Properties

Label 1859.4.a.k.1.15
Level $1859$
Weight $4$
Character 1859.1
Self dual yes
Analytic conductor $109.685$
Analytic rank $0$
Dimension $18$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1859,4,Mod(1,1859)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1859, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1859.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1859 = 11 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1859.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(109.684550701\)
Analytic rank: \(0\)
Dimension: \(18\)
Coefficient field: \(\mathbb{Q}[x]/(x^{18} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{18} - 2 x^{17} - 108 x^{16} + 212 x^{15} + 4721 x^{14} - 8963 x^{13} - 107626 x^{12} + 194656 x^{11} + \cdots + 9847296 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 2^{5}\cdot 3^{2} \)
Twist minimal: no (minimal twist has level 143)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.15
Root \(3.97618\) of defining polynomial
Character \(\chi\) \(=\) 1859.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+3.97618 q^{2} -1.00306 q^{3} +7.81003 q^{4} -0.345299 q^{5} -3.98837 q^{6} -17.7538 q^{7} -0.755338 q^{8} -25.9939 q^{9} -1.37297 q^{10} +11.0000 q^{11} -7.83397 q^{12} -70.5923 q^{14} +0.346357 q^{15} -65.4836 q^{16} -18.9261 q^{17} -103.356 q^{18} -17.8720 q^{19} -2.69679 q^{20} +17.8082 q^{21} +43.7380 q^{22} +196.640 q^{23} +0.757652 q^{24} -124.881 q^{25} +53.1562 q^{27} -138.658 q^{28} +94.8199 q^{29} +1.37718 q^{30} +115.933 q^{31} -254.332 q^{32} -11.0337 q^{33} -75.2535 q^{34} +6.13035 q^{35} -203.013 q^{36} -215.254 q^{37} -71.0624 q^{38} +0.260817 q^{40} +338.126 q^{41} +70.8086 q^{42} +390.863 q^{43} +85.9104 q^{44} +8.97565 q^{45} +781.876 q^{46} +439.810 q^{47} +65.6843 q^{48} -27.8036 q^{49} -496.549 q^{50} +18.9840 q^{51} -585.925 q^{53} +211.359 q^{54} -3.79829 q^{55} +13.4101 q^{56} +17.9268 q^{57} +377.021 q^{58} -796.004 q^{59} +2.70506 q^{60} +347.654 q^{61} +460.970 q^{62} +461.489 q^{63} -487.403 q^{64} -43.8720 q^{66} +868.735 q^{67} -147.813 q^{68} -197.242 q^{69} +24.3754 q^{70} +792.078 q^{71} +19.6341 q^{72} +342.330 q^{73} -855.888 q^{74} +125.263 q^{75} -139.581 q^{76} -195.291 q^{77} +868.378 q^{79} +22.6114 q^{80} +648.515 q^{81} +1344.45 q^{82} +1019.35 q^{83} +139.082 q^{84} +6.53514 q^{85} +1554.14 q^{86} -95.1105 q^{87} -8.30872 q^{88} -472.117 q^{89} +35.6888 q^{90} +1535.76 q^{92} -116.288 q^{93} +1748.76 q^{94} +6.17118 q^{95} +255.112 q^{96} -1031.67 q^{97} -110.552 q^{98} -285.932 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 18 q + 2 q^{2} + 76 q^{4} + 20 q^{5} + 49 q^{6} + 28 q^{7} - 12 q^{8} + 180 q^{9} + 56 q^{10} + 198 q^{11} + 54 q^{12} + 4 q^{14} + 60 q^{15} + 364 q^{16} - 138 q^{17} + 298 q^{18} + 24 q^{19} + 160 q^{20}+ \cdots + 1980 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 3.97618 1.40579 0.702897 0.711292i \(-0.251890\pi\)
0.702897 + 0.711292i \(0.251890\pi\)
\(3\) −1.00306 −0.193040 −0.0965199 0.995331i \(-0.530771\pi\)
−0.0965199 + 0.995331i \(0.530771\pi\)
\(4\) 7.81003 0.976254
\(5\) −0.345299 −0.0308845 −0.0154422 0.999881i \(-0.504916\pi\)
−0.0154422 + 0.999881i \(0.504916\pi\)
\(6\) −3.98837 −0.271374
\(7\) −17.7538 −0.958614 −0.479307 0.877647i \(-0.659112\pi\)
−0.479307 + 0.877647i \(0.659112\pi\)
\(8\) −0.755338 −0.0333815
\(9\) −25.9939 −0.962736
\(10\) −1.37297 −0.0434172
\(11\) 11.0000 0.301511
\(12\) −7.83397 −0.188456
\(13\) 0 0
\(14\) −70.5923 −1.34761
\(15\) 0.346357 0.00596193
\(16\) −65.4836 −1.02318
\(17\) −18.9261 −0.270014 −0.135007 0.990845i \(-0.543106\pi\)
−0.135007 + 0.990845i \(0.543106\pi\)
\(18\) −103.356 −1.35341
\(19\) −17.8720 −0.215796 −0.107898 0.994162i \(-0.534412\pi\)
−0.107898 + 0.994162i \(0.534412\pi\)
\(20\) −2.69679 −0.0301511
\(21\) 17.8082 0.185051
\(22\) 43.7380 0.423863
\(23\) 196.640 1.78271 0.891353 0.453310i \(-0.149757\pi\)
0.891353 + 0.453310i \(0.149757\pi\)
\(24\) 0.757652 0.00644396
\(25\) −124.881 −0.999046
\(26\) 0 0
\(27\) 53.1562 0.378886
\(28\) −138.658 −0.935851
\(29\) 94.8199 0.607159 0.303580 0.952806i \(-0.401818\pi\)
0.303580 + 0.952806i \(0.401818\pi\)
\(30\) 1.37718 0.00838124
\(31\) 115.933 0.671683 0.335841 0.941919i \(-0.390979\pi\)
0.335841 + 0.941919i \(0.390979\pi\)
\(32\) −254.332 −1.40500
\(33\) −11.0337 −0.0582037
\(34\) −75.2535 −0.379584
\(35\) 6.13035 0.0296063
\(36\) −203.013 −0.939875
\(37\) −215.254 −0.956419 −0.478209 0.878246i \(-0.658714\pi\)
−0.478209 + 0.878246i \(0.658714\pi\)
\(38\) −71.0624 −0.303364
\(39\) 0 0
\(40\) 0.260817 0.00103097
\(41\) 338.126 1.28796 0.643980 0.765042i \(-0.277282\pi\)
0.643980 + 0.765042i \(0.277282\pi\)
\(42\) 70.8086 0.260143
\(43\) 390.863 1.38619 0.693094 0.720848i \(-0.256247\pi\)
0.693094 + 0.720848i \(0.256247\pi\)
\(44\) 85.9104 0.294352
\(45\) 8.97565 0.0297336
\(46\) 781.876 2.50612
\(47\) 439.810 1.36495 0.682477 0.730907i \(-0.260903\pi\)
0.682477 + 0.730907i \(0.260903\pi\)
\(48\) 65.6843 0.197515
\(49\) −27.8036 −0.0810601
\(50\) −496.549 −1.40445
\(51\) 18.9840 0.0521235
\(52\) 0 0
\(53\) −585.925 −1.51855 −0.759273 0.650772i \(-0.774445\pi\)
−0.759273 + 0.650772i \(0.774445\pi\)
\(54\) 211.359 0.532635
\(55\) −3.79829 −0.00931201
\(56\) 13.4101 0.0320000
\(57\) 17.9268 0.0416572
\(58\) 377.021 0.853540
\(59\) −796.004 −1.75646 −0.878228 0.478242i \(-0.841274\pi\)
−0.878228 + 0.478242i \(0.841274\pi\)
\(60\) 2.70506 0.00582036
\(61\) 347.654 0.729713 0.364856 0.931064i \(-0.381118\pi\)
0.364856 + 0.931064i \(0.381118\pi\)
\(62\) 460.970 0.944247
\(63\) 461.489 0.922891
\(64\) −487.403 −0.951958
\(65\) 0 0
\(66\) −43.8720 −0.0818223
\(67\) 868.735 1.58407 0.792037 0.610474i \(-0.209021\pi\)
0.792037 + 0.610474i \(0.209021\pi\)
\(68\) −147.813 −0.263603
\(69\) −197.242 −0.344133
\(70\) 24.3754 0.0416203
\(71\) 792.078 1.32398 0.661989 0.749514i \(-0.269713\pi\)
0.661989 + 0.749514i \(0.269713\pi\)
\(72\) 19.6341 0.0321376
\(73\) 342.330 0.548859 0.274430 0.961607i \(-0.411511\pi\)
0.274430 + 0.961607i \(0.411511\pi\)
\(74\) −855.888 −1.34453
\(75\) 125.263 0.192856
\(76\) −139.581 −0.210672
\(77\) −195.291 −0.289033
\(78\) 0 0
\(79\) 868.378 1.23671 0.618355 0.785899i \(-0.287799\pi\)
0.618355 + 0.785899i \(0.287799\pi\)
\(80\) 22.6114 0.0316004
\(81\) 648.515 0.889596
\(82\) 1344.45 1.81061
\(83\) 1019.35 1.34805 0.674024 0.738710i \(-0.264565\pi\)
0.674024 + 0.738710i \(0.264565\pi\)
\(84\) 139.082 0.180656
\(85\) 6.53514 0.00833924
\(86\) 1554.14 1.94869
\(87\) −95.1105 −0.117206
\(88\) −8.30872 −0.0100649
\(89\) −472.117 −0.562296 −0.281148 0.959664i \(-0.590715\pi\)
−0.281148 + 0.959664i \(0.590715\pi\)
\(90\) 35.6888 0.0417992
\(91\) 0 0
\(92\) 1535.76 1.74037
\(93\) −116.288 −0.129661
\(94\) 1748.76 1.91884
\(95\) 6.17118 0.00666474
\(96\) 255.112 0.271221
\(97\) −1031.67 −1.07990 −0.539952 0.841696i \(-0.681558\pi\)
−0.539952 + 0.841696i \(0.681558\pi\)
\(98\) −110.552 −0.113954
\(99\) −285.932 −0.290276
\(100\) −975.323 −0.975323
\(101\) 1555.46 1.53241 0.766207 0.642594i \(-0.222142\pi\)
0.766207 + 0.642594i \(0.222142\pi\)
\(102\) 75.4840 0.0732748
\(103\) −1667.47 −1.59516 −0.797579 0.603215i \(-0.793886\pi\)
−0.797579 + 0.603215i \(0.793886\pi\)
\(104\) 0 0
\(105\) −6.14914 −0.00571519
\(106\) −2329.74 −2.13476
\(107\) 813.150 0.734674 0.367337 0.930088i \(-0.380269\pi\)
0.367337 + 0.930088i \(0.380269\pi\)
\(108\) 415.152 0.369889
\(109\) −1557.11 −1.36829 −0.684145 0.729346i \(-0.739825\pi\)
−0.684145 + 0.729346i \(0.739825\pi\)
\(110\) −15.1027 −0.0130908
\(111\) 215.913 0.184627
\(112\) 1162.58 0.980836
\(113\) −853.103 −0.710205 −0.355103 0.934827i \(-0.615554\pi\)
−0.355103 + 0.934827i \(0.615554\pi\)
\(114\) 71.2801 0.0585614
\(115\) −67.8995 −0.0550579
\(116\) 740.547 0.592742
\(117\) 0 0
\(118\) −3165.06 −2.46921
\(119\) 336.009 0.258839
\(120\) −0.261616 −0.000199018 0
\(121\) 121.000 0.0909091
\(122\) 1382.33 1.02583
\(123\) −339.162 −0.248628
\(124\) 905.440 0.655733
\(125\) 86.2835 0.0617395
\(126\) 1834.97 1.29739
\(127\) 284.900 0.199061 0.0995305 0.995035i \(-0.468266\pi\)
0.0995305 + 0.995035i \(0.468266\pi\)
\(128\) 96.6560 0.0667442
\(129\) −392.061 −0.267589
\(130\) 0 0
\(131\) 1646.75 1.09830 0.549148 0.835725i \(-0.314952\pi\)
0.549148 + 0.835725i \(0.314952\pi\)
\(132\) −86.1736 −0.0568216
\(133\) 317.296 0.206865
\(134\) 3454.25 2.22688
\(135\) −18.3548 −0.0117017
\(136\) 14.2956 0.00901349
\(137\) −211.431 −0.131852 −0.0659261 0.997825i \(-0.521000\pi\)
−0.0659261 + 0.997825i \(0.521000\pi\)
\(138\) −784.272 −0.483780
\(139\) −1882.82 −1.14891 −0.574455 0.818536i \(-0.694786\pi\)
−0.574455 + 0.818536i \(0.694786\pi\)
\(140\) 47.8783 0.0289032
\(141\) −441.157 −0.263490
\(142\) 3149.45 1.86124
\(143\) 0 0
\(144\) 1702.17 0.985054
\(145\) −32.7412 −0.0187518
\(146\) 1361.17 0.771582
\(147\) 27.8888 0.0156478
\(148\) −1681.14 −0.933708
\(149\) 1132.07 0.622433 0.311216 0.950339i \(-0.399264\pi\)
0.311216 + 0.950339i \(0.399264\pi\)
\(150\) 498.070 0.271115
\(151\) 19.4066 0.0104589 0.00522943 0.999986i \(-0.498335\pi\)
0.00522943 + 0.999986i \(0.498335\pi\)
\(152\) 13.4994 0.00720359
\(153\) 491.961 0.259952
\(154\) −776.515 −0.406320
\(155\) −40.0315 −0.0207446
\(156\) 0 0
\(157\) −78.6951 −0.0400035 −0.0200018 0.999800i \(-0.506367\pi\)
−0.0200018 + 0.999800i \(0.506367\pi\)
\(158\) 3452.83 1.73856
\(159\) 587.720 0.293140
\(160\) 87.8206 0.0433927
\(161\) −3491.10 −1.70893
\(162\) 2578.62 1.25059
\(163\) 3139.19 1.50847 0.754234 0.656605i \(-0.228008\pi\)
0.754234 + 0.656605i \(0.228008\pi\)
\(164\) 2640.78 1.25738
\(165\) 3.80992 0.00179759
\(166\) 4053.11 1.89508
\(167\) −546.889 −0.253411 −0.126705 0.991940i \(-0.540440\pi\)
−0.126705 + 0.991940i \(0.540440\pi\)
\(168\) −13.4512 −0.00617727
\(169\) 0 0
\(170\) 25.9849 0.0117232
\(171\) 464.563 0.207754
\(172\) 3052.65 1.35327
\(173\) 3936.60 1.73002 0.865011 0.501753i \(-0.167311\pi\)
0.865011 + 0.501753i \(0.167311\pi\)
\(174\) −378.177 −0.164767
\(175\) 2217.10 0.957699
\(176\) −720.320 −0.308501
\(177\) 798.443 0.339066
\(178\) −1877.22 −0.790472
\(179\) 1017.48 0.424859 0.212429 0.977176i \(-0.431862\pi\)
0.212429 + 0.977176i \(0.431862\pi\)
\(180\) 70.1001 0.0290275
\(181\) −2418.67 −0.993252 −0.496626 0.867965i \(-0.665428\pi\)
−0.496626 + 0.867965i \(0.665428\pi\)
\(182\) 0 0
\(183\) −348.719 −0.140864
\(184\) −148.530 −0.0595095
\(185\) 74.3268 0.0295385
\(186\) −462.383 −0.182277
\(187\) −208.187 −0.0814124
\(188\) 3434.93 1.33254
\(189\) −943.724 −0.363205
\(190\) 24.5377 0.00936924
\(191\) 3292.32 1.24725 0.623624 0.781725i \(-0.285660\pi\)
0.623624 + 0.781725i \(0.285660\pi\)
\(192\) 488.896 0.183766
\(193\) 597.292 0.222767 0.111383 0.993778i \(-0.464472\pi\)
0.111383 + 0.993778i \(0.464472\pi\)
\(194\) −4102.13 −1.51812
\(195\) 0 0
\(196\) −217.147 −0.0791353
\(197\) −3280.26 −1.18634 −0.593170 0.805077i \(-0.702124\pi\)
−0.593170 + 0.805077i \(0.702124\pi\)
\(198\) −1136.92 −0.408068
\(199\) −1680.17 −0.598512 −0.299256 0.954173i \(-0.596739\pi\)
−0.299256 + 0.954173i \(0.596739\pi\)
\(200\) 94.3272 0.0333497
\(201\) −871.397 −0.305789
\(202\) 6184.79 2.15426
\(203\) −1683.41 −0.582031
\(204\) 148.266 0.0508858
\(205\) −116.754 −0.0397780
\(206\) −6630.19 −2.24246
\(207\) −5111.43 −1.71627
\(208\) 0 0
\(209\) −196.592 −0.0650649
\(210\) −24.4501 −0.00803437
\(211\) −2179.99 −0.711264 −0.355632 0.934626i \(-0.615734\pi\)
−0.355632 + 0.934626i \(0.615734\pi\)
\(212\) −4576.09 −1.48249
\(213\) −794.505 −0.255580
\(214\) 3233.23 1.03280
\(215\) −134.964 −0.0428116
\(216\) −40.1509 −0.0126478
\(217\) −2058.25 −0.643884
\(218\) −6191.34 −1.92353
\(219\) −343.379 −0.105952
\(220\) −29.6647 −0.00909089
\(221\) 0 0
\(222\) 858.511 0.259547
\(223\) −168.248 −0.0505233 −0.0252616 0.999681i \(-0.508042\pi\)
−0.0252616 + 0.999681i \(0.508042\pi\)
\(224\) 4515.36 1.34685
\(225\) 3246.13 0.961817
\(226\) −3392.09 −0.998402
\(227\) 2882.86 0.842917 0.421459 0.906848i \(-0.361518\pi\)
0.421459 + 0.906848i \(0.361518\pi\)
\(228\) 140.009 0.0406680
\(229\) −191.646 −0.0553027 −0.0276513 0.999618i \(-0.508803\pi\)
−0.0276513 + 0.999618i \(0.508803\pi\)
\(230\) −269.981 −0.0774000
\(231\) 195.890 0.0557948
\(232\) −71.6211 −0.0202679
\(233\) 1425.45 0.400792 0.200396 0.979715i \(-0.435777\pi\)
0.200396 + 0.979715i \(0.435777\pi\)
\(234\) 0 0
\(235\) −151.866 −0.0421559
\(236\) −6216.82 −1.71475
\(237\) −871.039 −0.238734
\(238\) 1336.03 0.363874
\(239\) 388.599 0.105173 0.0525866 0.998616i \(-0.483253\pi\)
0.0525866 + 0.998616i \(0.483253\pi\)
\(240\) −22.6807 −0.00610014
\(241\) 1048.03 0.280123 0.140062 0.990143i \(-0.455270\pi\)
0.140062 + 0.990143i \(0.455270\pi\)
\(242\) 481.118 0.127799
\(243\) −2085.72 −0.550613
\(244\) 2715.19 0.712385
\(245\) 9.60055 0.00250350
\(246\) −1348.57 −0.349519
\(247\) 0 0
\(248\) −87.5685 −0.0224218
\(249\) −1022.47 −0.260227
\(250\) 343.079 0.0867929
\(251\) 2720.68 0.684175 0.342087 0.939668i \(-0.388866\pi\)
0.342087 + 0.939668i \(0.388866\pi\)
\(252\) 3604.25 0.900977
\(253\) 2163.04 0.537506
\(254\) 1132.81 0.279839
\(255\) −6.55517 −0.00160981
\(256\) 4283.54 1.04579
\(257\) 2172.82 0.527381 0.263690 0.964607i \(-0.415060\pi\)
0.263690 + 0.964607i \(0.415060\pi\)
\(258\) −1558.90 −0.376175
\(259\) 3821.57 0.916836
\(260\) 0 0
\(261\) −2464.74 −0.584534
\(262\) 6547.76 1.54398
\(263\) −5714.65 −1.33985 −0.669925 0.742429i \(-0.733674\pi\)
−0.669925 + 0.742429i \(0.733674\pi\)
\(264\) 8.33417 0.00194293
\(265\) 202.319 0.0468995
\(266\) 1261.63 0.290809
\(267\) 473.564 0.108545
\(268\) 6784.85 1.54646
\(269\) 1390.82 0.315241 0.157621 0.987500i \(-0.449618\pi\)
0.157621 + 0.987500i \(0.449618\pi\)
\(270\) −72.9820 −0.0164502
\(271\) 205.434 0.0460488 0.0230244 0.999735i \(-0.492670\pi\)
0.0230244 + 0.999735i \(0.492670\pi\)
\(272\) 1239.35 0.276274
\(273\) 0 0
\(274\) −840.688 −0.185357
\(275\) −1373.69 −0.301224
\(276\) −1540.47 −0.335962
\(277\) −4377.91 −0.949614 −0.474807 0.880090i \(-0.657482\pi\)
−0.474807 + 0.880090i \(0.657482\pi\)
\(278\) −7486.43 −1.61513
\(279\) −3013.54 −0.646653
\(280\) −4.63049 −0.000988302 0
\(281\) 7993.25 1.69693 0.848465 0.529251i \(-0.177527\pi\)
0.848465 + 0.529251i \(0.177527\pi\)
\(282\) −1754.12 −0.370413
\(283\) 1568.54 0.329470 0.164735 0.986338i \(-0.447323\pi\)
0.164735 + 0.986338i \(0.447323\pi\)
\(284\) 6186.16 1.29254
\(285\) −6.19009 −0.00128656
\(286\) 0 0
\(287\) −6003.01 −1.23466
\(288\) 6611.08 1.35264
\(289\) −4554.80 −0.927092
\(290\) −130.185 −0.0263611
\(291\) 1034.84 0.208464
\(292\) 2673.61 0.535826
\(293\) −3535.82 −0.705000 −0.352500 0.935812i \(-0.614668\pi\)
−0.352500 + 0.935812i \(0.614668\pi\)
\(294\) 110.891 0.0219976
\(295\) 274.859 0.0542472
\(296\) 162.589 0.0319267
\(297\) 584.719 0.114238
\(298\) 4501.30 0.875012
\(299\) 0 0
\(300\) 978.312 0.188276
\(301\) −6939.29 −1.32882
\(302\) 77.1642 0.0147030
\(303\) −1560.22 −0.295817
\(304\) 1170.32 0.220798
\(305\) −120.044 −0.0225368
\(306\) 1956.13 0.365439
\(307\) −7614.99 −1.41567 −0.707835 0.706378i \(-0.750328\pi\)
−0.707835 + 0.706378i \(0.750328\pi\)
\(308\) −1525.23 −0.282170
\(309\) 1672.58 0.307929
\(310\) −159.173 −0.0291626
\(311\) −3281.61 −0.598338 −0.299169 0.954200i \(-0.596709\pi\)
−0.299169 + 0.954200i \(0.596709\pi\)
\(312\) 0 0
\(313\) −3592.43 −0.648741 −0.324371 0.945930i \(-0.605152\pi\)
−0.324371 + 0.945930i \(0.605152\pi\)
\(314\) −312.906 −0.0562366
\(315\) −159.352 −0.0285030
\(316\) 6782.06 1.20734
\(317\) −1410.44 −0.249900 −0.124950 0.992163i \(-0.539877\pi\)
−0.124950 + 0.992163i \(0.539877\pi\)
\(318\) 2336.88 0.412094
\(319\) 1043.02 0.183065
\(320\) 168.299 0.0294007
\(321\) −815.641 −0.141821
\(322\) −13881.2 −2.40240
\(323\) 338.247 0.0582679
\(324\) 5064.93 0.868471
\(325\) 0 0
\(326\) 12482.0 2.12059
\(327\) 1561.88 0.264135
\(328\) −255.399 −0.0429941
\(329\) −7808.28 −1.30846
\(330\) 15.1490 0.00252704
\(331\) 1366.57 0.226929 0.113465 0.993542i \(-0.463805\pi\)
0.113465 + 0.993542i \(0.463805\pi\)
\(332\) 7961.14 1.31604
\(333\) 5595.28 0.920779
\(334\) −2174.53 −0.356243
\(335\) −299.973 −0.0489232
\(336\) −1166.14 −0.189340
\(337\) −2821.22 −0.456029 −0.228015 0.973658i \(-0.573223\pi\)
−0.228015 + 0.973658i \(0.573223\pi\)
\(338\) 0 0
\(339\) 855.717 0.137098
\(340\) 51.0397 0.00814122
\(341\) 1275.26 0.202520
\(342\) 1847.19 0.292060
\(343\) 6583.16 1.03632
\(344\) −295.234 −0.0462730
\(345\) 68.1075 0.0106284
\(346\) 15652.6 2.43205
\(347\) 9796.45 1.51556 0.757782 0.652508i \(-0.226283\pi\)
0.757782 + 0.652508i \(0.226283\pi\)
\(348\) −742.816 −0.114423
\(349\) 8589.64 1.31746 0.658729 0.752380i \(-0.271094\pi\)
0.658729 + 0.752380i \(0.271094\pi\)
\(350\) 8815.61 1.34633
\(351\) 0 0
\(352\) −2797.65 −0.423624
\(353\) 6999.51 1.05537 0.527686 0.849440i \(-0.323060\pi\)
0.527686 + 0.849440i \(0.323060\pi\)
\(354\) 3174.76 0.476656
\(355\) −273.504 −0.0408903
\(356\) −3687.25 −0.548944
\(357\) −337.038 −0.0499663
\(358\) 4045.67 0.597264
\(359\) 9944.85 1.46203 0.731015 0.682361i \(-0.239047\pi\)
0.731015 + 0.682361i \(0.239047\pi\)
\(360\) −6.77965 −0.000992552 0
\(361\) −6539.59 −0.953432
\(362\) −9617.09 −1.39631
\(363\) −121.371 −0.0175491
\(364\) 0 0
\(365\) −118.206 −0.0169512
\(366\) −1386.57 −0.198025
\(367\) 1135.70 0.161534 0.0807669 0.996733i \(-0.474263\pi\)
0.0807669 + 0.996733i \(0.474263\pi\)
\(368\) −12876.7 −1.82403
\(369\) −8789.20 −1.23997
\(370\) 295.537 0.0415250
\(371\) 10402.4 1.45570
\(372\) −908.214 −0.126583
\(373\) 3712.67 0.515375 0.257688 0.966228i \(-0.417039\pi\)
0.257688 + 0.966228i \(0.417039\pi\)
\(374\) −827.788 −0.114449
\(375\) −86.5479 −0.0119182
\(376\) −332.205 −0.0455642
\(377\) 0 0
\(378\) −3752.42 −0.510592
\(379\) 10945.5 1.48347 0.741734 0.670694i \(-0.234003\pi\)
0.741734 + 0.670694i \(0.234003\pi\)
\(380\) 48.1971 0.00650648
\(381\) −285.773 −0.0384267
\(382\) 13090.9 1.75337
\(383\) 8159.93 1.08865 0.544325 0.838875i \(-0.316786\pi\)
0.544325 + 0.838875i \(0.316786\pi\)
\(384\) −96.9521 −0.0128843
\(385\) 67.4339 0.00892662
\(386\) 2374.94 0.313164
\(387\) −10160.0 −1.33453
\(388\) −8057.41 −1.05426
\(389\) 5139.56 0.669887 0.334943 0.942238i \(-0.391283\pi\)
0.334943 + 0.942238i \(0.391283\pi\)
\(390\) 0 0
\(391\) −3721.62 −0.481356
\(392\) 21.0011 0.00270591
\(393\) −1651.79 −0.212015
\(394\) −13042.9 −1.66775
\(395\) −299.850 −0.0381951
\(396\) −2233.14 −0.283383
\(397\) 13809.5 1.74579 0.872896 0.487907i \(-0.162240\pi\)
0.872896 + 0.487907i \(0.162240\pi\)
\(398\) −6680.66 −0.841385
\(399\) −318.268 −0.0399331
\(400\) 8177.65 1.02221
\(401\) −7503.51 −0.934433 −0.467216 0.884143i \(-0.654743\pi\)
−0.467216 + 0.884143i \(0.654743\pi\)
\(402\) −3464.84 −0.429876
\(403\) 0 0
\(404\) 12148.2 1.49603
\(405\) −223.931 −0.0274747
\(406\) −6693.55 −0.818215
\(407\) −2367.79 −0.288371
\(408\) −14.3394 −0.00173996
\(409\) 9398.53 1.13625 0.568126 0.822941i \(-0.307669\pi\)
0.568126 + 0.822941i \(0.307669\pi\)
\(410\) −464.237 −0.0559196
\(411\) 212.079 0.0254527
\(412\) −13023.0 −1.55728
\(413\) 14132.1 1.68376
\(414\) −20324.0 −2.41273
\(415\) −351.979 −0.0416337
\(416\) 0 0
\(417\) 1888.59 0.221785
\(418\) −781.686 −0.0914678
\(419\) −13391.1 −1.56133 −0.780664 0.624951i \(-0.785119\pi\)
−0.780664 + 0.624951i \(0.785119\pi\)
\(420\) −48.0250 −0.00557947
\(421\) 6154.68 0.712495 0.356248 0.934392i \(-0.384056\pi\)
0.356248 + 0.934392i \(0.384056\pi\)
\(422\) −8668.04 −0.999890
\(423\) −11432.4 −1.31409
\(424\) 442.571 0.0506914
\(425\) 2363.50 0.269757
\(426\) −3159.10 −0.359293
\(427\) −6172.16 −0.699512
\(428\) 6350.73 0.717229
\(429\) 0 0
\(430\) −536.644 −0.0601843
\(431\) 3945.66 0.440965 0.220482 0.975391i \(-0.429237\pi\)
0.220482 + 0.975391i \(0.429237\pi\)
\(432\) −3480.86 −0.387669
\(433\) −9096.00 −1.00953 −0.504764 0.863257i \(-0.668421\pi\)
−0.504764 + 0.863257i \(0.668421\pi\)
\(434\) −8183.96 −0.905168
\(435\) 32.8415 0.00361984
\(436\) −12161.1 −1.33580
\(437\) −3514.35 −0.384700
\(438\) −1365.34 −0.148946
\(439\) −17691.5 −1.92339 −0.961696 0.274119i \(-0.911614\pi\)
−0.961696 + 0.274119i \(0.911614\pi\)
\(440\) 2.86899 0.000310849 0
\(441\) 722.723 0.0780394
\(442\) 0 0
\(443\) 7394.32 0.793035 0.396518 0.918027i \(-0.370219\pi\)
0.396518 + 0.918027i \(0.370219\pi\)
\(444\) 1686.29 0.180243
\(445\) 163.021 0.0173662
\(446\) −668.983 −0.0710253
\(447\) −1135.54 −0.120154
\(448\) 8653.23 0.912560
\(449\) −4963.11 −0.521656 −0.260828 0.965385i \(-0.583996\pi\)
−0.260828 + 0.965385i \(0.583996\pi\)
\(450\) 12907.2 1.35212
\(451\) 3719.39 0.388335
\(452\) −6662.76 −0.693341
\(453\) −19.4661 −0.00201897
\(454\) 11462.8 1.18497
\(455\) 0 0
\(456\) −13.5408 −0.00139058
\(457\) 1719.90 0.176048 0.0880238 0.996118i \(-0.471945\pi\)
0.0880238 + 0.996118i \(0.471945\pi\)
\(458\) −762.019 −0.0777441
\(459\) −1006.04 −0.102305
\(460\) −530.297 −0.0537505
\(461\) −3452.06 −0.348760 −0.174380 0.984678i \(-0.555792\pi\)
−0.174380 + 0.984678i \(0.555792\pi\)
\(462\) 778.894 0.0784360
\(463\) −6323.57 −0.634733 −0.317366 0.948303i \(-0.602798\pi\)
−0.317366 + 0.948303i \(0.602798\pi\)
\(464\) −6209.15 −0.621234
\(465\) 40.1541 0.00400452
\(466\) 5667.86 0.563430
\(467\) 2084.12 0.206513 0.103256 0.994655i \(-0.467074\pi\)
0.103256 + 0.994655i \(0.467074\pi\)
\(468\) 0 0
\(469\) −15423.3 −1.51851
\(470\) −603.846 −0.0592624
\(471\) 78.9362 0.00772227
\(472\) 601.252 0.0586332
\(473\) 4299.49 0.417951
\(474\) −3463.41 −0.335611
\(475\) 2231.87 0.215590
\(476\) 2624.24 0.252693
\(477\) 15230.4 1.46196
\(478\) 1545.14 0.147852
\(479\) 4579.51 0.436833 0.218416 0.975856i \(-0.429911\pi\)
0.218416 + 0.975856i \(0.429911\pi\)
\(480\) −88.0897 −0.00837651
\(481\) 0 0
\(482\) 4167.17 0.393795
\(483\) 3501.80 0.329891
\(484\) 945.014 0.0887504
\(485\) 356.236 0.0333522
\(486\) −8293.21 −0.774049
\(487\) 6734.31 0.626613 0.313307 0.949652i \(-0.398563\pi\)
0.313307 + 0.949652i \(0.398563\pi\)
\(488\) −262.596 −0.0243589
\(489\) −3148.81 −0.291194
\(490\) 38.1736 0.00351940
\(491\) −8339.41 −0.766501 −0.383251 0.923644i \(-0.625195\pi\)
−0.383251 + 0.923644i \(0.625195\pi\)
\(492\) −2648.87 −0.242724
\(493\) −1794.57 −0.163942
\(494\) 0 0
\(495\) 98.7321 0.00896501
\(496\) −7591.71 −0.687254
\(497\) −14062.4 −1.26918
\(498\) −4065.53 −0.365825
\(499\) −10769.9 −0.966189 −0.483094 0.875568i \(-0.660487\pi\)
−0.483094 + 0.875568i \(0.660487\pi\)
\(500\) 673.877 0.0602734
\(501\) 548.565 0.0489183
\(502\) 10817.9 0.961808
\(503\) 564.189 0.0500118 0.0250059 0.999687i \(-0.492040\pi\)
0.0250059 + 0.999687i \(0.492040\pi\)
\(504\) −348.580 −0.0308075
\(505\) −537.098 −0.0473278
\(506\) 8600.64 0.755622
\(507\) 0 0
\(508\) 2225.08 0.194334
\(509\) 6357.58 0.553625 0.276812 0.960924i \(-0.410722\pi\)
0.276812 + 0.960924i \(0.410722\pi\)
\(510\) −26.0645 −0.00226305
\(511\) −6077.65 −0.526144
\(512\) 16258.9 1.40342
\(513\) −950.009 −0.0817620
\(514\) 8639.53 0.741388
\(515\) 575.777 0.0492656
\(516\) −3062.01 −0.261235
\(517\) 4837.91 0.411549
\(518\) 15195.2 1.28888
\(519\) −3948.66 −0.333963
\(520\) 0 0
\(521\) −13026.1 −1.09537 −0.547683 0.836686i \(-0.684490\pi\)
−0.547683 + 0.836686i \(0.684490\pi\)
\(522\) −9800.24 −0.821734
\(523\) −1935.30 −0.161806 −0.0809031 0.996722i \(-0.525780\pi\)
−0.0809031 + 0.996722i \(0.525780\pi\)
\(524\) 12861.1 1.07222
\(525\) −2223.90 −0.184874
\(526\) −22722.5 −1.88355
\(527\) −2194.15 −0.181364
\(528\) 722.527 0.0595530
\(529\) 26500.2 2.17804
\(530\) 804.458 0.0659310
\(531\) 20691.2 1.69100
\(532\) 2478.09 0.201953
\(533\) 0 0
\(534\) 1882.98 0.152592
\(535\) −280.780 −0.0226900
\(536\) −656.189 −0.0528788
\(537\) −1020.59 −0.0820147
\(538\) 5530.16 0.443164
\(539\) −305.840 −0.0244405
\(540\) −143.351 −0.0114238
\(541\) −4020.24 −0.319489 −0.159745 0.987158i \(-0.551067\pi\)
−0.159745 + 0.987158i \(0.551067\pi\)
\(542\) 816.844 0.0647351
\(543\) 2426.09 0.191737
\(544\) 4813.51 0.379370
\(545\) 537.667 0.0422589
\(546\) 0 0
\(547\) −4795.87 −0.374875 −0.187438 0.982277i \(-0.560018\pi\)
−0.187438 + 0.982277i \(0.560018\pi\)
\(548\) −1651.28 −0.128721
\(549\) −9036.86 −0.702520
\(550\) −5462.04 −0.423458
\(551\) −1694.62 −0.131022
\(552\) 148.985 0.0114877
\(553\) −15417.0 −1.18553
\(554\) −17407.4 −1.33496
\(555\) −74.5546 −0.00570210
\(556\) −14704.9 −1.12163
\(557\) 950.719 0.0723218 0.0361609 0.999346i \(-0.488487\pi\)
0.0361609 + 0.999346i \(0.488487\pi\)
\(558\) −11982.4 −0.909060
\(559\) 0 0
\(560\) −401.438 −0.0302926
\(561\) 208.824 0.0157158
\(562\) 31782.6 2.38553
\(563\) 2622.84 0.196340 0.0981702 0.995170i \(-0.468701\pi\)
0.0981702 + 0.995170i \(0.468701\pi\)
\(564\) −3445.45 −0.257234
\(565\) 294.575 0.0219343
\(566\) 6236.80 0.463167
\(567\) −11513.6 −0.852778
\(568\) −598.286 −0.0441964
\(569\) 6080.78 0.448013 0.224007 0.974588i \(-0.428086\pi\)
0.224007 + 0.974588i \(0.428086\pi\)
\(570\) −24.6129 −0.00180864
\(571\) −15913.8 −1.16632 −0.583161 0.812356i \(-0.698184\pi\)
−0.583161 + 0.812356i \(0.698184\pi\)
\(572\) 0 0
\(573\) −3302.41 −0.240768
\(574\) −23869.1 −1.73567
\(575\) −24556.5 −1.78101
\(576\) 12669.5 0.916484
\(577\) 18578.9 1.34047 0.670233 0.742150i \(-0.266194\pi\)
0.670233 + 0.742150i \(0.266194\pi\)
\(578\) −18110.7 −1.30330
\(579\) −599.122 −0.0430029
\(580\) −255.710 −0.0183065
\(581\) −18097.3 −1.29226
\(582\) 4114.70 0.293058
\(583\) −6445.17 −0.457859
\(584\) −258.575 −0.0183218
\(585\) 0 0
\(586\) −14059.1 −0.991084
\(587\) 27182.1 1.91129 0.955643 0.294526i \(-0.0951619\pi\)
0.955643 + 0.294526i \(0.0951619\pi\)
\(588\) 217.813 0.0152763
\(589\) −2071.95 −0.144946
\(590\) 1092.89 0.0762603
\(591\) 3290.31 0.229011
\(592\) 14095.6 0.978590
\(593\) 23344.7 1.61661 0.808305 0.588764i \(-0.200385\pi\)
0.808305 + 0.588764i \(0.200385\pi\)
\(594\) 2324.95 0.160596
\(595\) −116.023 −0.00799411
\(596\) 8841.48 0.607653
\(597\) 1685.32 0.115537
\(598\) 0 0
\(599\) 4661.33 0.317958 0.158979 0.987282i \(-0.449180\pi\)
0.158979 + 0.987282i \(0.449180\pi\)
\(600\) −94.6162 −0.00643782
\(601\) −12321.2 −0.836257 −0.418128 0.908388i \(-0.637314\pi\)
−0.418128 + 0.908388i \(0.637314\pi\)
\(602\) −27591.9 −1.86804
\(603\) −22581.8 −1.52504
\(604\) 151.566 0.0102105
\(605\) −41.7811 −0.00280768
\(606\) −6203.74 −0.415857
\(607\) −15215.8 −1.01745 −0.508725 0.860929i \(-0.669883\pi\)
−0.508725 + 0.860929i \(0.669883\pi\)
\(608\) 4545.43 0.303193
\(609\) 1688.57 0.112355
\(610\) −477.318 −0.0316821
\(611\) 0 0
\(612\) 3842.23 0.253780
\(613\) −29935.3 −1.97239 −0.986194 0.165596i \(-0.947045\pi\)
−0.986194 + 0.165596i \(0.947045\pi\)
\(614\) −30278.6 −1.99014
\(615\) 117.112 0.00767873
\(616\) 147.511 0.00964836
\(617\) 22842.6 1.49045 0.745227 0.666811i \(-0.232341\pi\)
0.745227 + 0.666811i \(0.232341\pi\)
\(618\) 6650.50 0.432884
\(619\) −9191.08 −0.596802 −0.298401 0.954441i \(-0.596453\pi\)
−0.298401 + 0.954441i \(0.596453\pi\)
\(620\) −312.647 −0.0202520
\(621\) 10452.6 0.675443
\(622\) −13048.3 −0.841140
\(623\) 8381.86 0.539024
\(624\) 0 0
\(625\) 15580.3 0.997139
\(626\) −14284.1 −0.911996
\(627\) 197.194 0.0125601
\(628\) −614.611 −0.0390536
\(629\) 4073.90 0.258247
\(630\) −633.611 −0.0400693
\(631\) −18134.4 −1.14409 −0.572043 0.820224i \(-0.693849\pi\)
−0.572043 + 0.820224i \(0.693849\pi\)
\(632\) −655.918 −0.0412833
\(633\) 2186.67 0.137302
\(634\) −5608.17 −0.351308
\(635\) −98.3755 −0.00614789
\(636\) 4590.11 0.286179
\(637\) 0 0
\(638\) 4147.24 0.257352
\(639\) −20589.2 −1.27464
\(640\) −33.3752 −0.00206136
\(641\) 12696.7 0.782355 0.391178 0.920315i \(-0.372068\pi\)
0.391178 + 0.920315i \(0.372068\pi\)
\(642\) −3243.14 −0.199372
\(643\) 8874.40 0.544280 0.272140 0.962258i \(-0.412269\pi\)
0.272140 + 0.962258i \(0.412269\pi\)
\(644\) −27265.6 −1.66835
\(645\) 135.378 0.00826435
\(646\) 1344.93 0.0819127
\(647\) 30325.4 1.84268 0.921342 0.388754i \(-0.127094\pi\)
0.921342 + 0.388754i \(0.127094\pi\)
\(648\) −489.848 −0.0296961
\(649\) −8756.04 −0.529591
\(650\) 0 0
\(651\) 2064.55 0.124295
\(652\) 24517.2 1.47265
\(653\) 29334.9 1.75798 0.878992 0.476836i \(-0.158217\pi\)
0.878992 + 0.476836i \(0.158217\pi\)
\(654\) 6210.31 0.371319
\(655\) −568.619 −0.0339203
\(656\) −22141.7 −1.31782
\(657\) −8898.48 −0.528406
\(658\) −31047.2 −1.83943
\(659\) −7966.06 −0.470886 −0.235443 0.971888i \(-0.575654\pi\)
−0.235443 + 0.971888i \(0.575654\pi\)
\(660\) 29.7556 0.00175490
\(661\) 1963.72 0.115552 0.0577759 0.998330i \(-0.481599\pi\)
0.0577759 + 0.998330i \(0.481599\pi\)
\(662\) 5433.74 0.319016
\(663\) 0 0
\(664\) −769.951 −0.0449999
\(665\) −109.562 −0.00638891
\(666\) 22247.8 1.29442
\(667\) 18645.4 1.08239
\(668\) −4271.22 −0.247393
\(669\) 168.763 0.00975301
\(670\) −1192.75 −0.0687760
\(671\) 3824.19 0.220017
\(672\) −4529.19 −0.259996
\(673\) −23351.7 −1.33751 −0.668754 0.743484i \(-0.733172\pi\)
−0.668754 + 0.743484i \(0.733172\pi\)
\(674\) −11217.7 −0.641083
\(675\) −6638.19 −0.378525
\(676\) 0 0
\(677\) −29559.6 −1.67809 −0.839045 0.544061i \(-0.816886\pi\)
−0.839045 + 0.544061i \(0.816886\pi\)
\(678\) 3402.49 0.192731
\(679\) 18316.1 1.03521
\(680\) −4.93624 −0.000278377 0
\(681\) −2891.70 −0.162717
\(682\) 5070.68 0.284701
\(683\) −4530.76 −0.253828 −0.126914 0.991914i \(-0.540507\pi\)
−0.126914 + 0.991914i \(0.540507\pi\)
\(684\) 3628.25 0.202821
\(685\) 73.0068 0.00407219
\(686\) 26175.9 1.45685
\(687\) 192.233 0.0106756
\(688\) −25595.1 −1.41832
\(689\) 0 0
\(690\) 270.808 0.0149413
\(691\) 10222.7 0.562791 0.281395 0.959592i \(-0.409203\pi\)
0.281395 + 0.959592i \(0.409203\pi\)
\(692\) 30744.9 1.68894
\(693\) 5076.38 0.278262
\(694\) 38952.5 2.13057
\(695\) 650.135 0.0354835
\(696\) 71.8405 0.00391251
\(697\) −6399.39 −0.347768
\(698\) 34154.0 1.85207
\(699\) −1429.82 −0.0773688
\(700\) 17315.7 0.934958
\(701\) −10683.6 −0.575625 −0.287812 0.957687i \(-0.592928\pi\)
−0.287812 + 0.957687i \(0.592928\pi\)
\(702\) 0 0
\(703\) 3847.02 0.206391
\(704\) −5361.43 −0.287026
\(705\) 152.331 0.00813776
\(706\) 27831.3 1.48363
\(707\) −27615.2 −1.46899
\(708\) 6235.87 0.331014
\(709\) −7556.09 −0.400247 −0.200123 0.979771i \(-0.564134\pi\)
−0.200123 + 0.979771i \(0.564134\pi\)
\(710\) −1087.50 −0.0574833
\(711\) −22572.5 −1.19063
\(712\) 356.608 0.0187703
\(713\) 22797.0 1.19741
\(714\) −1340.13 −0.0702423
\(715\) 0 0
\(716\) 7946.52 0.414770
\(717\) −389.790 −0.0203026
\(718\) 39542.5 2.05531
\(719\) −17562.2 −0.910929 −0.455464 0.890254i \(-0.650527\pi\)
−0.455464 + 0.890254i \(0.650527\pi\)
\(720\) −587.758 −0.0304228
\(721\) 29604.0 1.52914
\(722\) −26002.6 −1.34033
\(723\) −1051.24 −0.0540749
\(724\) −18889.9 −0.969667
\(725\) −11841.2 −0.606580
\(726\) −482.592 −0.0246704
\(727\) −9943.83 −0.507285 −0.253642 0.967298i \(-0.581629\pi\)
−0.253642 + 0.967298i \(0.581629\pi\)
\(728\) 0 0
\(729\) −15417.8 −0.783305
\(730\) −470.009 −0.0238299
\(731\) −7397.49 −0.374290
\(732\) −2723.51 −0.137519
\(733\) −23341.4 −1.17617 −0.588086 0.808798i \(-0.700118\pi\)
−0.588086 + 0.808798i \(0.700118\pi\)
\(734\) 4515.74 0.227083
\(735\) −9.62997 −0.000483274 0
\(736\) −50011.9 −2.50470
\(737\) 9556.09 0.477616
\(738\) −34947.5 −1.74314
\(739\) 25326.3 1.26068 0.630340 0.776319i \(-0.282916\pi\)
0.630340 + 0.776319i \(0.282916\pi\)
\(740\) 580.495 0.0288371
\(741\) 0 0
\(742\) 41361.7 2.04641
\(743\) −2963.26 −0.146314 −0.0731571 0.997320i \(-0.523307\pi\)
−0.0731571 + 0.997320i \(0.523307\pi\)
\(744\) 87.8368 0.00432830
\(745\) −390.901 −0.0192235
\(746\) 14762.3 0.724511
\(747\) −26496.8 −1.29781
\(748\) −1625.94 −0.0794792
\(749\) −14436.5 −0.704269
\(750\) −344.130 −0.0167545
\(751\) 13183.0 0.640551 0.320276 0.947324i \(-0.396225\pi\)
0.320276 + 0.947324i \(0.396225\pi\)
\(752\) −28800.3 −1.39660
\(753\) −2729.02 −0.132073
\(754\) 0 0
\(755\) −6.70107 −0.000323016 0
\(756\) −7370.52 −0.354581
\(757\) −15734.2 −0.755440 −0.377720 0.925920i \(-0.623292\pi\)
−0.377720 + 0.925920i \(0.623292\pi\)
\(758\) 43521.5 2.08545
\(759\) −2169.67 −0.103760
\(760\) −4.66133 −0.000222479 0
\(761\) 12567.4 0.598644 0.299322 0.954152i \(-0.403240\pi\)
0.299322 + 0.954152i \(0.403240\pi\)
\(762\) −1136.28 −0.0540200
\(763\) 27644.5 1.31166
\(764\) 25713.2 1.21763
\(765\) −169.874 −0.00802849
\(766\) 32445.4 1.53042
\(767\) 0 0
\(768\) −4296.67 −0.201878
\(769\) −4592.72 −0.215367 −0.107684 0.994185i \(-0.534343\pi\)
−0.107684 + 0.994185i \(0.534343\pi\)
\(770\) 268.130 0.0125490
\(771\) −2179.48 −0.101805
\(772\) 4664.87 0.217477
\(773\) −41775.9 −1.94382 −0.971910 0.235351i \(-0.924376\pi\)
−0.971910 + 0.235351i \(0.924376\pi\)
\(774\) −40398.2 −1.87608
\(775\) −14477.8 −0.671042
\(776\) 779.262 0.0360488
\(777\) −3833.28 −0.176986
\(778\) 20435.8 0.941722
\(779\) −6042.99 −0.277937
\(780\) 0 0
\(781\) 8712.86 0.399194
\(782\) −14797.8 −0.676687
\(783\) 5040.27 0.230044
\(784\) 1820.68 0.0829392
\(785\) 27.1733 0.00123549
\(786\) −6567.83 −0.298049
\(787\) 9118.11 0.412993 0.206497 0.978447i \(-0.433794\pi\)
0.206497 + 0.978447i \(0.433794\pi\)
\(788\) −25619.0 −1.15817
\(789\) 5732.16 0.258644
\(790\) −1192.26 −0.0536945
\(791\) 15145.8 0.680812
\(792\) 215.976 0.00968985
\(793\) 0 0
\(794\) 54909.1 2.45422
\(795\) −202.939 −0.00905347
\(796\) −13122.2 −0.584300
\(797\) 4843.97 0.215285 0.107643 0.994190i \(-0.465670\pi\)
0.107643 + 0.994190i \(0.465670\pi\)
\(798\) −1265.49 −0.0561377
\(799\) −8323.86 −0.368557
\(800\) 31761.2 1.40366
\(801\) 12272.2 0.541342
\(802\) −29835.3 −1.31362
\(803\) 3765.63 0.165487
\(804\) −6805.64 −0.298528
\(805\) 1205.47 0.0527793
\(806\) 0 0
\(807\) −1395.08 −0.0608541
\(808\) −1174.90 −0.0511543
\(809\) 36278.8 1.57663 0.788317 0.615270i \(-0.210953\pi\)
0.788317 + 0.615270i \(0.210953\pi\)
\(810\) −890.393 −0.0386237
\(811\) 36038.7 1.56041 0.780203 0.625527i \(-0.215116\pi\)
0.780203 + 0.625527i \(0.215116\pi\)
\(812\) −13147.5 −0.568210
\(813\) −206.064 −0.00888926
\(814\) −9414.77 −0.405390
\(815\) −1083.96 −0.0465882
\(816\) −1243.14 −0.0533318
\(817\) −6985.51 −0.299133
\(818\) 37370.3 1.59734
\(819\) 0 0
\(820\) −911.856 −0.0388334
\(821\) 2356.50 0.100174 0.0500868 0.998745i \(-0.484050\pi\)
0.0500868 + 0.998745i \(0.484050\pi\)
\(822\) 843.264 0.0357813
\(823\) 32938.1 1.39508 0.697539 0.716546i \(-0.254278\pi\)
0.697539 + 0.716546i \(0.254278\pi\)
\(824\) 1259.51 0.0532488
\(825\) 1377.90 0.0581482
\(826\) 56191.7 2.36702
\(827\) −11298.0 −0.475053 −0.237526 0.971381i \(-0.576337\pi\)
−0.237526 + 0.971381i \(0.576337\pi\)
\(828\) −39920.4 −1.67552
\(829\) 37028.9 1.55135 0.775673 0.631134i \(-0.217410\pi\)
0.775673 + 0.631134i \(0.217410\pi\)
\(830\) −1399.53 −0.0585284
\(831\) 4391.32 0.183313
\(832\) 0 0
\(833\) 526.213 0.0218874
\(834\) 7509.37 0.311784
\(835\) 188.840 0.00782645
\(836\) −1535.39 −0.0635199
\(837\) 6162.56 0.254491
\(838\) −53245.3 −2.19490
\(839\) −23970.0 −0.986336 −0.493168 0.869934i \(-0.664161\pi\)
−0.493168 + 0.869934i \(0.664161\pi\)
\(840\) 4.64468 0.000190782 0
\(841\) −15398.2 −0.631358
\(842\) 24472.1 1.00162
\(843\) −8017.74 −0.327575
\(844\) −17025.8 −0.694374
\(845\) 0 0
\(846\) −45457.1 −1.84734
\(847\) −2148.21 −0.0871467
\(848\) 38368.5 1.55375
\(849\) −1573.35 −0.0636008
\(850\) 9397.71 0.379222
\(851\) −42327.5 −1.70501
\(852\) −6205.11 −0.249511
\(853\) 4473.25 0.179556 0.0897780 0.995962i \(-0.471384\pi\)
0.0897780 + 0.995962i \(0.471384\pi\)
\(854\) −24541.6 −0.983370
\(855\) −160.413 −0.00641638
\(856\) −614.203 −0.0245246
\(857\) 999.977 0.0398583 0.0199292 0.999801i \(-0.493656\pi\)
0.0199292 + 0.999801i \(0.493656\pi\)
\(858\) 0 0
\(859\) −22246.9 −0.883649 −0.441824 0.897102i \(-0.645669\pi\)
−0.441824 + 0.897102i \(0.645669\pi\)
\(860\) −1054.08 −0.0417950
\(861\) 6021.40 0.238338
\(862\) 15688.7 0.619905
\(863\) −15088.3 −0.595146 −0.297573 0.954699i \(-0.596177\pi\)
−0.297573 + 0.954699i \(0.596177\pi\)
\(864\) −13519.3 −0.532335
\(865\) −1359.30 −0.0534308
\(866\) −36167.4 −1.41919
\(867\) 4568.76 0.178966
\(868\) −16075.0 −0.628595
\(869\) 9552.16 0.372882
\(870\) 130.584 0.00508875
\(871\) 0 0
\(872\) 1176.14 0.0456756
\(873\) 26817.2 1.03966
\(874\) −13973.7 −0.540809
\(875\) −1531.86 −0.0591843
\(876\) −2681.80 −0.103436
\(877\) 246.007 0.00947213 0.00473606 0.999989i \(-0.498492\pi\)
0.00473606 + 0.999989i \(0.498492\pi\)
\(878\) −70344.6 −2.70389
\(879\) 3546.66 0.136093
\(880\) 248.726 0.00952788
\(881\) 41960.1 1.60462 0.802312 0.596906i \(-0.203603\pi\)
0.802312 + 0.596906i \(0.203603\pi\)
\(882\) 2873.68 0.109707
\(883\) −42534.3 −1.62106 −0.810529 0.585699i \(-0.800820\pi\)
−0.810529 + 0.585699i \(0.800820\pi\)
\(884\) 0 0
\(885\) −275.701 −0.0104719
\(886\) 29401.2 1.11484
\(887\) −22011.5 −0.833229 −0.416614 0.909083i \(-0.636783\pi\)
−0.416614 + 0.909083i \(0.636783\pi\)
\(888\) −163.087 −0.00616313
\(889\) −5058.04 −0.190823
\(890\) 648.203 0.0244133
\(891\) 7133.67 0.268223
\(892\) −1314.02 −0.0493236
\(893\) −7860.28 −0.294551
\(894\) −4515.10 −0.168912
\(895\) −351.333 −0.0131215
\(896\) −1716.01 −0.0639819
\(897\) 0 0
\(898\) −19734.2 −0.733340
\(899\) 10992.7 0.407818
\(900\) 25352.4 0.938978
\(901\) 11089.2 0.410029
\(902\) 14789.0 0.545918
\(903\) 6960.55 0.256515
\(904\) 644.381 0.0237077
\(905\) 835.165 0.0306761
\(906\) −77.4006 −0.00283826
\(907\) 21613.0 0.791234 0.395617 0.918416i \(-0.370531\pi\)
0.395617 + 0.918416i \(0.370531\pi\)
\(908\) 22515.2 0.822902
\(909\) −40432.4 −1.47531
\(910\) 0 0
\(911\) 28072.1 1.02093 0.510466 0.859898i \(-0.329473\pi\)
0.510466 + 0.859898i \(0.329473\pi\)
\(912\) −1173.91 −0.0426229
\(913\) 11212.8 0.406451
\(914\) 6838.66 0.247487
\(915\) 120.412 0.00435050
\(916\) −1496.76 −0.0539895
\(917\) −29236.0 −1.05284
\(918\) −4000.19 −0.143819
\(919\) 1135.13 0.0407450 0.0203725 0.999792i \(-0.493515\pi\)
0.0203725 + 0.999792i \(0.493515\pi\)
\(920\) 51.2870 0.00183792
\(921\) 7638.33 0.273281
\(922\) −13726.0 −0.490285
\(923\) 0 0
\(924\) 1529.91 0.0544700
\(925\) 26881.1 0.955507
\(926\) −25143.7 −0.892303
\(927\) 43344.1 1.53571
\(928\) −24115.8 −0.853059
\(929\) 7945.48 0.280606 0.140303 0.990109i \(-0.455192\pi\)
0.140303 + 0.990109i \(0.455192\pi\)
\(930\) 159.660 0.00562953
\(931\) 496.906 0.0174924
\(932\) 11132.8 0.391275
\(933\) 3291.67 0.115503
\(934\) 8286.83 0.290314
\(935\) 71.8866 0.00251438
\(936\) 0 0
\(937\) −5455.25 −0.190198 −0.0950988 0.995468i \(-0.530317\pi\)
−0.0950988 + 0.995468i \(0.530317\pi\)
\(938\) −61326.0 −2.13472
\(939\) 3603.43 0.125233
\(940\) −1186.08 −0.0411548
\(941\) −23398.9 −0.810608 −0.405304 0.914182i \(-0.632834\pi\)
−0.405304 + 0.914182i \(0.632834\pi\)
\(942\) 313.865 0.0108559
\(943\) 66489.0 2.29606
\(944\) 52125.2 1.79717
\(945\) 325.867 0.0112174
\(946\) 17095.6 0.587553
\(947\) 22362.6 0.767357 0.383679 0.923467i \(-0.374657\pi\)
0.383679 + 0.923467i \(0.374657\pi\)
\(948\) −6802.84 −0.233065
\(949\) 0 0
\(950\) 8874.32 0.303075
\(951\) 1414.76 0.0482406
\(952\) −253.800 −0.00864045
\(953\) −41159.0 −1.39903 −0.699513 0.714620i \(-0.746600\pi\)
−0.699513 + 0.714620i \(0.746600\pi\)
\(954\) 60559.1 2.05521
\(955\) −1136.84 −0.0385206
\(956\) 3034.97 0.102676
\(957\) −1046.22 −0.0353389
\(958\) 18209.0 0.614097
\(959\) 3753.70 0.126395
\(960\) −168.815 −0.00567551
\(961\) −16350.6 −0.548842
\(962\) 0 0
\(963\) −21136.9 −0.707297
\(964\) 8185.17 0.273471
\(965\) −206.244 −0.00688003
\(966\) 13923.8 0.463758
\(967\) 16577.3 0.551284 0.275642 0.961260i \(-0.411110\pi\)
0.275642 + 0.961260i \(0.411110\pi\)
\(968\) −91.3959 −0.00303468
\(969\) −339.283 −0.0112480
\(970\) 1416.46 0.0468863
\(971\) −1715.58 −0.0567000 −0.0283500 0.999598i \(-0.509025\pi\)
−0.0283500 + 0.999598i \(0.509025\pi\)
\(972\) −16289.6 −0.537539
\(973\) 33427.1 1.10136
\(974\) 26776.8 0.880889
\(975\) 0 0
\(976\) −22765.6 −0.746629
\(977\) 29160.5 0.954890 0.477445 0.878662i \(-0.341563\pi\)
0.477445 + 0.878662i \(0.341563\pi\)
\(978\) −12520.2 −0.409359
\(979\) −5193.29 −0.169539
\(980\) 74.9806 0.00244405
\(981\) 40475.2 1.31730
\(982\) −33159.0 −1.07754
\(983\) 53729.0 1.74332 0.871662 0.490107i \(-0.163042\pi\)
0.871662 + 0.490107i \(0.163042\pi\)
\(984\) 256.182 0.00829957
\(985\) 1132.67 0.0366395
\(986\) −7135.53 −0.230468
\(987\) 7832.21 0.252585
\(988\) 0 0
\(989\) 76859.2 2.47116
\(990\) 392.577 0.0126029
\(991\) 4991.12 0.159988 0.0799940 0.996795i \(-0.474510\pi\)
0.0799940 + 0.996795i \(0.474510\pi\)
\(992\) −29485.5 −0.943714
\(993\) −1370.76 −0.0438064
\(994\) −55914.6 −1.78421
\(995\) 580.160 0.0184847
\(996\) −7985.53 −0.254047
\(997\) 11498.7 0.365264 0.182632 0.983181i \(-0.441538\pi\)
0.182632 + 0.983181i \(0.441538\pi\)
\(998\) −42823.2 −1.35826
\(999\) −11442.1 −0.362374
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1859.4.a.k.1.15 18
13.5 odd 4 143.4.b.a.12.8 36
13.8 odd 4 143.4.b.a.12.29 yes 36
13.12 even 2 1859.4.a.j.1.4 18
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
143.4.b.a.12.8 36 13.5 odd 4
143.4.b.a.12.29 yes 36 13.8 odd 4
1859.4.a.j.1.4 18 13.12 even 2
1859.4.a.k.1.15 18 1.1 even 1 trivial