Properties

Label 1881.4.a.n.1.8
Level $1881$
Weight $4$
Character 1881.1
Self dual yes
Analytic conductor $110.983$
Analytic rank $1$
Dimension $23$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1881,4,Mod(1,1881)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1881, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1881.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1881 = 3^{2} \cdot 11 \cdot 19 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1881.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(110.982592721\)
Analytic rank: \(1\)
Dimension: \(23\)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.8
Character \(\chi\) \(=\) 1881.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.60095 q^{2} -1.23504 q^{4} -11.0151 q^{5} -27.4794 q^{7} +24.0199 q^{8} +28.6498 q^{10} +11.0000 q^{11} -78.9689 q^{13} +71.4727 q^{14} -52.5943 q^{16} +66.9785 q^{17} -19.0000 q^{19} +13.6041 q^{20} -28.6105 q^{22} -132.733 q^{23} -3.66746 q^{25} +205.394 q^{26} +33.9382 q^{28} +47.5040 q^{29} +267.324 q^{31} -55.3639 q^{32} -174.208 q^{34} +302.689 q^{35} +223.716 q^{37} +49.4181 q^{38} -264.582 q^{40} -420.576 q^{41} -238.252 q^{43} -13.5855 q^{44} +345.233 q^{46} +458.566 q^{47} +412.118 q^{49} +9.53889 q^{50} +97.5298 q^{52} -53.4502 q^{53} -121.166 q^{55} -660.053 q^{56} -123.556 q^{58} -415.991 q^{59} +515.513 q^{61} -695.298 q^{62} +564.754 q^{64} +869.851 q^{65} +1002.64 q^{67} -82.7212 q^{68} -787.279 q^{70} +433.124 q^{71} +594.021 q^{73} -581.875 q^{74} +23.4658 q^{76} -302.273 q^{77} +792.213 q^{79} +579.332 q^{80} +1093.90 q^{82} +177.134 q^{83} -737.775 q^{85} +619.682 q^{86} +264.219 q^{88} -606.280 q^{89} +2170.02 q^{91} +163.931 q^{92} -1192.71 q^{94} +209.287 q^{95} -1397.99 q^{97} -1071.90 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 23 q - 4 q^{2} + 96 q^{4} - 14 q^{7} - 48 q^{8} - 124 q^{10} + 253 q^{11} - 150 q^{13} - 152 q^{14} + 444 q^{16} + 68 q^{17} - 437 q^{19} - 80 q^{20} - 44 q^{22} - 414 q^{23} + 383 q^{25} - 464 q^{26} - 384 q^{28}+ \cdots - 7876 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.60095 −0.919576 −0.459788 0.888029i \(-0.652075\pi\)
−0.459788 + 0.888029i \(0.652075\pi\)
\(3\) 0 0
\(4\) −1.23504 −0.154380
\(5\) −11.0151 −0.985221 −0.492610 0.870250i \(-0.663957\pi\)
−0.492610 + 0.870250i \(0.663957\pi\)
\(6\) 0 0
\(7\) −27.4794 −1.48375 −0.741874 0.670539i \(-0.766063\pi\)
−0.741874 + 0.670539i \(0.766063\pi\)
\(8\) 24.0199 1.06154
\(9\) 0 0
\(10\) 28.6498 0.905985
\(11\) 11.0000 0.301511
\(12\) 0 0
\(13\) −78.9689 −1.68477 −0.842386 0.538875i \(-0.818849\pi\)
−0.842386 + 0.538875i \(0.818849\pi\)
\(14\) 71.4727 1.36442
\(15\) 0 0
\(16\) −52.5943 −0.821787
\(17\) 66.9785 0.955569 0.477784 0.878477i \(-0.341440\pi\)
0.477784 + 0.878477i \(0.341440\pi\)
\(18\) 0 0
\(19\) −19.0000 −0.229416
\(20\) 13.6041 0.152099
\(21\) 0 0
\(22\) −28.6105 −0.277263
\(23\) −132.733 −1.20334 −0.601669 0.798746i \(-0.705497\pi\)
−0.601669 + 0.798746i \(0.705497\pi\)
\(24\) 0 0
\(25\) −3.66746 −0.0293397
\(26\) 205.394 1.54928
\(27\) 0 0
\(28\) 33.9382 0.229061
\(29\) 47.5040 0.304182 0.152091 0.988366i \(-0.451399\pi\)
0.152091 + 0.988366i \(0.451399\pi\)
\(30\) 0 0
\(31\) 267.324 1.54880 0.774401 0.632695i \(-0.218051\pi\)
0.774401 + 0.632695i \(0.218051\pi\)
\(32\) −55.3639 −0.305845
\(33\) 0 0
\(34\) −174.208 −0.878718
\(35\) 302.689 1.46182
\(36\) 0 0
\(37\) 223.716 0.994019 0.497009 0.867745i \(-0.334431\pi\)
0.497009 + 0.867745i \(0.334431\pi\)
\(38\) 49.4181 0.210965
\(39\) 0 0
\(40\) −264.582 −1.04585
\(41\) −420.576 −1.60202 −0.801011 0.598650i \(-0.795704\pi\)
−0.801011 + 0.598650i \(0.795704\pi\)
\(42\) 0 0
\(43\) −238.252 −0.844955 −0.422478 0.906373i \(-0.638839\pi\)
−0.422478 + 0.906373i \(0.638839\pi\)
\(44\) −13.5855 −0.0465474
\(45\) 0 0
\(46\) 345.233 1.10656
\(47\) 458.566 1.42316 0.711582 0.702603i \(-0.247979\pi\)
0.711582 + 0.702603i \(0.247979\pi\)
\(48\) 0 0
\(49\) 412.118 1.20151
\(50\) 9.53889 0.0269801
\(51\) 0 0
\(52\) 97.5298 0.260095
\(53\) −53.4502 −0.138527 −0.0692636 0.997598i \(-0.522065\pi\)
−0.0692636 + 0.997598i \(0.522065\pi\)
\(54\) 0 0
\(55\) −121.166 −0.297055
\(56\) −660.053 −1.57506
\(57\) 0 0
\(58\) −123.556 −0.279718
\(59\) −415.991 −0.917923 −0.458961 0.888456i \(-0.651778\pi\)
−0.458961 + 0.888456i \(0.651778\pi\)
\(60\) 0 0
\(61\) 515.513 1.08204 0.541022 0.841009i \(-0.318038\pi\)
0.541022 + 0.841009i \(0.318038\pi\)
\(62\) −695.298 −1.42424
\(63\) 0 0
\(64\) 564.754 1.10303
\(65\) 869.851 1.65987
\(66\) 0 0
\(67\) 1002.64 1.82824 0.914120 0.405443i \(-0.132883\pi\)
0.914120 + 0.405443i \(0.132883\pi\)
\(68\) −82.7212 −0.147521
\(69\) 0 0
\(70\) −787.279 −1.34425
\(71\) 433.124 0.723977 0.361988 0.932183i \(-0.382098\pi\)
0.361988 + 0.932183i \(0.382098\pi\)
\(72\) 0 0
\(73\) 594.021 0.952396 0.476198 0.879338i \(-0.342015\pi\)
0.476198 + 0.879338i \(0.342015\pi\)
\(74\) −581.875 −0.914076
\(75\) 0 0
\(76\) 23.4658 0.0354172
\(77\) −302.273 −0.447367
\(78\) 0 0
\(79\) 792.213 1.12824 0.564119 0.825693i \(-0.309216\pi\)
0.564119 + 0.825693i \(0.309216\pi\)
\(80\) 579.332 0.809641
\(81\) 0 0
\(82\) 1093.90 1.47318
\(83\) 177.134 0.234253 0.117126 0.993117i \(-0.462632\pi\)
0.117126 + 0.993117i \(0.462632\pi\)
\(84\) 0 0
\(85\) −737.775 −0.941446
\(86\) 619.682 0.777000
\(87\) 0 0
\(88\) 264.219 0.320066
\(89\) −606.280 −0.722085 −0.361043 0.932549i \(-0.617579\pi\)
−0.361043 + 0.932549i \(0.617579\pi\)
\(90\) 0 0
\(91\) 2170.02 2.49978
\(92\) 163.931 0.185771
\(93\) 0 0
\(94\) −1192.71 −1.30871
\(95\) 209.287 0.226025
\(96\) 0 0
\(97\) −1397.99 −1.46334 −0.731670 0.681659i \(-0.761259\pi\)
−0.731670 + 0.681659i \(0.761259\pi\)
\(98\) −1071.90 −1.10488
\(99\) 0 0
\(100\) 4.52946 0.00452946
\(101\) 564.244 0.555885 0.277942 0.960598i \(-0.410348\pi\)
0.277942 + 0.960598i \(0.410348\pi\)
\(102\) 0 0
\(103\) −662.713 −0.633971 −0.316986 0.948430i \(-0.602671\pi\)
−0.316986 + 0.948430i \(0.602671\pi\)
\(104\) −1896.83 −1.78845
\(105\) 0 0
\(106\) 139.021 0.127386
\(107\) 1705.87 1.54124 0.770618 0.637298i \(-0.219948\pi\)
0.770618 + 0.637298i \(0.219948\pi\)
\(108\) 0 0
\(109\) −112.839 −0.0991558 −0.0495779 0.998770i \(-0.515788\pi\)
−0.0495779 + 0.998770i \(0.515788\pi\)
\(110\) 315.148 0.273165
\(111\) 0 0
\(112\) 1445.26 1.21932
\(113\) 1276.36 1.06256 0.531282 0.847195i \(-0.321710\pi\)
0.531282 + 0.847195i \(0.321710\pi\)
\(114\) 0 0
\(115\) 1462.07 1.18555
\(116\) −58.6694 −0.0469597
\(117\) 0 0
\(118\) 1081.97 0.844100
\(119\) −1840.53 −1.41782
\(120\) 0 0
\(121\) 121.000 0.0909091
\(122\) −1340.82 −0.995021
\(123\) 0 0
\(124\) −330.157 −0.239104
\(125\) 1417.29 1.01413
\(126\) 0 0
\(127\) −1702.15 −1.18930 −0.594652 0.803983i \(-0.702710\pi\)
−0.594652 + 0.803983i \(0.702710\pi\)
\(128\) −1025.99 −0.708479
\(129\) 0 0
\(130\) −2262.44 −1.52638
\(131\) −1035.55 −0.690659 −0.345330 0.938481i \(-0.612233\pi\)
−0.345330 + 0.938481i \(0.612233\pi\)
\(132\) 0 0
\(133\) 522.109 0.340395
\(134\) −2607.82 −1.68121
\(135\) 0 0
\(136\) 1608.82 1.01437
\(137\) 1476.92 0.921033 0.460516 0.887651i \(-0.347664\pi\)
0.460516 + 0.887651i \(0.347664\pi\)
\(138\) 0 0
\(139\) 932.490 0.569012 0.284506 0.958674i \(-0.408170\pi\)
0.284506 + 0.958674i \(0.408170\pi\)
\(140\) −373.833 −0.225676
\(141\) 0 0
\(142\) −1126.53 −0.665751
\(143\) −868.658 −0.507978
\(144\) 0 0
\(145\) −523.262 −0.299687
\(146\) −1545.02 −0.875800
\(147\) 0 0
\(148\) −276.299 −0.153457
\(149\) −3085.69 −1.69658 −0.848288 0.529536i \(-0.822366\pi\)
−0.848288 + 0.529536i \(0.822366\pi\)
\(150\) 0 0
\(151\) −2129.53 −1.14767 −0.573837 0.818969i \(-0.694546\pi\)
−0.573837 + 0.818969i \(0.694546\pi\)
\(152\) −456.378 −0.243534
\(153\) 0 0
\(154\) 786.199 0.411388
\(155\) −2944.61 −1.52591
\(156\) 0 0
\(157\) 710.284 0.361063 0.180531 0.983569i \(-0.442218\pi\)
0.180531 + 0.983569i \(0.442218\pi\)
\(158\) −2060.51 −1.03750
\(159\) 0 0
\(160\) 609.839 0.301325
\(161\) 3647.43 1.78545
\(162\) 0 0
\(163\) −84.4587 −0.0405848 −0.0202924 0.999794i \(-0.506460\pi\)
−0.0202924 + 0.999794i \(0.506460\pi\)
\(164\) 519.428 0.247320
\(165\) 0 0
\(166\) −460.717 −0.215413
\(167\) 1232.58 0.571136 0.285568 0.958358i \(-0.407818\pi\)
0.285568 + 0.958358i \(0.407818\pi\)
\(168\) 0 0
\(169\) 4039.08 1.83845
\(170\) 1918.92 0.865731
\(171\) 0 0
\(172\) 294.251 0.130444
\(173\) 174.321 0.0766091 0.0383045 0.999266i \(-0.487804\pi\)
0.0383045 + 0.999266i \(0.487804\pi\)
\(174\) 0 0
\(175\) 100.780 0.0435327
\(176\) −578.538 −0.247778
\(177\) 0 0
\(178\) 1576.91 0.664012
\(179\) 737.610 0.307997 0.153999 0.988071i \(-0.450785\pi\)
0.153999 + 0.988071i \(0.450785\pi\)
\(180\) 0 0
\(181\) −1572.89 −0.645921 −0.322960 0.946413i \(-0.604678\pi\)
−0.322960 + 0.946413i \(0.604678\pi\)
\(182\) −5644.12 −2.29873
\(183\) 0 0
\(184\) −3188.24 −1.27739
\(185\) −2464.26 −0.979328
\(186\) 0 0
\(187\) 736.763 0.288115
\(188\) −566.348 −0.219708
\(189\) 0 0
\(190\) −544.346 −0.207847
\(191\) −2043.11 −0.774003 −0.387002 0.922079i \(-0.626489\pi\)
−0.387002 + 0.922079i \(0.626489\pi\)
\(192\) 0 0
\(193\) 3582.59 1.33617 0.668084 0.744086i \(-0.267115\pi\)
0.668084 + 0.744086i \(0.267115\pi\)
\(194\) 3636.10 1.34565
\(195\) 0 0
\(196\) −508.982 −0.185489
\(197\) −4358.87 −1.57643 −0.788214 0.615401i \(-0.788994\pi\)
−0.788214 + 0.615401i \(0.788994\pi\)
\(198\) 0 0
\(199\) 5360.89 1.90967 0.954833 0.297143i \(-0.0960338\pi\)
0.954833 + 0.297143i \(0.0960338\pi\)
\(200\) −88.0920 −0.0311452
\(201\) 0 0
\(202\) −1467.57 −0.511178
\(203\) −1305.38 −0.451330
\(204\) 0 0
\(205\) 4632.68 1.57834
\(206\) 1723.68 0.582984
\(207\) 0 0
\(208\) 4153.32 1.38452
\(209\) −209.000 −0.0691714
\(210\) 0 0
\(211\) −4155.90 −1.35594 −0.677972 0.735088i \(-0.737141\pi\)
−0.677972 + 0.735088i \(0.737141\pi\)
\(212\) 66.0131 0.0213859
\(213\) 0 0
\(214\) −4436.88 −1.41728
\(215\) 2624.37 0.832467
\(216\) 0 0
\(217\) −7345.91 −2.29803
\(218\) 293.488 0.0911813
\(219\) 0 0
\(220\) 149.645 0.0458594
\(221\) −5289.21 −1.60991
\(222\) 0 0
\(223\) −624.537 −0.187543 −0.0937715 0.995594i \(-0.529892\pi\)
−0.0937715 + 0.995594i \(0.529892\pi\)
\(224\) 1521.37 0.453797
\(225\) 0 0
\(226\) −3319.75 −0.977108
\(227\) 3437.57 1.00511 0.502554 0.864546i \(-0.332394\pi\)
0.502554 + 0.864546i \(0.332394\pi\)
\(228\) 0 0
\(229\) −2399.95 −0.692548 −0.346274 0.938133i \(-0.612553\pi\)
−0.346274 + 0.938133i \(0.612553\pi\)
\(230\) −3802.77 −1.09021
\(231\) 0 0
\(232\) 1141.04 0.322901
\(233\) 1045.80 0.294045 0.147022 0.989133i \(-0.453031\pi\)
0.147022 + 0.989133i \(0.453031\pi\)
\(234\) 0 0
\(235\) −5051.15 −1.40213
\(236\) 513.766 0.141709
\(237\) 0 0
\(238\) 4787.13 1.30380
\(239\) −6954.65 −1.88225 −0.941127 0.338054i \(-0.890231\pi\)
−0.941127 + 0.338054i \(0.890231\pi\)
\(240\) 0 0
\(241\) 4832.51 1.29166 0.645828 0.763483i \(-0.276512\pi\)
0.645828 + 0.763483i \(0.276512\pi\)
\(242\) −314.715 −0.0835978
\(243\) 0 0
\(244\) −636.679 −0.167046
\(245\) −4539.52 −1.18375
\(246\) 0 0
\(247\) 1500.41 0.386513
\(248\) 6421.11 1.64412
\(249\) 0 0
\(250\) −3686.29 −0.932567
\(251\) −965.793 −0.242870 −0.121435 0.992599i \(-0.538750\pi\)
−0.121435 + 0.992599i \(0.538750\pi\)
\(252\) 0 0
\(253\) −1460.06 −0.362820
\(254\) 4427.22 1.09366
\(255\) 0 0
\(256\) −1849.48 −0.451534
\(257\) 2548.96 0.618676 0.309338 0.950952i \(-0.399893\pi\)
0.309338 + 0.950952i \(0.399893\pi\)
\(258\) 0 0
\(259\) −6147.58 −1.47487
\(260\) −1074.30 −0.256251
\(261\) 0 0
\(262\) 2693.42 0.635114
\(263\) 2008.18 0.470834 0.235417 0.971894i \(-0.424354\pi\)
0.235417 + 0.971894i \(0.424354\pi\)
\(264\) 0 0
\(265\) 588.759 0.136480
\(266\) −1357.98 −0.313019
\(267\) 0 0
\(268\) −1238.30 −0.282244
\(269\) −6822.01 −1.54626 −0.773132 0.634245i \(-0.781311\pi\)
−0.773132 + 0.634245i \(0.781311\pi\)
\(270\) 0 0
\(271\) −3430.15 −0.768882 −0.384441 0.923150i \(-0.625606\pi\)
−0.384441 + 0.923150i \(0.625606\pi\)
\(272\) −3522.69 −0.785273
\(273\) 0 0
\(274\) −3841.39 −0.846959
\(275\) −40.3421 −0.00884624
\(276\) 0 0
\(277\) 2708.42 0.587484 0.293742 0.955885i \(-0.405099\pi\)
0.293742 + 0.955885i \(0.405099\pi\)
\(278\) −2425.36 −0.523250
\(279\) 0 0
\(280\) 7270.55 1.55178
\(281\) −2540.88 −0.539418 −0.269709 0.962942i \(-0.586927\pi\)
−0.269709 + 0.962942i \(0.586927\pi\)
\(282\) 0 0
\(283\) 2104.29 0.442003 0.221002 0.975273i \(-0.429067\pi\)
0.221002 + 0.975273i \(0.429067\pi\)
\(284\) −534.926 −0.111768
\(285\) 0 0
\(286\) 2259.34 0.467124
\(287\) 11557.2 2.37700
\(288\) 0 0
\(289\) −426.884 −0.0868887
\(290\) 1360.98 0.275585
\(291\) 0 0
\(292\) −733.640 −0.147031
\(293\) 7324.22 1.46036 0.730180 0.683255i \(-0.239436\pi\)
0.730180 + 0.683255i \(0.239436\pi\)
\(294\) 0 0
\(295\) 4582.19 0.904357
\(296\) 5373.64 1.05519
\(297\) 0 0
\(298\) 8025.74 1.56013
\(299\) 10481.8 2.02735
\(300\) 0 0
\(301\) 6547.02 1.25370
\(302\) 5538.82 1.05537
\(303\) 0 0
\(304\) 999.293 0.188531
\(305\) −5678.43 −1.06605
\(306\) 0 0
\(307\) 1203.41 0.223721 0.111860 0.993724i \(-0.464319\pi\)
0.111860 + 0.993724i \(0.464319\pi\)
\(308\) 373.320 0.0690646
\(309\) 0 0
\(310\) 7658.78 1.40319
\(311\) −1120.80 −0.204355 −0.102178 0.994766i \(-0.532581\pi\)
−0.102178 + 0.994766i \(0.532581\pi\)
\(312\) 0 0
\(313\) −5041.71 −0.910460 −0.455230 0.890374i \(-0.650443\pi\)
−0.455230 + 0.890374i \(0.650443\pi\)
\(314\) −1847.42 −0.332024
\(315\) 0 0
\(316\) −978.415 −0.174178
\(317\) −1993.25 −0.353161 −0.176581 0.984286i \(-0.556504\pi\)
−0.176581 + 0.984286i \(0.556504\pi\)
\(318\) 0 0
\(319\) 522.544 0.0917143
\(320\) −6220.82 −1.08673
\(321\) 0 0
\(322\) −9486.79 −1.64186
\(323\) −1272.59 −0.219222
\(324\) 0 0
\(325\) 289.615 0.0494306
\(326\) 219.673 0.0373208
\(327\) 0 0
\(328\) −10102.2 −1.70061
\(329\) −12601.1 −2.11162
\(330\) 0 0
\(331\) 8002.34 1.32885 0.664424 0.747356i \(-0.268677\pi\)
0.664424 + 0.747356i \(0.268677\pi\)
\(332\) −218.768 −0.0361640
\(333\) 0 0
\(334\) −3205.88 −0.525203
\(335\) −11044.2 −1.80122
\(336\) 0 0
\(337\) 2804.64 0.453348 0.226674 0.973971i \(-0.427215\pi\)
0.226674 + 0.973971i \(0.427215\pi\)
\(338\) −10505.5 −1.69060
\(339\) 0 0
\(340\) 911.182 0.145341
\(341\) 2940.57 0.466981
\(342\) 0 0
\(343\) −1899.32 −0.298989
\(344\) −5722.79 −0.896954
\(345\) 0 0
\(346\) −453.400 −0.0704478
\(347\) −11414.7 −1.76592 −0.882962 0.469444i \(-0.844454\pi\)
−0.882962 + 0.469444i \(0.844454\pi\)
\(348\) 0 0
\(349\) −7543.53 −1.15701 −0.578504 0.815679i \(-0.696363\pi\)
−0.578504 + 0.815679i \(0.696363\pi\)
\(350\) −262.123 −0.0400316
\(351\) 0 0
\(352\) −609.002 −0.0922157
\(353\) −9814.49 −1.47981 −0.739904 0.672712i \(-0.765129\pi\)
−0.739904 + 0.672712i \(0.765129\pi\)
\(354\) 0 0
\(355\) −4770.90 −0.713277
\(356\) 748.781 0.111476
\(357\) 0 0
\(358\) −1918.49 −0.283227
\(359\) 8743.57 1.28543 0.642713 0.766107i \(-0.277809\pi\)
0.642713 + 0.766107i \(0.277809\pi\)
\(360\) 0 0
\(361\) 361.000 0.0526316
\(362\) 4091.00 0.593973
\(363\) 0 0
\(364\) −2680.06 −0.385916
\(365\) −6543.20 −0.938321
\(366\) 0 0
\(367\) 9437.43 1.34232 0.671158 0.741315i \(-0.265797\pi\)
0.671158 + 0.741315i \(0.265797\pi\)
\(368\) 6981.01 0.988887
\(369\) 0 0
\(370\) 6409.41 0.900566
\(371\) 1468.78 0.205540
\(372\) 0 0
\(373\) 8848.72 1.22834 0.614168 0.789175i \(-0.289492\pi\)
0.614168 + 0.789175i \(0.289492\pi\)
\(374\) −1916.29 −0.264943
\(375\) 0 0
\(376\) 11014.7 1.51075
\(377\) −3751.34 −0.512477
\(378\) 0 0
\(379\) 6308.87 0.855052 0.427526 0.904003i \(-0.359385\pi\)
0.427526 + 0.904003i \(0.359385\pi\)
\(380\) −258.478 −0.0348938
\(381\) 0 0
\(382\) 5314.05 0.711755
\(383\) −8737.78 −1.16574 −0.582872 0.812564i \(-0.698071\pi\)
−0.582872 + 0.812564i \(0.698071\pi\)
\(384\) 0 0
\(385\) 3329.57 0.440755
\(386\) −9318.14 −1.22871
\(387\) 0 0
\(388\) 1726.57 0.225911
\(389\) −3317.96 −0.432461 −0.216230 0.976342i \(-0.569376\pi\)
−0.216230 + 0.976342i \(0.569376\pi\)
\(390\) 0 0
\(391\) −8890.26 −1.14987
\(392\) 9899.03 1.27545
\(393\) 0 0
\(394\) 11337.2 1.44965
\(395\) −8726.31 −1.11156
\(396\) 0 0
\(397\) −5250.60 −0.663778 −0.331889 0.943318i \(-0.607686\pi\)
−0.331889 + 0.943318i \(0.607686\pi\)
\(398\) −13943.4 −1.75608
\(399\) 0 0
\(400\) 192.888 0.0241110
\(401\) −3117.56 −0.388239 −0.194119 0.980978i \(-0.562185\pi\)
−0.194119 + 0.980978i \(0.562185\pi\)
\(402\) 0 0
\(403\) −21110.3 −2.60938
\(404\) −696.864 −0.0858175
\(405\) 0 0
\(406\) 3395.24 0.415032
\(407\) 2460.88 0.299708
\(408\) 0 0
\(409\) −2899.10 −0.350492 −0.175246 0.984525i \(-0.556072\pi\)
−0.175246 + 0.984525i \(0.556072\pi\)
\(410\) −12049.4 −1.45141
\(411\) 0 0
\(412\) 818.477 0.0978725
\(413\) 11431.2 1.36197
\(414\) 0 0
\(415\) −1951.15 −0.230791
\(416\) 4372.02 0.515279
\(417\) 0 0
\(418\) 543.599 0.0636084
\(419\) −6516.51 −0.759791 −0.379896 0.925029i \(-0.624040\pi\)
−0.379896 + 0.925029i \(0.624040\pi\)
\(420\) 0 0
\(421\) −12366.5 −1.43160 −0.715802 0.698304i \(-0.753939\pi\)
−0.715802 + 0.698304i \(0.753939\pi\)
\(422\) 10809.3 1.24689
\(423\) 0 0
\(424\) −1283.87 −0.147052
\(425\) −245.641 −0.0280361
\(426\) 0 0
\(427\) −14166.0 −1.60548
\(428\) −2106.81 −0.237936
\(429\) 0 0
\(430\) −6825.86 −0.765517
\(431\) −17643.1 −1.97178 −0.985891 0.167391i \(-0.946466\pi\)
−0.985891 + 0.167391i \(0.946466\pi\)
\(432\) 0 0
\(433\) 14644.6 1.62535 0.812673 0.582720i \(-0.198012\pi\)
0.812673 + 0.582720i \(0.198012\pi\)
\(434\) 19106.4 2.11322
\(435\) 0 0
\(436\) 139.360 0.0153077
\(437\) 2521.93 0.276065
\(438\) 0 0
\(439\) −16663.0 −1.81158 −0.905790 0.423728i \(-0.860721\pi\)
−0.905790 + 0.423728i \(0.860721\pi\)
\(440\) −2910.40 −0.315336
\(441\) 0 0
\(442\) 13757.0 1.48044
\(443\) −11348.9 −1.21716 −0.608582 0.793491i \(-0.708262\pi\)
−0.608582 + 0.793491i \(0.708262\pi\)
\(444\) 0 0
\(445\) 6678.24 0.711414
\(446\) 1624.39 0.172460
\(447\) 0 0
\(448\) −15519.1 −1.63663
\(449\) 1227.01 0.128967 0.0644834 0.997919i \(-0.479460\pi\)
0.0644834 + 0.997919i \(0.479460\pi\)
\(450\) 0 0
\(451\) −4626.33 −0.483028
\(452\) −1576.36 −0.164039
\(453\) 0 0
\(454\) −8940.96 −0.924274
\(455\) −23903.0 −2.46283
\(456\) 0 0
\(457\) −15324.5 −1.56860 −0.784302 0.620380i \(-0.786978\pi\)
−0.784302 + 0.620380i \(0.786978\pi\)
\(458\) 6242.17 0.636850
\(459\) 0 0
\(460\) −1805.72 −0.183026
\(461\) 7817.29 0.789777 0.394889 0.918729i \(-0.370783\pi\)
0.394889 + 0.918729i \(0.370783\pi\)
\(462\) 0 0
\(463\) −15403.8 −1.54616 −0.773081 0.634307i \(-0.781285\pi\)
−0.773081 + 0.634307i \(0.781285\pi\)
\(464\) −2498.44 −0.249973
\(465\) 0 0
\(466\) −2720.07 −0.270396
\(467\) −10624.9 −1.05281 −0.526406 0.850233i \(-0.676461\pi\)
−0.526406 + 0.850233i \(0.676461\pi\)
\(468\) 0 0
\(469\) −27552.0 −2.71265
\(470\) 13137.8 1.28937
\(471\) 0 0
\(472\) −9992.07 −0.974412
\(473\) −2620.77 −0.254764
\(474\) 0 0
\(475\) 69.6817 0.00673098
\(476\) 2273.13 0.218884
\(477\) 0 0
\(478\) 18088.7 1.73088
\(479\) −1566.23 −0.149401 −0.0747003 0.997206i \(-0.523800\pi\)
−0.0747003 + 0.997206i \(0.523800\pi\)
\(480\) 0 0
\(481\) −17666.6 −1.67469
\(482\) −12569.1 −1.18778
\(483\) 0 0
\(484\) −149.440 −0.0140346
\(485\) 15399.0 1.44171
\(486\) 0 0
\(487\) 17547.2 1.63273 0.816365 0.577536i \(-0.195986\pi\)
0.816365 + 0.577536i \(0.195986\pi\)
\(488\) 12382.6 1.14863
\(489\) 0 0
\(490\) 11807.1 1.08855
\(491\) −536.906 −0.0493488 −0.0246744 0.999696i \(-0.507855\pi\)
−0.0246744 + 0.999696i \(0.507855\pi\)
\(492\) 0 0
\(493\) 3181.75 0.290667
\(494\) −3902.49 −0.355428
\(495\) 0 0
\(496\) −14059.7 −1.27278
\(497\) −11902.0 −1.07420
\(498\) 0 0
\(499\) 16209.3 1.45417 0.727083 0.686550i \(-0.240876\pi\)
0.727083 + 0.686550i \(0.240876\pi\)
\(500\) −1750.41 −0.156561
\(501\) 0 0
\(502\) 2511.98 0.223337
\(503\) −6827.35 −0.605202 −0.302601 0.953117i \(-0.597855\pi\)
−0.302601 + 0.953117i \(0.597855\pi\)
\(504\) 0 0
\(505\) −6215.20 −0.547669
\(506\) 3797.56 0.333640
\(507\) 0 0
\(508\) 2102.23 0.183605
\(509\) 14453.1 1.25859 0.629295 0.777167i \(-0.283344\pi\)
0.629295 + 0.777167i \(0.283344\pi\)
\(510\) 0 0
\(511\) −16323.3 −1.41312
\(512\) 13018.3 1.12370
\(513\) 0 0
\(514\) −6629.72 −0.568919
\(515\) 7299.85 0.624602
\(516\) 0 0
\(517\) 5044.22 0.429100
\(518\) 15989.6 1.35626
\(519\) 0 0
\(520\) 20893.7 1.76202
\(521\) −9338.88 −0.785305 −0.392652 0.919687i \(-0.628442\pi\)
−0.392652 + 0.919687i \(0.628442\pi\)
\(522\) 0 0
\(523\) 4041.70 0.337919 0.168959 0.985623i \(-0.445959\pi\)
0.168959 + 0.985623i \(0.445959\pi\)
\(524\) 1278.95 0.106624
\(525\) 0 0
\(526\) −5223.17 −0.432968
\(527\) 17905.0 1.47999
\(528\) 0 0
\(529\) 5451.07 0.448021
\(530\) −1531.34 −0.125504
\(531\) 0 0
\(532\) −644.826 −0.0525503
\(533\) 33212.4 2.69904
\(534\) 0 0
\(535\) −18790.3 −1.51846
\(536\) 24083.4 1.94075
\(537\) 0 0
\(538\) 17743.7 1.42191
\(539\) 4533.30 0.362269
\(540\) 0 0
\(541\) 908.291 0.0721820 0.0360910 0.999349i \(-0.488509\pi\)
0.0360910 + 0.999349i \(0.488509\pi\)
\(542\) 8921.67 0.707045
\(543\) 0 0
\(544\) −3708.19 −0.292256
\(545\) 1242.93 0.0976904
\(546\) 0 0
\(547\) 8326.07 0.650818 0.325409 0.945573i \(-0.394498\pi\)
0.325409 + 0.945573i \(0.394498\pi\)
\(548\) −1824.05 −0.142189
\(549\) 0 0
\(550\) 104.928 0.00813479
\(551\) −902.577 −0.0697841
\(552\) 0 0
\(553\) −21769.5 −1.67402
\(554\) −7044.47 −0.540237
\(555\) 0 0
\(556\) −1151.66 −0.0878442
\(557\) −10458.8 −0.795607 −0.397803 0.917471i \(-0.630227\pi\)
−0.397803 + 0.917471i \(0.630227\pi\)
\(558\) 0 0
\(559\) 18814.5 1.42356
\(560\) −15919.7 −1.20130
\(561\) 0 0
\(562\) 6608.72 0.496036
\(563\) 21585.1 1.61582 0.807909 0.589308i \(-0.200599\pi\)
0.807909 + 0.589308i \(0.200599\pi\)
\(564\) 0 0
\(565\) −14059.2 −1.04686
\(566\) −5473.16 −0.406456
\(567\) 0 0
\(568\) 10403.6 0.768530
\(569\) 17356.0 1.27874 0.639368 0.768901i \(-0.279196\pi\)
0.639368 + 0.768901i \(0.279196\pi\)
\(570\) 0 0
\(571\) −400.224 −0.0293325 −0.0146662 0.999892i \(-0.504669\pi\)
−0.0146662 + 0.999892i \(0.504669\pi\)
\(572\) 1072.83 0.0784217
\(573\) 0 0
\(574\) −30059.7 −2.18583
\(575\) 486.793 0.0353055
\(576\) 0 0
\(577\) 14222.6 1.02616 0.513079 0.858341i \(-0.328505\pi\)
0.513079 + 0.858341i \(0.328505\pi\)
\(578\) 1110.31 0.0799008
\(579\) 0 0
\(580\) 646.250 0.0462656
\(581\) −4867.54 −0.347572
\(582\) 0 0
\(583\) −587.952 −0.0417675
\(584\) 14268.3 1.01101
\(585\) 0 0
\(586\) −19049.9 −1.34291
\(587\) 4349.55 0.305835 0.152918 0.988239i \(-0.451133\pi\)
0.152918 + 0.988239i \(0.451133\pi\)
\(588\) 0 0
\(589\) −5079.16 −0.355320
\(590\) −11918.1 −0.831625
\(591\) 0 0
\(592\) −11766.2 −0.816871
\(593\) −1775.25 −0.122936 −0.0614679 0.998109i \(-0.519578\pi\)
−0.0614679 + 0.998109i \(0.519578\pi\)
\(594\) 0 0
\(595\) 20273.6 1.39687
\(596\) 3810.96 0.261918
\(597\) 0 0
\(598\) −27262.6 −1.86430
\(599\) −13578.2 −0.926191 −0.463095 0.886308i \(-0.653261\pi\)
−0.463095 + 0.886308i \(0.653261\pi\)
\(600\) 0 0
\(601\) −2298.00 −0.155969 −0.0779846 0.996955i \(-0.524848\pi\)
−0.0779846 + 0.996955i \(0.524848\pi\)
\(602\) −17028.5 −1.15287
\(603\) 0 0
\(604\) 2630.06 0.177178
\(605\) −1332.83 −0.0895655
\(606\) 0 0
\(607\) 22810.4 1.52528 0.762641 0.646822i \(-0.223902\pi\)
0.762641 + 0.646822i \(0.223902\pi\)
\(608\) 1051.91 0.0701657
\(609\) 0 0
\(610\) 14769.3 0.980315
\(611\) −36212.4 −2.39771
\(612\) 0 0
\(613\) −18023.6 −1.18755 −0.593773 0.804633i \(-0.702362\pi\)
−0.593773 + 0.804633i \(0.702362\pi\)
\(614\) −3130.01 −0.205728
\(615\) 0 0
\(616\) −7260.58 −0.474898
\(617\) 21288.3 1.38903 0.694516 0.719477i \(-0.255618\pi\)
0.694516 + 0.719477i \(0.255618\pi\)
\(618\) 0 0
\(619\) −4587.09 −0.297853 −0.148926 0.988848i \(-0.547582\pi\)
−0.148926 + 0.988848i \(0.547582\pi\)
\(620\) 3636.71 0.235571
\(621\) 0 0
\(622\) 2915.14 0.187920
\(623\) 16660.2 1.07139
\(624\) 0 0
\(625\) −15153.1 −0.969800
\(626\) 13113.2 0.837237
\(627\) 0 0
\(628\) −877.230 −0.0557409
\(629\) 14984.2 0.949853
\(630\) 0 0
\(631\) −2745.79 −0.173230 −0.0866151 0.996242i \(-0.527605\pi\)
−0.0866151 + 0.996242i \(0.527605\pi\)
\(632\) 19028.9 1.19767
\(633\) 0 0
\(634\) 5184.35 0.324758
\(635\) 18749.4 1.17173
\(636\) 0 0
\(637\) −32544.5 −2.02427
\(638\) −1359.11 −0.0843383
\(639\) 0 0
\(640\) 11301.4 0.698008
\(641\) −12072.4 −0.743887 −0.371944 0.928255i \(-0.621308\pi\)
−0.371944 + 0.928255i \(0.621308\pi\)
\(642\) 0 0
\(643\) 16883.0 1.03546 0.517730 0.855544i \(-0.326777\pi\)
0.517730 + 0.855544i \(0.326777\pi\)
\(644\) −4504.72 −0.275638
\(645\) 0 0
\(646\) 3309.95 0.201592
\(647\) −32674.5 −1.98542 −0.992709 0.120535i \(-0.961539\pi\)
−0.992709 + 0.120535i \(0.961539\pi\)
\(648\) 0 0
\(649\) −4575.90 −0.276764
\(650\) −753.276 −0.0454552
\(651\) 0 0
\(652\) 104.310 0.00626548
\(653\) 29481.3 1.76676 0.883379 0.468659i \(-0.155263\pi\)
0.883379 + 0.468659i \(0.155263\pi\)
\(654\) 0 0
\(655\) 11406.7 0.680452
\(656\) 22119.9 1.31652
\(657\) 0 0
\(658\) 32774.9 1.94179
\(659\) 6240.30 0.368874 0.184437 0.982844i \(-0.440954\pi\)
0.184437 + 0.982844i \(0.440954\pi\)
\(660\) 0 0
\(661\) −18494.9 −1.08830 −0.544151 0.838987i \(-0.683148\pi\)
−0.544151 + 0.838987i \(0.683148\pi\)
\(662\) −20813.7 −1.22198
\(663\) 0 0
\(664\) 4254.74 0.248669
\(665\) −5751.08 −0.335365
\(666\) 0 0
\(667\) −6305.36 −0.366034
\(668\) −1522.28 −0.0881721
\(669\) 0 0
\(670\) 28725.4 1.65636
\(671\) 5670.64 0.326248
\(672\) 0 0
\(673\) −7613.95 −0.436101 −0.218051 0.975937i \(-0.569970\pi\)
−0.218051 + 0.975937i \(0.569970\pi\)
\(674\) −7294.73 −0.416888
\(675\) 0 0
\(676\) −4988.43 −0.283821
\(677\) 5839.81 0.331525 0.165762 0.986166i \(-0.446992\pi\)
0.165762 + 0.986166i \(0.446992\pi\)
\(678\) 0 0
\(679\) 38415.8 2.17123
\(680\) −17721.3 −0.999383
\(681\) 0 0
\(682\) −7648.28 −0.429425
\(683\) 11114.2 0.622654 0.311327 0.950303i \(-0.399227\pi\)
0.311327 + 0.950303i \(0.399227\pi\)
\(684\) 0 0
\(685\) −16268.4 −0.907421
\(686\) 4940.03 0.274944
\(687\) 0 0
\(688\) 12530.7 0.694373
\(689\) 4220.90 0.233387
\(690\) 0 0
\(691\) 30466.0 1.67725 0.838626 0.544708i \(-0.183360\pi\)
0.838626 + 0.544708i \(0.183360\pi\)
\(692\) −215.293 −0.0118269
\(693\) 0 0
\(694\) 29689.2 1.62390
\(695\) −10271.5 −0.560603
\(696\) 0 0
\(697\) −28169.5 −1.53084
\(698\) 19620.4 1.06396
\(699\) 0 0
\(700\) −124.467 −0.00672058
\(701\) 7672.47 0.413388 0.206694 0.978406i \(-0.433730\pi\)
0.206694 + 0.978406i \(0.433730\pi\)
\(702\) 0 0
\(703\) −4250.60 −0.228044
\(704\) 6212.29 0.332577
\(705\) 0 0
\(706\) 25527.0 1.36080
\(707\) −15505.1 −0.824793
\(708\) 0 0
\(709\) 30321.3 1.60612 0.803062 0.595895i \(-0.203203\pi\)
0.803062 + 0.595895i \(0.203203\pi\)
\(710\) 12408.9 0.655912
\(711\) 0 0
\(712\) −14562.8 −0.766523
\(713\) −35482.8 −1.86373
\(714\) 0 0
\(715\) 9568.36 0.500470
\(716\) −910.978 −0.0475487
\(717\) 0 0
\(718\) −22741.6 −1.18205
\(719\) −15462.1 −0.802001 −0.401001 0.916078i \(-0.631338\pi\)
−0.401001 + 0.916078i \(0.631338\pi\)
\(720\) 0 0
\(721\) 18210.9 0.940654
\(722\) −938.944 −0.0483987
\(723\) 0 0
\(724\) 1942.58 0.0997173
\(725\) −174.219 −0.00892460
\(726\) 0 0
\(727\) 12230.2 0.623924 0.311962 0.950095i \(-0.399014\pi\)
0.311962 + 0.950095i \(0.399014\pi\)
\(728\) 52123.6 2.65361
\(729\) 0 0
\(730\) 17018.6 0.862857
\(731\) −15957.7 −0.807412
\(732\) 0 0
\(733\) −3687.81 −0.185828 −0.0929142 0.995674i \(-0.529618\pi\)
−0.0929142 + 0.995674i \(0.529618\pi\)
\(734\) −24546.3 −1.23436
\(735\) 0 0
\(736\) 7348.62 0.368035
\(737\) 11029.1 0.551235
\(738\) 0 0
\(739\) 10915.4 0.543340 0.271670 0.962391i \(-0.412424\pi\)
0.271670 + 0.962391i \(0.412424\pi\)
\(740\) 3043.46 0.151189
\(741\) 0 0
\(742\) −3820.22 −0.189009
\(743\) −12938.8 −0.638870 −0.319435 0.947608i \(-0.603493\pi\)
−0.319435 + 0.947608i \(0.603493\pi\)
\(744\) 0 0
\(745\) 33989.2 1.67150
\(746\) −23015.1 −1.12955
\(747\) 0 0
\(748\) −909.933 −0.0444792
\(749\) −46876.2 −2.28681
\(750\) 0 0
\(751\) 30617.1 1.48766 0.743830 0.668368i \(-0.233007\pi\)
0.743830 + 0.668368i \(0.233007\pi\)
\(752\) −24118.0 −1.16954
\(753\) 0 0
\(754\) 9757.06 0.471262
\(755\) 23457.0 1.13071
\(756\) 0 0
\(757\) −5464.29 −0.262356 −0.131178 0.991359i \(-0.541876\pi\)
−0.131178 + 0.991359i \(0.541876\pi\)
\(758\) −16409.1 −0.786285
\(759\) 0 0
\(760\) 5027.06 0.239935
\(761\) −2607.44 −0.124204 −0.0621022 0.998070i \(-0.519780\pi\)
−0.0621022 + 0.998070i \(0.519780\pi\)
\(762\) 0 0
\(763\) 3100.74 0.147122
\(764\) 2523.33 0.119491
\(765\) 0 0
\(766\) 22726.6 1.07199
\(767\) 32850.4 1.54649
\(768\) 0 0
\(769\) 32315.3 1.51537 0.757684 0.652621i \(-0.226331\pi\)
0.757684 + 0.652621i \(0.226331\pi\)
\(770\) −8660.07 −0.405308
\(771\) 0 0
\(772\) −4424.64 −0.206278
\(773\) −2930.47 −0.136354 −0.0681771 0.997673i \(-0.521718\pi\)
−0.0681771 + 0.997673i \(0.521718\pi\)
\(774\) 0 0
\(775\) −980.401 −0.0454413
\(776\) −33579.5 −1.55339
\(777\) 0 0
\(778\) 8629.85 0.397680
\(779\) 7990.94 0.367529
\(780\) 0 0
\(781\) 4764.36 0.218287
\(782\) 23123.2 1.05739
\(783\) 0 0
\(784\) −21675.1 −0.987384
\(785\) −7823.85 −0.355726
\(786\) 0 0
\(787\) 1978.09 0.0895949 0.0447974 0.998996i \(-0.485736\pi\)
0.0447974 + 0.998996i \(0.485736\pi\)
\(788\) 5383.38 0.243369
\(789\) 0 0
\(790\) 22696.7 1.02217
\(791\) −35073.6 −1.57658
\(792\) 0 0
\(793\) −40709.5 −1.82300
\(794\) 13656.6 0.610394
\(795\) 0 0
\(796\) −6620.92 −0.294815
\(797\) −9527.89 −0.423457 −0.211728 0.977329i \(-0.567909\pi\)
−0.211728 + 0.977329i \(0.567909\pi\)
\(798\) 0 0
\(799\) 30714.0 1.35993
\(800\) 203.045 0.00897339
\(801\) 0 0
\(802\) 8108.63 0.357015
\(803\) 6534.23 0.287158
\(804\) 0 0
\(805\) −40176.8 −1.75906
\(806\) 54906.9 2.39952
\(807\) 0 0
\(808\) 13553.1 0.590094
\(809\) 34176.1 1.48525 0.742626 0.669706i \(-0.233580\pi\)
0.742626 + 0.669706i \(0.233580\pi\)
\(810\) 0 0
\(811\) −35496.9 −1.53695 −0.768474 0.639881i \(-0.778984\pi\)
−0.768474 + 0.639881i \(0.778984\pi\)
\(812\) 1612.20 0.0696763
\(813\) 0 0
\(814\) −6400.63 −0.275604
\(815\) 930.321 0.0399850
\(816\) 0 0
\(817\) 4526.78 0.193846
\(818\) 7540.43 0.322304
\(819\) 0 0
\(820\) −5721.56 −0.243665
\(821\) 8003.37 0.340219 0.170109 0.985425i \(-0.445588\pi\)
0.170109 + 0.985425i \(0.445588\pi\)
\(822\) 0 0
\(823\) −20192.9 −0.855262 −0.427631 0.903953i \(-0.640652\pi\)
−0.427631 + 0.903953i \(0.640652\pi\)
\(824\) −15918.3 −0.672986
\(825\) 0 0
\(826\) −29732.0 −1.25243
\(827\) 3898.17 0.163909 0.0819544 0.996636i \(-0.473884\pi\)
0.0819544 + 0.996636i \(0.473884\pi\)
\(828\) 0 0
\(829\) 11199.5 0.469210 0.234605 0.972091i \(-0.424620\pi\)
0.234605 + 0.972091i \(0.424620\pi\)
\(830\) 5074.85 0.212230
\(831\) 0 0
\(832\) −44598.0 −1.85836
\(833\) 27603.0 1.14812
\(834\) 0 0
\(835\) −13577.0 −0.562695
\(836\) 258.124 0.0106787
\(837\) 0 0
\(838\) 16949.1 0.698686
\(839\) 19437.5 0.799828 0.399914 0.916553i \(-0.369040\pi\)
0.399914 + 0.916553i \(0.369040\pi\)
\(840\) 0 0
\(841\) −22132.4 −0.907473
\(842\) 32164.6 1.31647
\(843\) 0 0
\(844\) 5132.71 0.209331
\(845\) −44490.9 −1.81128
\(846\) 0 0
\(847\) −3325.01 −0.134886
\(848\) 2811.18 0.113840
\(849\) 0 0
\(850\) 638.900 0.0257813
\(851\) −29694.5 −1.19614
\(852\) 0 0
\(853\) −25303.5 −1.01568 −0.507841 0.861451i \(-0.669556\pi\)
−0.507841 + 0.861451i \(0.669556\pi\)
\(854\) 36845.1 1.47636
\(855\) 0 0
\(856\) 40974.7 1.63608
\(857\) 48720.5 1.94196 0.970980 0.239162i \(-0.0768727\pi\)
0.970980 + 0.239162i \(0.0768727\pi\)
\(858\) 0 0
\(859\) 13480.2 0.535437 0.267718 0.963497i \(-0.413730\pi\)
0.267718 + 0.963497i \(0.413730\pi\)
\(860\) −3241.20 −0.128516
\(861\) 0 0
\(862\) 45888.8 1.81320
\(863\) −5021.66 −0.198076 −0.0990378 0.995084i \(-0.531576\pi\)
−0.0990378 + 0.995084i \(0.531576\pi\)
\(864\) 0 0
\(865\) −1920.16 −0.0754768
\(866\) −38089.9 −1.49463
\(867\) 0 0
\(868\) 9072.50 0.354771
\(869\) 8714.34 0.340177
\(870\) 0 0
\(871\) −79177.5 −3.08017
\(872\) −2710.37 −0.105258
\(873\) 0 0
\(874\) −6559.42 −0.253862
\(875\) −38946.2 −1.50471
\(876\) 0 0
\(877\) −28513.7 −1.09788 −0.548939 0.835863i \(-0.684968\pi\)
−0.548939 + 0.835863i \(0.684968\pi\)
\(878\) 43339.8 1.66588
\(879\) 0 0
\(880\) 6372.65 0.244116
\(881\) 12611.5 0.482285 0.241142 0.970490i \(-0.422478\pi\)
0.241142 + 0.970490i \(0.422478\pi\)
\(882\) 0 0
\(883\) 22015.0 0.839029 0.419515 0.907749i \(-0.362200\pi\)
0.419515 + 0.907749i \(0.362200\pi\)
\(884\) 6532.40 0.248539
\(885\) 0 0
\(886\) 29518.0 1.11928
\(887\) 27627.5 1.04582 0.522909 0.852389i \(-0.324847\pi\)
0.522909 + 0.852389i \(0.324847\pi\)
\(888\) 0 0
\(889\) 46774.1 1.76463
\(890\) −17369.8 −0.654199
\(891\) 0 0
\(892\) 771.329 0.0289529
\(893\) −8712.75 −0.326496
\(894\) 0 0
\(895\) −8124.85 −0.303445
\(896\) 28193.5 1.05120
\(897\) 0 0
\(898\) −3191.39 −0.118595
\(899\) 12699.0 0.471118
\(900\) 0 0
\(901\) −3580.01 −0.132372
\(902\) 12032.9 0.444180
\(903\) 0 0
\(904\) 30658.0 1.12795
\(905\) 17325.5 0.636375
\(906\) 0 0
\(907\) −6019.67 −0.220375 −0.110187 0.993911i \(-0.535145\pi\)
−0.110187 + 0.993911i \(0.535145\pi\)
\(908\) −4245.54 −0.155169
\(909\) 0 0
\(910\) 62170.5 2.26476
\(911\) 21231.9 0.772168 0.386084 0.922464i \(-0.373827\pi\)
0.386084 + 0.922464i \(0.373827\pi\)
\(912\) 0 0
\(913\) 1948.47 0.0706299
\(914\) 39858.4 1.44245
\(915\) 0 0
\(916\) 2964.04 0.106916
\(917\) 28456.3 1.02476
\(918\) 0 0
\(919\) 1083.33 0.0388857 0.0194428 0.999811i \(-0.493811\pi\)
0.0194428 + 0.999811i \(0.493811\pi\)
\(920\) 35118.8 1.25851
\(921\) 0 0
\(922\) −20332.4 −0.726260
\(923\) −34203.3 −1.21973
\(924\) 0 0
\(925\) −820.469 −0.0291642
\(926\) 40064.4 1.42181
\(927\) 0 0
\(928\) −2630.01 −0.0930326
\(929\) −26411.6 −0.932761 −0.466381 0.884584i \(-0.654442\pi\)
−0.466381 + 0.884584i \(0.654442\pi\)
\(930\) 0 0
\(931\) −7830.24 −0.275645
\(932\) −1291.60 −0.0453946
\(933\) 0 0
\(934\) 27635.0 0.968140
\(935\) −8115.52 −0.283857
\(936\) 0 0
\(937\) −13033.5 −0.454415 −0.227207 0.973846i \(-0.572960\pi\)
−0.227207 + 0.973846i \(0.572960\pi\)
\(938\) 71661.4 2.49449
\(939\) 0 0
\(940\) 6238.38 0.216461
\(941\) −10411.9 −0.360700 −0.180350 0.983603i \(-0.557723\pi\)
−0.180350 + 0.983603i \(0.557723\pi\)
\(942\) 0 0
\(943\) 55824.3 1.92777
\(944\) 21878.8 0.754337
\(945\) 0 0
\(946\) 6816.50 0.234274
\(947\) 39294.0 1.34835 0.674173 0.738573i \(-0.264500\pi\)
0.674173 + 0.738573i \(0.264500\pi\)
\(948\) 0 0
\(949\) −46909.2 −1.60457
\(950\) −181.239 −0.00618965
\(951\) 0 0
\(952\) −44209.3 −1.50508
\(953\) −14222.6 −0.483438 −0.241719 0.970346i \(-0.577711\pi\)
−0.241719 + 0.970346i \(0.577711\pi\)
\(954\) 0 0
\(955\) 22505.1 0.762564
\(956\) 8589.27 0.290583
\(957\) 0 0
\(958\) 4073.69 0.137385
\(959\) −40584.8 −1.36658
\(960\) 0 0
\(961\) 41671.3 1.39879
\(962\) 45950.0 1.54001
\(963\) 0 0
\(964\) −5968.34 −0.199406
\(965\) −39462.6 −1.31642
\(966\) 0 0
\(967\) −2765.09 −0.0919538 −0.0459769 0.998943i \(-0.514640\pi\)
−0.0459769 + 0.998943i \(0.514640\pi\)
\(968\) 2906.41 0.0965037
\(969\) 0 0
\(970\) −40052.0 −1.32576
\(971\) 38472.4 1.27151 0.635757 0.771890i \(-0.280688\pi\)
0.635757 + 0.771890i \(0.280688\pi\)
\(972\) 0 0
\(973\) −25624.3 −0.844271
\(974\) −45639.5 −1.50142
\(975\) 0 0
\(976\) −27113.0 −0.889209
\(977\) 19385.6 0.634802 0.317401 0.948291i \(-0.397190\pi\)
0.317401 + 0.948291i \(0.397190\pi\)
\(978\) 0 0
\(979\) −6669.08 −0.217717
\(980\) 5606.49 0.182748
\(981\) 0 0
\(982\) 1396.47 0.0453799
\(983\) −3670.52 −0.119096 −0.0595480 0.998225i \(-0.518966\pi\)
−0.0595480 + 0.998225i \(0.518966\pi\)
\(984\) 0 0
\(985\) 48013.4 1.55313
\(986\) −8275.58 −0.267290
\(987\) 0 0
\(988\) −1853.07 −0.0596699
\(989\) 31623.9 1.01677
\(990\) 0 0
\(991\) −55604.3 −1.78237 −0.891186 0.453639i \(-0.850126\pi\)
−0.891186 + 0.453639i \(0.850126\pi\)
\(992\) −14800.1 −0.473693
\(993\) 0 0
\(994\) 30956.5 0.987808
\(995\) −59050.8 −1.88144
\(996\) 0 0
\(997\) 13889.9 0.441220 0.220610 0.975362i \(-0.429195\pi\)
0.220610 + 0.975362i \(0.429195\pi\)
\(998\) −42159.7 −1.33722
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1881.4.a.n.1.8 23
3.2 odd 2 1881.4.a.o.1.16 yes 23
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1881.4.a.n.1.8 23 1.1 even 1 trivial
1881.4.a.o.1.16 yes 23 3.2 odd 2