Properties

Label 1859.4.a.l.1.19
Level $1859$
Weight $4$
Character 1859.1
Self dual yes
Analytic conductor $109.685$
Analytic rank $1$
Dimension $36$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1859,4,Mod(1,1859)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1859, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1859.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1859 = 11 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1859.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(109.684550701\)
Analytic rank: \(1\)
Dimension: \(36\)
Twist minimal: no (minimal twist has level 143)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.19
Character \(\chi\) \(=\) 1859.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.665052 q^{2} -3.21477 q^{3} -7.55771 q^{4} -10.5229 q^{5} -2.13799 q^{6} -28.9946 q^{7} -10.3467 q^{8} -16.6653 q^{9} -6.99830 q^{10} -11.0000 q^{11} +24.2963 q^{12} -19.2829 q^{14} +33.8288 q^{15} +53.5806 q^{16} -38.0338 q^{17} -11.0833 q^{18} -70.5930 q^{19} +79.5293 q^{20} +93.2109 q^{21} -7.31557 q^{22} +192.576 q^{23} +33.2622 q^{24} -14.2678 q^{25} +140.374 q^{27} +219.133 q^{28} +171.186 q^{29} +22.4979 q^{30} +168.441 q^{31} +118.407 q^{32} +35.3625 q^{33} -25.2944 q^{34} +305.108 q^{35} +125.951 q^{36} -245.943 q^{37} -46.9480 q^{38} +108.877 q^{40} -63.4575 q^{41} +61.9901 q^{42} +85.0515 q^{43} +83.1348 q^{44} +175.367 q^{45} +128.073 q^{46} +61.8204 q^{47} -172.249 q^{48} +497.686 q^{49} -9.48883 q^{50} +122.270 q^{51} -216.218 q^{53} +93.3558 q^{54} +115.752 q^{55} +299.998 q^{56} +226.940 q^{57} +113.848 q^{58} -650.371 q^{59} -255.668 q^{60} -380.057 q^{61} +112.022 q^{62} +483.202 q^{63} -349.898 q^{64} +23.5179 q^{66} -472.714 q^{67} +287.448 q^{68} -619.088 q^{69} +202.913 q^{70} +344.808 q^{71} +172.430 q^{72} +784.161 q^{73} -163.565 q^{74} +45.8677 q^{75} +533.521 q^{76} +318.940 q^{77} +408.156 q^{79} -563.825 q^{80} -1.30717 q^{81} -42.2025 q^{82} -1091.09 q^{83} -704.461 q^{84} +400.227 q^{85} +56.5636 q^{86} -550.325 q^{87} +113.813 q^{88} +662.474 q^{89} +116.628 q^{90} -1455.43 q^{92} -541.499 q^{93} +41.1138 q^{94} +742.845 q^{95} -380.652 q^{96} +1756.02 q^{97} +330.987 q^{98} +183.318 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 36 q - 4 q^{2} + 12 q^{3} + 152 q^{4} - 40 q^{5} - 98 q^{6} - 56 q^{7} - 84 q^{8} + 360 q^{9} - 56 q^{10} - 396 q^{11} + 66 q^{12} + 164 q^{14} - 120 q^{15} + 644 q^{16} + 138 q^{17} + 28 q^{18} - 498 q^{19}+ \cdots - 3960 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.665052 0.235131 0.117566 0.993065i \(-0.462491\pi\)
0.117566 + 0.993065i \(0.462491\pi\)
\(3\) −3.21477 −0.618683 −0.309341 0.950951i \(-0.600109\pi\)
−0.309341 + 0.950951i \(0.600109\pi\)
\(4\) −7.55771 −0.944713
\(5\) −10.5229 −0.941200 −0.470600 0.882347i \(-0.655963\pi\)
−0.470600 + 0.882347i \(0.655963\pi\)
\(6\) −2.13799 −0.145472
\(7\) −28.9946 −1.56556 −0.782780 0.622298i \(-0.786199\pi\)
−0.782780 + 0.622298i \(0.786199\pi\)
\(8\) −10.3467 −0.457263
\(9\) −16.6653 −0.617232
\(10\) −6.99830 −0.221306
\(11\) −11.0000 −0.301511
\(12\) 24.2963 0.584478
\(13\) 0 0
\(14\) −19.2829 −0.368112
\(15\) 33.8288 0.582304
\(16\) 53.5806 0.837196
\(17\) −38.0338 −0.542620 −0.271310 0.962492i \(-0.587457\pi\)
−0.271310 + 0.962492i \(0.587457\pi\)
\(18\) −11.0833 −0.145131
\(19\) −70.5930 −0.852376 −0.426188 0.904635i \(-0.640144\pi\)
−0.426188 + 0.904635i \(0.640144\pi\)
\(20\) 79.5293 0.889164
\(21\) 93.2109 0.968585
\(22\) −7.31557 −0.0708948
\(23\) 192.576 1.74587 0.872933 0.487840i \(-0.162215\pi\)
0.872933 + 0.487840i \(0.162215\pi\)
\(24\) 33.2622 0.282901
\(25\) −14.2678 −0.114142
\(26\) 0 0
\(27\) 140.374 1.00055
\(28\) 219.133 1.47901
\(29\) 171.186 1.09616 0.548078 0.836427i \(-0.315360\pi\)
0.548078 + 0.836427i \(0.315360\pi\)
\(30\) 22.4979 0.136918
\(31\) 168.441 0.975900 0.487950 0.872872i \(-0.337745\pi\)
0.487950 + 0.872872i \(0.337745\pi\)
\(32\) 118.407 0.654114
\(33\) 35.3625 0.186540
\(34\) −25.2944 −0.127587
\(35\) 305.108 1.47351
\(36\) 125.951 0.583107
\(37\) −245.943 −1.09278 −0.546389 0.837532i \(-0.683998\pi\)
−0.546389 + 0.837532i \(0.683998\pi\)
\(38\) −46.9480 −0.200420
\(39\) 0 0
\(40\) 108.877 0.430376
\(41\) −63.4575 −0.241717 −0.120858 0.992670i \(-0.538565\pi\)
−0.120858 + 0.992670i \(0.538565\pi\)
\(42\) 61.9901 0.227745
\(43\) 85.0515 0.301633 0.150817 0.988562i \(-0.451810\pi\)
0.150817 + 0.988562i \(0.451810\pi\)
\(44\) 83.1348 0.284842
\(45\) 175.367 0.580939
\(46\) 128.073 0.410508
\(47\) 61.8204 0.191860 0.0959301 0.995388i \(-0.469417\pi\)
0.0959301 + 0.995388i \(0.469417\pi\)
\(48\) −172.249 −0.517959
\(49\) 497.686 1.45098
\(50\) −9.48883 −0.0268385
\(51\) 122.270 0.335710
\(52\) 0 0
\(53\) −216.218 −0.560373 −0.280187 0.959946i \(-0.590396\pi\)
−0.280187 + 0.959946i \(0.590396\pi\)
\(54\) 93.3558 0.235261
\(55\) 115.752 0.283782
\(56\) 299.998 0.715873
\(57\) 226.940 0.527350
\(58\) 113.848 0.257740
\(59\) −650.371 −1.43510 −0.717551 0.696506i \(-0.754737\pi\)
−0.717551 + 0.696506i \(0.754737\pi\)
\(60\) −255.668 −0.550110
\(61\) −380.057 −0.797726 −0.398863 0.917011i \(-0.630595\pi\)
−0.398863 + 0.917011i \(0.630595\pi\)
\(62\) 112.022 0.229465
\(63\) 483.202 0.966314
\(64\) −349.898 −0.683394
\(65\) 0 0
\(66\) 23.5179 0.0438614
\(67\) −472.714 −0.861958 −0.430979 0.902362i \(-0.641832\pi\)
−0.430979 + 0.902362i \(0.641832\pi\)
\(68\) 287.448 0.512621
\(69\) −619.088 −1.08014
\(70\) 202.913 0.346467
\(71\) 344.808 0.576355 0.288177 0.957577i \(-0.406951\pi\)
0.288177 + 0.957577i \(0.406951\pi\)
\(72\) 172.430 0.282237
\(73\) 784.161 1.25725 0.628624 0.777709i \(-0.283618\pi\)
0.628624 + 0.777709i \(0.283618\pi\)
\(74\) −163.565 −0.256946
\(75\) 45.8677 0.0706180
\(76\) 533.521 0.805251
\(77\) 318.940 0.472034
\(78\) 0 0
\(79\) 408.156 0.581280 0.290640 0.956832i \(-0.406132\pi\)
0.290640 + 0.956832i \(0.406132\pi\)
\(80\) −563.825 −0.787969
\(81\) −1.30717 −0.00179310
\(82\) −42.2025 −0.0568352
\(83\) −1091.09 −1.44292 −0.721460 0.692456i \(-0.756529\pi\)
−0.721460 + 0.692456i \(0.756529\pi\)
\(84\) −704.461 −0.915035
\(85\) 400.227 0.510714
\(86\) 56.5636 0.0709234
\(87\) −550.325 −0.678172
\(88\) 113.813 0.137870
\(89\) 662.474 0.789013 0.394506 0.918893i \(-0.370916\pi\)
0.394506 + 0.918893i \(0.370916\pi\)
\(90\) 116.628 0.136597
\(91\) 0 0
\(92\) −1455.43 −1.64934
\(93\) −541.499 −0.603772
\(94\) 41.1138 0.0451124
\(95\) 742.845 0.802256
\(96\) −380.652 −0.404689
\(97\) 1756.02 1.83812 0.919058 0.394122i \(-0.128951\pi\)
0.919058 + 0.394122i \(0.128951\pi\)
\(98\) 330.987 0.341171
\(99\) 183.318 0.186102
\(100\) 107.832 0.107832
\(101\) 49.9908 0.0492502 0.0246251 0.999697i \(-0.492161\pi\)
0.0246251 + 0.999697i \(0.492161\pi\)
\(102\) 81.3158 0.0789359
\(103\) 1388.01 1.32782 0.663908 0.747814i \(-0.268897\pi\)
0.663908 + 0.747814i \(0.268897\pi\)
\(104\) 0 0
\(105\) −980.853 −0.911632
\(106\) −143.796 −0.131761
\(107\) −1298.08 −1.17281 −0.586404 0.810018i \(-0.699457\pi\)
−0.586404 + 0.810018i \(0.699457\pi\)
\(108\) −1060.90 −0.945236
\(109\) 1113.79 0.978731 0.489365 0.872079i \(-0.337228\pi\)
0.489365 + 0.872079i \(0.337228\pi\)
\(110\) 76.9813 0.0667262
\(111\) 790.650 0.676082
\(112\) −1553.55 −1.31068
\(113\) 371.850 0.309564 0.154782 0.987949i \(-0.450533\pi\)
0.154782 + 0.987949i \(0.450533\pi\)
\(114\) 150.927 0.123997
\(115\) −2026.47 −1.64321
\(116\) −1293.78 −1.03555
\(117\) 0 0
\(118\) −432.530 −0.337438
\(119\) 1102.77 0.849505
\(120\) −350.016 −0.266266
\(121\) 121.000 0.0909091
\(122\) −252.757 −0.187570
\(123\) 204.001 0.149546
\(124\) −1273.03 −0.921946
\(125\) 1465.51 1.04863
\(126\) 321.355 0.227211
\(127\) −15.9066 −0.0111140 −0.00555701 0.999985i \(-0.501769\pi\)
−0.00555701 + 0.999985i \(0.501769\pi\)
\(128\) −1179.96 −0.814801
\(129\) −273.421 −0.186615
\(130\) 0 0
\(131\) −1358.53 −0.906073 −0.453037 0.891492i \(-0.649659\pi\)
−0.453037 + 0.891492i \(0.649659\pi\)
\(132\) −267.259 −0.176227
\(133\) 2046.81 1.33445
\(134\) −314.379 −0.202673
\(135\) −1477.14 −0.941721
\(136\) 393.523 0.248120
\(137\) −700.027 −0.436550 −0.218275 0.975887i \(-0.570043\pi\)
−0.218275 + 0.975887i \(0.570043\pi\)
\(138\) −411.726 −0.253974
\(139\) −2202.86 −1.34421 −0.672103 0.740458i \(-0.734609\pi\)
−0.672103 + 0.740458i \(0.734609\pi\)
\(140\) −2305.92 −1.39204
\(141\) −198.738 −0.118701
\(142\) 229.315 0.135519
\(143\) 0 0
\(144\) −892.934 −0.516744
\(145\) −1801.38 −1.03170
\(146\) 521.508 0.295618
\(147\) −1599.95 −0.897696
\(148\) 1858.76 1.03236
\(149\) 1691.70 0.930132 0.465066 0.885276i \(-0.346031\pi\)
0.465066 + 0.885276i \(0.346031\pi\)
\(150\) 30.5044 0.0166045
\(151\) −2987.30 −1.60996 −0.804978 0.593305i \(-0.797823\pi\)
−0.804978 + 0.593305i \(0.797823\pi\)
\(152\) 730.403 0.389760
\(153\) 633.843 0.334923
\(154\) 212.112 0.110990
\(155\) −1772.49 −0.918517
\(156\) 0 0
\(157\) −2277.76 −1.15787 −0.578934 0.815374i \(-0.696531\pi\)
−0.578934 + 0.815374i \(0.696531\pi\)
\(158\) 271.445 0.136677
\(159\) 695.090 0.346693
\(160\) −1245.99 −0.615652
\(161\) −5583.67 −2.73326
\(162\) −0.869334 −0.000421613 0
\(163\) 683.066 0.328232 0.164116 0.986441i \(-0.447523\pi\)
0.164116 + 0.986441i \(0.447523\pi\)
\(164\) 479.593 0.228353
\(165\) −372.117 −0.175571
\(166\) −725.630 −0.339276
\(167\) 163.801 0.0759000 0.0379500 0.999280i \(-0.487917\pi\)
0.0379500 + 0.999280i \(0.487917\pi\)
\(168\) −964.424 −0.442898
\(169\) 0 0
\(170\) 266.172 0.120085
\(171\) 1176.45 0.526113
\(172\) −642.794 −0.284957
\(173\) 2101.58 0.923584 0.461792 0.886988i \(-0.347207\pi\)
0.461792 + 0.886988i \(0.347207\pi\)
\(174\) −365.994 −0.159460
\(175\) 413.689 0.178697
\(176\) −589.386 −0.252424
\(177\) 2090.79 0.887873
\(178\) 440.580 0.185522
\(179\) −148.591 −0.0620457 −0.0310228 0.999519i \(-0.509876\pi\)
−0.0310228 + 0.999519i \(0.509876\pi\)
\(180\) −1325.38 −0.548820
\(181\) 2458.73 1.00970 0.504851 0.863206i \(-0.331547\pi\)
0.504851 + 0.863206i \(0.331547\pi\)
\(182\) 0 0
\(183\) 1221.79 0.493539
\(184\) −1992.53 −0.798320
\(185\) 2588.04 1.02852
\(186\) −360.125 −0.141966
\(187\) 418.372 0.163606
\(188\) −467.220 −0.181253
\(189\) −4070.08 −1.56643
\(190\) 494.031 0.188636
\(191\) 4516.70 1.71108 0.855541 0.517735i \(-0.173225\pi\)
0.855541 + 0.517735i \(0.173225\pi\)
\(192\) 1124.84 0.422804
\(193\) 1204.55 0.449252 0.224626 0.974445i \(-0.427884\pi\)
0.224626 + 0.974445i \(0.427884\pi\)
\(194\) 1167.85 0.432199
\(195\) 0 0
\(196\) −3761.37 −1.37076
\(197\) 324.260 0.117272 0.0586360 0.998279i \(-0.481325\pi\)
0.0586360 + 0.998279i \(0.481325\pi\)
\(198\) 121.916 0.0437585
\(199\) 4350.55 1.54976 0.774880 0.632109i \(-0.217810\pi\)
0.774880 + 0.632109i \(0.217810\pi\)
\(200\) 147.625 0.0521931
\(201\) 1519.67 0.533279
\(202\) 33.2465 0.0115803
\(203\) −4963.48 −1.71610
\(204\) −924.080 −0.317150
\(205\) 667.759 0.227504
\(206\) 923.101 0.312211
\(207\) −3209.33 −1.07760
\(208\) 0 0
\(209\) 776.523 0.257001
\(210\) −652.318 −0.214353
\(211\) 3980.03 1.29856 0.649281 0.760548i \(-0.275070\pi\)
0.649281 + 0.760548i \(0.275070\pi\)
\(212\) 1634.11 0.529392
\(213\) −1108.48 −0.356581
\(214\) −863.293 −0.275764
\(215\) −894.991 −0.283897
\(216\) −1452.40 −0.457516
\(217\) −4883.88 −1.52783
\(218\) 740.728 0.230130
\(219\) −2520.90 −0.777838
\(220\) −874.822 −0.268093
\(221\) 0 0
\(222\) 525.823 0.158968
\(223\) −1831.81 −0.550076 −0.275038 0.961433i \(-0.588690\pi\)
−0.275038 + 0.961433i \(0.588690\pi\)
\(224\) −3433.17 −1.02406
\(225\) 237.777 0.0704524
\(226\) 247.299 0.0727881
\(227\) −3554.05 −1.03916 −0.519582 0.854421i \(-0.673912\pi\)
−0.519582 + 0.854421i \(0.673912\pi\)
\(228\) −1715.15 −0.498195
\(229\) 525.734 0.151709 0.0758547 0.997119i \(-0.475831\pi\)
0.0758547 + 0.997119i \(0.475831\pi\)
\(230\) −1347.71 −0.386370
\(231\) −1025.32 −0.292039
\(232\) −1771.21 −0.501231
\(233\) 45.3279 0.0127448 0.00637238 0.999980i \(-0.497972\pi\)
0.00637238 + 0.999980i \(0.497972\pi\)
\(234\) 0 0
\(235\) −650.532 −0.180579
\(236\) 4915.31 1.35576
\(237\) −1312.13 −0.359628
\(238\) 733.402 0.199745
\(239\) 2128.63 0.576107 0.288053 0.957614i \(-0.406992\pi\)
0.288053 + 0.957614i \(0.406992\pi\)
\(240\) 1812.57 0.487503
\(241\) −5086.06 −1.35943 −0.679713 0.733478i \(-0.737896\pi\)
−0.679713 + 0.733478i \(0.737896\pi\)
\(242\) 80.4713 0.0213756
\(243\) −3785.89 −0.999444
\(244\) 2872.36 0.753622
\(245\) −5237.12 −1.36566
\(246\) 135.671 0.0351630
\(247\) 0 0
\(248\) −1742.81 −0.446243
\(249\) 3507.60 0.892710
\(250\) 974.638 0.246566
\(251\) −1412.09 −0.355102 −0.177551 0.984112i \(-0.556817\pi\)
−0.177551 + 0.984112i \(0.556817\pi\)
\(252\) −3651.90 −0.912890
\(253\) −2118.34 −0.526399
\(254\) −10.5787 −0.00261325
\(255\) −1286.64 −0.315970
\(256\) 2014.45 0.491808
\(257\) 7034.93 1.70750 0.853749 0.520685i \(-0.174324\pi\)
0.853749 + 0.520685i \(0.174324\pi\)
\(258\) −181.839 −0.0438791
\(259\) 7131.01 1.71081
\(260\) 0 0
\(261\) −2852.86 −0.676582
\(262\) −903.495 −0.213046
\(263\) 6518.88 1.52841 0.764204 0.644975i \(-0.223132\pi\)
0.764204 + 0.644975i \(0.223132\pi\)
\(264\) −365.884 −0.0852978
\(265\) 2275.25 0.527423
\(266\) 1361.24 0.313770
\(267\) −2129.70 −0.488148
\(268\) 3572.63 0.814303
\(269\) −5866.44 −1.32968 −0.664839 0.746987i \(-0.731500\pi\)
−0.664839 + 0.746987i \(0.731500\pi\)
\(270\) −982.377 −0.221428
\(271\) −7223.83 −1.61925 −0.809624 0.586948i \(-0.800329\pi\)
−0.809624 + 0.586948i \(0.800329\pi\)
\(272\) −2037.87 −0.454280
\(273\) 0 0
\(274\) −465.554 −0.102647
\(275\) 156.946 0.0344153
\(276\) 4678.89 1.02042
\(277\) 5574.12 1.20908 0.604542 0.796573i \(-0.293356\pi\)
0.604542 + 0.796573i \(0.293356\pi\)
\(278\) −1465.02 −0.316065
\(279\) −2807.11 −0.602357
\(280\) −3156.86 −0.673780
\(281\) −83.0572 −0.0176326 −0.00881632 0.999961i \(-0.502806\pi\)
−0.00881632 + 0.999961i \(0.502806\pi\)
\(282\) −132.171 −0.0279102
\(283\) 4450.96 0.934920 0.467460 0.884014i \(-0.345169\pi\)
0.467460 + 0.884014i \(0.345169\pi\)
\(284\) −2605.96 −0.544490
\(285\) −2388.08 −0.496342
\(286\) 0 0
\(287\) 1839.92 0.378422
\(288\) −1973.29 −0.403740
\(289\) −3466.43 −0.705563
\(290\) −1198.01 −0.242585
\(291\) −5645.21 −1.13721
\(292\) −5926.46 −1.18774
\(293\) 749.166 0.149374 0.0746872 0.997207i \(-0.476204\pi\)
0.0746872 + 0.997207i \(0.476204\pi\)
\(294\) −1064.05 −0.211077
\(295\) 6843.81 1.35072
\(296\) 2544.69 0.499687
\(297\) −1544.11 −0.301678
\(298\) 1125.07 0.218703
\(299\) 0 0
\(300\) −346.655 −0.0667137
\(301\) −2466.03 −0.472225
\(302\) −1986.71 −0.378551
\(303\) −160.709 −0.0304703
\(304\) −3782.41 −0.713606
\(305\) 3999.31 0.750820
\(306\) 421.538 0.0787508
\(307\) −6250.03 −1.16192 −0.580958 0.813934i \(-0.697322\pi\)
−0.580958 + 0.813934i \(0.697322\pi\)
\(308\) −2410.46 −0.445937
\(309\) −4462.15 −0.821497
\(310\) −1178.80 −0.215972
\(311\) 4650.16 0.847866 0.423933 0.905694i \(-0.360649\pi\)
0.423933 + 0.905694i \(0.360649\pi\)
\(312\) 0 0
\(313\) −2500.00 −0.451465 −0.225732 0.974189i \(-0.572477\pi\)
−0.225732 + 0.974189i \(0.572477\pi\)
\(314\) −1514.83 −0.272251
\(315\) −5084.71 −0.909495
\(316\) −3084.72 −0.549143
\(317\) −9258.35 −1.64038 −0.820190 0.572091i \(-0.806132\pi\)
−0.820190 + 0.572091i \(0.806132\pi\)
\(318\) 462.271 0.0815184
\(319\) −1883.05 −0.330503
\(320\) 3681.95 0.643210
\(321\) 4173.04 0.725596
\(322\) −3713.43 −0.642675
\(323\) 2684.92 0.462517
\(324\) 9.87918 0.00169396
\(325\) 0 0
\(326\) 454.274 0.0771776
\(327\) −3580.58 −0.605524
\(328\) 656.574 0.110528
\(329\) −1792.46 −0.300369
\(330\) −247.477 −0.0412823
\(331\) 5539.51 0.919876 0.459938 0.887951i \(-0.347872\pi\)
0.459938 + 0.887951i \(0.347872\pi\)
\(332\) 8246.12 1.36315
\(333\) 4098.70 0.674497
\(334\) 108.936 0.0178465
\(335\) 4974.34 0.811275
\(336\) 4994.29 0.810896
\(337\) 8246.13 1.33292 0.666462 0.745539i \(-0.267808\pi\)
0.666462 + 0.745539i \(0.267808\pi\)
\(338\) 0 0
\(339\) −1195.41 −0.191522
\(340\) −3024.80 −0.482479
\(341\) −1852.85 −0.294245
\(342\) 782.400 0.123706
\(343\) −4485.06 −0.706037
\(344\) −880.000 −0.137926
\(345\) 6514.63 1.01663
\(346\) 1397.66 0.217164
\(347\) −6695.09 −1.03577 −0.517883 0.855451i \(-0.673280\pi\)
−0.517883 + 0.855451i \(0.673280\pi\)
\(348\) 4159.19 0.640678
\(349\) 4875.65 0.747815 0.373908 0.927466i \(-0.378018\pi\)
0.373908 + 0.927466i \(0.378018\pi\)
\(350\) 275.125 0.0420173
\(351\) 0 0
\(352\) −1302.48 −0.197223
\(353\) −12313.3 −1.85658 −0.928290 0.371858i \(-0.878721\pi\)
−0.928290 + 0.371858i \(0.878721\pi\)
\(354\) 1390.48 0.208767
\(355\) −3628.39 −0.542465
\(356\) −5006.79 −0.745391
\(357\) −3545.16 −0.525574
\(358\) −98.8204 −0.0145889
\(359\) −12095.7 −1.77824 −0.889118 0.457678i \(-0.848681\pi\)
−0.889118 + 0.457678i \(0.848681\pi\)
\(360\) −1814.47 −0.265642
\(361\) −1875.63 −0.273456
\(362\) 1635.18 0.237413
\(363\) −388.987 −0.0562439
\(364\) 0 0
\(365\) −8251.68 −1.18332
\(366\) 812.557 0.116047
\(367\) 8637.03 1.22847 0.614236 0.789123i \(-0.289464\pi\)
0.614236 + 0.789123i \(0.289464\pi\)
\(368\) 10318.3 1.46163
\(369\) 1057.54 0.149195
\(370\) 1721.18 0.241838
\(371\) 6269.14 0.877298
\(372\) 4092.49 0.570392
\(373\) −13828.2 −1.91957 −0.959784 0.280740i \(-0.909420\pi\)
−0.959784 + 0.280740i \(0.909420\pi\)
\(374\) 278.239 0.0384689
\(375\) −4711.26 −0.648770
\(376\) −639.636 −0.0877306
\(377\) 0 0
\(378\) −2706.81 −0.368316
\(379\) 11112.3 1.50607 0.753035 0.657980i \(-0.228589\pi\)
0.753035 + 0.657980i \(0.228589\pi\)
\(380\) −5614.21 −0.757902
\(381\) 51.1359 0.00687605
\(382\) 3003.84 0.402329
\(383\) 12211.8 1.62922 0.814611 0.580008i \(-0.196951\pi\)
0.814611 + 0.580008i \(0.196951\pi\)
\(384\) 3793.29 0.504103
\(385\) −3356.19 −0.444279
\(386\) 801.090 0.105633
\(387\) −1417.40 −0.186178
\(388\) −13271.5 −1.73649
\(389\) −6803.65 −0.886783 −0.443392 0.896328i \(-0.646225\pi\)
−0.443392 + 0.896328i \(0.646225\pi\)
\(390\) 0 0
\(391\) −7324.41 −0.947343
\(392\) −5149.40 −0.663480
\(393\) 4367.37 0.560572
\(394\) 215.650 0.0275743
\(395\) −4295.00 −0.547101
\(396\) −1385.46 −0.175813
\(397\) −2825.48 −0.357196 −0.178598 0.983922i \(-0.557156\pi\)
−0.178598 + 0.983922i \(0.557156\pi\)
\(398\) 2893.34 0.364397
\(399\) −6580.04 −0.825599
\(400\) −764.478 −0.0955597
\(401\) 13855.8 1.72550 0.862752 0.505627i \(-0.168739\pi\)
0.862752 + 0.505627i \(0.168739\pi\)
\(402\) 1010.66 0.125390
\(403\) 0 0
\(404\) −377.816 −0.0465273
\(405\) 13.7552 0.00168766
\(406\) −3300.97 −0.403508
\(407\) 2705.37 0.329485
\(408\) −1265.09 −0.153508
\(409\) 8908.07 1.07696 0.538479 0.842639i \(-0.318999\pi\)
0.538479 + 0.842639i \(0.318999\pi\)
\(410\) 444.094 0.0534933
\(411\) 2250.42 0.270086
\(412\) −10490.2 −1.25441
\(413\) 18857.2 2.24674
\(414\) −2134.37 −0.253379
\(415\) 11481.4 1.35808
\(416\) 0 0
\(417\) 7081.70 0.831637
\(418\) 516.428 0.0604290
\(419\) 209.022 0.0243708 0.0121854 0.999926i \(-0.496121\pi\)
0.0121854 + 0.999926i \(0.496121\pi\)
\(420\) 7413.00 0.861231
\(421\) 6752.89 0.781747 0.390874 0.920444i \(-0.372173\pi\)
0.390874 + 0.920444i \(0.372173\pi\)
\(422\) 2646.93 0.305333
\(423\) −1030.25 −0.118422
\(424\) 2237.14 0.256238
\(425\) 542.659 0.0619361
\(426\) −737.196 −0.0838433
\(427\) 11019.6 1.24889
\(428\) 9810.54 1.10797
\(429\) 0 0
\(430\) −595.216 −0.0667531
\(431\) 680.312 0.0760312 0.0380156 0.999277i \(-0.487896\pi\)
0.0380156 + 0.999277i \(0.487896\pi\)
\(432\) 7521.30 0.837660
\(433\) −11282.8 −1.25223 −0.626116 0.779730i \(-0.715357\pi\)
−0.626116 + 0.779730i \(0.715357\pi\)
\(434\) −3248.03 −0.359241
\(435\) 5791.03 0.638296
\(436\) −8417.69 −0.924620
\(437\) −13594.5 −1.48813
\(438\) −1676.53 −0.182894
\(439\) 4730.36 0.514278 0.257139 0.966374i \(-0.417220\pi\)
0.257139 + 0.966374i \(0.417220\pi\)
\(440\) −1197.65 −0.129763
\(441\) −8294.07 −0.895591
\(442\) 0 0
\(443\) −669.977 −0.0718546 −0.0359273 0.999354i \(-0.511438\pi\)
−0.0359273 + 0.999354i \(0.511438\pi\)
\(444\) −5975.50 −0.638704
\(445\) −6971.17 −0.742619
\(446\) −1218.25 −0.129340
\(447\) −5438.43 −0.575457
\(448\) 10145.1 1.06989
\(449\) −1629.51 −0.171272 −0.0856361 0.996326i \(-0.527292\pi\)
−0.0856361 + 0.996326i \(0.527292\pi\)
\(450\) 158.134 0.0165656
\(451\) 698.032 0.0728804
\(452\) −2810.33 −0.292449
\(453\) 9603.49 0.996052
\(454\) −2363.62 −0.244340
\(455\) 0 0
\(456\) −2348.08 −0.241138
\(457\) −11520.8 −1.17925 −0.589626 0.807676i \(-0.700725\pi\)
−0.589626 + 0.807676i \(0.700725\pi\)
\(458\) 349.640 0.0356716
\(459\) −5338.94 −0.542921
\(460\) 15315.4 1.55236
\(461\) −8264.84 −0.834994 −0.417497 0.908678i \(-0.637093\pi\)
−0.417497 + 0.908678i \(0.637093\pi\)
\(462\) −681.891 −0.0686676
\(463\) 8472.07 0.850390 0.425195 0.905102i \(-0.360206\pi\)
0.425195 + 0.905102i \(0.360206\pi\)
\(464\) 9172.26 0.917697
\(465\) 5698.16 0.568271
\(466\) 30.1454 0.00299669
\(467\) 6897.41 0.683456 0.341728 0.939799i \(-0.388988\pi\)
0.341728 + 0.939799i \(0.388988\pi\)
\(468\) 0 0
\(469\) 13706.1 1.34945
\(470\) −432.638 −0.0424598
\(471\) 7322.48 0.716353
\(472\) 6729.18 0.656219
\(473\) −935.566 −0.0909458
\(474\) −872.633 −0.0845598
\(475\) 1007.21 0.0972923
\(476\) −8334.44 −0.802539
\(477\) 3603.32 0.345880
\(478\) 1415.65 0.135461
\(479\) −9692.29 −0.924534 −0.462267 0.886741i \(-0.652964\pi\)
−0.462267 + 0.886741i \(0.652964\pi\)
\(480\) 4005.58 0.380893
\(481\) 0 0
\(482\) −3382.49 −0.319644
\(483\) 17950.2 1.69102
\(484\) −914.482 −0.0858830
\(485\) −18478.5 −1.73004
\(486\) −2517.81 −0.235001
\(487\) 4077.43 0.379397 0.189698 0.981842i \(-0.439249\pi\)
0.189698 + 0.981842i \(0.439249\pi\)
\(488\) 3932.33 0.364771
\(489\) −2195.90 −0.203071
\(490\) −3482.96 −0.321110
\(491\) −20477.0 −1.88211 −0.941054 0.338256i \(-0.890163\pi\)
−0.941054 + 0.338256i \(0.890163\pi\)
\(492\) −1541.78 −0.141278
\(493\) −6510.87 −0.594796
\(494\) 0 0
\(495\) −1929.04 −0.175160
\(496\) 9025.17 0.817020
\(497\) −9997.57 −0.902318
\(498\) 2332.73 0.209904
\(499\) 11763.9 1.05536 0.527679 0.849444i \(-0.323062\pi\)
0.527679 + 0.849444i \(0.323062\pi\)
\(500\) −11075.9 −0.990656
\(501\) −526.582 −0.0469580
\(502\) −939.115 −0.0834955
\(503\) 22483.6 1.99303 0.996515 0.0834119i \(-0.0265817\pi\)
0.996515 + 0.0834119i \(0.0265817\pi\)
\(504\) −4999.54 −0.441860
\(505\) −526.050 −0.0463543
\(506\) −1408.81 −0.123773
\(507\) 0 0
\(508\) 120.217 0.0104996
\(509\) 4666.52 0.406365 0.203183 0.979141i \(-0.434871\pi\)
0.203183 + 0.979141i \(0.434871\pi\)
\(510\) −855.681 −0.0742945
\(511\) −22736.4 −1.96830
\(512\) 10779.4 0.930441
\(513\) −9909.40 −0.852847
\(514\) 4678.59 0.401486
\(515\) −14606.0 −1.24974
\(516\) 2066.43 0.176298
\(517\) −680.024 −0.0578481
\(518\) 4742.49 0.402265
\(519\) −6756.09 −0.571405
\(520\) 0 0
\(521\) −18591.4 −1.56335 −0.781674 0.623687i \(-0.785634\pi\)
−0.781674 + 0.623687i \(0.785634\pi\)
\(522\) −1897.30 −0.159086
\(523\) −5962.75 −0.498534 −0.249267 0.968435i \(-0.580190\pi\)
−0.249267 + 0.968435i \(0.580190\pi\)
\(524\) 10267.4 0.855979
\(525\) −1329.92 −0.110557
\(526\) 4335.39 0.359376
\(527\) −6406.45 −0.529543
\(528\) 1894.74 0.156170
\(529\) 24918.6 2.04805
\(530\) 1513.16 0.124014
\(531\) 10838.6 0.885791
\(532\) −15469.2 −1.26067
\(533\) 0 0
\(534\) −1416.36 −0.114779
\(535\) 13659.7 1.10385
\(536\) 4891.02 0.394142
\(537\) 477.684 0.0383866
\(538\) −3901.49 −0.312649
\(539\) −5474.55 −0.437487
\(540\) 11163.8 0.889656
\(541\) 10281.4 0.817068 0.408534 0.912743i \(-0.366040\pi\)
0.408534 + 0.912743i \(0.366040\pi\)
\(542\) −4804.22 −0.380736
\(543\) −7904.26 −0.624685
\(544\) −4503.48 −0.354936
\(545\) −11720.3 −0.921181
\(546\) 0 0
\(547\) −2031.38 −0.158785 −0.0793926 0.996843i \(-0.525298\pi\)
−0.0793926 + 0.996843i \(0.525298\pi\)
\(548\) 5290.60 0.412414
\(549\) 6333.74 0.492382
\(550\) 104.377 0.00809211
\(551\) −12084.6 −0.934336
\(552\) 6405.51 0.493907
\(553\) −11834.3 −0.910029
\(554\) 3707.08 0.284294
\(555\) −8319.96 −0.636329
\(556\) 16648.6 1.26989
\(557\) −10240.2 −0.778979 −0.389489 0.921031i \(-0.627349\pi\)
−0.389489 + 0.921031i \(0.627349\pi\)
\(558\) −1866.88 −0.141633
\(559\) 0 0
\(560\) 16347.9 1.23361
\(561\) −1344.97 −0.101220
\(562\) −55.2373 −0.00414599
\(563\) 19050.3 1.42606 0.713031 0.701132i \(-0.247322\pi\)
0.713031 + 0.701132i \(0.247322\pi\)
\(564\) 1502.01 0.112138
\(565\) −3912.95 −0.291361
\(566\) 2960.12 0.219829
\(567\) 37.9008 0.00280720
\(568\) −3567.62 −0.263546
\(569\) 6885.00 0.507266 0.253633 0.967301i \(-0.418374\pi\)
0.253633 + 0.967301i \(0.418374\pi\)
\(570\) −1588.19 −0.116706
\(571\) 26902.4 1.97168 0.985839 0.167692i \(-0.0536313\pi\)
0.985839 + 0.167692i \(0.0536313\pi\)
\(572\) 0 0
\(573\) −14520.1 −1.05862
\(574\) 1223.64 0.0889790
\(575\) −2747.64 −0.199278
\(576\) 5831.13 0.421812
\(577\) −2399.20 −0.173102 −0.0865512 0.996247i \(-0.527585\pi\)
−0.0865512 + 0.996247i \(0.527585\pi\)
\(578\) −2305.36 −0.165900
\(579\) −3872.36 −0.277944
\(580\) 13614.3 0.974662
\(581\) 31635.6 2.25898
\(582\) −3754.36 −0.267394
\(583\) 2378.39 0.168959
\(584\) −8113.47 −0.574893
\(585\) 0 0
\(586\) 498.234 0.0351226
\(587\) −15868.7 −1.11579 −0.557897 0.829910i \(-0.688391\pi\)
−0.557897 + 0.829910i \(0.688391\pi\)
\(588\) 12091.9 0.848066
\(589\) −11890.8 −0.831834
\(590\) 4551.49 0.317596
\(591\) −1042.42 −0.0725542
\(592\) −13177.8 −0.914869
\(593\) 795.575 0.0550933 0.0275467 0.999621i \(-0.491231\pi\)
0.0275467 + 0.999621i \(0.491231\pi\)
\(594\) −1026.91 −0.0709340
\(595\) −11604.4 −0.799554
\(596\) −12785.4 −0.878708
\(597\) −13986.0 −0.958809
\(598\) 0 0
\(599\) 11565.7 0.788917 0.394458 0.918914i \(-0.370932\pi\)
0.394458 + 0.918914i \(0.370932\pi\)
\(600\) −474.579 −0.0322910
\(601\) 1121.89 0.0761446 0.0380723 0.999275i \(-0.487878\pi\)
0.0380723 + 0.999275i \(0.487878\pi\)
\(602\) −1640.04 −0.111035
\(603\) 7877.90 0.532028
\(604\) 22577.2 1.52095
\(605\) −1273.28 −0.0855636
\(606\) −106.880 −0.00716451
\(607\) 18983.3 1.26937 0.634684 0.772771i \(-0.281130\pi\)
0.634684 + 0.772771i \(0.281130\pi\)
\(608\) −8358.72 −0.557551
\(609\) 15956.4 1.06172
\(610\) 2659.75 0.176541
\(611\) 0 0
\(612\) −4790.40 −0.316406
\(613\) 19208.6 1.26562 0.632812 0.774306i \(-0.281901\pi\)
0.632812 + 0.774306i \(0.281901\pi\)
\(614\) −4156.60 −0.273203
\(615\) −2146.69 −0.140753
\(616\) −3299.98 −0.215844
\(617\) −26705.8 −1.74252 −0.871261 0.490819i \(-0.836698\pi\)
−0.871261 + 0.490819i \(0.836698\pi\)
\(618\) −2967.56 −0.193160
\(619\) −4297.92 −0.279076 −0.139538 0.990217i \(-0.544562\pi\)
−0.139538 + 0.990217i \(0.544562\pi\)
\(620\) 13396.0 0.867735
\(621\) 27032.7 1.74683
\(622\) 3092.60 0.199360
\(623\) −19208.2 −1.23525
\(624\) 0 0
\(625\) −13638.0 −0.872829
\(626\) −1662.63 −0.106153
\(627\) −2496.34 −0.159002
\(628\) 17214.7 1.09385
\(629\) 9354.14 0.592963
\(630\) −3381.59 −0.213851
\(631\) −8059.05 −0.508440 −0.254220 0.967146i \(-0.581819\pi\)
−0.254220 + 0.967146i \(0.581819\pi\)
\(632\) −4223.06 −0.265798
\(633\) −12794.9 −0.803398
\(634\) −6157.28 −0.385705
\(635\) 167.384 0.0104605
\(636\) −5253.29 −0.327526
\(637\) 0 0
\(638\) −1252.33 −0.0777117
\(639\) −5746.32 −0.355745
\(640\) 12416.6 0.766891
\(641\) 5838.67 0.359772 0.179886 0.983687i \(-0.442427\pi\)
0.179886 + 0.983687i \(0.442427\pi\)
\(642\) 2775.29 0.170610
\(643\) −6883.41 −0.422170 −0.211085 0.977468i \(-0.567700\pi\)
−0.211085 + 0.977468i \(0.567700\pi\)
\(644\) 42199.7 2.58215
\(645\) 2877.19 0.175642
\(646\) 1785.61 0.108752
\(647\) −17164.8 −1.04300 −0.521499 0.853252i \(-0.674627\pi\)
−0.521499 + 0.853252i \(0.674627\pi\)
\(648\) 13.5248 0.000819916 0
\(649\) 7154.08 0.432700
\(650\) 0 0
\(651\) 15700.5 0.945242
\(652\) −5162.41 −0.310085
\(653\) 16377.2 0.981455 0.490727 0.871313i \(-0.336731\pi\)
0.490727 + 0.871313i \(0.336731\pi\)
\(654\) −2381.27 −0.142378
\(655\) 14295.8 0.852796
\(656\) −3400.09 −0.202365
\(657\) −13068.2 −0.776014
\(658\) −1192.08 −0.0706261
\(659\) −20498.2 −1.21168 −0.605839 0.795587i \(-0.707162\pi\)
−0.605839 + 0.795587i \(0.707162\pi\)
\(660\) 2812.35 0.165865
\(661\) −14666.4 −0.863020 −0.431510 0.902108i \(-0.642019\pi\)
−0.431510 + 0.902108i \(0.642019\pi\)
\(662\) 3684.06 0.216292
\(663\) 0 0
\(664\) 11289.1 0.659794
\(665\) −21538.5 −1.25598
\(666\) 2725.85 0.158595
\(667\) 32966.4 1.91374
\(668\) −1237.96 −0.0717037
\(669\) 5888.84 0.340322
\(670\) 3308.19 0.190756
\(671\) 4180.62 0.240523
\(672\) 11036.9 0.633565
\(673\) −25229.1 −1.44504 −0.722520 0.691350i \(-0.757016\pi\)
−0.722520 + 0.691350i \(0.757016\pi\)
\(674\) 5484.10 0.313412
\(675\) −2002.83 −0.114206
\(676\) 0 0
\(677\) 25265.0 1.43429 0.717143 0.696926i \(-0.245449\pi\)
0.717143 + 0.696926i \(0.245449\pi\)
\(678\) −795.011 −0.0450327
\(679\) −50915.2 −2.87768
\(680\) −4141.02 −0.233531
\(681\) 11425.4 0.642913
\(682\) −1232.24 −0.0691862
\(683\) −15237.3 −0.853646 −0.426823 0.904335i \(-0.640367\pi\)
−0.426823 + 0.904335i \(0.640367\pi\)
\(684\) −8891.26 −0.497026
\(685\) 7366.34 0.410881
\(686\) −2982.80 −0.166011
\(687\) −1690.11 −0.0938600
\(688\) 4557.11 0.252526
\(689\) 0 0
\(690\) 4332.56 0.239040
\(691\) −3294.96 −0.181398 −0.0906992 0.995878i \(-0.528910\pi\)
−0.0906992 + 0.995878i \(0.528910\pi\)
\(692\) −15883.1 −0.872522
\(693\) −5315.23 −0.291355
\(694\) −4452.58 −0.243541
\(695\) 23180.6 1.26517
\(696\) 5694.03 0.310103
\(697\) 2413.53 0.131161
\(698\) 3242.56 0.175835
\(699\) −145.719 −0.00788496
\(700\) −3126.54 −0.168817
\(701\) 747.881 0.0402954 0.0201477 0.999797i \(-0.493586\pi\)
0.0201477 + 0.999797i \(0.493586\pi\)
\(702\) 0 0
\(703\) 17361.8 0.931457
\(704\) 3848.87 0.206051
\(705\) 2091.31 0.111721
\(706\) −8189.00 −0.436540
\(707\) −1449.46 −0.0771042
\(708\) −15801.6 −0.838786
\(709\) 5965.27 0.315981 0.157990 0.987441i \(-0.449499\pi\)
0.157990 + 0.987441i \(0.449499\pi\)
\(710\) −2413.07 −0.127551
\(711\) −6802.02 −0.358785
\(712\) −6854.41 −0.360786
\(713\) 32437.8 1.70379
\(714\) −2357.72 −0.123579
\(715\) 0 0
\(716\) 1123.00 0.0586154
\(717\) −6843.05 −0.356427
\(718\) −8044.27 −0.418119
\(719\) −13694.8 −0.710334 −0.355167 0.934803i \(-0.615576\pi\)
−0.355167 + 0.934803i \(0.615576\pi\)
\(720\) 9396.29 0.486360
\(721\) −40244.9 −2.07878
\(722\) −1247.39 −0.0642980
\(723\) 16350.5 0.841054
\(724\) −18582.4 −0.953879
\(725\) −2442.45 −0.125118
\(726\) −258.697 −0.0132247
\(727\) −11312.0 −0.577081 −0.288541 0.957468i \(-0.593170\pi\)
−0.288541 + 0.957468i \(0.593170\pi\)
\(728\) 0 0
\(729\) 12206.1 0.620132
\(730\) −5487.79 −0.278236
\(731\) −3234.83 −0.163672
\(732\) −9233.97 −0.466253
\(733\) −19038.0 −0.959326 −0.479663 0.877453i \(-0.659241\pi\)
−0.479663 + 0.877453i \(0.659241\pi\)
\(734\) 5744.07 0.288852
\(735\) 16836.1 0.844912
\(736\) 22802.4 1.14200
\(737\) 5199.85 0.259890
\(738\) 703.316 0.0350805
\(739\) 6575.85 0.327329 0.163665 0.986516i \(-0.447668\pi\)
0.163665 + 0.986516i \(0.447668\pi\)
\(740\) −19559.7 −0.971658
\(741\) 0 0
\(742\) 4169.31 0.206280
\(743\) 13415.8 0.662420 0.331210 0.943557i \(-0.392543\pi\)
0.331210 + 0.943557i \(0.392543\pi\)
\(744\) 5602.72 0.276083
\(745\) −17801.7 −0.875440
\(746\) −9196.49 −0.451350
\(747\) 18183.3 0.890617
\(748\) −3161.93 −0.154561
\(749\) 37637.4 1.83610
\(750\) −3133.24 −0.152546
\(751\) −21737.5 −1.05621 −0.528104 0.849180i \(-0.677097\pi\)
−0.528104 + 0.849180i \(0.677097\pi\)
\(752\) 3312.37 0.160625
\(753\) 4539.55 0.219695
\(754\) 0 0
\(755\) 31435.2 1.51529
\(756\) 30760.5 1.47982
\(757\) 22482.0 1.07942 0.539712 0.841850i \(-0.318533\pi\)
0.539712 + 0.841850i \(0.318533\pi\)
\(758\) 7390.26 0.354124
\(759\) 6809.97 0.325674
\(760\) −7685.98 −0.366842
\(761\) −8880.80 −0.423034 −0.211517 0.977374i \(-0.567840\pi\)
−0.211517 + 0.977374i \(0.567840\pi\)
\(762\) 34.0080 0.00161677
\(763\) −32293.9 −1.53226
\(764\) −34135.9 −1.61648
\(765\) −6669.89 −0.315229
\(766\) 8121.45 0.383081
\(767\) 0 0
\(768\) −6475.98 −0.304273
\(769\) −9358.13 −0.438833 −0.219417 0.975631i \(-0.570415\pi\)
−0.219417 + 0.975631i \(0.570415\pi\)
\(770\) −2232.04 −0.104464
\(771\) −22615.7 −1.05640
\(772\) −9103.66 −0.424414
\(773\) −19918.0 −0.926780 −0.463390 0.886155i \(-0.653367\pi\)
−0.463390 + 0.886155i \(0.653367\pi\)
\(774\) −942.648 −0.0437762
\(775\) −2403.29 −0.111392
\(776\) −18169.0 −0.840503
\(777\) −22924.6 −1.05845
\(778\) −4524.78 −0.208511
\(779\) 4479.65 0.206034
\(780\) 0 0
\(781\) −3792.89 −0.173778
\(782\) −4871.11 −0.222750
\(783\) 24030.1 1.09676
\(784\) 26666.3 1.21476
\(785\) 23968.8 1.08979
\(786\) 2904.53 0.131808
\(787\) −2511.97 −0.113777 −0.0568883 0.998381i \(-0.518118\pi\)
−0.0568883 + 0.998381i \(0.518118\pi\)
\(788\) −2450.66 −0.110788
\(789\) −20956.7 −0.945599
\(790\) −2856.40 −0.128641
\(791\) −10781.6 −0.484641
\(792\) −1896.73 −0.0850977
\(793\) 0 0
\(794\) −1879.09 −0.0839880
\(795\) −7314.39 −0.326308
\(796\) −32880.2 −1.46408
\(797\) 12645.8 0.562028 0.281014 0.959704i \(-0.409329\pi\)
0.281014 + 0.959704i \(0.409329\pi\)
\(798\) −4376.06 −0.194124
\(799\) −2351.26 −0.104107
\(800\) −1689.41 −0.0746622
\(801\) −11040.3 −0.487004
\(802\) 9214.85 0.405720
\(803\) −8625.77 −0.379075
\(804\) −11485.2 −0.503795
\(805\) 58756.6 2.57254
\(806\) 0 0
\(807\) 18859.3 0.822649
\(808\) −517.239 −0.0225203
\(809\) −14134.1 −0.614250 −0.307125 0.951669i \(-0.599367\pi\)
−0.307125 + 0.951669i \(0.599367\pi\)
\(810\) 9.14794 0.000396822 0
\(811\) −250.820 −0.0108600 −0.00543002 0.999985i \(-0.501728\pi\)
−0.00543002 + 0.999985i \(0.501728\pi\)
\(812\) 37512.5 1.62122
\(813\) 23222.9 1.00180
\(814\) 1799.21 0.0774722
\(815\) −7187.86 −0.308932
\(816\) 6551.29 0.281055
\(817\) −6004.04 −0.257105
\(818\) 5924.33 0.253227
\(819\) 0 0
\(820\) −5046.73 −0.214926
\(821\) −13243.8 −0.562986 −0.281493 0.959563i \(-0.590830\pi\)
−0.281493 + 0.959563i \(0.590830\pi\)
\(822\) 1496.65 0.0635056
\(823\) 24277.3 1.02825 0.514127 0.857714i \(-0.328116\pi\)
0.514127 + 0.857714i \(0.328116\pi\)
\(824\) −14361.3 −0.607161
\(825\) −504.545 −0.0212921
\(826\) 12541.0 0.528279
\(827\) 34821.6 1.46417 0.732083 0.681215i \(-0.238548\pi\)
0.732083 + 0.681215i \(0.238548\pi\)
\(828\) 24255.2 1.01803
\(829\) 6701.26 0.280753 0.140377 0.990098i \(-0.455169\pi\)
0.140377 + 0.990098i \(0.455169\pi\)
\(830\) 7635.76 0.319326
\(831\) −17919.5 −0.748039
\(832\) 0 0
\(833\) −18928.9 −0.787332
\(834\) 4709.70 0.195544
\(835\) −1723.67 −0.0714371
\(836\) −5868.73 −0.242792
\(837\) 23644.7 0.976440
\(838\) 139.010 0.00573035
\(839\) 37306.6 1.53512 0.767562 0.640975i \(-0.221470\pi\)
0.767562 + 0.640975i \(0.221470\pi\)
\(840\) 10148.6 0.416856
\(841\) 4915.77 0.201557
\(842\) 4491.02 0.183813
\(843\) 267.010 0.0109090
\(844\) −30079.9 −1.22677
\(845\) 0 0
\(846\) −685.172 −0.0278448
\(847\) −3508.35 −0.142324
\(848\) −11585.1 −0.469143
\(849\) −14308.8 −0.578419
\(850\) 360.896 0.0145631
\(851\) −47362.8 −1.90784
\(852\) 8377.55 0.336867
\(853\) 36525.1 1.46611 0.733057 0.680167i \(-0.238093\pi\)
0.733057 + 0.680167i \(0.238093\pi\)
\(854\) 7328.60 0.293653
\(855\) −12379.7 −0.495178
\(856\) 13430.9 0.536282
\(857\) −5408.05 −0.215561 −0.107780 0.994175i \(-0.534374\pi\)
−0.107780 + 0.994175i \(0.534374\pi\)
\(858\) 0 0
\(859\) 38851.4 1.54318 0.771591 0.636119i \(-0.219461\pi\)
0.771591 + 0.636119i \(0.219461\pi\)
\(860\) 6764.08 0.268201
\(861\) −5914.93 −0.234123
\(862\) 452.443 0.0178773
\(863\) 35630.7 1.40543 0.702713 0.711474i \(-0.251972\pi\)
0.702713 + 0.711474i \(0.251972\pi\)
\(864\) 16621.3 0.654476
\(865\) −22114.8 −0.869277
\(866\) −7503.65 −0.294439
\(867\) 11143.8 0.436520
\(868\) 36910.9 1.44336
\(869\) −4489.72 −0.175263
\(870\) 3851.34 0.150083
\(871\) 0 0
\(872\) −11524.0 −0.447537
\(873\) −29264.6 −1.13454
\(874\) −9041.07 −0.349907
\(875\) −42491.8 −1.64170
\(876\) 19052.2 0.734834
\(877\) −23572.2 −0.907612 −0.453806 0.891100i \(-0.649934\pi\)
−0.453806 + 0.891100i \(0.649934\pi\)
\(878\) 3145.94 0.120923
\(879\) −2408.39 −0.0924154
\(880\) 6202.07 0.237582
\(881\) 1507.11 0.0576343 0.0288171 0.999585i \(-0.490826\pi\)
0.0288171 + 0.999585i \(0.490826\pi\)
\(882\) −5515.99 −0.210582
\(883\) 12632.0 0.481428 0.240714 0.970596i \(-0.422618\pi\)
0.240714 + 0.970596i \(0.422618\pi\)
\(884\) 0 0
\(885\) −22001.3 −0.835666
\(886\) −445.570 −0.0168953
\(887\) 3320.10 0.125680 0.0628399 0.998024i \(-0.479984\pi\)
0.0628399 + 0.998024i \(0.479984\pi\)
\(888\) −8180.60 −0.309147
\(889\) 461.204 0.0173997
\(890\) −4636.19 −0.174613
\(891\) 14.3788 0.000540639 0
\(892\) 13844.3 0.519664
\(893\) −4364.09 −0.163537
\(894\) −3616.84 −0.135308
\(895\) 1563.61 0.0583974
\(896\) 34212.4 1.27562
\(897\) 0 0
\(898\) −1083.71 −0.0402715
\(899\) 28834.8 1.06974
\(900\) −1797.05 −0.0665573
\(901\) 8223.58 0.304070
\(902\) 464.228 0.0171365
\(903\) 7927.73 0.292157
\(904\) −3847.41 −0.141552
\(905\) −25873.1 −0.950332
\(906\) 6386.82 0.234203
\(907\) 20570.1 0.753054 0.376527 0.926406i \(-0.377118\pi\)
0.376527 + 0.926406i \(0.377118\pi\)
\(908\) 26860.4 0.981712
\(909\) −833.110 −0.0303988
\(910\) 0 0
\(911\) 51427.6 1.87033 0.935165 0.354211i \(-0.115251\pi\)
0.935165 + 0.354211i \(0.115251\pi\)
\(912\) 12159.6 0.441496
\(913\) 12002.0 0.435057
\(914\) −7661.90 −0.277279
\(915\) −12856.9 −0.464519
\(916\) −3973.34 −0.143322
\(917\) 39390.1 1.41851
\(918\) −3550.67 −0.127658
\(919\) −9430.87 −0.338515 −0.169258 0.985572i \(-0.554137\pi\)
−0.169258 + 0.985572i \(0.554137\pi\)
\(920\) 20967.2 0.751379
\(921\) 20092.4 0.718857
\(922\) −5496.55 −0.196333
\(923\) 0 0
\(924\) 7749.07 0.275894
\(925\) 3509.07 0.124732
\(926\) 5634.36 0.199953
\(927\) −23131.6 −0.819571
\(928\) 20269.7 0.717011
\(929\) 22666.2 0.800487 0.400244 0.916409i \(-0.368926\pi\)
0.400244 + 0.916409i \(0.368926\pi\)
\(930\) 3789.57 0.133618
\(931\) −35133.2 −1.23678
\(932\) −342.575 −0.0120401
\(933\) −14949.2 −0.524560
\(934\) 4587.13 0.160702
\(935\) −4402.50 −0.153986
\(936\) 0 0
\(937\) 39917.7 1.39173 0.695867 0.718171i \(-0.255020\pi\)
0.695867 + 0.718171i \(0.255020\pi\)
\(938\) 9115.30 0.317297
\(939\) 8036.93 0.279313
\(940\) 4916.53 0.170595
\(941\) −3426.69 −0.118711 −0.0593554 0.998237i \(-0.518905\pi\)
−0.0593554 + 0.998237i \(0.518905\pi\)
\(942\) 4869.83 0.168437
\(943\) −12220.4 −0.422005
\(944\) −34847.2 −1.20146
\(945\) 42829.2 1.47432
\(946\) −622.200 −0.0213842
\(947\) −27293.3 −0.936549 −0.468275 0.883583i \(-0.655124\pi\)
−0.468275 + 0.883583i \(0.655124\pi\)
\(948\) 9916.67 0.339745
\(949\) 0 0
\(950\) 669.845 0.0228765
\(951\) 29763.4 1.01487
\(952\) −11410.1 −0.388447
\(953\) −33407.3 −1.13554 −0.567770 0.823187i \(-0.692194\pi\)
−0.567770 + 0.823187i \(0.692194\pi\)
\(954\) 2396.40 0.0813273
\(955\) −47528.9 −1.61047
\(956\) −16087.5 −0.544256
\(957\) 6053.57 0.204477
\(958\) −6445.87 −0.217387
\(959\) 20297.0 0.683445
\(960\) −11836.6 −0.397943
\(961\) −1418.61 −0.0476189
\(962\) 0 0
\(963\) 21632.9 0.723895
\(964\) 38438.9 1.28427
\(965\) −12675.4 −0.422836
\(966\) 11937.8 0.397612
\(967\) 17254.6 0.573807 0.286904 0.957959i \(-0.407374\pi\)
0.286904 + 0.957959i \(0.407374\pi\)
\(968\) −1251.95 −0.0415694
\(969\) −8631.39 −0.286151
\(970\) −12289.2 −0.406785
\(971\) 10977.0 0.362789 0.181394 0.983410i \(-0.441939\pi\)
0.181394 + 0.983410i \(0.441939\pi\)
\(972\) 28612.6 0.944188
\(973\) 63871.2 2.10444
\(974\) 2711.70 0.0892080
\(975\) 0 0
\(976\) −20363.7 −0.667853
\(977\) 24694.6 0.808648 0.404324 0.914616i \(-0.367507\pi\)
0.404324 + 0.914616i \(0.367507\pi\)
\(978\) −1460.39 −0.0477485
\(979\) −7287.22 −0.237896
\(980\) 39580.6 1.29016
\(981\) −18561.6 −0.604104
\(982\) −13618.3 −0.442543
\(983\) −4763.40 −0.154556 −0.0772782 0.997010i \(-0.524623\pi\)
−0.0772782 + 0.997010i \(0.524623\pi\)
\(984\) −2110.73 −0.0683819
\(985\) −3412.17 −0.110376
\(986\) −4330.06 −0.139855
\(987\) 5762.34 0.185833
\(988\) 0 0
\(989\) 16378.9 0.526611
\(990\) −1282.91 −0.0411855
\(991\) −27692.2 −0.887660 −0.443830 0.896111i \(-0.646381\pi\)
−0.443830 + 0.896111i \(0.646381\pi\)
\(992\) 19944.6 0.638350
\(993\) −17808.3 −0.569112
\(994\) −6648.90 −0.212163
\(995\) −45780.5 −1.45863
\(996\) −26509.4 −0.843355
\(997\) −3336.44 −0.105984 −0.0529920 0.998595i \(-0.516876\pi\)
−0.0529920 + 0.998595i \(0.516876\pi\)
\(998\) 7823.59 0.248148
\(999\) −34523.9 −1.09338
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1859.4.a.l.1.19 36
13.6 odd 12 143.4.j.a.23.18 72
13.11 odd 12 143.4.j.a.56.18 yes 72
13.12 even 2 1859.4.a.m.1.18 36
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
143.4.j.a.23.18 72 13.6 odd 12
143.4.j.a.56.18 yes 72 13.11 odd 12
1859.4.a.l.1.19 36 1.1 even 1 trivial
1859.4.a.m.1.18 36 13.12 even 2