Properties

Label 1805.1.r.a.1678.1
Level 18051805
Weight 11
Character 1805.1678
Analytic conductor 0.9010.901
Analytic rank 00
Dimension 1212
Projective image D4D_{4}
CM discriminant -19
Inner twists 2424

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1805,1,Mod(28,1805)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1805, base_ring=CyclotomicField(36))
 
chi = DirichletCharacter(H, H._module([27, 16]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1805.28");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: N N == 1805=5192 1805 = 5 \cdot 19^{2}
Weight: k k == 1 1
Character orbit: [χ][\chi] == 1805.r (of order 3636, degree 1212, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 0.9008123478030.900812347803
Analytic rank: 00
Dimension: 1212
Coefficient field: Q(ζ36)\Q(\zeta_{36})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x12x6+1 x^{12} - x^{6} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a4]\Z[a_1, \ldots, a_{4}]
Coefficient ring index: 1 1
Twist minimal: yes
Projective image: D4D_{4}
Projective field: Galois closure of 4.2.2375.1

Embedding invariants

Embedding label 1678.1
Root 0.642788+0.766044i-0.642788 + 0.766044i of defining polynomial
Character χ\chi == 1805.1678
Dual form 1805.1.r.a.1137.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+(0.984808+0.173648i)q4+(0.1736480.984808i)q5+(0.366025+1.36603i)q7+(0.6427880.766044i)q9+(0.939693+0.342020i)q16+(0.1232571.40883i)q171.00000iq20+(1.15846+0.811160i)q23+(0.939693+0.342020i)q25+(0.123257+1.40883i)q28+(1.281710.597672i)q35+(0.7660440.642788i)q36+(0.811160+1.15846i)q43+(0.8660250.500000i)q45+(1.408830.123257i)q47+(0.866025+0.500000i)q49+(1.28171+0.597672i)q63+(0.866025+0.500000i)q64+(0.3660251.36603i)q68+(0.5976721.28171i)q73+(0.1736480.984808i)q80+(0.1736480.984808i)q81+(1.36603+0.366025i)q83+(1.40883+0.123257i)q85+(1.28171+0.597672i)q92+O(q100)q+(0.984808 + 0.173648i) q^{4} +(-0.173648 - 0.984808i) q^{5} +(0.366025 + 1.36603i) q^{7} +(0.642788 - 0.766044i) q^{9} +(0.939693 + 0.342020i) q^{16} +(0.123257 - 1.40883i) q^{17} -1.00000i q^{20} +(-1.15846 + 0.811160i) q^{23} +(-0.939693 + 0.342020i) q^{25} +(0.123257 + 1.40883i) q^{28} +(1.28171 - 0.597672i) q^{35} +(0.766044 - 0.642788i) q^{36} +(-0.811160 + 1.15846i) q^{43} +(-0.866025 - 0.500000i) q^{45} +(1.40883 - 0.123257i) q^{47} +(-0.866025 + 0.500000i) q^{49} +(1.28171 + 0.597672i) q^{63} +(0.866025 + 0.500000i) q^{64} +(0.366025 - 1.36603i) q^{68} +(-0.597672 - 1.28171i) q^{73} +(0.173648 - 0.984808i) q^{80} +(-0.173648 - 0.984808i) q^{81} +(-1.36603 + 0.366025i) q^{83} +(-1.40883 + 0.123257i) q^{85} +(-1.28171 + 0.597672i) q^{92} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 12q6q76q686q83+O(q100) 12 q - 6 q^{7} - 6 q^{68} - 6 q^{83}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/1805Z)×\left(\mathbb{Z}/1805\mathbb{Z}\right)^\times.

nn 362362 14461446
χ(n)\chi(n) e(34)e\left(\frac{3}{4}\right) e(79)e\left(\frac{7}{9}\right)

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 0 0 −0.996195 0.0871557i 0.972222π-0.972222\pi
0.996195 + 0.0871557i 0.0277778π0.0277778\pi
33 0 0 0.906308 0.422618i 0.138889π-0.138889\pi
−0.906308 + 0.422618i 0.861111π0.861111\pi
44 0.984808 + 0.173648i 0.984808 + 0.173648i
55 −0.173648 0.984808i −0.173648 0.984808i
66 0 0
77 0.366025 + 1.36603i 0.366025 + 1.36603i 0.866025 + 0.500000i 0.166667π0.166667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
88 0 0
99 0.642788 0.766044i 0.642788 0.766044i
1010 0 0
1111 0 0 0.866025 0.500000i 0.166667π-0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
1212 0 0
1313 0 0 0.422618 0.906308i 0.361111π-0.361111\pi
−0.422618 + 0.906308i 0.638889π0.638889\pi
1414 0 0
1515 0 0
1616 0.939693 + 0.342020i 0.939693 + 0.342020i
1717 0.123257 1.40883i 0.123257 1.40883i −0.642788 0.766044i 0.722222π-0.722222\pi
0.766044 0.642788i 0.222222π-0.222222\pi
1818 0 0
1919 0 0
2020 1.00000i 1.00000i
2121 0 0
2222 0 0
2323 −1.15846 + 0.811160i −1.15846 + 0.811160i −0.984808 0.173648i 0.944444π-0.944444\pi
−0.173648 + 0.984808i 0.555556π0.555556\pi
2424 0 0
2525 −0.939693 + 0.342020i −0.939693 + 0.342020i
2626 0 0
2727 0 0
2828 0.123257 + 1.40883i 0.123257 + 1.40883i
2929 0 0 −0.766044 0.642788i 0.777778π-0.777778\pi
0.766044 + 0.642788i 0.222222π0.222222\pi
3030 0 0
3131 0 0 −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
3232 0 0
3333 0 0
3434 0 0
3535 1.28171 0.597672i 1.28171 0.597672i
3636 0.766044 0.642788i 0.766044 0.642788i
3737 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
3838 0 0
3939 0 0
4040 0 0
4141 0 0 0.342020 0.939693i 0.388889π-0.388889\pi
−0.342020 + 0.939693i 0.611111π0.611111\pi
4242 0 0
4343 −0.811160 + 1.15846i −0.811160 + 1.15846i 0.173648 + 0.984808i 0.444444π0.444444\pi
−0.984808 + 0.173648i 0.944444π0.944444\pi
4444 0 0
4545 −0.866025 0.500000i −0.866025 0.500000i
4646 0 0
4747 1.40883 0.123257i 1.40883 0.123257i 0.642788 0.766044i 0.277778π-0.277778\pi
0.766044 + 0.642788i 0.222222π0.222222\pi
4848 0 0
4949 −0.866025 + 0.500000i −0.866025 + 0.500000i
5050 0 0
5151 0 0
5252 0 0
5353 0 0 −0.573576 0.819152i 0.694444π-0.694444\pi
0.573576 + 0.819152i 0.305556π0.305556\pi
5454 0 0
5555 0 0
5656 0 0
5757 0 0
5858 0 0
5959 0 0 0.766044 0.642788i 0.222222π-0.222222\pi
−0.766044 + 0.642788i 0.777778π0.777778\pi
6060 0 0
6161 0 0 −0.984808 0.173648i 0.944444π-0.944444\pi
0.984808 + 0.173648i 0.0555556π0.0555556\pi
6262 0 0
6363 1.28171 + 0.597672i 1.28171 + 0.597672i
6464 0.866025 + 0.500000i 0.866025 + 0.500000i
6565 0 0
6666 0 0
6767 0 0 −0.0871557 0.996195i 0.527778π-0.527778\pi
0.0871557 + 0.996195i 0.472222π0.472222\pi
6868 0.366025 1.36603i 0.366025 1.36603i
6969 0 0
7070 0 0
7171 0 0 0.984808 0.173648i 0.0555556π-0.0555556\pi
−0.984808 + 0.173648i 0.944444π0.944444\pi
7272 0 0
7373 −0.597672 1.28171i −0.597672 1.28171i −0.939693 0.342020i 0.888889π-0.888889\pi
0.342020 0.939693i 0.388889π-0.388889\pi
7474 0 0
7575 0 0
7676 0 0
7777 0 0
7878 0 0
7979 0 0 −0.939693 0.342020i 0.888889π-0.888889\pi
0.939693 + 0.342020i 0.111111π0.111111\pi
8080 0.173648 0.984808i 0.173648 0.984808i
8181 −0.173648 0.984808i −0.173648 0.984808i
8282 0 0
8383 −1.36603 + 0.366025i −1.36603 + 0.366025i −0.866025 0.500000i 0.833333π-0.833333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
8484 0 0
8585 −1.40883 + 0.123257i −1.40883 + 0.123257i
8686 0 0
8787 0 0
8888 0 0
8989 0 0 0.939693 0.342020i 0.111111π-0.111111\pi
−0.939693 + 0.342020i 0.888889π0.888889\pi
9090 0 0
9191 0 0
9292 −1.28171 + 0.597672i −1.28171 + 0.597672i
9393 0 0
9494 0 0
9595 0 0
9696 0 0
9797 0 0 −0.996195 0.0871557i 0.972222π-0.972222\pi
0.996195 + 0.0871557i 0.0277778π0.0277778\pi
9898 0 0
9999 0 0
100100 −0.984808 + 0.173648i −0.984808 + 0.173648i
101101 0 0 −0.342020 0.939693i 0.611111π-0.611111\pi
0.342020 + 0.939693i 0.388889π0.388889\pi
102102 0 0
103103 0 0 −0.965926 0.258819i 0.916667π-0.916667\pi
0.965926 + 0.258819i 0.0833333π0.0833333\pi
104104 0 0
105105 0 0
106106 0 0
107107 0 0 0.965926 0.258819i 0.0833333π-0.0833333\pi
−0.965926 + 0.258819i 0.916667π0.916667\pi
108108 0 0
109109 0 0 −0.173648 0.984808i 0.555556π-0.555556\pi
0.173648 + 0.984808i 0.444444π0.444444\pi
110110 0 0
111111 0 0
112112 −0.123257 + 1.40883i −0.123257 + 1.40883i
113113 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
114114 0 0
115115 1.00000 + 1.00000i 1.00000 + 1.00000i
116116 0 0
117117 0 0
118118 0 0
119119 1.96962 0.347296i 1.96962 0.347296i
120120 0 0
121121 0.500000 0.866025i 0.500000 0.866025i
122122 0 0
123123 0 0
124124 0 0
125125 0.500000 + 0.866025i 0.500000 + 0.866025i
126126 0 0
127127 0 0 −0.906308 0.422618i 0.861111π-0.861111\pi
0.906308 + 0.422618i 0.138889π0.138889\pi
128128 0 0
129129 0 0
130130 0 0
131131 −1.53209 + 1.28558i −1.53209 + 1.28558i −0.766044 + 0.642788i 0.777778π0.777778\pi
−0.766044 + 0.642788i 0.777778π0.777778\pi
132132 0 0
133133 0 0
134134 0 0
135135 0 0
136136 0 0
137137 0.811160 + 1.15846i 0.811160 + 1.15846i 0.984808 + 0.173648i 0.0555556π0.0555556\pi
−0.173648 + 0.984808i 0.555556π0.555556\pi
138138 0 0
139139 −0.684040 1.87939i −0.684040 1.87939i −0.342020 0.939693i 0.611111π-0.611111\pi
−0.342020 0.939693i 0.611111π-0.611111\pi
140140 1.36603 0.366025i 1.36603 0.366025i
141141 0 0
142142 0 0
143143 0 0
144144 0.866025 0.500000i 0.866025 0.500000i
145145 0 0
146146 0 0
147147 0 0
148148 0 0
149149 −0.684040 + 1.87939i −0.684040 + 1.87939i −0.342020 + 0.939693i 0.611111π0.611111\pi
−0.342020 + 0.939693i 0.611111π0.611111\pi
150150 0 0
151151 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
152152 0 0
153153 −1.00000 1.00000i −1.00000 1.00000i
154154 0 0
155155 0 0
156156 0 0
157157 1.15846 + 0.811160i 1.15846 + 0.811160i 0.984808 0.173648i 0.0555556π-0.0555556\pi
0.173648 + 0.984808i 0.444444π0.444444\pi
158158 0 0
159159 0 0
160160 0 0
161161 −1.53209 1.28558i −1.53209 1.28558i
162162 0 0
163163 −0.366025 + 1.36603i −0.366025 + 1.36603i 0.500000 + 0.866025i 0.333333π0.333333\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
164164 0 0
165165 0 0
166166 0 0
167167 0 0 0.819152 0.573576i 0.194444π-0.194444\pi
−0.819152 + 0.573576i 0.805556π0.805556\pi
168168 0 0
169169 −0.642788 0.766044i −0.642788 0.766044i
170170 0 0
171171 0 0
172172 −1.00000 + 1.00000i −1.00000 + 1.00000i
173173 0 0 0.0871557 0.996195i 0.472222π-0.472222\pi
−0.0871557 + 0.996195i 0.527778π0.527778\pi
174174 0 0
175175 −0.811160 1.15846i −0.811160 1.15846i
176176 0 0
177177 0 0
178178 0 0
179179 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
180180 −0.766044 0.642788i −0.766044 0.642788i
181181 0 0 0.642788 0.766044i 0.277778π-0.277778\pi
−0.642788 + 0.766044i 0.722222π0.722222\pi
182182 0 0
183183 0 0
184184 0 0
185185 0 0
186186 0 0
187187 0 0
188188 1.40883 + 0.123257i 1.40883 + 0.123257i
189189 0 0
190190 0 0
191191 −2.00000 −2.00000 −1.00000 π\pi
−1.00000 π\pi
192192 0 0
193193 0 0 0.906308 0.422618i 0.138889π-0.138889\pi
−0.906308 + 0.422618i 0.861111π0.861111\pi
194194 0 0
195195 0 0
196196 −0.939693 + 0.342020i −0.939693 + 0.342020i
197197 −0.366025 1.36603i −0.366025 1.36603i −0.866025 0.500000i 0.833333π-0.833333\pi
0.500000 0.866025i 0.333333π-0.333333\pi
198198 0 0
199199 0 0 −0.766044 0.642788i 0.777778π-0.777778\pi
0.766044 + 0.642788i 0.222222π0.222222\pi
200200 0 0
201201 0 0
202202 0 0
203203 0 0
204204 0 0
205205 0 0
206206 0 0
207207 −0.123257 + 1.40883i −0.123257 + 1.40883i
208208 0 0
209209 0 0
210210 0 0
211211 0 0 −0.642788 0.766044i 0.722222π-0.722222\pi
0.642788 + 0.766044i 0.277778π0.277778\pi
212212 0 0
213213 0 0
214214 0 0
215215 1.28171 + 0.597672i 1.28171 + 0.597672i
216216 0 0
217217 0 0
218218 0 0
219219 0 0
220220 0 0
221221 0 0
222222 0 0
223223 0 0 −0.819152 0.573576i 0.805556π-0.805556\pi
0.819152 + 0.573576i 0.194444π0.194444\pi
224224 0 0
225225 −0.342020 + 0.939693i −0.342020 + 0.939693i
226226 0 0
227227 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
228228 0 0
229229 2.00000i 2.00000i 1.00000i 0.5π0.5\pi
1.00000i 0.5π0.5\pi
230230 0 0
231231 0 0
232232 0 0
233233 −0.811160 + 1.15846i −0.811160 + 1.15846i 0.173648 + 0.984808i 0.444444π0.444444\pi
−0.984808 + 0.173648i 0.944444π0.944444\pi
234234 0 0
235235 −0.366025 1.36603i −0.366025 1.36603i
236236 0 0
237237 0 0
238238 0 0
239239 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
240240 0 0
241241 0 0 −0.342020 0.939693i 0.611111π-0.611111\pi
0.342020 + 0.939693i 0.388889π0.388889\pi
242242 0 0
243243 0 0
244244 0 0
245245 0.642788 + 0.766044i 0.642788 + 0.766044i
246246 0 0
247247 0 0
248248 0 0
249249 0 0
250250 0 0
251251 0.347296 1.96962i 0.347296 1.96962i 0.173648 0.984808i 0.444444π-0.444444\pi
0.173648 0.984808i 0.444444π-0.444444\pi
252252 1.15846 + 0.811160i 1.15846 + 0.811160i
253253 0 0
254254 0 0
255255 0 0
256256 0.766044 + 0.642788i 0.766044 + 0.642788i
257257 0 0 −0.0871557 0.996195i 0.527778π-0.527778\pi
0.0871557 + 0.996195i 0.472222π0.472222\pi
258258 0 0
259259 0 0
260260 0 0
261261 0 0
262262 0 0
263263 −0.597672 1.28171i −0.597672 1.28171i −0.939693 0.342020i 0.888889π-0.888889\pi
0.342020 0.939693i 0.388889π-0.388889\pi
264264 0 0
265265 0 0
266266 0 0
267267 0 0
268268 0 0
269269 0 0 −0.939693 0.342020i 0.888889π-0.888889\pi
0.939693 + 0.342020i 0.111111π0.111111\pi
270270 0 0
271271 0 0 0.984808 0.173648i 0.0555556π-0.0555556\pi
−0.984808 + 0.173648i 0.944444π0.944444\pi
272272 0.597672 1.28171i 0.597672 1.28171i
273273 0 0
274274 0 0
275275 0 0
276276 0 0
277277 −1.36603 0.366025i −1.36603 0.366025i −0.500000 0.866025i 0.666667π-0.666667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
278278 0 0
279279 0 0
280280 0 0
281281 0 0 −0.984808 0.173648i 0.944444π-0.944444\pi
0.984808 + 0.173648i 0.0555556π0.0555556\pi
282282 0 0
283283 −1.40883 0.123257i −1.40883 0.123257i −0.642788 0.766044i 0.722222π-0.722222\pi
−0.766044 + 0.642788i 0.777778π0.777778\pi
284284 0 0
285285 0 0
286286 0 0
287287 0 0
288288 0 0
289289 −0.984808 0.173648i −0.984808 0.173648i
290290 0 0
291291 0 0
292292 −0.366025 1.36603i −0.366025 1.36603i
293293 0 0 −0.965926 0.258819i 0.916667π-0.916667\pi
0.965926 + 0.258819i 0.0833333π0.0833333\pi
294294 0 0
295295 0 0
296296 0 0
297297 0 0
298298 0 0
299299 0 0
300300 0 0
301301 −1.87939 0.684040i −1.87939 0.684040i
302302 0 0
303303 0 0
304304 0 0
305305 0 0
306306 0 0
307307 0 0 −0.422618 0.906308i 0.638889π-0.638889\pi
0.422618 + 0.906308i 0.361111π0.361111\pi
308308 0 0
309309 0 0
310310 0 0
311311 0 0 −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
312312 0 0
313313 0.123257 + 1.40883i 0.123257 + 1.40883i 0.766044 + 0.642788i 0.222222π0.222222\pi
−0.642788 + 0.766044i 0.722222π0.722222\pi
314314 0 0
315315 0.366025 1.36603i 0.366025 1.36603i
316316 0 0
317317 0 0 −0.906308 0.422618i 0.861111π-0.861111\pi
0.906308 + 0.422618i 0.138889π0.138889\pi
318318 0 0
319319 0 0
320320 0.342020 0.939693i 0.342020 0.939693i
321321 0 0
322322 0 0
323323 0 0
324324 1.00000i 1.00000i
325325 0 0
326326 0 0
327327 0 0
328328 0 0
329329 0.684040 + 1.87939i 0.684040 + 1.87939i
330330 0 0
331331 0 0 0.866025 0.500000i 0.166667π-0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
332332 −1.40883 + 0.123257i −1.40883 + 0.123257i
333333 0 0
334334 0 0
335335 0 0
336336 0 0
337337 0 0 0.573576 0.819152i 0.305556π-0.305556\pi
−0.573576 + 0.819152i 0.694444π0.694444\pi
338338 0 0
339339 0 0
340340 −1.40883 0.123257i −1.40883 0.123257i
341341 0 0
342342 0 0
343343 0 0
344344 0 0
345345 0 0
346346 0 0
347347 −1.15846 0.811160i −1.15846 0.811160i −0.173648 0.984808i 0.555556π-0.555556\pi
−0.984808 + 0.173648i 0.944444π0.944444\pi
348348 0 0
349349 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
350350 0 0
351351 0 0
352352 0 0
353353 0.366025 1.36603i 0.366025 1.36603i −0.500000 0.866025i 0.666667π-0.666667\pi
0.866025 0.500000i 0.166667π-0.166667\pi
354354 0 0
355355 0 0
356356 0 0
357357 0 0
358358 0 0
359359 1.28558 + 1.53209i 1.28558 + 1.53209i 0.642788 + 0.766044i 0.277778π0.277778\pi
0.642788 + 0.766044i 0.277778π0.277778\pi
360360 0 0
361361 0 0
362362 0 0
363363 0 0
364364 0 0
365365 −1.15846 + 0.811160i −1.15846 + 0.811160i
366366 0 0
367367 0.597672 1.28171i 0.597672 1.28171i −0.342020 0.939693i 0.611111π-0.611111\pi
0.939693 0.342020i 0.111111π-0.111111\pi
368368 −1.36603 + 0.366025i −1.36603 + 0.366025i
369369 0 0
370370 0 0
371371 0 0
372372 0 0
373373 0 0 −0.258819 0.965926i 0.583333π-0.583333\pi
0.258819 + 0.965926i 0.416667π0.416667\pi
374374 0 0
375375 0 0
376376 0 0
377377 0 0
378378 0 0
379379 0 0 1.00000 00
−1.00000 π\pi
380380 0 0
381381 0 0
382382 0 0
383383 0 0 0.906308 0.422618i 0.138889π-0.138889\pi
−0.906308 + 0.422618i 0.861111π0.861111\pi
384384 0 0
385385 0 0
386386 0 0
387387 0.366025 + 1.36603i 0.366025 + 1.36603i
388388 0 0
389389 0 0 −0.766044 0.642788i 0.777778π-0.777778\pi
0.766044 + 0.642788i 0.222222π0.222222\pi
390390 0 0
391391 1.00000 + 1.73205i 1.00000 + 1.73205i
392392 0 0
393393 0 0
394394 0 0
395395 0 0
396396 0 0
397397 0.123257 1.40883i 0.123257 1.40883i −0.642788 0.766044i 0.722222π-0.722222\pi
0.766044 0.642788i 0.222222π-0.222222\pi
398398 0 0
399399 0 0
400400 −1.00000 −1.00000
401401 0 0 −0.642788 0.766044i 0.722222π-0.722222\pi
0.642788 + 0.766044i 0.277778π0.277778\pi
402402 0 0
403403 0 0
404404 0 0
405405 −0.939693 + 0.342020i −0.939693 + 0.342020i
406406 0 0
407407 0 0
408408 0 0
409409 0 0 −0.766044 0.642788i 0.777778π-0.777778\pi
0.766044 + 0.642788i 0.222222π0.222222\pi
410410 0 0
411411 0 0
412412 0 0
413413 0 0
414414 0 0
415415 0.597672 + 1.28171i 0.597672 + 1.28171i
416416 0 0
417417 0 0
418418 0 0
419419 0 0 1.00000 00
−1.00000 π\pi
420420 0 0
421421 0 0 0.342020 0.939693i 0.388889π-0.388889\pi
−0.342020 + 0.939693i 0.611111π0.611111\pi
422422 0 0
423423 0.811160 1.15846i 0.811160 1.15846i
424424 0 0
425425 0.366025 + 1.36603i 0.366025 + 1.36603i
426426 0 0
427427 0 0
428428 0 0
429429 0 0
430430 0 0
431431 0 0 −0.342020 0.939693i 0.611111π-0.611111\pi
0.342020 + 0.939693i 0.388889π0.388889\pi
432432 0 0
433433 0 0 −0.573576 0.819152i 0.694444π-0.694444\pi
0.573576 + 0.819152i 0.305556π0.305556\pi
434434 0 0
435435 0 0
436436 0 0
437437 0 0
438438 0 0
439439 0 0 0.766044 0.642788i 0.222222π-0.222222\pi
−0.766044 + 0.642788i 0.777778π0.777778\pi
440440 0 0
441441 −0.173648 + 0.984808i −0.173648 + 0.984808i
442442 0 0
443443 −1.28171 0.597672i −1.28171 0.597672i −0.342020 0.939693i 0.611111π-0.611111\pi
−0.939693 + 0.342020i 0.888889π0.888889\pi
444444 0 0
445445 0 0
446446 0 0
447447 0 0
448448 −0.366025 + 1.36603i −0.366025 + 1.36603i
449449 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
450450 0 0
451451 0 0
452452 0 0
453453 0 0
454454 0 0
455455 0 0
456456 0 0
457457 1.00000 1.00000i 1.00000 1.00000i 1.00000i 0.5π-0.5\pi
1.00000 00
458458 0 0
459459 0 0
460460 0.811160 + 1.15846i 0.811160 + 1.15846i
461461 0.347296 + 1.96962i 0.347296 + 1.96962i 0.173648 + 0.984808i 0.444444π0.444444\pi
0.173648 + 0.984808i 0.444444π0.444444\pi
462462 0 0
463463 1.36603 0.366025i 1.36603 0.366025i 0.500000 0.866025i 0.333333π-0.333333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
464464 0 0
465465 0 0
466466 0 0
467467 1.36603 + 0.366025i 1.36603 + 0.366025i 0.866025 0.500000i 0.166667π-0.166667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
468468 0 0
469469 0 0
470470 0 0
471471 0 0
472472 0 0
473473 0 0
474474 0 0
475475 0 0
476476 2.00000 2.00000
477477 0 0
478478 0 0
479479 1.96962 + 0.347296i 1.96962 + 0.347296i 0.984808 + 0.173648i 0.0555556π0.0555556\pi
0.984808 + 0.173648i 0.0555556π0.0555556\pi
480480 0 0
481481 0 0
482482 0 0
483483 0 0
484484 0.642788 0.766044i 0.642788 0.766044i
485485 0 0
486486 0 0
487487 0 0 0.965926 0.258819i 0.0833333π-0.0833333\pi
−0.965926 + 0.258819i 0.916667π0.916667\pi
488488 0 0
489489 0 0
490490 0 0
491491 1.87939 + 0.684040i 1.87939 + 0.684040i 0.939693 + 0.342020i 0.111111π0.111111\pi
0.939693 + 0.342020i 0.111111π0.111111\pi
492492 0 0
493493 0 0
494494 0 0
495495 0 0
496496 0 0
497497 0 0
498498 0 0
499499 −1.96962 + 0.347296i −1.96962 + 0.347296i −0.984808 + 0.173648i 0.944444π0.944444\pi
−0.984808 + 0.173648i 0.944444π0.944444\pi
500500 0.342020 + 0.939693i 0.342020 + 0.939693i
501501 0 0
502502 0 0
503503 −0.123257 1.40883i −0.123257 1.40883i −0.766044 0.642788i 0.777778π-0.777778\pi
0.642788 0.766044i 0.277778π-0.277778\pi
504504 0 0
505505 0 0
506506 0 0
507507 0 0
508508 0 0
509509 0 0 0.173648 0.984808i 0.444444π-0.444444\pi
−0.173648 + 0.984808i 0.555556π0.555556\pi
510510 0 0
511511 1.53209 1.28558i 1.53209 1.28558i
512512 0 0
513513 0 0
514514 0 0
515515 0 0
516516 0 0
517517 0 0
518518 0 0
519519 0 0
520520 0 0
521521 0 0 0.866025 0.500000i 0.166667π-0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
522522 0 0
523523 0 0 0.996195 0.0871557i 0.0277778π-0.0277778\pi
−0.996195 + 0.0871557i 0.972222π0.972222\pi
524524 −1.73205 + 1.00000i −1.73205 + 1.00000i
525525 0 0
526526 0 0
527527 0 0
528528 0 0
529529 0.342020 0.939693i 0.342020 0.939693i
530530 0 0
531531 0 0
532532 0 0
533533 0 0
534534 0 0
535535 0 0
536536 0 0
537537 0 0
538538 0 0
539539 0 0
540540 0 0
541541 0 0 0.642788 0.766044i 0.277778π-0.277778\pi
−0.642788 + 0.766044i 0.722222π0.722222\pi
542542 0 0
543543 0 0
544544 0 0
545545 0 0
546546 0 0
547547 0 0 0.819152 0.573576i 0.194444π-0.194444\pi
−0.819152 + 0.573576i 0.805556π0.805556\pi
548548 0.597672 + 1.28171i 0.597672 + 1.28171i
549549 0 0
550550 0 0
551551 0 0
552552 0 0
553553 0 0
554554 0 0
555555 0 0
556556 −0.347296 1.96962i −0.347296 1.96962i
557557 −0.597672 + 1.28171i −0.597672 + 1.28171i 0.342020 + 0.939693i 0.388889π0.388889\pi
−0.939693 + 0.342020i 0.888889π0.888889\pi
558558 0 0
559559 0 0
560560 1.40883 0.123257i 1.40883 0.123257i
561561 0 0
562562 0 0
563563 0 0 −0.258819 0.965926i 0.583333π-0.583333\pi
0.258819 + 0.965926i 0.416667π0.416667\pi
564564 0 0
565565 0 0
566566 0 0
567567 1.28171 0.597672i 1.28171 0.597672i
568568 0 0
569569 0 0 1.00000 00
−1.00000 π\pi
570570 0 0
571571 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
572572 0 0
573573 0 0
574574 0 0
575575 0.811160 1.15846i 0.811160 1.15846i
576576 0.939693 0.342020i 0.939693 0.342020i
577577 0.366025 + 1.36603i 0.366025 + 1.36603i 0.866025 + 0.500000i 0.166667π0.166667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
578578 0 0
579579 0 0
580580 0 0
581581 −1.00000 1.73205i −1.00000 1.73205i
582582 0 0
583583 0 0
584584 0 0
585585 0 0
586586 0 0
587587 0.123257 1.40883i 0.123257 1.40883i −0.642788 0.766044i 0.722222π-0.722222\pi
0.766044 0.642788i 0.222222π-0.222222\pi
588588 0 0
589589 0 0
590590 0 0
591591 0 0
592592 0 0
593593 1.15846 0.811160i 1.15846 0.811160i 0.173648 0.984808i 0.444444π-0.444444\pi
0.984808 + 0.173648i 0.0555556π0.0555556\pi
594594 0 0
595595 −0.684040 1.87939i −0.684040 1.87939i
596596 −1.00000 + 1.73205i −1.00000 + 1.73205i
597597 0 0
598598 0 0
599599 0 0 −0.766044 0.642788i 0.777778π-0.777778\pi
0.766044 + 0.642788i 0.222222π0.222222\pi
600600 0 0
601601 0 0 −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
602602 0 0
603603 0 0
604604 0 0
605605 −0.939693 0.342020i −0.939693 0.342020i
606606 0 0
607607 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
608608 0 0
609609 0 0
610610 0 0
611611 0 0
612612 −0.811160 1.15846i −0.811160 1.15846i
613613 0.811160 1.15846i 0.811160 1.15846i −0.173648 0.984808i 0.555556π-0.555556\pi
0.984808 0.173648i 0.0555556π-0.0555556\pi
614614 0 0
615615 0 0
616616 0 0
617617 1.40883 0.123257i 1.40883 0.123257i 0.642788 0.766044i 0.277778π-0.277778\pi
0.766044 + 0.642788i 0.222222π0.222222\pi
618618 0 0
619619 1.73205 1.00000i 1.73205 1.00000i 0.866025 0.500000i 0.166667π-0.166667\pi
0.866025 0.500000i 0.166667π-0.166667\pi
620620 0 0
621621 0 0
622622 0 0
623623 0 0
624624 0 0
625625 0.766044 0.642788i 0.766044 0.642788i
626626 0 0
627627 0 0
628628 1.00000 + 1.00000i 1.00000 + 1.00000i
629629 0 0
630630 0 0
631631 0 0 −0.984808 0.173648i 0.944444π-0.944444\pi
0.984808 + 0.173648i 0.0555556π0.0555556\pi
632632 0 0
633633 0 0
634634 0 0
635635 0 0
636636 0 0
637637 0 0
638638 0 0
639639 0 0
640640 0 0
641641 0 0 0.984808 0.173648i 0.0555556π-0.0555556\pi
−0.984808 + 0.173648i 0.944444π0.944444\pi
642642 0 0
643643 0.597672 + 1.28171i 0.597672 + 1.28171i 0.939693 + 0.342020i 0.111111π0.111111\pi
−0.342020 + 0.939693i 0.611111π0.611111\pi
644644 −1.28558 1.53209i −1.28558 1.53209i
645645 0 0
646646 0 0
647647 1.00000 1.00000i 1.00000 1.00000i 1.00000i 0.5π-0.5\pi
1.00000 00
648648 0 0
649649 0 0
650650 0 0
651651 0 0
652652 −0.597672 + 1.28171i −0.597672 + 1.28171i
653653 1.36603 0.366025i 1.36603 0.366025i 0.500000 0.866025i 0.333333π-0.333333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
654654 0 0
655655 1.53209 + 1.28558i 1.53209 + 1.28558i
656656 0 0
657657 −1.36603 0.366025i −1.36603 0.366025i
658658 0 0
659659 0 0 0.939693 0.342020i 0.111111π-0.111111\pi
−0.939693 + 0.342020i 0.888889π0.888889\pi
660660 0 0
661661 0 0 −0.984808 0.173648i 0.944444π-0.944444\pi
0.984808 + 0.173648i 0.0555556π0.0555556\pi
662662 0 0
663663 0 0
664664 0 0
665665 0 0
666666 0 0
667667 0 0
668668 0 0
669669 0 0
670670 0 0
671671 0 0
672672 0 0
673673 0 0 −0.965926 0.258819i 0.916667π-0.916667\pi
0.965926 + 0.258819i 0.0833333π0.0833333\pi
674674 0 0
675675 0 0
676676 −0.500000 0.866025i −0.500000 0.866025i
677677 0 0 0.965926 0.258819i 0.0833333π-0.0833333\pi
−0.965926 + 0.258819i 0.916667π0.916667\pi
678678 0 0
679679 0 0
680680 0 0
681681 0 0
682682 0 0
683683 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
684684 0 0
685685 1.00000 1.00000i 1.00000 1.00000i
686686 0 0
687687 0 0
688688 −1.15846 + 0.811160i −1.15846 + 0.811160i
689689 0 0
690690 0 0
691691 0 0 −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
692692 0 0
693693 0 0
694694 0 0
695695 −1.73205 + 1.00000i −1.73205 + 1.00000i
696696 0 0
697697 0 0
698698 0 0
699699 0 0
700700 −0.597672 1.28171i −0.597672 1.28171i
701701 0 0 −0.642788 0.766044i 0.722222π-0.722222\pi
0.642788 + 0.766044i 0.277778π0.277778\pi
702702 0 0
703703 0 0
704704 0 0
705705 0 0
706706 0 0
707707 0 0
708708 0 0
709709 0 0 0.939693 0.342020i 0.111111π-0.111111\pi
−0.939693 + 0.342020i 0.888889π0.888889\pi
710710 0 0
711711 0 0
712712 0 0
713713 0 0
714714 0 0
715715 0 0
716716 0 0
717717 0 0
718718 0 0
719719 0.684040 1.87939i 0.684040 1.87939i 0.342020 0.939693i 0.388889π-0.388889\pi
0.342020 0.939693i 0.388889π-0.388889\pi
720720 −0.642788 0.766044i −0.642788 0.766044i
721721 0 0
722722 0 0
723723 0 0
724724 0 0
725725 0 0
726726 0 0
727727 −1.15846 0.811160i −1.15846 0.811160i −0.173648 0.984808i 0.555556π-0.555556\pi
−0.984808 + 0.173648i 0.944444π0.944444\pi
728728 0 0
729729 −0.866025 0.500000i −0.866025 0.500000i
730730 0 0
731731 1.53209 + 1.28558i 1.53209 + 1.28558i
732732 0 0
733733 0.366025 1.36603i 0.366025 1.36603i −0.500000 0.866025i 0.666667π-0.666667\pi
0.866025 0.500000i 0.166667π-0.166667\pi
734734 0 0
735735 0 0
736736 0 0
737737 0 0
738738 0 0
739739 0 0 0.766044 0.642788i 0.222222π-0.222222\pi
−0.766044 + 0.642788i 0.777778π0.777778\pi
740740 0 0
741741 0 0
742742 0 0
743743 0 0 0.0871557 0.996195i 0.472222π-0.472222\pi
−0.0871557 + 0.996195i 0.527778π0.527778\pi
744744 0 0
745745 1.96962 + 0.347296i 1.96962 + 0.347296i
746746 0 0
747747 −0.597672 + 1.28171i −0.597672 + 1.28171i
748748 0 0
749749 0 0
750750 0 0
751751 0 0 0.642788 0.766044i 0.277778π-0.277778\pi
−0.642788 + 0.766044i 0.722222π0.722222\pi
752752 1.36603 + 0.366025i 1.36603 + 0.366025i
753753 0 0
754754 0 0
755755 0 0
756756 0 0
757757 1.28171 0.597672i 1.28171 0.597672i 0.342020 0.939693i 0.388889π-0.388889\pi
0.939693 + 0.342020i 0.111111π0.111111\pi
758758 0 0
759759 0 0
760760 0 0
761761 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
762762 0 0
763763 0 0
764764 −1.96962 0.347296i −1.96962 0.347296i
765765 −0.811160 + 1.15846i −0.811160 + 1.15846i
766766 0 0
767767 0 0
768768 0 0
769769 −1.28558 + 1.53209i −1.28558 + 1.53209i −0.642788 + 0.766044i 0.722222π0.722222\pi
−0.642788 + 0.766044i 0.722222π0.722222\pi
770770 0 0
771771 0 0
772772 0 0
773773 0 0 0.422618 0.906308i 0.361111π-0.361111\pi
−0.422618 + 0.906308i 0.638889π0.638889\pi
774774 0 0
775775 0 0
776776 0 0
777777 0 0
778778 0 0
779779 0 0
780780 0 0
781781 0 0
782782 0 0
783783 0 0
784784 −0.984808 + 0.173648i −0.984808 + 0.173648i
785785 0.597672 1.28171i 0.597672 1.28171i
786786 0 0
787787 0 0 0.258819 0.965926i 0.416667π-0.416667\pi
−0.258819 + 0.965926i 0.583333π0.583333\pi
788788 −0.123257 1.40883i −0.123257 1.40883i
789789 0 0
790790 0 0
791791 0 0
792792 0 0
793793 0 0
794794 0 0
795795 0 0
796796 0 0
797797 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
798798 0 0
799799 2.00000i 2.00000i
800800 0 0
801801 0 0
802802 0 0
803803 0 0
804804 0 0
805805 −1.00000 + 1.73205i −1.00000 + 1.73205i
806806 0 0
807807 0 0
808808 0 0
809809 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
810810 0 0
811811 0 0 −0.342020 0.939693i 0.611111π-0.611111\pi
0.342020 + 0.939693i 0.388889π0.388889\pi
812812 0 0
813813 0 0
814814 0 0
815815 1.40883 + 0.123257i 1.40883 + 0.123257i
816816 0 0
817817 0 0
818818 0 0
819819 0 0
820820 0 0
821821 −0.347296 + 1.96962i −0.347296 + 1.96962i −0.173648 + 0.984808i 0.555556π0.555556\pi
−0.173648 + 0.984808i 0.555556π0.555556\pi
822822 0 0
823823 1.28171 + 0.597672i 1.28171 + 0.597672i 0.939693 0.342020i 0.111111π-0.111111\pi
0.342020 + 0.939693i 0.388889π0.388889\pi
824824 0 0
825825 0 0
826826 0 0
827827 0 0 −0.0871557 0.996195i 0.527778π-0.527778\pi
0.0871557 + 0.996195i 0.472222π0.472222\pi
828828 −0.366025 + 1.36603i −0.366025 + 1.36603i
829829 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
830830 0 0
831831 0 0
832832 0 0
833833 0.597672 + 1.28171i 0.597672 + 1.28171i
834834 0 0
835835 0 0
836836 0 0
837837 0 0
838838 0 0
839839 0 0 −0.939693 0.342020i 0.888889π-0.888889\pi
0.939693 + 0.342020i 0.111111π0.111111\pi
840840 0 0
841841 0.173648 + 0.984808i 0.173648 + 0.984808i
842842 0 0
843843 0 0
844844 0 0
845845 −0.642788 + 0.766044i −0.642788 + 0.766044i
846846 0 0
847847 1.36603 + 0.366025i 1.36603 + 0.366025i
848848 0 0
849849 0 0
850850 0 0
851851 0 0
852852 0 0
853853 1.40883 + 0.123257i 1.40883 + 0.123257i 0.766044 0.642788i 0.222222π-0.222222\pi
0.642788 + 0.766044i 0.277778π0.277778\pi
854854 0 0
855855 0 0
856856 0 0
857857 0 0 −0.996195 0.0871557i 0.972222π-0.972222\pi
0.996195 + 0.0871557i 0.0277778π0.0277778\pi
858858 0 0
859859 0 0 0.173648 0.984808i 0.444444π-0.444444\pi
−0.173648 + 0.984808i 0.555556π0.555556\pi
860860 1.15846 + 0.811160i 1.15846 + 0.811160i
861861 0 0
862862 0 0
863863 0 0 −0.965926 0.258819i 0.916667π-0.916667\pi
0.965926 + 0.258819i 0.0833333π0.0833333\pi
864864 0 0
865865 0 0
866866 0 0
867867 0 0
868868 0 0
869869 0 0
870870 0 0
871871 0 0
872872 0 0
873873 0 0
874874 0 0
875875 −1.00000 + 1.00000i −1.00000 + 1.00000i
876876 0 0
877877 0 0 −0.422618 0.906308i 0.638889π-0.638889\pi
0.422618 + 0.906308i 0.361111π0.361111\pi
878878 0 0
879879 0 0
880880 0 0
881881 0 0 −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
882882 0 0
883883 −0.123257 1.40883i −0.123257 1.40883i −0.766044 0.642788i 0.777778π-0.777778\pi
0.642788 0.766044i 0.277778π-0.277778\pi
884884 0 0
885885 0 0
886886 0 0
887887 0 0 −0.906308 0.422618i 0.861111π-0.861111\pi
0.906308 + 0.422618i 0.138889π0.138889\pi
888888 0 0
889889 0 0
890890 0 0
891891 0 0
892892 0 0
893893 0 0
894894 0 0
895895 0 0
896896 0 0
897897 0 0
898898 0 0
899899 0 0
900900 −0.500000 + 0.866025i −0.500000 + 0.866025i
901901 0 0
902902 0 0
903903 0 0
904904 0 0
905905 0 0
906906 0 0
907907 0 0 0.573576 0.819152i 0.305556π-0.305556\pi
−0.573576 + 0.819152i 0.694444π0.694444\pi
908908 0 0
909909 0 0
910910 0 0
911911 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
912912 0 0
913913 0 0
914914 0 0
915915 0 0
916916 −0.347296 + 1.96962i −0.347296 + 1.96962i
917917 −2.31691 1.62232i −2.31691 1.62232i
918918 0 0
919919 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
920920 0 0
921921 0 0
922922 0 0
923923 0 0
924924 0 0
925925 0 0
926926 0 0
927927 0 0
928928 0 0
929929 0 0 0.766044 0.642788i 0.222222π-0.222222\pi
−0.766044 + 0.642788i 0.777778π0.777778\pi
930930 0 0
931931 0 0
932932 −1.00000 + 1.00000i −1.00000 + 1.00000i
933933 0 0
934934 0 0
935935 0 0
936936 0 0
937937 −0.597672 + 1.28171i −0.597672 + 1.28171i 0.342020 + 0.939693i 0.388889π0.388889\pi
−0.939693 + 0.342020i 0.888889π0.888889\pi
938938 0 0
939939 0 0
940940 −0.123257 1.40883i −0.123257 1.40883i
941941 0 0 0.642788 0.766044i 0.277778π-0.277778\pi
−0.642788 + 0.766044i 0.722222π0.722222\pi
942942 0 0
943943 0 0
944944 0 0
945945 0 0
946946 0 0
947947 −1.28171 + 0.597672i −1.28171 + 0.597672i −0.939693 0.342020i 0.888889π-0.888889\pi
−0.342020 + 0.939693i 0.611111π0.611111\pi
948948 0 0
949949 0 0
950950 0 0
951951 0 0
952952 0 0
953953 0 0 0.906308 0.422618i 0.138889π-0.138889\pi
−0.906308 + 0.422618i 0.861111π0.861111\pi
954954 0 0
955955 0.347296 + 1.96962i 0.347296 + 1.96962i
956956 0 0
957957 0 0
958958 0 0
959959 −1.28558 + 1.53209i −1.28558 + 1.53209i
960960 0 0
961961 0.500000 + 0.866025i 0.500000 + 0.866025i
962962 0 0
963963 0 0
964964 0 0
965965 0 0
966966 0 0
967967 −0.123257 + 1.40883i −0.123257 + 1.40883i 0.642788 + 0.766044i 0.277778π0.277778\pi
−0.766044 + 0.642788i 0.777778π0.777778\pi
968968 0 0
969969 0 0
970970 0 0
971971 0 0 −0.642788 0.766044i 0.722222π-0.722222\pi
0.642788 + 0.766044i 0.277778π0.277778\pi
972972 0 0
973973 2.31691 1.62232i 2.31691 1.62232i
974974 0 0
975975 0 0
976976 0 0
977977 0 0 0.258819 0.965926i 0.416667π-0.416667\pi
−0.258819 + 0.965926i 0.583333π0.583333\pi
978978 0 0
979979 0 0
980980 0.500000 + 0.866025i 0.500000 + 0.866025i
981981 0 0
982982 0 0
983983 0 0 −0.819152 0.573576i 0.805556π-0.805556\pi
0.819152 + 0.573576i 0.194444π0.194444\pi
984984 0 0
985985 −1.28171 + 0.597672i −1.28171 + 0.597672i
986986 0 0
987987 0 0
988988 0 0
989989 2.00000i 2.00000i
990990 0 0
991991 0 0 0.342020 0.939693i 0.388889π-0.388889\pi
−0.342020 + 0.939693i 0.611111π0.611111\pi
992992 0 0
993993 0 0
994994 0 0
995995 0 0
996996 0 0
997997 −1.40883 + 0.123257i −1.40883 + 0.123257i −0.766044 0.642788i 0.777778π-0.777778\pi
−0.642788 + 0.766044i 0.722222π0.722222\pi
998998 0 0
999999 0 0
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1805.1.r.a.1678.1 12
5.2 odd 4 inner 1805.1.r.a.1317.1 12
19.2 odd 18 inner 1805.1.r.a.423.1 12
19.3 odd 18 inner 1805.1.r.a.1498.1 12
19.4 even 9 1805.1.f.a.723.1 yes 2
19.5 even 9 inner 1805.1.r.a.1328.1 12
19.6 even 9 1805.1.m.a.653.1 4
19.7 even 3 inner 1805.1.r.a.28.1 12
19.8 odd 6 inner 1805.1.r.a.1543.1 12
19.9 even 9 1805.1.m.a.68.1 4
19.10 odd 18 1805.1.m.a.68.1 4
19.11 even 3 inner 1805.1.r.a.1543.1 12
19.12 odd 6 inner 1805.1.r.a.28.1 12
19.13 odd 18 1805.1.m.a.653.1 4
19.14 odd 18 inner 1805.1.r.a.1328.1 12
19.15 odd 18 1805.1.f.a.723.1 yes 2
19.16 even 9 inner 1805.1.r.a.1498.1 12
19.17 even 9 inner 1805.1.r.a.423.1 12
19.18 odd 2 CM 1805.1.r.a.1678.1 12
95.2 even 36 inner 1805.1.r.a.62.1 12
95.7 odd 12 inner 1805.1.r.a.1472.1 12
95.12 even 12 inner 1805.1.r.a.1472.1 12
95.17 odd 36 inner 1805.1.r.a.62.1 12
95.22 even 36 inner 1805.1.r.a.1137.1 12
95.27 even 12 inner 1805.1.r.a.1182.1 12
95.32 even 36 1805.1.m.a.292.1 4
95.37 even 4 inner 1805.1.r.a.1317.1 12
95.42 odd 36 1805.1.f.a.362.1 2
95.47 odd 36 1805.1.m.a.1512.1 4
95.52 even 36 inner 1805.1.r.a.967.1 12
95.62 odd 36 inner 1805.1.r.a.967.1 12
95.67 even 36 1805.1.m.a.1512.1 4
95.72 even 36 1805.1.f.a.362.1 2
95.82 odd 36 1805.1.m.a.292.1 4
95.87 odd 12 inner 1805.1.r.a.1182.1 12
95.92 odd 36 inner 1805.1.r.a.1137.1 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1805.1.f.a.362.1 2 95.42 odd 36
1805.1.f.a.362.1 2 95.72 even 36
1805.1.f.a.723.1 yes 2 19.4 even 9
1805.1.f.a.723.1 yes 2 19.15 odd 18
1805.1.m.a.68.1 4 19.9 even 9
1805.1.m.a.68.1 4 19.10 odd 18
1805.1.m.a.292.1 4 95.32 even 36
1805.1.m.a.292.1 4 95.82 odd 36
1805.1.m.a.653.1 4 19.6 even 9
1805.1.m.a.653.1 4 19.13 odd 18
1805.1.m.a.1512.1 4 95.47 odd 36
1805.1.m.a.1512.1 4 95.67 even 36
1805.1.r.a.28.1 12 19.7 even 3 inner
1805.1.r.a.28.1 12 19.12 odd 6 inner
1805.1.r.a.62.1 12 95.2 even 36 inner
1805.1.r.a.62.1 12 95.17 odd 36 inner
1805.1.r.a.423.1 12 19.2 odd 18 inner
1805.1.r.a.423.1 12 19.17 even 9 inner
1805.1.r.a.967.1 12 95.52 even 36 inner
1805.1.r.a.967.1 12 95.62 odd 36 inner
1805.1.r.a.1137.1 12 95.22 even 36 inner
1805.1.r.a.1137.1 12 95.92 odd 36 inner
1805.1.r.a.1182.1 12 95.27 even 12 inner
1805.1.r.a.1182.1 12 95.87 odd 12 inner
1805.1.r.a.1317.1 12 5.2 odd 4 inner
1805.1.r.a.1317.1 12 95.37 even 4 inner
1805.1.r.a.1328.1 12 19.5 even 9 inner
1805.1.r.a.1328.1 12 19.14 odd 18 inner
1805.1.r.a.1472.1 12 95.7 odd 12 inner
1805.1.r.a.1472.1 12 95.12 even 12 inner
1805.1.r.a.1498.1 12 19.3 odd 18 inner
1805.1.r.a.1498.1 12 19.16 even 9 inner
1805.1.r.a.1543.1 12 19.8 odd 6 inner
1805.1.r.a.1543.1 12 19.11 even 3 inner
1805.1.r.a.1678.1 12 1.1 even 1 trivial
1805.1.r.a.1678.1 12 19.18 odd 2 CM