 0
736736 0 0
737737 0 0
738738 0 0
739739 0 0 −0.939693 0.342020i 0.888889π-0.888889\pi
0.939693 + 0.342020i 0.111111π0.111111\pi
740740 0 0
741741 0 0
742742 0 0
743743 0 0 0.906308 0.422618i 0.138889π-0.138889\pi
−0.906308 + 0.422618i 0.861111π0.861111\pi
744744 0 0
745745 −1.28558 + 1.53209i −1.28558 + 1.53209i
746746 0 0
747747 −0.811160 1.15846i −0.811160 1.15846i
748748 0 0
749749 0 0
750750 0 0
751751 0 0 −0.342020 0.939693i 0.611111π-0.611111\pi
0.342020 + 0.939693i 0.388889π0.388889\pi
752752 1.36603 + 0.366025i 1.36603 + 0.366025i
753753 0 0
754754 0 0
755755 0 0
756756 0 0
757757 −1.15846 0.811160i −1.15846 0.811160i −0.173648 0.984808i 0.555556π-0.555556\pi
−0.984808 + 0.173648i 0.944444π0.944444\pi
758758 0 0
759759 0 0
760760 0 0
761761 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
762762 0 0
763763 0 0
764764 1.28558 1.53209i 1.28558 1.53209i
765765 1.40883 + 0.123257i 1.40883 + 0.123257i
766766 0 0
767767 0 0
768768 0 0
769769 −0.684040 1.87939i −0.684040 1.87939i −0.342020 0.939693i 0.611111π-0.611111\pi
−0.342020 0.939693i 0.611111π-0.611111\pi
770770 0 0
771771 0 0
772772 0 0
773773 0 0 −0.573576 0.819152i 0.694444π-0.694444\pi
0.573576 + 0.819152i 0.305556π0.305556\pi
774774 0 0
775775 0 0
776776 0 0
777777 0 0
778778 0 0
779779 0 0
780780 0 0
781781 0 0
782782 0 0
783783 0 0
784784 0.642788 + 0.766044i 0.642788 + 0.766044i
785785 0.811160 + 1.15846i 0.811160 + 1.15846i
786786 0 0
787787 0 0 0.258819 0.965926i 0.416667π-0.416667\pi
−0.258819 + 0.965926i 0.583333π0.583333\pi
788788 1.28171 + 0.597672i 1.28171 + 0.597672i
789789 0 0
790790 0 0
791791 0 0
792792 0 0
793793 0 0
794794 0 0
795795 0 0
796796 0 0
797797 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
798798 0 0
799799 2.00000i 2.00000i
800800 0 0
801801 0 0
802802 0 0
803803 0 0
804804 0 0
805805 −1.00000 + 1.73205i −1.00000 + 1.73205i
806806 0 0
807807 0 0
808808 0 0
809809 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
810810 0 0
811811 0 0 −0.984808 0.173648i 0.944444π-0.944444\pi
0.984808 + 0.173648i 0.0555556π0.0555556\pi
812812 0 0
813813 0 0
814814 0 0
815815 −0.597672 1.28171i −0.597672 1.28171i
816816 0 0
817817 0 0
818818 0 0
819819 0 0
820820 0 0
821821 −1.53209 1.28558i −1.53209 1.28558i −0.766044 0.642788i 0.777778π-0.777778\pi
−0.766044 0.642788i 0.777778π-0.777778\pi
822822 0 0
823823 −1.15846 + 0.811160i −1.15846 + 0.811160i −0.984808 0.173648i 0.944444π-0.944444\pi
−0.173648 + 0.984808i 0.555556π0.555556\pi
824824 0 0
825825 0 0
826826 0 0
827827 0 0 −0.906308 0.422618i 0.861111π-0.861111\pi
0.906308 + 0.422618i 0.138889π0.138889\pi
828828 −0.366025 + 1.36603i −0.366025 + 1.36603i
829829 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
830830 0 0
831831 0 0
832832 0 0
833833 0.811160 1.15846i 0.811160 1.15846i
834834 0 0
835835 0 0
836836 0 0
837837 0 0
838838 0 0
839839 0 0 −0.173648 0.984808i 0.555556π-0.555556\pi
0.173648 + 0.984808i 0.444444π0.444444\pi
840840 0 0
841841 0.766044 0.642788i 0.766044 0.642788i
842842 0 0
843843 0 0
844844 0 0
845845 −0.342020 0.939693i −0.342020 0.939693i
846846 0 0
847847 1.36603 + 0.366025i 1.36603 + 0.366025i
848848 0 0
849849 0 0
850850 0 0
851851 0 0
852852 0 0
853853 −0.597672 1.28171i −0.597672 1.28171i −0.939693 0.342020i 0.888889π-0.888889\pi
0.342020 0.939693i 0.388889π-0.388889\pi
854854 0 0
855855 0 0
856856 0 0
857857 0 0 −0.422618 0.906308i 0.638889π-0.638889\pi
0.422618 + 0.906308i 0.361111π0.361111\pi
858858 0 0
859859 0 0 −0.766044 0.642788i 0.777778π-0.777778\pi
0.766044 + 0.642788i 0.222222π0.222222\pi
860860 0.123257 1.40883i 0.123257 1.40883i
861861 0 0
862862 0 0
863863 0 0 −0.965926 0.258819i 0.916667π-0.916667\pi
0.965926 + 0.258819i 0.0833333π0.0833333\pi
864864 0 0
865865 0 0
866866 0 0
867867 0 0
868868 0 0
869869 0 0
870870 0 0
871871 0 0
872872 0 0
873873 0 0
874874 0 0
875875 −1.00000 + 1.00000i −1.00000 + 1.00000i
876876 0 0
877877 0 0 0.573576 0.819152i 0.305556π-0.305556\pi
−0.573576 + 0.819152i 0.694444π0.694444\pi
878878 0 0
879879 0 0
880880 0 0
881881 0 0 −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
882882 0 0
883883 1.28171 + 0.597672i 1.28171 + 0.597672i 0.939693 0.342020i 0.111111π-0.111111\pi
0.342020 + 0.939693i 0.388889π0.388889\pi
884884 0 0
885885 0 0
886886 0 0
887887 0 0 0.819152 0.573576i 0.194444π-0.194444\pi
−0.819152 + 0.573576i 0.805556π0.805556\pi
888888 0 0
889889 0 0
890890 0 0
891891 0 0
892892 0 0
893893 0 0
894894 0 0
895895 0 0
896896 0 0
897897 0 0
898898 0 0
899899 0 0
900900 −0.500000 + 0.866025i −0.500000 + 0.866025i
901901 0 0
902902 0 0
903903 0 0
904904 0 0
905905 0 0
906906 0 0
907907 0 0 −0.996195 0.0871557i 0.972222π-0.972222\pi
0.996195 + 0.0871557i 0.0277778π0.0277778\pi
908908 0 0
909909 0 0
910910 0 0
911911 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
912912 0 0
913913 0 0
914914 0 0
915915 0 0
916916 −1.53209 1.28558i −1.53209 1.28558i
917917 −0.246514 + 2.81766i −0.246514 + 2.81766i
918918 0 0
919919 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
920920 0 0
921921 0 0
922922 0 0
923923 0 0
924924 0 0
925925 0 0
926926 0 0
927927 0 0
928928 0 0
929929 0 0 −0.939693 0.342020i 0.888889π-0.888889\pi
0.939693 + 0.342020i 0.111111π0.111111\pi
930930 0 0
931931 0 0
932932 −1.00000 + 1.00000i −1.00000 + 1.00000i
933933 0 0
934934 0 0
935935 0 0
936936 0 0
937937 −0.811160 1.15846i −0.811160 1.15846i −0.984808 0.173648i 0.944444π-0.944444\pi
0.173648 0.984808i 0.444444π-0.444444\pi
938938 0 0
939939 0 0
940940 1.28171 + 0.597672i 1.28171 + 0.597672i
941941 0 0 −0.342020 0.939693i 0.611111π-0.611111\pi
0.342020 + 0.939693i 0.388889π0.388889\pi
942942 0 0
943943 0 0
944944 0 0
945945 0 0
946946 0 0
947947 1.15846 + 0.811160i 1.15846 + 0.811160i 0.984808 0.173648i 0.0555556π-0.0555556\pi
0.173648 + 0.984808i 0.444444π0.444444\pi
948948 0 0
949949 0 0
950950 0 0
951951 0 0
952952 0 0
953953 0 0 −0.819152 0.573576i 0.805556π-0.805556\pi
0.819152 + 0.573576i 0.194444π0.194444\pi
954954 0 0
955955 1.53209 1.28558i 1.53209 1.28558i
956956 0 0
957957 0 0
958958 0 0
959959 −0.684040 1.87939i −0.684040 1.87939i
960960 0 0
961961 0.500000 + 0.866025i 0.500000 + 0.866025i
962962 0 0
963963 0 0
964964 0 0
965965 0 0
966966 0 0
967967 1.28171 0.597672i 1.28171 0.597672i 0.342020 0.939693i 0.388889π-0.388889\pi
0.939693 + 0.342020i 0.111111π0.111111\pi
968968 0 0
969969 0 0
970970 0 0
971971 0 0 0.342020 0.939693i 0.388889π-0.388889\pi
−0.342020 + 0.939693i 0.611111π0.611111\pi
972972 0 0
973973 0.246514 + 2.81766i 0.246514 + 2.81766i
974974 0 0
975975 0 0
976976 0 0
977977 0 0 0.258819 0.965926i 0.416667π-0.416667\pi
−0.258819 + 0.965926i 0.583333π0.583333\pi
978978 0 0
979979 0 0
980980 0.500000 + 0.866025i 0.500000 + 0.866025i
981981 0 0
982982 0 0
983983 0 0 0.0871557 0.996195i 0.472222π-0.472222\pi
−0.0871557 + 0.996195i 0.527778π0.527778\pi
984984 0 0
985985 1.15846 + 0.811160i 1.15846 + 0.811160i
986986 0 0
987987 0 0
988988 0 0
989989 2.00000i 2.00000i
990990 0 0
991991 0 0 0.984808 0.173648i 0.0555556π-0.0555556\pi
−0.984808 + 0.173648i 0.944444π0.944444\pi
992992 0 0
993993 0 0
994994 0 0
995995 0 0
996996 0 0
997997 0.597672 1.28171i 0.597672 1.28171i −0.342020 0.939693i 0.611111π-0.611111\pi
0.939693 0.342020i 0.111111π-0.111111\pi
998998 0 0
999999 0 0
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1805.1.r.a.1543.1 12
5.2 odd 4 inner 1805.1.r.a.1182.1 12
19.2 odd 18 inner 1805.1.r.a.1498.1 12
19.3 odd 18 inner 1805.1.r.a.1328.1 12
19.4 even 9 1805.1.m.a.653.1 4
19.5 even 9 inner 1805.1.r.a.423.1 12
19.6 even 9 1805.1.m.a.68.1 4
19.7 even 3 inner 1805.1.r.a.1678.1 12
19.8 odd 6 inner 1805.1.r.a.28.1 12
19.9 even 9 1805.1.f.a.723.1 yes 2
19.10 odd 18 1805.1.f.a.723.1 yes 2
19.11 even 3 inner 1805.1.r.a.28.1 12
19.12 odd 6 inner 1805.1.r.a.1678.1 12
19.13 odd 18 1805.1.m.a.68.1 4
19.14 odd 18 inner 1805.1.r.a.423.1 12
19.15 odd 18 1805.1.m.a.653.1 4
19.16 even 9 inner 1805.1.r.a.1328.1 12
19.17 even 9 inner 1805.1.r.a.1498.1 12
19.18 odd 2 CM 1805.1.r.a.1543.1 12
95.2 even 36 inner 1805.1.r.a.1137.1 12
95.7 odd 12 inner 1805.1.r.a.1317.1 12
95.12 even 12 inner 1805.1.r.a.1317.1 12
95.17 odd 36 inner 1805.1.r.a.1137.1 12
95.22 even 36 inner 1805.1.r.a.967.1 12
95.27 even 12 inner 1805.1.r.a.1472.1 12
95.32 even 36 1805.1.m.a.1512.1 4
95.37 even 4 inner 1805.1.r.a.1182.1 12
95.42 odd 36 1805.1.m.a.292.1 4
95.47 odd 36 1805.1.f.a.362.1 2
95.52 even 36 inner 1805.1.r.a.62.1 12
95.62 odd 36 inner 1805.1.r.a.62.1 12
95.67 even 36 1805.1.f.a.362.1 2
95.72 even 36 1805.1.m.a.292.1 4
95.82 odd 36 1805.1.m.a.1512.1 4
95.87 odd 12 inner 1805.1.r.a.1472.1 12
95.92 odd 36 inner 1805.1.r.a.967.1 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1805.1.f.a.362.1 2 95.47 odd 36
1805.1.f.a.362.1 2 95.67 even 36
1805.1.f.a.723.1 yes 2 19.9 even 9
1805.1.f.a.723.1 yes 2 19.10 odd 18
1805.1.m.a.68.1 4 19.6 even 9
1805.1.m.a.68.1 4 19.13 odd 18
1805.1.m.a.292.1 4 95.42 odd 36
1805.1.m.a.292.1 4 95.72 even 36
1805.1.m.a.653.1 4 19.4 even 9
1805.1.m.a.653.1 4 19.15 odd 18
1805.1.m.a.1512.1 4 95.32 even 36
1805.1.m.a.1512.1 4 95.82 odd 36
1805.1.r.a.28.1 12 19.8 odd 6 inner
1805.1.r.a.28.1 12 19.11 even 3 inner
1805.1.r.a.62.1 12 95.52 even 36 inner
1805.1.r.a.62.1 12 95.62 odd 36 inner
1805.1.r.a.423.1 12 19.5 even 9 inner
1805.1.r.a.423.1 12 19.14 odd 18 inner
1805.1.r.a.967.1 12 95.22 even 36 inner
1805.1.r.a.967.1 12 95.92 odd 36 inner
1805.1.r.a.1137.1 12 95.2 even 36 inner
1805.1.r.a.1137.1 12 95.17 odd 36 inner
1805.1.r.a.1182.1 12 5.2 odd 4 inner
1805.1.r.a.1182.1 12 95.37 even 4 inner
1805.1.r.a.1317.1 12 95.7 odd 12 inner
1805.1.r.a.1317.1 12 95.12 even 12 inner
1805.1.r.a.1328.1 12 19.3 odd 18 inner
1805.1.r.a.1328.1 12 19.16 even 9 inner
1805.1.r.a.1472.1 12 95.27 even 12 inner
1805.1.r.a.1472.1 12 95.87 odd 12 inner
1805.1.r.a.1498.1 12 19.2 odd 18 inner
1805.1.r.a.1498.1 12 19.17 even 9 inner
1805.1.r.a.1543.1 12 1.1 even 1 trivial
1805.1.r.a.1543.1 12 19.18 odd 2 CM
1805.1.r.a.1678.1 12 19.7 even 3 inner
1805.1.r.a.1678.1 12 19.12 odd 6 inner