Properties

Label 1872.2.t.o.289.2
Level $1872$
Weight $2$
Character 1872.289
Analytic conductor $14.948$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1872,2,Mod(289,1872)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1872, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1872.289");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1872 = 2^{4} \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1872.t (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(14.9479952584\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{7})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 7x^{2} + 49 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 468)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 289.2
Root \(-1.32288 - 2.29129i\) of defining polynomial
Character \(\chi\) \(=\) 1872.289
Dual form 1872.2.t.o.1153.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.64575 q^{5} +(-1.00000 + 1.73205i) q^{7} +(2.64575 + 4.58258i) q^{11} +(3.50000 - 0.866025i) q^{13} +(-3.96863 + 6.87386i) q^{17} +(-3.00000 + 5.19615i) q^{19} +(-2.64575 - 4.58258i) q^{23} +2.00000 q^{25} +(-1.32288 - 2.29129i) q^{29} -4.00000 q^{31} +(-2.64575 + 4.58258i) q^{35} +(1.50000 + 2.59808i) q^{37} +(-3.96863 - 6.87386i) q^{41} +(-1.00000 + 1.73205i) q^{43} -5.29150 q^{47} +(1.50000 + 2.59808i) q^{49} +7.93725 q^{53} +(7.00000 + 12.1244i) q^{55} +(5.29150 - 9.16515i) q^{59} +(-6.50000 + 11.2583i) q^{61} +(9.26013 - 2.29129i) q^{65} +(-1.00000 - 1.73205i) q^{67} +(2.64575 - 4.58258i) q^{71} -7.00000 q^{73} -10.5830 q^{77} +4.00000 q^{79} +15.8745 q^{83} +(-10.5000 + 18.1865i) q^{85} +(-2.00000 + 6.92820i) q^{91} +(-7.93725 + 13.7477i) q^{95} +(-1.00000 + 1.73205i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{7} + 14 q^{13} - 12 q^{19} + 8 q^{25} - 16 q^{31} + 6 q^{37} - 4 q^{43} + 6 q^{49} + 28 q^{55} - 26 q^{61} - 4 q^{67} - 28 q^{73} + 16 q^{79} - 42 q^{85} - 8 q^{91} - 4 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1872\mathbb{Z}\right)^\times\).

\(n\) \(145\) \(209\) \(469\) \(703\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 2.64575 1.18322 0.591608 0.806226i \(-0.298493\pi\)
0.591608 + 0.806226i \(0.298493\pi\)
\(6\) 0 0
\(7\) −1.00000 + 1.73205i −0.377964 + 0.654654i −0.990766 0.135583i \(-0.956709\pi\)
0.612801 + 0.790237i \(0.290043\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 2.64575 + 4.58258i 0.797724 + 1.38170i 0.921095 + 0.389338i \(0.127296\pi\)
−0.123371 + 0.992361i \(0.539370\pi\)
\(12\) 0 0
\(13\) 3.50000 0.866025i 0.970725 0.240192i
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −3.96863 + 6.87386i −0.962533 + 1.66716i −0.246433 + 0.969160i \(0.579258\pi\)
−0.716101 + 0.697997i \(0.754075\pi\)
\(18\) 0 0
\(19\) −3.00000 + 5.19615i −0.688247 + 1.19208i 0.284157 + 0.958778i \(0.408286\pi\)
−0.972404 + 0.233301i \(0.925047\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −2.64575 4.58258i −0.551677 0.955533i −0.998154 0.0607377i \(-0.980655\pi\)
0.446476 0.894795i \(-0.352679\pi\)
\(24\) 0 0
\(25\) 2.00000 0.400000
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −1.32288 2.29129i −0.245652 0.425481i 0.716663 0.697420i \(-0.245669\pi\)
−0.962315 + 0.271938i \(0.912335\pi\)
\(30\) 0 0
\(31\) −4.00000 −0.718421 −0.359211 0.933257i \(-0.616954\pi\)
−0.359211 + 0.933257i \(0.616954\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −2.64575 + 4.58258i −0.447214 + 0.774597i
\(36\) 0 0
\(37\) 1.50000 + 2.59808i 0.246598 + 0.427121i 0.962580 0.270998i \(-0.0873538\pi\)
−0.715981 + 0.698119i \(0.754020\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −3.96863 6.87386i −0.619795 1.07352i −0.989523 0.144377i \(-0.953882\pi\)
0.369727 0.929140i \(-0.379451\pi\)
\(42\) 0 0
\(43\) −1.00000 + 1.73205i −0.152499 + 0.264135i −0.932145 0.362084i \(-0.882065\pi\)
0.779647 + 0.626219i \(0.215399\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −5.29150 −0.771845 −0.385922 0.922531i \(-0.626117\pi\)
−0.385922 + 0.922531i \(0.626117\pi\)
\(48\) 0 0
\(49\) 1.50000 + 2.59808i 0.214286 + 0.371154i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 7.93725 1.09027 0.545133 0.838350i \(-0.316479\pi\)
0.545133 + 0.838350i \(0.316479\pi\)
\(54\) 0 0
\(55\) 7.00000 + 12.1244i 0.943880 + 1.63485i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 5.29150 9.16515i 0.688895 1.19320i −0.283301 0.959031i \(-0.591429\pi\)
0.972196 0.234170i \(-0.0752372\pi\)
\(60\) 0 0
\(61\) −6.50000 + 11.2583i −0.832240 + 1.44148i 0.0640184 + 0.997949i \(0.479608\pi\)
−0.896258 + 0.443533i \(0.853725\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 9.26013 2.29129i 1.14858 0.284199i
\(66\) 0 0
\(67\) −1.00000 1.73205i −0.122169 0.211604i 0.798454 0.602056i \(-0.205652\pi\)
−0.920623 + 0.390453i \(0.872318\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 2.64575 4.58258i 0.313993 0.543852i −0.665230 0.746639i \(-0.731667\pi\)
0.979223 + 0.202787i \(0.0649998\pi\)
\(72\) 0 0
\(73\) −7.00000 −0.819288 −0.409644 0.912245i \(-0.634347\pi\)
−0.409644 + 0.912245i \(0.634347\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −10.5830 −1.20605
\(78\) 0 0
\(79\) 4.00000 0.450035 0.225018 0.974355i \(-0.427756\pi\)
0.225018 + 0.974355i \(0.427756\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 15.8745 1.74245 0.871227 0.490881i \(-0.163325\pi\)
0.871227 + 0.490881i \(0.163325\pi\)
\(84\) 0 0
\(85\) −10.5000 + 18.1865i −1.13888 + 1.97261i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(90\) 0 0
\(91\) −2.00000 + 6.92820i −0.209657 + 0.726273i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −7.93725 + 13.7477i −0.814345 + 1.41049i
\(96\) 0 0
\(97\) −1.00000 + 1.73205i −0.101535 + 0.175863i −0.912317 0.409484i \(-0.865709\pi\)
0.810782 + 0.585348i \(0.199042\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 1.32288 + 2.29129i 0.131631 + 0.227992i 0.924305 0.381654i \(-0.124645\pi\)
−0.792674 + 0.609645i \(0.791312\pi\)
\(102\) 0 0
\(103\) 14.0000 1.37946 0.689730 0.724066i \(-0.257729\pi\)
0.689730 + 0.724066i \(0.257729\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −2.64575 4.58258i −0.255774 0.443014i 0.709331 0.704875i \(-0.248997\pi\)
−0.965106 + 0.261861i \(0.915664\pi\)
\(108\) 0 0
\(109\) 10.0000 0.957826 0.478913 0.877862i \(-0.341031\pi\)
0.478913 + 0.877862i \(0.341031\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −1.32288 + 2.29129i −0.124446 + 0.215546i −0.921516 0.388340i \(-0.873049\pi\)
0.797070 + 0.603886i \(0.206382\pi\)
\(114\) 0 0
\(115\) −7.00000 12.1244i −0.652753 1.13060i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −7.93725 13.7477i −0.727607 1.26025i
\(120\) 0 0
\(121\) −8.50000 + 14.7224i −0.772727 + 1.33840i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −7.93725 −0.709930
\(126\) 0 0
\(127\) 8.00000 + 13.8564i 0.709885 + 1.22956i 0.964899 + 0.262620i \(0.0845865\pi\)
−0.255014 + 0.966937i \(0.582080\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −10.5830 −0.924641 −0.462321 0.886713i \(-0.652983\pi\)
−0.462321 + 0.886713i \(0.652983\pi\)
\(132\) 0 0
\(133\) −6.00000 10.3923i −0.520266 0.901127i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 3.96863 6.87386i 0.339063 0.587274i −0.645194 0.764019i \(-0.723223\pi\)
0.984257 + 0.176745i \(0.0565568\pi\)
\(138\) 0 0
\(139\) 8.00000 13.8564i 0.678551 1.17529i −0.296866 0.954919i \(-0.595942\pi\)
0.975417 0.220366i \(-0.0707252\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 13.2288 + 13.7477i 1.10624 + 1.14964i
\(144\) 0 0
\(145\) −3.50000 6.06218i −0.290659 0.503436i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 3.96863 6.87386i 0.325123 0.563129i −0.656415 0.754400i \(-0.727928\pi\)
0.981537 + 0.191272i \(0.0612611\pi\)
\(150\) 0 0
\(151\) 18.0000 1.46482 0.732410 0.680864i \(-0.238396\pi\)
0.732410 + 0.680864i \(0.238396\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −10.5830 −0.850047
\(156\) 0 0
\(157\) 17.0000 1.35675 0.678374 0.734717i \(-0.262685\pi\)
0.678374 + 0.734717i \(0.262685\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 10.5830 0.834058
\(162\) 0 0
\(163\) −2.00000 + 3.46410i −0.156652 + 0.271329i −0.933659 0.358162i \(-0.883403\pi\)
0.777007 + 0.629492i \(0.216737\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(168\) 0 0
\(169\) 11.5000 6.06218i 0.884615 0.466321i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −5.29150 + 9.16515i −0.402305 + 0.696814i −0.994004 0.109346i \(-0.965124\pi\)
0.591698 + 0.806160i \(0.298458\pi\)
\(174\) 0 0
\(175\) −2.00000 + 3.46410i −0.151186 + 0.261861i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 7.93725 + 13.7477i 0.593258 + 1.02755i 0.993790 + 0.111271i \(0.0354920\pi\)
−0.400532 + 0.916283i \(0.631175\pi\)
\(180\) 0 0
\(181\) −9.00000 −0.668965 −0.334482 0.942402i \(-0.608561\pi\)
−0.334482 + 0.942402i \(0.608561\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 3.96863 + 6.87386i 0.291779 + 0.505376i
\(186\) 0 0
\(187\) −42.0000 −3.07134
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 10.5830 18.3303i 0.765759 1.32633i −0.174085 0.984731i \(-0.555697\pi\)
0.939844 0.341603i \(-0.110970\pi\)
\(192\) 0 0
\(193\) 12.5000 + 21.6506i 0.899770 + 1.55845i 0.827788 + 0.561041i \(0.189599\pi\)
0.0719816 + 0.997406i \(0.477068\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(198\) 0 0
\(199\) −5.00000 + 8.66025i −0.354441 + 0.613909i −0.987022 0.160585i \(-0.948662\pi\)
0.632581 + 0.774494i \(0.281995\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 5.29150 0.371391
\(204\) 0 0
\(205\) −10.5000 18.1865i −0.733352 1.27020i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −31.7490 −2.19613
\(210\) 0 0
\(211\) 4.00000 + 6.92820i 0.275371 + 0.476957i 0.970229 0.242190i \(-0.0778659\pi\)
−0.694857 + 0.719148i \(0.744533\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −2.64575 + 4.58258i −0.180439 + 0.312529i
\(216\) 0 0
\(217\) 4.00000 6.92820i 0.271538 0.470317i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −7.93725 + 27.4955i −0.533917 + 1.84954i
\(222\) 0 0
\(223\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −7.93725 + 13.7477i −0.526814 + 0.912469i 0.472698 + 0.881225i \(0.343280\pi\)
−0.999512 + 0.0312441i \(0.990053\pi\)
\(228\) 0 0
\(229\) 6.00000 0.396491 0.198246 0.980152i \(-0.436476\pi\)
0.198246 + 0.980152i \(0.436476\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 21.1660 1.38663 0.693316 0.720634i \(-0.256149\pi\)
0.693316 + 0.720634i \(0.256149\pi\)
\(234\) 0 0
\(235\) −14.0000 −0.913259
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −15.8745 −1.02684 −0.513418 0.858138i \(-0.671621\pi\)
−0.513418 + 0.858138i \(0.671621\pi\)
\(240\) 0 0
\(241\) −10.5000 + 18.1865i −0.676364 + 1.17150i 0.299704 + 0.954032i \(0.403112\pi\)
−0.976068 + 0.217465i \(0.930221\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 3.96863 + 6.87386i 0.253546 + 0.439155i
\(246\) 0 0
\(247\) −6.00000 + 20.7846i −0.381771 + 1.32249i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(252\) 0 0
\(253\) 14.0000 24.2487i 0.880172 1.52450i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −3.96863 6.87386i −0.247556 0.428780i 0.715291 0.698827i \(-0.246294\pi\)
−0.962847 + 0.270047i \(0.912961\pi\)
\(258\) 0 0
\(259\) −6.00000 −0.372822
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 7.93725 + 13.7477i 0.489432 + 0.847721i 0.999926 0.0121601i \(-0.00387079\pi\)
−0.510494 + 0.859881i \(0.670537\pi\)
\(264\) 0 0
\(265\) 21.0000 1.29002
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 15.8745 27.4955i 0.967886 1.67643i 0.266233 0.963909i \(-0.414221\pi\)
0.701653 0.712519i \(-0.252446\pi\)
\(270\) 0 0
\(271\) −4.00000 6.92820i −0.242983 0.420858i 0.718580 0.695444i \(-0.244792\pi\)
−0.961563 + 0.274586i \(0.911459\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 5.29150 + 9.16515i 0.319090 + 0.552679i
\(276\) 0 0
\(277\) 4.50000 7.79423i 0.270379 0.468310i −0.698580 0.715532i \(-0.746184\pi\)
0.968959 + 0.247222i \(0.0795177\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 13.2288 0.789161 0.394581 0.918861i \(-0.370890\pi\)
0.394581 + 0.918861i \(0.370890\pi\)
\(282\) 0 0
\(283\) −7.00000 12.1244i −0.416107 0.720718i 0.579437 0.815017i \(-0.303272\pi\)
−0.995544 + 0.0942988i \(0.969939\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 15.8745 0.937043
\(288\) 0 0
\(289\) −23.0000 39.8372i −1.35294 2.34336i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 9.26013 16.0390i 0.540983 0.937009i −0.457865 0.889022i \(-0.651386\pi\)
0.998848 0.0479877i \(-0.0152808\pi\)
\(294\) 0 0
\(295\) 14.0000 24.2487i 0.815112 1.41181i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −13.2288 13.7477i −0.765039 0.795052i
\(300\) 0 0
\(301\) −2.00000 3.46410i −0.115278 0.199667i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −17.1974 + 29.7867i −0.984719 + 1.70558i
\(306\) 0 0
\(307\) −2.00000 −0.114146 −0.0570730 0.998370i \(-0.518177\pi\)
−0.0570730 + 0.998370i \(0.518177\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 15.8745 0.900161 0.450080 0.892988i \(-0.351395\pi\)
0.450080 + 0.892988i \(0.351395\pi\)
\(312\) 0 0
\(313\) 14.0000 0.791327 0.395663 0.918396i \(-0.370515\pi\)
0.395663 + 0.918396i \(0.370515\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 7.93725 0.445801 0.222900 0.974841i \(-0.428448\pi\)
0.222900 + 0.974841i \(0.428448\pi\)
\(318\) 0 0
\(319\) 7.00000 12.1244i 0.391925 0.678834i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −23.8118 41.2432i −1.32492 2.29483i
\(324\) 0 0
\(325\) 7.00000 1.73205i 0.388290 0.0960769i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 5.29150 9.16515i 0.291730 0.505291i
\(330\) 0 0
\(331\) 10.0000 17.3205i 0.549650 0.952021i −0.448649 0.893708i \(-0.648095\pi\)
0.998298 0.0583130i \(-0.0185721\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −2.64575 4.58258i −0.144553 0.250373i
\(336\) 0 0
\(337\) 5.00000 0.272367 0.136184 0.990684i \(-0.456516\pi\)
0.136184 + 0.990684i \(0.456516\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −10.5830 18.3303i −0.573102 0.992642i
\(342\) 0 0
\(343\) −20.0000 −1.07990
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 7.93725 13.7477i 0.426094 0.738017i −0.570428 0.821348i \(-0.693223\pi\)
0.996522 + 0.0833311i \(0.0265559\pi\)
\(348\) 0 0
\(349\) 1.00000 + 1.73205i 0.0535288 + 0.0927146i 0.891548 0.452926i \(-0.149620\pi\)
−0.838019 + 0.545640i \(0.816286\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −6.61438 11.4564i −0.352048 0.609765i 0.634560 0.772873i \(-0.281181\pi\)
−0.986608 + 0.163109i \(0.947848\pi\)
\(354\) 0 0
\(355\) 7.00000 12.1244i 0.371521 0.643494i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 15.8745 0.837824 0.418912 0.908027i \(-0.362411\pi\)
0.418912 + 0.908027i \(0.362411\pi\)
\(360\) 0 0
\(361\) −8.50000 14.7224i −0.447368 0.774865i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −18.5203 −0.969395
\(366\) 0 0
\(367\) 7.00000 + 12.1244i 0.365397 + 0.632886i 0.988840 0.148983i \(-0.0475999\pi\)
−0.623443 + 0.781869i \(0.714267\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −7.93725 + 13.7477i −0.412082 + 0.713746i
\(372\) 0 0
\(373\) −8.50000 + 14.7224i −0.440113 + 0.762299i −0.997697 0.0678218i \(-0.978395\pi\)
0.557584 + 0.830120i \(0.311728\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −6.61438 6.87386i −0.340658 0.354022i
\(378\) 0 0
\(379\) −10.0000 17.3205i −0.513665 0.889695i −0.999874 0.0158521i \(-0.994954\pi\)
0.486209 0.873843i \(-0.338379\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(384\) 0 0
\(385\) −28.0000 −1.42701
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −7.93725 −0.402435 −0.201217 0.979547i \(-0.564490\pi\)
−0.201217 + 0.979547i \(0.564490\pi\)
\(390\) 0 0
\(391\) 42.0000 2.12403
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 10.5830 0.532489
\(396\) 0 0
\(397\) −7.00000 + 12.1244i −0.351320 + 0.608504i −0.986481 0.163876i \(-0.947600\pi\)
0.635161 + 0.772380i \(0.280934\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −11.9059 20.6216i −0.594551 1.02979i −0.993610 0.112868i \(-0.963996\pi\)
0.399059 0.916925i \(-0.369337\pi\)
\(402\) 0 0
\(403\) −14.0000 + 3.46410i −0.697390 + 0.172559i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −7.93725 + 13.7477i −0.393435 + 0.681450i
\(408\) 0 0
\(409\) 17.5000 30.3109i 0.865319 1.49878i −0.00141047 0.999999i \(-0.500449\pi\)
0.866730 0.498778i \(-0.166218\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 10.5830 + 18.3303i 0.520756 + 0.901975i
\(414\) 0 0
\(415\) 42.0000 2.06170
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −15.8745 27.4955i −0.775520 1.34324i −0.934501 0.355959i \(-0.884154\pi\)
0.158981 0.987282i \(-0.449179\pi\)
\(420\) 0 0
\(421\) −29.0000 −1.41337 −0.706687 0.707527i \(-0.749811\pi\)
−0.706687 + 0.707527i \(0.749811\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −7.93725 + 13.7477i −0.385013 + 0.666863i
\(426\) 0 0
\(427\) −13.0000 22.5167i −0.629114 1.08966i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −7.93725 13.7477i −0.382324 0.662205i 0.609070 0.793117i \(-0.291543\pi\)
−0.991394 + 0.130912i \(0.958210\pi\)
\(432\) 0 0
\(433\) −9.50000 + 16.4545i −0.456541 + 0.790752i −0.998775 0.0494752i \(-0.984245\pi\)
0.542234 + 0.840227i \(0.317578\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 31.7490 1.51876
\(438\) 0 0
\(439\) −11.0000 19.0526i −0.525001 0.909329i −0.999576 0.0291138i \(-0.990731\pi\)
0.474575 0.880215i \(-0.342602\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −31.7490 −1.50844 −0.754221 0.656621i \(-0.771985\pi\)
−0.754221 + 0.656621i \(0.771985\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −10.5830 + 18.3303i −0.499443 + 0.865060i −1.00000 0.000643168i \(-0.999795\pi\)
0.500557 + 0.865704i \(0.333129\pi\)
\(450\) 0 0
\(451\) 21.0000 36.3731i 0.988851 1.71274i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −5.29150 + 18.3303i −0.248069 + 0.859338i
\(456\) 0 0
\(457\) −12.5000 21.6506i −0.584725 1.01277i −0.994910 0.100771i \(-0.967869\pi\)
0.410184 0.912003i \(-0.365464\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 11.9059 20.6216i 0.554512 0.960443i −0.443429 0.896309i \(-0.646238\pi\)
0.997941 0.0641338i \(-0.0204284\pi\)
\(462\) 0 0
\(463\) 26.0000 1.20832 0.604161 0.796862i \(-0.293508\pi\)
0.604161 + 0.796862i \(0.293508\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 5.29150 0.244862 0.122431 0.992477i \(-0.460931\pi\)
0.122431 + 0.992477i \(0.460931\pi\)
\(468\) 0 0
\(469\) 4.00000 0.184703
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −10.5830 −0.486607
\(474\) 0 0
\(475\) −6.00000 + 10.3923i −0.275299 + 0.476832i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 15.8745 + 27.4955i 0.725325 + 1.25630i 0.958840 + 0.283946i \(0.0916437\pi\)
−0.233515 + 0.972353i \(0.575023\pi\)
\(480\) 0 0
\(481\) 7.50000 + 7.79423i 0.341971 + 0.355386i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −2.64575 + 4.58258i −0.120137 + 0.208084i
\(486\) 0 0
\(487\) 1.00000 1.73205i 0.0453143 0.0784867i −0.842479 0.538730i \(-0.818904\pi\)
0.887793 + 0.460243i \(0.152238\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 18.5203 + 32.0780i 0.835808 + 1.44766i 0.893371 + 0.449319i \(0.148333\pi\)
−0.0575636 + 0.998342i \(0.518333\pi\)
\(492\) 0 0
\(493\) 21.0000 0.945792
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 5.29150 + 9.16515i 0.237356 + 0.411113i
\(498\) 0 0
\(499\) −4.00000 −0.179065 −0.0895323 0.995984i \(-0.528537\pi\)
−0.0895323 + 0.995984i \(0.528537\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −13.2288 + 22.9129i −0.589841 + 1.02163i 0.404412 + 0.914577i \(0.367476\pi\)
−0.994253 + 0.107058i \(0.965857\pi\)
\(504\) 0 0
\(505\) 3.50000 + 6.06218i 0.155748 + 0.269763i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 17.1974 + 29.7867i 0.762261 + 1.32027i 0.941683 + 0.336502i \(0.109244\pi\)
−0.179422 + 0.983772i \(0.557423\pi\)
\(510\) 0 0
\(511\) 7.00000 12.1244i 0.309662 0.536350i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 37.0405 1.63220
\(516\) 0 0
\(517\) −14.0000 24.2487i −0.615719 1.06646i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 39.6863 1.73869 0.869344 0.494208i \(-0.164542\pi\)
0.869344 + 0.494208i \(0.164542\pi\)
\(522\) 0 0
\(523\) −3.00000 5.19615i −0.131181 0.227212i 0.792951 0.609285i \(-0.208544\pi\)
−0.924132 + 0.382073i \(0.875210\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 15.8745 27.4955i 0.691504 1.19772i
\(528\) 0 0
\(529\) −2.50000 + 4.33013i −0.108696 + 0.188266i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −19.8431 20.6216i −0.859502 0.893220i
\(534\) 0 0
\(535\) −7.00000 12.1244i −0.302636 0.524182i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −7.93725 + 13.7477i −0.341882 + 0.592157i
\(540\) 0 0
\(541\) −13.0000 −0.558914 −0.279457 0.960158i \(-0.590154\pi\)
−0.279457 + 0.960158i \(0.590154\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 26.4575 1.13332
\(546\) 0 0
\(547\) −34.0000 −1.45374 −0.726868 0.686778i \(-0.759025\pi\)
−0.726868 + 0.686778i \(0.759025\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 15.8745 0.676277
\(552\) 0 0
\(553\) −4.00000 + 6.92820i −0.170097 + 0.294617i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −3.96863 6.87386i −0.168156 0.291255i 0.769615 0.638508i \(-0.220448\pi\)
−0.937772 + 0.347253i \(0.887115\pi\)
\(558\) 0 0
\(559\) −2.00000 + 6.92820i −0.0845910 + 0.293032i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 21.1660 36.6606i 0.892041 1.54506i 0.0546164 0.998507i \(-0.482606\pi\)
0.837425 0.546553i \(-0.184060\pi\)
\(564\) 0 0
\(565\) −3.50000 + 6.06218i −0.147246 + 0.255038i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 5.29150 + 9.16515i 0.221831 + 0.384223i 0.955364 0.295431i \(-0.0954632\pi\)
−0.733533 + 0.679654i \(0.762130\pi\)
\(570\) 0 0
\(571\) 30.0000 1.25546 0.627730 0.778431i \(-0.283984\pi\)
0.627730 + 0.778431i \(0.283984\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −5.29150 9.16515i −0.220671 0.382213i
\(576\) 0 0
\(577\) 3.00000 0.124892 0.0624458 0.998048i \(-0.480110\pi\)
0.0624458 + 0.998048i \(0.480110\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −15.8745 + 27.4955i −0.658586 + 1.14070i
\(582\) 0 0
\(583\) 21.0000 + 36.3731i 0.869731 + 1.50642i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 5.29150 + 9.16515i 0.218404 + 0.378286i 0.954320 0.298786i \(-0.0965817\pi\)
−0.735916 + 0.677072i \(0.763248\pi\)
\(588\) 0 0
\(589\) 12.0000 20.7846i 0.494451 0.856415i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −29.1033 −1.19513 −0.597564 0.801821i \(-0.703865\pi\)
−0.597564 + 0.801821i \(0.703865\pi\)
\(594\) 0 0
\(595\) −21.0000 36.3731i −0.860916 1.49115i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −21.1660 −0.864820 −0.432410 0.901677i \(-0.642337\pi\)
−0.432410 + 0.901677i \(0.642337\pi\)
\(600\) 0 0
\(601\) −9.50000 16.4545i −0.387513 0.671192i 0.604601 0.796528i \(-0.293332\pi\)
−0.992114 + 0.125336i \(0.959999\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −22.4889 + 38.9519i −0.914303 + 1.58362i
\(606\) 0 0
\(607\) −18.0000 + 31.1769i −0.730597 + 1.26543i 0.226031 + 0.974120i \(0.427425\pi\)
−0.956628 + 0.291312i \(0.905908\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −18.5203 + 4.58258i −0.749249 + 0.185391i
\(612\) 0 0
\(613\) −2.50000 4.33013i −0.100974 0.174892i 0.811112 0.584891i \(-0.198863\pi\)
−0.912086 + 0.409998i \(0.865529\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 1.32288 2.29129i 0.0532570 0.0922438i −0.838168 0.545412i \(-0.816373\pi\)
0.891425 + 0.453169i \(0.149706\pi\)
\(618\) 0 0
\(619\) −28.0000 −1.12542 −0.562708 0.826656i \(-0.690240\pi\)
−0.562708 + 0.826656i \(0.690240\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −31.0000 −1.24000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −23.8118 −0.949437
\(630\) 0 0
\(631\) −4.00000 + 6.92820i −0.159237 + 0.275807i −0.934594 0.355716i \(-0.884237\pi\)
0.775356 + 0.631524i \(0.217570\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 21.1660 + 36.6606i 0.839948 + 1.45483i
\(636\) 0 0
\(637\) 7.50000 + 7.79423i 0.297161 + 0.308819i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 9.26013 16.0390i 0.365753 0.633503i −0.623144 0.782107i \(-0.714145\pi\)
0.988897 + 0.148604i \(0.0474781\pi\)
\(642\) 0 0
\(643\) −14.0000 + 24.2487i −0.552106 + 0.956276i 0.446016 + 0.895025i \(0.352842\pi\)
−0.998122 + 0.0612510i \(0.980491\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −21.1660 36.6606i −0.832122 1.44128i −0.896353 0.443342i \(-0.853793\pi\)
0.0642308 0.997935i \(-0.479541\pi\)
\(648\) 0 0
\(649\) 56.0000 2.19819
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −15.8745 27.4955i −0.621217 1.07598i −0.989259 0.146171i \(-0.953305\pi\)
0.368042 0.929809i \(-0.380028\pi\)
\(654\) 0 0
\(655\) −28.0000 −1.09405
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −15.8745 + 27.4955i −0.618383 + 1.07107i 0.371398 + 0.928474i \(0.378879\pi\)
−0.989781 + 0.142597i \(0.954455\pi\)
\(660\) 0 0
\(661\) 15.5000 + 26.8468i 0.602880 + 1.04422i 0.992383 + 0.123194i \(0.0393136\pi\)
−0.389503 + 0.921025i \(0.627353\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −15.8745 27.4955i −0.615587 1.06623i
\(666\) 0 0
\(667\) −7.00000 + 12.1244i −0.271041 + 0.469457i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −68.7895 −2.65559
\(672\) 0 0
\(673\) −9.50000 16.4545i −0.366198 0.634274i 0.622770 0.782405i \(-0.286007\pi\)
−0.988968 + 0.148132i \(0.952674\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 31.7490 1.22021 0.610107 0.792319i \(-0.291126\pi\)
0.610107 + 0.792319i \(0.291126\pi\)
\(678\) 0 0
\(679\) −2.00000 3.46410i −0.0767530 0.132940i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −21.1660 + 36.6606i −0.809895 + 1.40278i 0.103041 + 0.994677i \(0.467143\pi\)
−0.912936 + 0.408102i \(0.866191\pi\)
\(684\) 0 0
\(685\) 10.5000 18.1865i 0.401184 0.694872i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 27.7804 6.87386i 1.05835 0.261873i
\(690\) 0 0
\(691\) −7.00000 12.1244i −0.266293 0.461232i 0.701609 0.712562i \(-0.252465\pi\)
−0.967901 + 0.251330i \(0.919132\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 21.1660 36.6606i 0.802873 1.39062i
\(696\) 0 0
\(697\) 63.0000 2.38630
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −31.7490 −1.19914 −0.599572 0.800321i \(-0.704662\pi\)
−0.599572 + 0.800321i \(0.704662\pi\)
\(702\) 0 0
\(703\) −18.0000 −0.678883
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −5.29150 −0.199007
\(708\) 0 0
\(709\) −5.50000 + 9.52628i −0.206557 + 0.357767i −0.950628 0.310334i \(-0.899559\pi\)
0.744071 + 0.668101i \(0.232892\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 10.5830 + 18.3303i 0.396337 + 0.686475i
\(714\) 0 0
\(715\) 35.0000 + 36.3731i 1.30893 + 1.36028i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 5.29150 9.16515i 0.197340 0.341802i −0.750325 0.661069i \(-0.770103\pi\)
0.947665 + 0.319266i \(0.103436\pi\)
\(720\) 0 0
\(721\) −14.0000 + 24.2487i −0.521387 + 0.903069i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −2.64575 4.58258i −0.0982607 0.170193i
\(726\) 0 0
\(727\) 2.00000 0.0741759 0.0370879 0.999312i \(-0.488192\pi\)
0.0370879 + 0.999312i \(0.488192\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −7.93725 13.7477i −0.293570 0.508478i
\(732\) 0 0
\(733\) −1.00000 −0.0369358 −0.0184679 0.999829i \(-0.505879\pi\)
−0.0184679 + 0.999829i \(0.505879\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 5.29150 9.16515i 0.194915 0.337603i
\(738\) 0 0
\(739\) 6.00000 + 10.3923i 0.220714 + 0.382287i 0.955025 0.296526i \(-0.0958281\pi\)
−0.734311 + 0.678813i \(0.762495\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 10.5830 + 18.3303i 0.388253 + 0.672474i 0.992215 0.124540i \(-0.0397454\pi\)
−0.603962 + 0.797013i \(0.706412\pi\)
\(744\) 0 0
\(745\) 10.5000 18.1865i 0.384690 0.666303i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 10.5830 0.386695
\(750\) 0 0
\(751\) 9.00000 + 15.5885i 0.328415 + 0.568831i 0.982197 0.187851i \(-0.0601523\pi\)
−0.653783 + 0.756682i \(0.726819\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 47.6235 1.73320
\(756\) 0 0
\(757\) 15.0000 + 25.9808i 0.545184 + 0.944287i 0.998595 + 0.0529853i \(0.0168737\pi\)
−0.453411 + 0.891302i \(0.649793\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(762\) 0 0
\(763\) −10.0000 + 17.3205i −0.362024 + 0.627044i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 10.5830 36.6606i 0.382130 1.32374i
\(768\) 0 0
\(769\) −15.0000 25.9808i −0.540914 0.936890i −0.998852 0.0479061i \(-0.984745\pi\)
0.457938 0.888984i \(-0.348588\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −5.29150 + 9.16515i −0.190322 + 0.329648i −0.945357 0.326037i \(-0.894287\pi\)
0.755035 + 0.655685i \(0.227620\pi\)
\(774\) 0 0
\(775\) −8.00000 −0.287368
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 47.6235 1.70629
\(780\) 0 0
\(781\) 28.0000 1.00192
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 44.9778 1.60533
\(786\) 0 0
\(787\) −26.0000 + 45.0333i −0.926800 + 1.60526i −0.138159 + 0.990410i \(0.544119\pi\)
−0.788641 + 0.614855i \(0.789215\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −2.64575 4.58258i −0.0940721 0.162938i
\(792\) 0 0
\(793\) −13.0000 + 45.0333i −0.461644 + 1.59918i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(798\) 0 0
\(799\) 21.0000 36.3731i 0.742927 1.28679i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −18.5203 32.0780i −0.653566 1.13201i
\(804\) 0 0
\(805\) 28.0000 0.986870
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −11.9059 20.6216i −0.418588 0.725017i 0.577209 0.816596i \(-0.304142\pi\)
−0.995798 + 0.0915798i \(0.970808\pi\)
\(810\) 0 0
\(811\) 16.0000 0.561836 0.280918 0.959732i \(-0.409361\pi\)
0.280918 + 0.959732i \(0.409361\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −5.29150 + 9.16515i −0.185353 + 0.321041i
\(816\) 0 0
\(817\) −6.00000 10.3923i −0.209913 0.363581i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −5.29150 9.16515i −0.184675 0.319866i 0.758792 0.651333i \(-0.225790\pi\)
−0.943467 + 0.331467i \(0.892456\pi\)
\(822\) 0 0
\(823\) −12.0000 + 20.7846i −0.418294 + 0.724506i −0.995768 0.0919029i \(-0.970705\pi\)
0.577474 + 0.816409i \(0.304038\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(828\) 0 0
\(829\) −3.50000 6.06218i −0.121560 0.210548i 0.798823 0.601566i \(-0.205456\pi\)
−0.920383 + 0.391018i \(0.872123\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −23.8118 −0.825029
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 5.29150 9.16515i 0.182683 0.316416i −0.760110 0.649794i \(-0.774855\pi\)
0.942793 + 0.333378i \(0.108188\pi\)
\(840\) 0 0
\(841\) 11.0000 19.0526i 0.379310 0.656985i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 30.4261 16.0390i 1.04669 0.551759i
\(846\) 0 0
\(847\) −17.0000 29.4449i −0.584127 1.01174i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 7.93725 13.7477i 0.272086 0.471266i
\(852\) 0 0
\(853\) −47.0000 −1.60925 −0.804625 0.593784i \(-0.797633\pi\)
−0.804625 + 0.593784i \(0.797633\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −34.3948 −1.17490 −0.587451 0.809259i \(-0.699869\pi\)
−0.587451 + 0.809259i \(0.699869\pi\)
\(858\) 0 0
\(859\) 22.0000 0.750630 0.375315 0.926897i \(-0.377534\pi\)
0.375315 + 0.926897i \(0.377534\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −5.29150 −0.180125 −0.0900624 0.995936i \(-0.528707\pi\)
−0.0900624 + 0.995936i \(0.528707\pi\)
\(864\) 0 0
\(865\) −14.0000 + 24.2487i −0.476014 + 0.824481i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 10.5830 + 18.3303i 0.359004 + 0.621813i
\(870\) 0 0
\(871\) −5.00000 5.19615i −0.169419 0.176065i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 7.93725 13.7477i 0.268328 0.464758i
\(876\) 0 0
\(877\) 13.5000 23.3827i 0.455863 0.789577i −0.542875 0.839814i \(-0.682664\pi\)
0.998737 + 0.0502365i \(0.0159975\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 3.96863 + 6.87386i 0.133706 + 0.231586i 0.925103 0.379717i \(-0.123979\pi\)
−0.791396 + 0.611304i \(0.790645\pi\)
\(882\) 0 0
\(883\) 44.0000 1.48072 0.740359 0.672212i \(-0.234656\pi\)
0.740359 + 0.672212i \(0.234656\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 26.4575 + 45.8258i 0.888356 + 1.53868i 0.841818 + 0.539762i \(0.181486\pi\)
0.0465386 + 0.998916i \(0.485181\pi\)
\(888\) 0 0
\(889\) −32.0000 −1.07325
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 15.8745 27.4955i 0.531220 0.920100i
\(894\) 0 0
\(895\) 21.0000 + 36.3731i 0.701953 + 1.21582i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 5.29150 + 9.16515i 0.176481 + 0.305675i
\(900\) 0 0
\(901\) −31.5000 + 54.5596i −1.04942 + 1.81764i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −23.8118 −0.791530
\(906\) 0 0
\(907\) −6.00000 10.3923i −0.199227 0.345071i 0.749051 0.662512i \(-0.230510\pi\)
−0.948278 + 0.317441i \(0.897176\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 31.7490 1.05189 0.525946 0.850518i \(-0.323711\pi\)
0.525946 + 0.850518i \(0.323711\pi\)
\(912\) 0 0
\(913\) 42.0000 + 72.7461i 1.39000 + 2.40755i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 10.5830 18.3303i 0.349482 0.605320i
\(918\) 0 0
\(919\) −12.0000 + 20.7846i −0.395843 + 0.685621i −0.993208 0.116348i \(-0.962881\pi\)
0.597365 + 0.801970i \(0.296214\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 5.29150 18.3303i 0.174172 0.603349i
\(924\) 0 0
\(925\) 3.00000 + 5.19615i 0.0986394 + 0.170848i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 3.96863 6.87386i 0.130206 0.225524i −0.793550 0.608506i \(-0.791769\pi\)
0.923756 + 0.382981i \(0.125103\pi\)
\(930\) 0 0
\(931\) −18.0000 −0.589926
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −111.122 −3.63406
\(936\) 0 0
\(937\) −9.00000 −0.294017 −0.147009 0.989135i \(-0.546964\pi\)
−0.147009 + 0.989135i \(0.546964\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −10.5830 −0.344996 −0.172498 0.985010i \(-0.555184\pi\)
−0.172498 + 0.985010i \(0.555184\pi\)
\(942\) 0 0
\(943\) −21.0000 + 36.3731i −0.683854 + 1.18447i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(948\) 0 0
\(949\) −24.5000 + 6.06218i −0.795304 + 0.196787i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −5.29150 + 9.16515i −0.171409 + 0.296888i −0.938913 0.344156i \(-0.888165\pi\)
0.767504 + 0.641044i \(0.221498\pi\)
\(954\) 0 0
\(955\) 28.0000 48.4974i 0.906059 1.56934i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 7.93725 + 13.7477i 0.256307 + 0.443937i
\(960\) 0 0
\(961\) −15.0000 −0.483871
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 33.0719 + 57.2822i 1.06462 + 1.84398i
\(966\) 0 0
\(967\) 22.0000 0.707472 0.353736 0.935345i \(-0.384911\pi\)
0.353736 + 0.935345i \(0.384911\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 15.8745 27.4955i 0.509437 0.882371i −0.490503 0.871439i \(-0.663187\pi\)
0.999940 0.0109316i \(-0.00347972\pi\)
\(972\) 0 0
\(973\) 16.0000 + 27.7128i 0.512936 + 0.888432i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 19.8431 + 34.3693i 0.634838 + 1.09957i 0.986549 + 0.163463i \(0.0522666\pi\)
−0.351711 + 0.936109i \(0.614400\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −10.5830 −0.337545 −0.168773 0.985655i \(-0.553980\pi\)
−0.168773 + 0.985655i \(0.553980\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 10.5830 0.336520
\(990\) 0 0
\(991\) −27.0000 46.7654i −0.857683 1.48555i −0.874133 0.485686i \(-0.838570\pi\)
0.0164499 0.999865i \(-0.494764\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −13.2288 + 22.9129i −0.419380 + 0.726387i
\(996\) 0 0
\(997\) 3.50000 6.06218i 0.110846 0.191991i −0.805266 0.592914i \(-0.797977\pi\)
0.916112 + 0.400923i \(0.131311\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1872.2.t.o.289.2 4
3.2 odd 2 inner 1872.2.t.o.289.1 4
4.3 odd 2 468.2.l.e.289.2 yes 4
12.11 even 2 468.2.l.e.289.1 yes 4
13.9 even 3 inner 1872.2.t.o.1153.2 4
39.35 odd 6 inner 1872.2.t.o.1153.1 4
52.3 odd 6 6084.2.a.q.1.2 2
52.11 even 12 6084.2.b.n.4393.4 4
52.15 even 12 6084.2.b.n.4393.1 4
52.23 odd 6 6084.2.a.w.1.1 2
52.35 odd 6 468.2.l.e.217.2 yes 4
156.11 odd 12 6084.2.b.n.4393.2 4
156.23 even 6 6084.2.a.w.1.2 2
156.35 even 6 468.2.l.e.217.1 4
156.107 even 6 6084.2.a.q.1.1 2
156.119 odd 12 6084.2.b.n.4393.3 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
468.2.l.e.217.1 4 156.35 even 6
468.2.l.e.217.2 yes 4 52.35 odd 6
468.2.l.e.289.1 yes 4 12.11 even 2
468.2.l.e.289.2 yes 4 4.3 odd 2
1872.2.t.o.289.1 4 3.2 odd 2 inner
1872.2.t.o.289.2 4 1.1 even 1 trivial
1872.2.t.o.1153.1 4 39.35 odd 6 inner
1872.2.t.o.1153.2 4 13.9 even 3 inner
6084.2.a.q.1.1 2 156.107 even 6
6084.2.a.q.1.2 2 52.3 odd 6
6084.2.a.w.1.1 2 52.23 odd 6
6084.2.a.w.1.2 2 156.23 even 6
6084.2.b.n.4393.1 4 52.15 even 12
6084.2.b.n.4393.2 4 156.11 odd 12
6084.2.b.n.4393.3 4 156.119 odd 12
6084.2.b.n.4393.4 4 52.11 even 12