Properties

Label 189.2.p.d.26.3
Level $189$
Weight $2$
Character 189.26
Analytic conductor $1.509$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [189,2,Mod(26,189)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(189, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 5]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("189.26");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 189 = 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 189.p (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.50917259820\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{6})\)
Coefficient field: 12.0.13026266817859584.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 9x^{10} + 59x^{8} - 180x^{6} + 403x^{4} - 198x^{2} + 81 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 3^{4} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 26.3
Root \(1.65604 + 0.956115i\) of defining polynomial
Character \(\chi\) \(=\) 189.26
Dual form 189.2.p.d.80.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.568650 - 0.328310i) q^{2} +(-0.784425 - 1.35866i) q^{4} +(-1.65604 + 2.86834i) q^{5} +(-2.58392 + 0.568650i) q^{7} +2.34338i q^{8} +(1.88341 - 1.08739i) q^{10} +(-2.02943 + 1.17169i) q^{11} +1.58003i q^{13} +(1.65604 + 0.524964i) q^{14} +(-0.799494 + 1.38476i) q^{16} +(-0.568650 - 0.984931i) q^{17} +(3.85327 + 2.22469i) q^{19} +5.19615 q^{20} +1.53871 q^{22} +(-8.13484 - 4.69665i) q^{23} +(-2.98493 - 5.17005i) q^{25} +(0.518739 - 0.898482i) q^{26} +(2.79949 + 3.06461i) q^{28} +3.65662i q^{29} +(-6.33821 + 3.65936i) q^{31} +(4.96812 - 2.86834i) q^{32} +0.746774i q^{34} +(2.64799 - 8.35327i) q^{35} +(2.58392 - 4.47548i) q^{37} +(-1.46078 - 2.53014i) q^{38} +(-6.72162 - 3.88073i) q^{40} +9.64553 q^{41} -2.16784 q^{43} +(3.18386 + 1.83821i) q^{44} +(3.08392 + 5.34150i) q^{46} +(2.79334 - 4.83821i) q^{47} +(6.35327 - 2.93869i) q^{49} +3.91993i q^{50} +(2.14673 - 1.23941i) q^{52} +(-8.70349 + 5.02496i) q^{53} -7.76146i q^{55} +(-1.33256 - 6.05510i) q^{56} +(1.20051 - 2.07934i) q^{58} +(-1.08739 - 1.88341i) q^{59} +(3.46986 + 2.00333i) q^{61} +4.80563 q^{62} -0.568850 q^{64} +(-4.53206 - 2.61659i) q^{65} +(5.38341 + 9.32435i) q^{67} +(-0.892126 + 1.54521i) q^{68} +(-4.24824 + 3.88073i) q^{70} +6.39331i q^{71} +(-9.25176 + 5.34150i) q^{73} +(-2.93869 + 1.69665i) q^{74} -6.98041i q^{76} +(4.57759 - 4.18158i) q^{77} +(-0.616587 + 1.06796i) q^{79} +(-2.64799 - 4.58645i) q^{80} +(-5.48493 - 3.16673i) q^{82} -1.03748 q^{83} +3.76683 q^{85} +(1.23274 + 0.711723i) q^{86} +(-2.74571 - 4.75572i) q^{88} +(-3.73538 + 6.46986i) q^{89} +(-0.898482 - 4.08266i) q^{91} +14.7367i q^{92} +(-3.17686 + 1.83416i) q^{94} +(-12.7623 + 7.36834i) q^{95} +13.5524i q^{97} +(-4.57759 - 0.414758i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 8 q^{4} - 8 q^{7} - 6 q^{10} - 4 q^{16} - 6 q^{19} - 40 q^{22} - 24 q^{25} + 28 q^{28} - 12 q^{31} + 8 q^{37} + 12 q^{40} + 20 q^{43} + 14 q^{46} + 24 q^{49} + 78 q^{52} + 20 q^{58} + 18 q^{61} + 28 q^{64}+ \cdots - 114 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/189\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(136\)
\(\chi(n)\) \(-1\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.568650 0.328310i −0.402096 0.232150i 0.285292 0.958441i \(-0.407909\pi\)
−0.687388 + 0.726290i \(0.741243\pi\)
\(3\) 0 0
\(4\) −0.784425 1.35866i −0.392212 0.679332i
\(5\) −1.65604 + 2.86834i −0.740603 + 1.28276i 0.211618 + 0.977352i \(0.432127\pi\)
−0.952221 + 0.305410i \(0.901207\pi\)
\(6\) 0 0
\(7\) −2.58392 + 0.568650i −0.976630 + 0.214929i
\(8\) 2.34338i 0.828510i
\(9\) 0 0
\(10\) 1.88341 1.08739i 0.595588 0.343863i
\(11\) −2.02943 + 1.17169i −0.611895 + 0.353278i −0.773707 0.633544i \(-0.781600\pi\)
0.161812 + 0.986822i \(0.448266\pi\)
\(12\) 0 0
\(13\) 1.58003i 0.438221i 0.975700 + 0.219110i \(0.0703155\pi\)
−0.975700 + 0.219110i \(0.929685\pi\)
\(14\) 1.65604 + 0.524964i 0.442595 + 0.140303i
\(15\) 0 0
\(16\) −0.799494 + 1.38476i −0.199874 + 0.346191i
\(17\) −0.568650 0.984931i −0.137918 0.238881i 0.788790 0.614662i \(-0.210708\pi\)
−0.926708 + 0.375781i \(0.877374\pi\)
\(18\) 0 0
\(19\) 3.85327 + 2.22469i 0.884002 + 0.510379i 0.871976 0.489549i \(-0.162839\pi\)
0.0120260 + 0.999928i \(0.496172\pi\)
\(20\) 5.19615 1.16190
\(21\) 0 0
\(22\) 1.53871 0.328054
\(23\) −8.13484 4.69665i −1.69623 0.979320i −0.949275 0.314448i \(-0.898181\pi\)
−0.746957 0.664872i \(-0.768486\pi\)
\(24\) 0 0
\(25\) −2.98493 5.17005i −0.596986 1.03401i
\(26\) 0.518739 0.898482i 0.101733 0.176207i
\(27\) 0 0
\(28\) 2.79949 + 3.06461i 0.529055 + 0.579158i
\(29\) 3.65662i 0.679017i 0.940603 + 0.339509i \(0.110261\pi\)
−0.940603 + 0.339509i \(0.889739\pi\)
\(30\) 0 0
\(31\) −6.33821 + 3.65936i −1.13838 + 0.657241i −0.946028 0.324086i \(-0.894943\pi\)
−0.192347 + 0.981327i \(0.561610\pi\)
\(32\) 4.96812 2.86834i 0.878247 0.507056i
\(33\) 0 0
\(34\) 0.746774i 0.128071i
\(35\) 2.64799 8.35327i 0.447592 1.41196i
\(36\) 0 0
\(37\) 2.58392 4.47548i 0.424794 0.735764i −0.571607 0.820527i \(-0.693680\pi\)
0.996401 + 0.0847630i \(0.0270133\pi\)
\(38\) −1.46078 2.53014i −0.236969 0.410443i
\(39\) 0 0
\(40\) −6.72162 3.88073i −1.06278 0.613597i
\(41\) 9.64553 1.50638 0.753189 0.657804i \(-0.228514\pi\)
0.753189 + 0.657804i \(0.228514\pi\)
\(42\) 0 0
\(43\) −2.16784 −0.330592 −0.165296 0.986244i \(-0.552858\pi\)
−0.165296 + 0.986244i \(0.552858\pi\)
\(44\) 3.18386 + 1.83821i 0.479986 + 0.277120i
\(45\) 0 0
\(46\) 3.08392 + 5.34150i 0.454699 + 0.787562i
\(47\) 2.79334 4.83821i 0.407450 0.705725i −0.587153 0.809476i \(-0.699751\pi\)
0.994603 + 0.103751i \(0.0330846\pi\)
\(48\) 0 0
\(49\) 6.35327 2.93869i 0.907611 0.419813i
\(50\) 3.91993i 0.554362i
\(51\) 0 0
\(52\) 2.14673 1.23941i 0.297697 0.171876i
\(53\) −8.70349 + 5.02496i −1.19552 + 0.690232i −0.959552 0.281530i \(-0.909158\pi\)
−0.235964 + 0.971762i \(0.575825\pi\)
\(54\) 0 0
\(55\) 7.76146i 1.04655i
\(56\) −1.33256 6.05510i −0.178071 0.809147i
\(57\) 0 0
\(58\) 1.20051 2.07934i 0.157634 0.273030i
\(59\) −1.08739 1.88341i −0.141566 0.245200i 0.786521 0.617564i \(-0.211880\pi\)
−0.928087 + 0.372365i \(0.878547\pi\)
\(60\) 0 0
\(61\) 3.46986 + 2.00333i 0.444270 + 0.256500i 0.705407 0.708802i \(-0.250764\pi\)
−0.261137 + 0.965302i \(0.584097\pi\)
\(62\) 4.80563 0.610315
\(63\) 0 0
\(64\) −0.568850 −0.0711062
\(65\) −4.53206 2.61659i −0.562133 0.324548i
\(66\) 0 0
\(67\) 5.38341 + 9.32435i 0.657689 + 1.13915i 0.981213 + 0.192930i \(0.0617990\pi\)
−0.323524 + 0.946220i \(0.604868\pi\)
\(68\) −0.892126 + 1.54521i −0.108186 + 0.187384i
\(69\) 0 0
\(70\) −4.24824 + 3.88073i −0.507762 + 0.463836i
\(71\) 6.39331i 0.758746i 0.925244 + 0.379373i \(0.123860\pi\)
−0.925244 + 0.379373i \(0.876140\pi\)
\(72\) 0 0
\(73\) −9.25176 + 5.34150i −1.08284 + 0.625176i −0.931660 0.363331i \(-0.881639\pi\)
−0.151176 + 0.988507i \(0.548306\pi\)
\(74\) −2.93869 + 1.69665i −0.341616 + 0.197232i
\(75\) 0 0
\(76\) 6.98041i 0.800707i
\(77\) 4.57759 4.18158i 0.521665 0.476536i
\(78\) 0 0
\(79\) −0.616587 + 1.06796i −0.0693714 + 0.120155i −0.898625 0.438718i \(-0.855433\pi\)
0.829253 + 0.558873i \(0.188766\pi\)
\(80\) −2.64799 4.58645i −0.296054 0.512780i
\(81\) 0 0
\(82\) −5.48493 3.16673i −0.605709 0.349706i
\(83\) −1.03748 −0.113878 −0.0569390 0.998378i \(-0.518134\pi\)
−0.0569390 + 0.998378i \(0.518134\pi\)
\(84\) 0 0
\(85\) 3.76683 0.408570
\(86\) 1.23274 + 0.711723i 0.132930 + 0.0767471i
\(87\) 0 0
\(88\) −2.74571 4.75572i −0.292694 0.506961i
\(89\) −3.73538 + 6.46986i −0.395949 + 0.685804i −0.993222 0.116234i \(-0.962918\pi\)
0.597273 + 0.802038i \(0.296251\pi\)
\(90\) 0 0
\(91\) −0.898482 4.08266i −0.0941866 0.427979i
\(92\) 14.7367i 1.53641i
\(93\) 0 0
\(94\) −3.17686 + 1.83416i −0.327669 + 0.189180i
\(95\) −12.7623 + 7.36834i −1.30939 + 0.755976i
\(96\) 0 0
\(97\) 13.5524i 1.37603i 0.725695 + 0.688017i \(0.241518\pi\)
−0.725695 + 0.688017i \(0.758482\pi\)
\(98\) −4.57759 0.414758i −0.462407 0.0418969i
\(99\) 0 0
\(100\) −4.68291 + 8.11103i −0.468291 + 0.811103i
\(101\) 6.85219 + 11.8683i 0.681819 + 1.18094i 0.974425 + 0.224711i \(0.0721440\pi\)
−0.292607 + 0.956233i \(0.594523\pi\)
\(102\) 0 0
\(103\) 4.23669 + 2.44605i 0.417453 + 0.241017i 0.693987 0.719987i \(-0.255852\pi\)
−0.276534 + 0.961004i \(0.589186\pi\)
\(104\) −3.70260 −0.363070
\(105\) 0 0
\(106\) 6.59899 0.640950
\(107\) −2.12487 1.22679i −0.205419 0.118599i 0.393762 0.919213i \(-0.371173\pi\)
−0.599180 + 0.800614i \(0.704507\pi\)
\(108\) 0 0
\(109\) −2.16784 3.75481i −0.207641 0.359645i 0.743330 0.668925i \(-0.233245\pi\)
−0.950971 + 0.309280i \(0.899912\pi\)
\(110\) −2.54817 + 4.41355i −0.242958 + 0.420816i
\(111\) 0 0
\(112\) 1.27838 4.03275i 0.120796 0.381059i
\(113\) 7.16013i 0.673569i 0.941582 + 0.336784i \(0.109339\pi\)
−0.941582 + 0.336784i \(0.890661\pi\)
\(114\) 0 0
\(115\) 26.9432 15.5557i 2.51247 1.45058i
\(116\) 4.96812 2.86834i 0.461278 0.266319i
\(117\) 0 0
\(118\) 1.42800i 0.131458i
\(119\) 2.02943 + 2.22162i 0.186037 + 0.203655i
\(120\) 0 0
\(121\) −2.75429 + 4.77056i −0.250390 + 0.433688i
\(122\) −1.31542 2.27838i −0.119093 0.206275i
\(123\) 0 0
\(124\) 9.94369 + 5.74099i 0.892970 + 0.515556i
\(125\) 3.21226 0.287313
\(126\) 0 0
\(127\) −17.7065 −1.57120 −0.785601 0.618733i \(-0.787646\pi\)
−0.785601 + 0.618733i \(0.787646\pi\)
\(128\) −9.61276 5.54993i −0.849656 0.490549i
\(129\) 0 0
\(130\) 1.71810 + 2.97584i 0.150688 + 0.260999i
\(131\) 6.80228 11.7819i 0.594318 1.02939i −0.399325 0.916810i \(-0.630755\pi\)
0.993643 0.112579i \(-0.0359113\pi\)
\(132\) 0 0
\(133\) −11.2216 3.55725i −0.973038 0.308453i
\(134\) 7.06972i 0.610731i
\(135\) 0 0
\(136\) 2.30807 1.33256i 0.197915 0.114266i
\(137\) 8.79893 5.08007i 0.751744 0.434019i −0.0745799 0.997215i \(-0.523762\pi\)
0.826324 + 0.563196i \(0.190428\pi\)
\(138\) 0 0
\(139\) 3.85463i 0.326945i −0.986548 0.163473i \(-0.947730\pi\)
0.986548 0.163473i \(-0.0522695\pi\)
\(140\) −13.4264 + 2.95479i −1.13474 + 0.249725i
\(141\) 0 0
\(142\) 2.09899 3.63555i 0.176143 0.305089i
\(143\) −1.85130 3.20655i −0.154814 0.268145i
\(144\) 0 0
\(145\) −10.4884 6.05551i −0.871018 0.502882i
\(146\) 7.01468 0.580539
\(147\) 0 0
\(148\) −8.10756 −0.666437
\(149\) 4.39947 + 2.54003i 0.360418 + 0.208088i 0.669264 0.743024i \(-0.266609\pi\)
−0.308846 + 0.951112i \(0.599943\pi\)
\(150\) 0 0
\(151\) −9.15277 15.8531i −0.744842 1.29010i −0.950269 0.311431i \(-0.899192\pi\)
0.205427 0.978672i \(-0.434142\pi\)
\(152\) −5.21329 + 9.02968i −0.422854 + 0.732404i
\(153\) 0 0
\(154\) −3.97590 + 0.874988i −0.320387 + 0.0705085i
\(155\) 24.2402i 1.94702i
\(156\) 0 0
\(157\) 2.86834 1.65604i 0.228919 0.132166i −0.381154 0.924511i \(-0.624473\pi\)
0.610073 + 0.792345i \(0.291140\pi\)
\(158\) 0.701244 0.404864i 0.0557880 0.0322092i
\(159\) 0 0
\(160\) 19.0004i 1.50211i
\(161\) 23.6905 + 7.50989i 1.86708 + 0.591863i
\(162\) 0 0
\(163\) 1.14673 1.98619i 0.0898185 0.155570i −0.817616 0.575764i \(-0.804705\pi\)
0.907434 + 0.420194i \(0.138038\pi\)
\(164\) −7.56619 13.1050i −0.590820 1.02333i
\(165\) 0 0
\(166\) 0.589962 + 0.340615i 0.0457899 + 0.0264368i
\(167\) 2.66513 0.206234 0.103117 0.994669i \(-0.467118\pi\)
0.103117 + 0.994669i \(0.467118\pi\)
\(168\) 0 0
\(169\) 10.5035 0.807963
\(170\) −2.14201 1.23669i −0.164284 0.0948496i
\(171\) 0 0
\(172\) 1.70051 + 2.94536i 0.129662 + 0.224582i
\(173\) −1.28265 + 2.22162i −0.0975182 + 0.168907i −0.910657 0.413164i \(-0.864424\pi\)
0.813139 + 0.582070i \(0.197757\pi\)
\(174\) 0 0
\(175\) 10.6528 + 11.6616i 0.805274 + 0.881535i
\(176\) 3.74704i 0.282444i
\(177\) 0 0
\(178\) 4.24824 2.45272i 0.318419 0.183839i
\(179\) 11.9828 6.91827i 0.895636 0.517096i 0.0198545 0.999803i \(-0.493680\pi\)
0.875782 + 0.482707i \(0.160346\pi\)
\(180\) 0 0
\(181\) 4.74008i 0.352328i 0.984361 + 0.176164i \(0.0563688\pi\)
−0.984361 + 0.176164i \(0.943631\pi\)
\(182\) −0.829458 + 2.61659i −0.0614835 + 0.193954i
\(183\) 0 0
\(184\) 11.0060 19.0630i 0.811376 1.40534i
\(185\) 8.55814 + 14.8231i 0.629207 + 1.08982i
\(186\) 0 0
\(187\) 2.30807 + 1.33256i 0.168783 + 0.0974466i
\(188\) −8.76466 −0.639228
\(189\) 0 0
\(190\) 9.67641 0.702001
\(191\) 7.22558 + 4.17169i 0.522825 + 0.301853i 0.738090 0.674703i \(-0.235728\pi\)
−0.215265 + 0.976556i \(0.569062\pi\)
\(192\) 0 0
\(193\) 8.92212 + 15.4536i 0.642229 + 1.11237i 0.984934 + 0.172930i \(0.0553233\pi\)
−0.342706 + 0.939443i \(0.611343\pi\)
\(194\) 4.44938 7.70655i 0.319447 0.553298i
\(195\) 0 0
\(196\) −8.97636 6.32678i −0.641168 0.451913i
\(197\) 15.1102i 1.07656i −0.842767 0.538279i \(-0.819075\pi\)
0.842767 0.538279i \(-0.180925\pi\)
\(198\) 0 0
\(199\) −7.50000 + 4.33013i −0.531661 + 0.306955i −0.741693 0.670740i \(-0.765977\pi\)
0.210032 + 0.977695i \(0.432643\pi\)
\(200\) 12.1154 6.99483i 0.856688 0.494609i
\(201\) 0 0
\(202\) 8.99858i 0.633138i
\(203\) −2.07934 9.44841i −0.145941 0.663148i
\(204\) 0 0
\(205\) −15.9734 + 27.6667i −1.11563 + 1.93233i
\(206\) −1.60613 2.78190i −0.111904 0.193824i
\(207\) 0 0
\(208\) −2.18797 1.26322i −0.151708 0.0875887i
\(209\) −10.4266 −0.721222
\(210\) 0 0
\(211\) −14.5809 −1.00379 −0.501897 0.864928i \(-0.667364\pi\)
−0.501897 + 0.864928i \(0.667364\pi\)
\(212\) 13.6545 + 7.88341i 0.937793 + 0.541435i
\(213\) 0 0
\(214\) 0.805537 + 1.39523i 0.0550654 + 0.0953760i
\(215\) 3.59002 6.21810i 0.244838 0.424071i
\(216\) 0 0
\(217\) 14.2965 13.0597i 0.970510 0.886552i
\(218\) 2.84689i 0.192816i
\(219\) 0 0
\(220\) −10.5452 + 6.08828i −0.710958 + 0.410472i
\(221\) 1.55622 0.898482i 0.104683 0.0604385i
\(222\) 0 0
\(223\) 10.5832i 0.708703i −0.935112 0.354351i \(-0.884702\pi\)
0.935112 0.354351i \(-0.115298\pi\)
\(224\) −11.2061 + 10.2367i −0.748741 + 0.683967i
\(225\) 0 0
\(226\) 2.35075 4.07161i 0.156369 0.270839i
\(227\) 3.36199 + 5.82314i 0.223143 + 0.386495i 0.955761 0.294145i \(-0.0950350\pi\)
−0.732618 + 0.680640i \(0.761702\pi\)
\(228\) 0 0
\(229\) −10.6201 6.13152i −0.701796 0.405182i 0.106220 0.994343i \(-0.466125\pi\)
−0.808016 + 0.589161i \(0.799459\pi\)
\(230\) −20.4284 −1.34701
\(231\) 0 0
\(232\) −8.56885 −0.562573
\(233\) −4.87268 2.81324i −0.319220 0.184302i 0.331825 0.943341i \(-0.392336\pi\)
−0.651045 + 0.759039i \(0.725669\pi\)
\(234\) 0 0
\(235\) 9.25176 + 16.0245i 0.603518 + 1.04532i
\(236\) −1.70595 + 2.95479i −0.111048 + 0.192341i
\(237\) 0 0
\(238\) −0.424653 1.92960i −0.0275262 0.125078i
\(239\) 15.9595i 1.03234i −0.856488 0.516168i \(-0.827358\pi\)
0.856488 0.516168i \(-0.172642\pi\)
\(240\) 0 0
\(241\) −3.97338 + 2.29403i −0.255948 + 0.147771i −0.622485 0.782632i \(-0.713877\pi\)
0.366537 + 0.930403i \(0.380543\pi\)
\(242\) 3.13245 1.80852i 0.201361 0.116256i
\(243\) 0 0
\(244\) 6.28583i 0.402409i
\(245\) −2.09209 + 23.0900i −0.133659 + 1.47516i
\(246\) 0 0
\(247\) −3.51507 + 6.08828i −0.223659 + 0.387388i
\(248\) −8.57528 14.8528i −0.544531 0.943155i
\(249\) 0 0
\(250\) −1.82665 1.05462i −0.115527 0.0666998i
\(251\) −13.8042 −0.871314 −0.435657 0.900113i \(-0.643484\pi\)
−0.435657 + 0.900113i \(0.643484\pi\)
\(252\) 0 0
\(253\) 22.0121 1.38389
\(254\) 10.0688 + 5.81324i 0.631774 + 0.364755i
\(255\) 0 0
\(256\) 4.21305 + 7.29721i 0.263315 + 0.456076i
\(257\) −4.48215 + 7.76331i −0.279589 + 0.484262i −0.971283 0.237929i \(-0.923531\pi\)
0.691694 + 0.722191i \(0.256865\pi\)
\(258\) 0 0
\(259\) −4.13166 + 13.0336i −0.256729 + 0.809870i
\(260\) 8.21006i 0.509166i
\(261\) 0 0
\(262\) −7.73623 + 4.46652i −0.477946 + 0.275942i
\(263\) −24.7280 + 14.2767i −1.52479 + 0.880340i −0.525226 + 0.850963i \(0.676019\pi\)
−0.999568 + 0.0293774i \(0.990648\pi\)
\(264\) 0 0
\(265\) 33.2861i 2.04475i
\(266\) 5.21329 + 5.70700i 0.319647 + 0.349919i
\(267\) 0 0
\(268\) 8.44577 14.6285i 0.515907 0.893578i
\(269\) 11.9657 + 20.7251i 0.729559 + 1.26363i 0.957070 + 0.289858i \(0.0936081\pi\)
−0.227510 + 0.973776i \(0.573059\pi\)
\(270\) 0 0
\(271\) 12.6467 + 7.30159i 0.768234 + 0.443540i 0.832244 0.554409i \(-0.187056\pi\)
−0.0640103 + 0.997949i \(0.520389\pi\)
\(272\) 1.81853 0.110265
\(273\) 0 0
\(274\) −6.67135 −0.403031
\(275\) 12.1154 + 6.99483i 0.730586 + 0.421804i
\(276\) 0 0
\(277\) −11.1915 19.3842i −0.672431 1.16468i −0.977213 0.212262i \(-0.931917\pi\)
0.304782 0.952422i \(-0.401416\pi\)
\(278\) −1.26551 + 2.19193i −0.0759005 + 0.131463i
\(279\) 0 0
\(280\) 19.5749 + 6.20524i 1.16982 + 0.370834i
\(281\) 11.6067i 0.692397i −0.938161 0.346199i \(-0.887472\pi\)
0.938161 0.346199i \(-0.112528\pi\)
\(282\) 0 0
\(283\) −12.9849 + 7.49685i −0.771874 + 0.445642i −0.833543 0.552455i \(-0.813691\pi\)
0.0616687 + 0.998097i \(0.480358\pi\)
\(284\) 8.68635 5.01507i 0.515440 0.297590i
\(285\) 0 0
\(286\) 2.43121i 0.143760i
\(287\) −24.9233 + 5.48493i −1.47117 + 0.323765i
\(288\) 0 0
\(289\) 7.85327 13.6023i 0.461957 0.800134i
\(290\) 3.97617 + 6.88693i 0.233489 + 0.404414i
\(291\) 0 0
\(292\) 14.5146 + 8.38002i 0.849404 + 0.490403i
\(293\) −16.3352 −0.954314 −0.477157 0.878818i \(-0.658333\pi\)
−0.477157 + 0.878818i \(0.658333\pi\)
\(294\) 0 0
\(295\) 7.20304 0.419377
\(296\) 10.4877 + 6.05510i 0.609588 + 0.351946i
\(297\) 0 0
\(298\) −1.66784 2.88878i −0.0966153 0.167343i
\(299\) 7.42084 12.8533i 0.429158 0.743324i
\(300\) 0 0
\(301\) 5.60152 1.23274i 0.322866 0.0710540i
\(302\) 12.0198i 0.691661i
\(303\) 0 0
\(304\) −6.16134 + 3.55725i −0.353377 + 0.204022i
\(305\) −11.4925 + 6.63517i −0.658056 + 0.379929i
\(306\) 0 0
\(307\) 3.17340i 0.181115i 0.995891 + 0.0905577i \(0.0288650\pi\)
−0.995891 + 0.0905577i \(0.971135\pi\)
\(308\) −9.27214 2.93927i −0.528329 0.167480i
\(309\) 0 0
\(310\) −7.95831 + 13.7842i −0.452001 + 0.782889i
\(311\) 12.5671 + 21.7668i 0.712614 + 1.23428i 0.963873 + 0.266364i \(0.0858222\pi\)
−0.251259 + 0.967920i \(0.580845\pi\)
\(312\) 0 0
\(313\) −16.1463 9.32205i −0.912641 0.526914i −0.0313612 0.999508i \(-0.509984\pi\)
−0.881280 + 0.472594i \(0.843318\pi\)
\(314\) −2.17478 −0.122730
\(315\) 0 0
\(316\) 1.93466 0.108833
\(317\) 6.91924 + 3.99483i 0.388623 + 0.224372i 0.681563 0.731759i \(-0.261300\pi\)
−0.292940 + 0.956131i \(0.594634\pi\)
\(318\) 0 0
\(319\) −4.28442 7.42084i −0.239882 0.415487i
\(320\) 0.942037 1.63166i 0.0526615 0.0912124i
\(321\) 0 0
\(322\) −11.0060 12.0483i −0.613343 0.671428i
\(323\) 5.06028i 0.281561i
\(324\) 0 0
\(325\) 8.16882 4.71627i 0.453125 0.261612i
\(326\) −1.30417 + 0.752963i −0.0722313 + 0.0417028i
\(327\) 0 0
\(328\) 22.6031i 1.24805i
\(329\) −4.46652 + 14.0900i −0.246247 + 0.776805i
\(330\) 0 0
\(331\) 4.46733 7.73765i 0.245547 0.425299i −0.716738 0.697342i \(-0.754366\pi\)
0.962285 + 0.272043i \(0.0876992\pi\)
\(332\) 0.813824 + 1.40958i 0.0446644 + 0.0773610i
\(333\) 0 0
\(334\) −1.51552 0.874988i −0.0829258 0.0478772i
\(335\) −35.6606 −1.94835
\(336\) 0 0
\(337\) 4.24526 0.231254 0.115627 0.993293i \(-0.463112\pi\)
0.115627 + 0.993293i \(0.463112\pi\)
\(338\) −5.97282 3.44841i −0.324879 0.187569i
\(339\) 0 0
\(340\) −2.95479 5.11785i −0.160246 0.277554i
\(341\) 8.57528 14.8528i 0.464377 0.804325i
\(342\) 0 0
\(343\) −14.7453 + 11.2061i −0.796169 + 0.605074i
\(344\) 5.08007i 0.273899i
\(345\) 0 0
\(346\) 1.45876 0.842215i 0.0784234 0.0452778i
\(347\) 2.27460 1.31324i 0.122107 0.0704985i −0.437702 0.899120i \(-0.644208\pi\)
0.559809 + 0.828621i \(0.310874\pi\)
\(348\) 0 0
\(349\) 32.4918i 1.73924i 0.493718 + 0.869622i \(0.335637\pi\)
−0.493718 + 0.869622i \(0.664363\pi\)
\(350\) −2.22907 10.1288i −0.119149 0.541407i
\(351\) 0 0
\(352\) −6.72162 + 11.6422i −0.358263 + 0.620531i
\(353\) −11.6921 20.2513i −0.622307 1.07787i −0.989055 0.147548i \(-0.952862\pi\)
0.366748 0.930321i \(-0.380471\pi\)
\(354\) 0 0
\(355\) −18.3382 10.5876i −0.973291 0.561930i
\(356\) 11.7205 0.621185
\(357\) 0 0
\(358\) −9.08536 −0.480176
\(359\) 18.4900 + 10.6752i 0.975865 + 0.563416i 0.901019 0.433779i \(-0.142820\pi\)
0.0748455 + 0.997195i \(0.476154\pi\)
\(360\) 0 0
\(361\) 0.398482 + 0.690192i 0.0209728 + 0.0363259i
\(362\) 1.55622 2.69545i 0.0817930 0.141670i
\(363\) 0 0
\(364\) −4.84217 + 4.42328i −0.253799 + 0.231843i
\(365\) 35.3830i 1.85203i
\(366\) 0 0
\(367\) 13.4432 7.76146i 0.701731 0.405145i −0.106261 0.994338i \(-0.533888\pi\)
0.807992 + 0.589194i \(0.200554\pi\)
\(368\) 13.0075 7.50989i 0.678064 0.391480i
\(369\) 0 0
\(370\) 11.2389i 0.584283i
\(371\) 19.6317 17.9333i 1.01923 0.931053i
\(372\) 0 0
\(373\) 11.6764 20.2241i 0.604582 1.04717i −0.387536 0.921855i \(-0.626674\pi\)
0.992117 0.125311i \(-0.0399930\pi\)
\(374\) −0.874988 1.51552i −0.0452445 0.0783659i
\(375\) 0 0
\(376\) 11.3378 + 6.54585i 0.584700 + 0.337577i
\(377\) −5.77756 −0.297559
\(378\) 0 0
\(379\) 2.53871 0.130405 0.0652024 0.997872i \(-0.479231\pi\)
0.0652024 + 0.997872i \(0.479231\pi\)
\(380\) 20.0222 + 11.5598i 1.02712 + 0.593006i
\(381\) 0 0
\(382\) −2.73922 4.74446i −0.140151 0.242748i
\(383\) −8.10207 + 14.0332i −0.413996 + 0.717063i −0.995323 0.0966078i \(-0.969201\pi\)
0.581326 + 0.813671i \(0.302534\pi\)
\(384\) 0 0
\(385\) 4.41355 + 20.0550i 0.224935 + 1.02210i
\(386\) 11.7169i 0.596374i
\(387\) 0 0
\(388\) 18.4131 10.6308i 0.934783 0.539697i
\(389\) 19.3410 11.1665i 0.980626 0.566165i 0.0781671 0.996940i \(-0.475093\pi\)
0.902459 + 0.430775i \(0.141760\pi\)
\(390\) 0 0
\(391\) 10.6830i 0.540263i
\(392\) 6.88647 + 14.8881i 0.347819 + 0.751964i
\(393\) 0 0
\(394\) −4.96083 + 8.59242i −0.249923 + 0.432880i
\(395\) −2.04218 3.53717i −0.102753 0.177974i
\(396\) 0 0
\(397\) 28.3116 + 16.3457i 1.42092 + 0.820367i 0.996377 0.0850420i \(-0.0271025\pi\)
0.424540 + 0.905409i \(0.360436\pi\)
\(398\) 5.68650 0.285038
\(399\) 0 0
\(400\) 9.54574 0.477287
\(401\) −25.0515 14.4635i −1.25101 0.722272i −0.279701 0.960087i \(-0.590235\pi\)
−0.971310 + 0.237815i \(0.923569\pi\)
\(402\) 0 0
\(403\) −5.78190 10.0145i −0.288017 0.498860i
\(404\) 10.7501 18.6196i 0.534835 0.926362i
\(405\) 0 0
\(406\) −1.91959 + 6.05551i −0.0952679 + 0.300530i
\(407\) 12.1102i 0.600281i
\(408\) 0 0
\(409\) 0.910038 0.525411i 0.0449985 0.0259799i −0.477332 0.878723i \(-0.658396\pi\)
0.522330 + 0.852743i \(0.325063\pi\)
\(410\) 18.1665 10.4884i 0.897180 0.517987i
\(411\) 0 0
\(412\) 7.67498i 0.378119i
\(413\) 3.88073 + 4.24824i 0.190958 + 0.209042i
\(414\) 0 0
\(415\) 1.71810 2.97584i 0.0843384 0.146078i
\(416\) 4.53206 + 7.84976i 0.222203 + 0.384866i
\(417\) 0 0
\(418\) 5.92908 + 3.42315i 0.290001 + 0.167432i
\(419\) 3.12120 0.152480 0.0762402 0.997089i \(-0.475708\pi\)
0.0762402 + 0.997089i \(0.475708\pi\)
\(420\) 0 0
\(421\) −8.70655 −0.424331 −0.212166 0.977234i \(-0.568052\pi\)
−0.212166 + 0.977234i \(0.568052\pi\)
\(422\) 8.29145 + 4.78707i 0.403621 + 0.233031i
\(423\) 0 0
\(424\) −11.7754 20.3956i −0.571864 0.990497i
\(425\) −3.39476 + 5.87990i −0.164670 + 0.285217i
\(426\) 0 0
\(427\) −10.1050 3.20329i −0.489017 0.155018i
\(428\) 3.84931i 0.186063i
\(429\) 0 0
\(430\) −4.08293 + 2.35728i −0.196897 + 0.113678i
\(431\) −23.6279 + 13.6416i −1.13811 + 0.657090i −0.945963 0.324275i \(-0.894880\pi\)
−0.192151 + 0.981365i \(0.561546\pi\)
\(432\) 0 0
\(433\) 12.8711i 0.618547i 0.950973 + 0.309274i \(0.100086\pi\)
−0.950973 + 0.309274i \(0.899914\pi\)
\(434\) −12.4174 + 2.73272i −0.596052 + 0.131175i
\(435\) 0 0
\(436\) −3.40101 + 5.89073i −0.162879 + 0.282115i
\(437\) −20.8972 36.1950i −0.999648 1.73144i
\(438\) 0 0
\(439\) 15.9734 + 9.22223i 0.762368 + 0.440153i 0.830145 0.557547i \(-0.188257\pi\)
−0.0677776 + 0.997700i \(0.521591\pi\)
\(440\) 18.1880 0.867081
\(441\) 0 0
\(442\) −1.17992 −0.0561233
\(443\) 2.48550 + 1.43500i 0.118090 + 0.0681790i 0.557881 0.829921i \(-0.311614\pi\)
−0.439792 + 0.898100i \(0.644948\pi\)
\(444\) 0 0
\(445\) −12.3719 21.4287i −0.586482 1.01582i
\(446\) −3.47457 + 6.01813i −0.164526 + 0.284967i
\(447\) 0 0
\(448\) 1.46986 0.323476i 0.0694444 0.0152828i
\(449\) 1.81675i 0.0857380i −0.999081 0.0428690i \(-0.986350\pi\)
0.999081 0.0428690i \(-0.0136498\pi\)
\(450\) 0 0
\(451\) −19.5749 + 11.3016i −0.921746 + 0.532170i
\(452\) 9.72821 5.61659i 0.457577 0.264182i
\(453\) 0 0
\(454\) 4.41510i 0.207211i
\(455\) 13.1984 + 4.18389i 0.618751 + 0.196144i
\(456\) 0 0
\(457\) −3.07788 + 5.33104i −0.143977 + 0.249375i −0.928991 0.370103i \(-0.879322\pi\)
0.785014 + 0.619478i \(0.212656\pi\)
\(458\) 4.02608 + 6.97338i 0.188126 + 0.325844i
\(459\) 0 0
\(460\) −42.2699 24.4045i −1.97084 1.13787i
\(461\) 17.0507 0.794132 0.397066 0.917790i \(-0.370028\pi\)
0.397066 + 0.917790i \(0.370028\pi\)
\(462\) 0 0
\(463\) 29.4131 1.36694 0.683471 0.729977i \(-0.260469\pi\)
0.683471 + 0.729977i \(0.260469\pi\)
\(464\) −5.06356 2.92345i −0.235070 0.135718i
\(465\) 0 0
\(466\) 1.84723 + 3.19950i 0.0855713 + 0.148214i
\(467\) 13.5590 23.4849i 0.627437 1.08675i −0.360627 0.932710i \(-0.617437\pi\)
0.988064 0.154043i \(-0.0492294\pi\)
\(468\) 0 0
\(469\) −19.2126 21.0321i −0.887155 0.971171i
\(470\) 12.1498i 0.560428i
\(471\) 0 0
\(472\) 4.41355 2.54817i 0.203150 0.117289i
\(473\) 4.39947 2.54003i 0.202288 0.116791i
\(474\) 0 0
\(475\) 26.5622i 1.21876i
\(476\) 1.42650 4.50000i 0.0653835 0.206257i
\(477\) 0 0
\(478\) −5.23967 + 9.07538i −0.239657 + 0.415098i
\(479\) 10.7784 + 18.6688i 0.492480 + 0.853000i 0.999962 0.00866176i \(-0.00275716\pi\)
−0.507483 + 0.861662i \(0.669424\pi\)
\(480\) 0 0
\(481\) 7.07138 + 4.08266i 0.322427 + 0.186153i
\(482\) 3.01261 0.137221
\(483\) 0 0
\(484\) 8.64212 0.392824
\(485\) −38.8728 22.4432i −1.76512 1.01909i
\(486\) 0 0
\(487\) 7.29047 + 12.6275i 0.330363 + 0.572205i 0.982583 0.185825i \(-0.0594956\pi\)
−0.652220 + 0.758029i \(0.726162\pi\)
\(488\) −4.69455 + 8.13120i −0.212512 + 0.368082i
\(489\) 0 0
\(490\) 8.77034 12.4433i 0.396204 0.562129i
\(491\) 0.283102i 0.0127762i −0.999980 0.00638811i \(-0.997967\pi\)
0.999980 0.00638811i \(-0.00203341\pi\)
\(492\) 0 0
\(493\) 3.60152 2.07934i 0.162204 0.0936486i
\(494\) 3.99769 2.30807i 0.179864 0.103845i
\(495\) 0 0
\(496\) 11.7026i 0.525461i
\(497\) −3.63555 16.5198i −0.163077 0.741014i
\(498\) 0 0
\(499\) −6.15277 + 10.6569i −0.275436 + 0.477069i −0.970245 0.242125i \(-0.922155\pi\)
0.694809 + 0.719194i \(0.255489\pi\)
\(500\) −2.51977 4.36438i −0.112688 0.195181i
\(501\) 0 0
\(502\) 7.84976 + 4.53206i 0.350352 + 0.202276i
\(503\) 1.78425 0.0795559 0.0397779 0.999209i \(-0.487335\pi\)
0.0397779 + 0.999209i \(0.487335\pi\)
\(504\) 0 0
\(505\) −45.3900 −2.01983
\(506\) −12.5172 7.22679i −0.556456 0.321270i
\(507\) 0 0
\(508\) 13.8895 + 24.0572i 0.616245 + 1.06737i
\(509\) −19.5362 + 33.8378i −0.865928 + 1.49983i 0.000194027 1.00000i \(0.499938\pi\)
−0.866122 + 0.499832i \(0.833395\pi\)
\(510\) 0 0
\(511\) 20.8683 19.0630i 0.923161 0.843299i
\(512\) 16.6670i 0.736583i
\(513\) 0 0
\(514\) 5.09755 2.94307i 0.224843 0.129813i
\(515\) −14.0322 + 8.10152i −0.618334 + 0.356996i
\(516\) 0 0
\(517\) 13.0917i 0.575773i
\(518\) 6.62854 6.05510i 0.291241 0.266046i
\(519\) 0 0
\(520\) 6.13166 10.6203i 0.268891 0.465733i
\(521\) 10.1814 + 17.6347i 0.446056 + 0.772591i 0.998125 0.0612072i \(-0.0194950\pi\)
−0.552070 + 0.833798i \(0.686162\pi\)
\(522\) 0 0
\(523\) 1.24066 + 0.716293i 0.0542501 + 0.0313213i 0.526880 0.849940i \(-0.323362\pi\)
−0.472630 + 0.881261i \(0.656695\pi\)
\(524\) −21.3435 −0.932396
\(525\) 0 0
\(526\) 18.7488 0.817485
\(527\) 7.20844 + 4.16179i 0.314005 + 0.181291i
\(528\) 0 0
\(529\) 32.6171 + 56.4945i 1.41814 + 2.45628i
\(530\) −10.9282 + 18.9282i −0.474690 + 0.822187i
\(531\) 0 0
\(532\) 3.96941 + 18.0368i 0.172096 + 0.781994i
\(533\) 15.2402i 0.660126i
\(534\) 0 0
\(535\) 7.03773 4.06323i 0.304267 0.175669i
\(536\) −21.8505 + 12.6154i −0.943797 + 0.544901i
\(537\) 0 0
\(538\) 15.7138i 0.677470i
\(539\) −9.45027 + 13.4079i −0.407052 + 0.577520i
\(540\) 0 0
\(541\) 5.04521 8.73856i 0.216910 0.375700i −0.736951 0.675946i \(-0.763735\pi\)
0.953862 + 0.300246i \(0.0970687\pi\)
\(542\) −4.79437 8.30410i −0.205936 0.356692i
\(543\) 0 0
\(544\) −5.65024 3.26217i −0.242252 0.139864i
\(545\) 14.3601 0.615119
\(546\) 0 0
\(547\) 7.30048 0.312146 0.156073 0.987746i \(-0.450117\pi\)
0.156073 + 0.987746i \(0.450117\pi\)
\(548\) −13.8042 7.96986i −0.589686 0.340456i
\(549\) 0 0
\(550\) −4.59295 7.95521i −0.195844 0.339211i
\(551\) −8.13484 + 14.0900i −0.346556 + 0.600253i
\(552\) 0 0
\(553\) 0.985915 3.11014i 0.0419254 0.132257i
\(554\) 14.6971i 0.624420i
\(555\) 0 0
\(556\) −5.23714 + 3.02367i −0.222104 + 0.128232i
\(557\) 19.7970 11.4298i 0.838828 0.484297i −0.0180379 0.999837i \(-0.505742\pi\)
0.856866 + 0.515540i \(0.172409\pi\)
\(558\) 0 0
\(559\) 3.42524i 0.144872i
\(560\) 9.45027 + 10.3452i 0.399347 + 0.437166i
\(561\) 0 0
\(562\) −3.81060 + 6.60015i −0.160740 + 0.278410i
\(563\) 10.5548 + 18.2814i 0.444832 + 0.770471i 0.998040 0.0625717i \(-0.0199302\pi\)
−0.553209 + 0.833043i \(0.686597\pi\)
\(564\) 0 0
\(565\) −20.5377 11.8575i −0.864029 0.498847i
\(566\) 9.84517 0.413824
\(567\) 0 0
\(568\) −14.9819 −0.628629
\(569\) −22.9095 13.2268i −0.960415 0.554496i −0.0641144 0.997943i \(-0.520422\pi\)
−0.896301 + 0.443447i \(0.853756\pi\)
\(570\) 0 0
\(571\) −6.01507 10.4184i −0.251723 0.435997i 0.712277 0.701898i \(-0.247664\pi\)
−0.964000 + 0.265901i \(0.914330\pi\)
\(572\) −2.90441 + 5.03059i −0.121440 + 0.210340i
\(573\) 0 0
\(574\) 15.9734 + 5.06356i 0.666716 + 0.211349i
\(575\) 56.0767i 2.33856i
\(576\) 0 0
\(577\) −31.9055 + 18.4207i −1.32824 + 0.766862i −0.985028 0.172395i \(-0.944850\pi\)
−0.343216 + 0.939257i \(0.611516\pi\)
\(578\) −8.93153 + 5.15662i −0.371503 + 0.214487i
\(579\) 0 0
\(580\) 19.0004i 0.788947i
\(581\) 2.68076 0.589962i 0.111217 0.0244757i
\(582\) 0 0
\(583\) 11.7754 20.3956i 0.487687 0.844699i
\(584\) −12.5172 21.6804i −0.517964 0.897140i
\(585\) 0 0
\(586\) 9.28903 + 5.36302i 0.383726 + 0.221544i
\(587\) 28.7712 1.18752 0.593758 0.804644i \(-0.297644\pi\)
0.593758 + 0.804644i \(0.297644\pi\)
\(588\) 0 0
\(589\) −32.5638 −1.34177
\(590\) −4.09601 2.36483i −0.168630 0.0973585i
\(591\) 0 0
\(592\) 4.13166 + 7.15624i 0.169810 + 0.294120i
\(593\) −5.29159 + 9.16531i −0.217300 + 0.376374i −0.953982 0.299865i \(-0.903058\pi\)
0.736682 + 0.676240i \(0.236392\pi\)
\(594\) 0 0
\(595\) −9.73317 + 2.14201i −0.399021 + 0.0878137i
\(596\) 7.96986i 0.326458i
\(597\) 0 0
\(598\) −8.43972 + 4.87268i −0.345126 + 0.199259i
\(599\) −15.7553 + 9.09634i −0.643745 + 0.371666i −0.786056 0.618156i \(-0.787880\pi\)
0.142311 + 0.989822i \(0.454547\pi\)
\(600\) 0 0
\(601\) 26.4101i 1.07729i −0.842532 0.538646i \(-0.818936\pi\)
0.842532 0.538646i \(-0.181064\pi\)
\(602\) −3.59002 1.13804i −0.146318 0.0463829i
\(603\) 0 0
\(604\) −14.3593 + 24.8711i −0.584272 + 1.01199i
\(605\) −9.12241 15.8005i −0.370879 0.642381i
\(606\) 0 0
\(607\) −21.6312 12.4888i −0.877983 0.506904i −0.00799043 0.999968i \(-0.502543\pi\)
−0.869993 + 0.493064i \(0.835877\pi\)
\(608\) 25.5247 1.03516
\(609\) 0 0
\(610\) 8.71358 0.352802
\(611\) 7.64450 + 4.41355i 0.309263 + 0.178553i
\(612\) 0 0
\(613\) 7.05631 + 12.2219i 0.285002 + 0.493637i 0.972610 0.232445i \(-0.0746725\pi\)
−0.687608 + 0.726082i \(0.741339\pi\)
\(614\) 1.04186 1.80455i 0.0420460 0.0728258i
\(615\) 0 0
\(616\) 9.79904 + 10.7270i 0.394815 + 0.432205i
\(617\) 14.6265i 0.588840i 0.955676 + 0.294420i \(0.0951264\pi\)
−0.955676 + 0.294420i \(0.904874\pi\)
\(618\) 0 0
\(619\) −22.9880 + 13.2721i −0.923965 + 0.533452i −0.884898 0.465785i \(-0.845772\pi\)
−0.0390674 + 0.999237i \(0.512439\pi\)
\(620\) −32.9343 + 19.0146i −1.32267 + 0.763645i
\(621\) 0 0
\(622\) 16.5036i 0.661734i
\(623\) 5.97282 18.8417i 0.239296 0.754878i
\(624\) 0 0
\(625\) 9.60503 16.6364i 0.384201 0.665456i
\(626\) 6.12105 + 10.6020i 0.244646 + 0.423740i
\(627\) 0 0
\(628\) −4.50000 2.59808i −0.179570 0.103675i
\(629\) −5.87738 −0.234347
\(630\) 0 0
\(631\) −8.20304 −0.326558 −0.163279 0.986580i \(-0.552207\pi\)
−0.163279 + 0.986580i \(0.552207\pi\)
\(632\) −2.50264 1.44490i −0.0995495 0.0574749i
\(633\) 0 0
\(634\) −2.62308 4.54331i −0.104176 0.180438i
\(635\) 29.3227 50.7885i 1.16364 2.01548i
\(636\) 0 0
\(637\) 4.64321 + 10.0383i 0.183971 + 0.397734i
\(638\) 5.62648i 0.222755i
\(639\) 0 0
\(640\) 31.8382 18.3818i 1.25852 0.726604i
\(641\) −13.8996 + 8.02496i −0.549003 + 0.316967i −0.748720 0.662887i \(-0.769331\pi\)
0.199717 + 0.979854i \(0.435998\pi\)
\(642\) 0 0
\(643\) 26.4101i 1.04151i 0.853705 + 0.520757i \(0.174350\pi\)
−0.853705 + 0.520757i \(0.825650\pi\)
\(644\) −8.38002 38.0784i −0.330219 1.50050i
\(645\) 0 0
\(646\) −1.66134 + 2.87753i −0.0653646 + 0.113215i
\(647\) −15.8508 27.4543i −0.623158 1.07934i −0.988894 0.148623i \(-0.952516\pi\)
0.365736 0.930719i \(-0.380817\pi\)
\(648\) 0 0
\(649\) 4.41355 + 2.54817i 0.173247 + 0.100024i
\(650\) −6.19360 −0.242933
\(651\) 0 0
\(652\) −3.59808 −0.140912
\(653\) 11.5096 + 6.64506i 0.450405 + 0.260041i 0.708001 0.706211i \(-0.249597\pi\)
−0.257596 + 0.966253i \(0.582930\pi\)
\(654\) 0 0
\(655\) 22.5297 + 39.0226i 0.880308 + 1.52474i
\(656\) −7.71155 + 13.3568i −0.301085 + 0.521495i
\(657\) 0 0
\(658\) 7.16576 6.54585i 0.279351 0.255184i
\(659\) 36.2125i 1.41064i 0.708890 + 0.705319i \(0.249196\pi\)
−0.708890 + 0.705319i \(0.750804\pi\)
\(660\) 0 0
\(661\) 43.9880 25.3965i 1.71093 0.987809i 0.777630 0.628722i \(-0.216422\pi\)
0.933304 0.359087i \(-0.116912\pi\)
\(662\) −5.08070 + 2.93334i −0.197467 + 0.114008i
\(663\) 0 0
\(664\) 2.43121i 0.0943491i
\(665\) 28.7869 26.2965i 1.11631 1.01973i
\(666\) 0 0
\(667\) 17.1739 29.7460i 0.664975 1.15177i
\(668\) −2.09059 3.62101i −0.0808874 0.140101i
\(669\) 0 0
\(670\) 20.2784 + 11.7077i 0.783422 + 0.452309i
\(671\) −9.38910 −0.362462
\(672\) 0 0
\(673\) 3.32865 0.128310 0.0641550 0.997940i \(-0.479565\pi\)
0.0641550 + 0.997940i \(0.479565\pi\)
\(674\) −2.41407 1.39376i −0.0929864 0.0536857i
\(675\) 0 0
\(676\) −8.23922 14.2707i −0.316893 0.548875i
\(677\) −9.96901 + 17.2668i −0.383140 + 0.663618i −0.991509 0.130036i \(-0.958491\pi\)
0.608369 + 0.793654i \(0.291824\pi\)
\(678\) 0 0
\(679\) −7.70655 35.0182i −0.295750 1.34388i
\(680\) 8.82710i 0.338504i
\(681\) 0 0
\(682\) −9.75267 + 5.63070i −0.373449 + 0.215611i
\(683\) 24.8234 14.3318i 0.949843 0.548392i 0.0568107 0.998385i \(-0.481907\pi\)
0.893032 + 0.449993i \(0.148574\pi\)
\(684\) 0 0
\(685\) 33.6512i 1.28574i
\(686\) 12.0640 1.53135i 0.460605 0.0584670i
\(687\) 0 0
\(688\) 1.73317 3.00195i 0.0660766 0.114448i
\(689\) −7.93958 13.7518i −0.302474 0.523900i
\(690\) 0 0
\(691\) −17.6387 10.1837i −0.671007 0.387406i 0.125451 0.992100i \(-0.459962\pi\)
−0.796458 + 0.604694i \(0.793296\pi\)
\(692\) 4.02458 0.152991
\(693\) 0 0
\(694\) −1.72460 −0.0654650
\(695\) 11.0564 + 6.38341i 0.419393 + 0.242137i
\(696\) 0 0
\(697\) −5.48493 9.50018i −0.207757 0.359845i
\(698\) 10.6674 18.4764i 0.403766 0.699343i
\(699\) 0 0
\(700\) 7.48791 23.6212i 0.283017 0.892797i
\(701\) 49.1172i 1.85513i −0.373659 0.927566i \(-0.621897\pi\)
0.373659 0.927566i \(-0.378103\pi\)
\(702\) 0 0
\(703\) 19.9131 11.4968i 0.751037 0.433611i
\(704\) 1.15444 0.666515i 0.0435095 0.0251202i
\(705\) 0 0
\(706\) 15.3545i 0.577876i
\(707\) −24.4544 26.7703i −0.919704 1.00680i
\(708\) 0 0
\(709\) −11.6829 + 20.2354i −0.438761 + 0.759956i −0.997594 0.0693240i \(-0.977916\pi\)
0.558833 + 0.829280i \(0.311249\pi\)
\(710\) 6.95201 + 12.0412i 0.260904 + 0.451900i
\(711\) 0 0
\(712\) −15.1613 8.75340i −0.568195 0.328048i
\(713\) 68.7471 2.57460
\(714\) 0 0
\(715\) 12.2633 0.458622
\(716\) −18.7992 10.8537i −0.702559 0.405623i
\(717\) 0 0
\(718\) −7.00956 12.1409i −0.261594 0.453095i
\(719\) −6.33345 + 10.9699i −0.236198 + 0.409107i −0.959620 0.281299i \(-0.909235\pi\)
0.723422 + 0.690406i \(0.242568\pi\)
\(720\) 0 0
\(721\) −12.3382 3.91121i −0.459499 0.145661i
\(722\) 0.523303i 0.0194753i
\(723\) 0 0
\(724\) 6.44018 3.71824i 0.239347 0.138187i
\(725\) 18.9049 10.9148i 0.702111 0.405364i
\(726\) 0 0
\(727\) 2.70398i 0.100285i 0.998742 + 0.0501426i \(0.0159676\pi\)
−0.998742 + 0.0501426i \(0.984032\pi\)
\(728\) 9.56723 2.10549i 0.354585 0.0780345i
\(729\) 0 0
\(730\) −11.6166 + 20.1205i −0.429949 + 0.744694i
\(731\) 1.23274 + 2.13517i 0.0455946 + 0.0789721i
\(732\) 0 0
\(733\) 18.8869 + 10.9044i 0.697605 + 0.402762i 0.806455 0.591296i \(-0.201384\pi\)
−0.108850 + 0.994058i \(0.534717\pi\)
\(734\) −10.1927 −0.376218
\(735\) 0 0
\(736\) −53.8865 −1.98628
\(737\) −21.8505 12.6154i −0.804873 0.464694i
\(738\) 0 0
\(739\) −16.0633 27.8225i −0.590899 1.02347i −0.994112 0.108361i \(-0.965440\pi\)
0.403212 0.915107i \(-0.367894\pi\)
\(740\) 13.4264 23.2553i 0.493566 0.854881i
\(741\) 0 0
\(742\) −17.0513 + 3.75251i −0.625971 + 0.137759i
\(743\) 41.2728i 1.51415i 0.653328 + 0.757075i \(0.273372\pi\)
−0.653328 + 0.757075i \(0.726628\pi\)
\(744\) 0 0
\(745\) −14.5714 + 8.41279i −0.533854 + 0.308221i
\(746\) −13.2796 + 7.66697i −0.486200 + 0.280708i
\(747\) 0 0
\(748\) 4.18118i 0.152879i
\(749\) 6.18810 + 1.96163i 0.226108 + 0.0716763i
\(750\) 0 0
\(751\) −22.9045 + 39.6718i −0.835798 + 1.44764i 0.0575810 + 0.998341i \(0.481661\pi\)
−0.893379 + 0.449304i \(0.851672\pi\)
\(752\) 4.46652 + 7.73623i 0.162877 + 0.282111i
\(753\) 0 0
\(754\) 3.28541 + 1.89683i 0.119648 + 0.0690785i
\(755\) 60.6294 2.20653
\(756\) 0 0
\(757\) 50.3427 1.82974 0.914868 0.403752i \(-0.132294\pi\)
0.914868 + 0.403752i \(0.132294\pi\)
\(758\) −1.44364 0.833485i −0.0524353 0.0302735i
\(759\) 0 0
\(760\) −17.2668 29.9070i −0.626334 1.08484i
\(761\) 15.1823 26.2965i 0.550358 0.953248i −0.447891 0.894088i \(-0.647825\pi\)
0.998249 0.0591594i \(-0.0188420\pi\)
\(762\) 0 0
\(763\) 7.73669 + 8.46937i 0.280087 + 0.306612i
\(764\) 13.0895i 0.473562i
\(765\) 0 0
\(766\) 9.21448 5.31999i 0.332933 0.192219i
\(767\) 2.97584 1.71810i 0.107452 0.0620372i
\(768\) 0 0
\(769\) 41.3383i 1.49070i −0.666675 0.745349i \(-0.732283\pi\)
0.666675 0.745349i \(-0.267717\pi\)
\(770\) 4.07449 12.8533i 0.146834 0.463200i
\(771\) 0 0
\(772\) 13.9975 24.2443i 0.503780 0.872573i
\(773\) 6.99754 + 12.1201i 0.251684 + 0.435930i 0.963990 0.265940i \(-0.0856823\pi\)
−0.712305 + 0.701870i \(0.752349\pi\)
\(774\) 0 0
\(775\) 37.8382 + 21.8459i 1.35919 + 0.784728i
\(776\) −31.7583 −1.14006
\(777\) 0 0
\(778\) −14.6643 −0.525741
\(779\) 37.1669 + 21.4583i 1.33164 + 0.768824i
\(780\) 0 0
\(781\) −7.49097 12.9747i −0.268048 0.464273i
\(782\) 3.50734 6.07489i 0.125422 0.217238i
\(783\) 0 0
\(784\) −1.01001 + 11.1473i −0.0360718 + 0.398116i
\(785\) 10.9699i 0.391531i
\(786\) 0 0
\(787\) 11.6799 6.74341i 0.416344 0.240377i −0.277168 0.960822i \(-0.589396\pi\)
0.693512 + 0.720445i \(0.256062\pi\)
\(788\) −20.5297 + 11.8528i −0.731340 + 0.422239i
\(789\) 0 0
\(790\) 2.68188i 0.0954170i
\(791\) −4.07161 18.5012i −0.144770 0.657827i
\(792\) 0 0
\(793\) −3.16531 + 5.48248i −0.112403 + 0.194688i
\(794\) −10.7329 18.5900i −0.380897 0.659733i
\(795\) 0 0
\(796\) 11.7664 + 6.79332i 0.417048 + 0.240783i
\(797\) 8.31735 0.294616 0.147308 0.989091i \(-0.452939\pi\)
0.147308 + 0.989091i \(0.452939\pi\)
\(798\) 0 0
\(799\) −6.35373 −0.224779
\(800\) −29.6590 17.1236i −1.04860 0.605411i
\(801\) 0 0
\(802\) 9.49702 + 16.4493i 0.335351 + 0.580846i
\(803\) 12.5172 21.6804i 0.441721 0.765084i
\(804\) 0 0
\(805\) −60.7734 + 55.5159i −2.14198 + 1.95668i
\(806\) 7.59302i 0.267453i
\(807\) 0 0
\(808\) −27.8120 + 16.0573i −0.978424 + 0.564893i
\(809\) 12.5955 7.27200i 0.442833 0.255670i −0.261965 0.965077i \(-0.584371\pi\)
0.704799 + 0.709407i \(0.251037\pi\)
\(810\) 0 0
\(811\) 41.8287i 1.46880i 0.678715 + 0.734401i \(0.262537\pi\)
−0.678715 + 0.734401i \(0.737463\pi\)
\(812\) −11.2061 + 10.2367i −0.393258 + 0.359237i
\(813\) 0 0
\(814\) 3.97590 6.88647i 0.139355 0.241371i
\(815\) 3.79804 + 6.57841i 0.133040 + 0.230432i
\(816\) 0 0
\(817\) −8.35327 4.82277i −0.292244 0.168727i
\(818\) −0.689991 −0.0241250
\(819\) 0 0
\(820\) 50.1196 1.75025
\(821\) −40.2553 23.2414i −1.40492 0.811131i −0.410027 0.912073i \(-0.634481\pi\)
−0.994892 + 0.100942i \(0.967814\pi\)
\(822\) 0 0
\(823\) −3.86834 6.70017i −0.134842 0.233553i 0.790695 0.612210i \(-0.209719\pi\)
−0.925537 + 0.378657i \(0.876386\pi\)
\(824\) −5.73203 + 9.92817i −0.199685 + 0.345864i
\(825\) 0 0
\(826\) −0.812034 3.68985i −0.0282543 0.128386i
\(827\) 20.8898i 0.726409i 0.931709 + 0.363205i \(0.118317\pi\)
−0.931709 + 0.363205i \(0.881683\pi\)
\(828\) 0 0
\(829\) 41.2282 23.8031i 1.43191 0.826716i 0.434647 0.900601i \(-0.356873\pi\)
0.997267 + 0.0738846i \(0.0235396\pi\)
\(830\) −1.95400 + 1.12814i −0.0678243 + 0.0391584i
\(831\) 0 0
\(832\) 0.898798i 0.0311602i
\(833\) −6.50720 4.58645i −0.225461 0.158911i
\(834\) 0 0
\(835\) −4.41355 + 7.64450i −0.152737 + 0.264549i
\(836\) 8.17887 + 14.1662i 0.282872 + 0.489949i
\(837\) 0 0
\(838\) −1.77487 1.02472i −0.0613118 0.0353984i
\(839\) 22.4035 0.773455 0.386727 0.922194i \(-0.373605\pi\)
0.386727 + 0.922194i \(0.373605\pi\)
\(840\) 0 0
\(841\) 15.6291 0.538935
\(842\) 4.95098 + 2.85845i 0.170622 + 0.0985087i
\(843\) 0 0
\(844\) 11.4376 + 19.8106i 0.393700 + 0.681909i
\(845\) −17.3942 + 30.1277i −0.598380 + 1.03642i
\(846\) 0 0
\(847\) 4.40407 13.8930i 0.151326 0.477368i
\(848\) 16.0697i 0.551836i
\(849\) 0 0
\(850\) 3.86086 2.22907i 0.132426 0.0764565i
\(851\) −42.0396 + 24.2715i −1.44110 + 0.832018i
\(852\) 0 0
\(853\) 48.4273i 1.65812i −0.559160 0.829060i \(-0.688876\pi\)
0.559160 0.829060i \(-0.311124\pi\)
\(854\) 4.69455 + 5.13914i 0.160644 + 0.175858i
\(855\) 0 0
\(856\) 2.87484 4.97937i 0.0982600 0.170191i
\(857\) −24.5327 42.4920i −0.838023 1.45150i −0.891546 0.452931i \(-0.850378\pi\)
0.0535230 0.998567i \(-0.482955\pi\)
\(858\) 0 0
\(859\) −10.4136 6.01227i −0.355306 0.205136i 0.311714 0.950176i \(-0.399097\pi\)
−0.667020 + 0.745040i \(0.732430\pi\)
\(860\) −11.2644 −0.384113
\(861\) 0 0
\(862\) 17.9146 0.610175
\(863\) 39.8804 + 23.0250i 1.35754 + 0.783779i 0.989292 0.145947i \(-0.0466229\pi\)
0.368252 + 0.929726i \(0.379956\pi\)
\(864\) 0 0
\(865\) −4.24824 7.35817i −0.144445 0.250185i
\(866\) 4.22572 7.31917i 0.143596 0.248715i
\(867\) 0 0
\(868\) −28.9583 9.17978i −0.982909 0.311582i
\(869\) 2.88979i 0.0980296i
\(870\) 0 0
\(871\) −14.7327 + 8.50594i −0.499199 + 0.288213i
\(872\) 8.79893 5.08007i 0.297970 0.172033i
\(873\) 0 0
\(874\) 27.4430i 0.928275i
\(875\) −8.30021 + 1.82665i −0.280598 + 0.0617520i
\(876\) 0 0
\(877\) −6.73669 + 11.6683i −0.227482 + 0.394010i −0.957061 0.289886i \(-0.906383\pi\)
0.729579 + 0.683896i \(0.239716\pi\)
\(878\) −6.05551 10.4884i −0.204363 0.353968i
\(879\) 0 0
\(880\) 10.7478 + 6.20524i 0.362308 + 0.209179i
\(881\) −25.5247 −0.859949 −0.429974 0.902841i \(-0.641477\pi\)
−0.429974 + 0.902841i \(0.641477\pi\)
\(882\) 0 0
\(883\) 6.45532 0.217239 0.108619 0.994083i \(-0.465357\pi\)
0.108619 + 0.994083i \(0.465357\pi\)
\(884\) −2.44147 1.40958i −0.0821156 0.0474094i
\(885\) 0 0
\(886\) −0.942252 1.63203i −0.0316556 0.0548291i
\(887\) −16.5604 + 28.6834i −0.556043 + 0.963096i 0.441778 + 0.897124i \(0.354348\pi\)
−0.997822 + 0.0659712i \(0.978985\pi\)
\(888\) 0 0
\(889\) 45.7523 10.0688i 1.53448 0.337698i
\(890\) 16.2472i 0.544608i
\(891\) 0 0
\(892\) −14.3790 + 8.30171i −0.481444 + 0.277962i
\(893\) 21.5270 12.4286i 0.720374 0.415908i
\(894\) 0 0
\(895\) 45.8277i 1.53185i
\(896\) 27.9946 + 8.87427i 0.935232 + 0.296469i
\(897\) 0 0
\(898\) −0.596459 + 1.03310i −0.0199041 + 0.0344749i
\(899\) −13.3809 23.1764i −0.446278 0.772977i
\(900\) 0 0
\(901\) 9.89848 + 5.71489i 0.329766 + 0.190391i
\(902\) 14.8417 0.494174
\(903\) 0 0
\(904\) −16.7789 −0.558058
\(905\) −13.5962 7.84976i −0.451952 0.260935i
\(906\) 0 0
\(907\) −3.10756 5.38245i −0.103185 0.178721i 0.809810 0.586692i \(-0.199570\pi\)
−0.912995 + 0.407970i \(0.866237\pi\)
\(908\) 5.27446 9.13562i 0.175039 0.303176i
\(909\) 0 0
\(910\) −6.13166 6.71234i −0.203262 0.222512i
\(911\) 18.0475i 0.597941i 0.954262 + 0.298970i \(0.0966432\pi\)
−0.954262 + 0.298970i \(0.903357\pi\)
\(912\) 0 0
\(913\) 2.10549 1.21560i 0.0696814 0.0402306i
\(914\) 3.50047 2.02100i 0.115785 0.0668486i
\(915\) 0 0
\(916\) 19.2389i 0.635670i
\(917\) −10.8768 + 34.3116i −0.359182 + 1.13307i
\(918\) 0 0
\(919\) 4.12913 7.15186i 0.136207 0.235918i −0.789851 0.613299i \(-0.789842\pi\)
0.926058 + 0.377381i \(0.123175\pi\)
\(920\) 36.4529 + 63.1382i 1.20182 + 2.08161i
\(921\) 0 0
\(922\) −9.69590 5.59793i −0.319318 0.184358i
\(923\) −10.1016 −0.332498
\(924\) 0 0
\(925\) −30.8513 −1.01438
\(926\) −16.7258 9.65662i −0.549642 0.317336i
\(927\) 0 0
\(928\) 10.4884 + 18.1665i 0.344300 + 0.596345i
\(929\) −17.3855 + 30.1125i −0.570399 + 0.987960i 0.426126 + 0.904664i \(0.359878\pi\)
−0.996525 + 0.0832958i \(0.973455\pi\)
\(930\) 0 0
\(931\) 31.0186 + 2.81048i 1.01659 + 0.0921097i
\(932\) 8.82710i 0.289141i
\(933\) 0 0
\(934\) −15.4207 + 8.90314i −0.504580 + 0.291320i
\(935\) −7.64450 + 4.41355i −0.250002 + 0.144339i
\(936\) 0 0
\(937\) 51.0703i 1.66839i −0.551466 0.834197i \(-0.685931\pi\)
0.551466 0.834197i \(-0.314069\pi\)
\(938\) 4.02020 + 18.2676i 0.131264 + 0.596458i
\(939\) 0 0
\(940\) 14.5146 25.1401i 0.473415 0.819978i
\(941\) 1.73872 + 3.01156i 0.0566807 + 0.0981739i 0.892974 0.450109i \(-0.148615\pi\)
−0.836293 + 0.548283i \(0.815282\pi\)
\(942\) 0 0
\(943\) −78.4649 45.3017i −2.55517 1.47523i
\(944\) 3.47744 0.113181
\(945\) 0 0
\(946\) −3.33568 −0.108452
\(947\) −12.4189 7.17003i −0.403559 0.232995i 0.284460 0.958688i \(-0.408186\pi\)
−0.688018 + 0.725693i \(0.741519\pi\)
\(948\) 0 0
\(949\) −8.43972 14.6180i −0.273965 0.474521i
\(950\) −8.72063 + 15.1046i −0.282935 + 0.490057i
\(951\) 0 0
\(952\) −5.20609 + 4.75572i −0.168730 + 0.154134i
\(953\) 7.53697i 0.244147i 0.992521 + 0.122073i \(0.0389543\pi\)
−0.992521 + 0.122073i \(0.961046\pi\)
\(954\) 0 0
\(955\) −23.9317 + 13.8170i −0.774411 + 0.447106i
\(956\) −21.6836 + 12.5190i −0.701298 + 0.404895i
\(957\) 0 0
\(958\) 14.1547i 0.457318i
\(959\) −19.8470 + 18.1300i −0.640892 + 0.585448i
\(960\) 0 0
\(961\) 11.2819 19.5408i 0.363932 0.630349i
\(962\) −2.68076 4.64321i −0.0864312 0.149703i
\(963\) 0 0
\(964\) 6.23363 + 3.59899i 0.200772 + 0.115916i
\(965\) −59.1015 −1.90255
\(966\) 0 0
\(967\) −11.6161 −0.373550 −0.186775 0.982403i \(-0.559803\pi\)
−0.186775 + 0.982403i \(0.559803\pi\)
\(968\) −11.1792 6.45434i −0.359314 0.207450i
\(969\) 0 0
\(970\) 14.7367 + 25.5247i 0.473167 + 0.819548i
\(971\) −17.7476 + 30.7397i −0.569548 + 0.986485i 0.427063 + 0.904222i \(0.359548\pi\)
−0.996611 + 0.0822636i \(0.973785\pi\)
\(972\) 0 0
\(973\) 2.19193 + 9.96004i 0.0702702 + 0.319304i
\(974\) 9.57414i 0.306775i
\(975\) 0 0
\(976\) −5.54827 + 3.20329i −0.177596 + 0.102535i
\(977\) 27.7210 16.0047i 0.886873 0.512036i 0.0139546 0.999903i \(-0.495558\pi\)
0.872918 + 0.487866i \(0.162225\pi\)
\(978\) 0 0
\(979\) 17.5068i 0.559520i
\(980\) 33.0126 15.2699i 1.05455 0.487779i
\(981\) 0 0
\(982\) −0.0929453 + 0.160986i −0.00296600 + 0.00513727i
\(983\) 24.7324 + 42.8378i 0.788841 + 1.36631i 0.926678 + 0.375857i \(0.122652\pi\)
−0.137837 + 0.990455i \(0.544015\pi\)
\(984\) 0 0
\(985\) 43.3413 + 25.0231i 1.38097 + 0.797302i
\(986\) −2.73067 −0.0869623
\(987\) 0 0
\(988\) 11.0292 0.350887
\(989\) 17.6350 + 10.1816i 0.560761 + 0.323756i
\(990\) 0 0
\(991\) −8.97590 15.5467i −0.285129 0.493858i 0.687511 0.726174i \(-0.258703\pi\)
−0.972640 + 0.232316i \(0.925370\pi\)
\(992\) −20.9926 + 36.3603i −0.666517 + 1.15444i
\(993\) 0 0
\(994\) −3.35626 + 10.5876i −0.106454 + 0.335817i
\(995\) 28.6834i 0.909326i
\(996\) 0 0
\(997\) −29.0151 + 16.7519i −0.918916 + 0.530537i −0.883289 0.468828i \(-0.844676\pi\)
−0.0356272 + 0.999365i \(0.511343\pi\)
\(998\) 6.99754 4.04003i 0.221503 0.127885i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 189.2.p.d.26.3 12
3.2 odd 2 inner 189.2.p.d.26.4 yes 12
7.2 even 3 1323.2.c.d.1322.8 12
7.3 odd 6 inner 189.2.p.d.80.4 yes 12
7.5 odd 6 1323.2.c.d.1322.7 12
9.2 odd 6 567.2.i.f.215.3 12
9.4 even 3 567.2.s.f.26.4 12
9.5 odd 6 567.2.s.f.26.3 12
9.7 even 3 567.2.i.f.215.4 12
21.2 odd 6 1323.2.c.d.1322.5 12
21.5 even 6 1323.2.c.d.1322.6 12
21.17 even 6 inner 189.2.p.d.80.3 yes 12
63.31 odd 6 567.2.i.f.269.4 12
63.38 even 6 567.2.s.f.458.4 12
63.52 odd 6 567.2.s.f.458.3 12
63.59 even 6 567.2.i.f.269.3 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
189.2.p.d.26.3 12 1.1 even 1 trivial
189.2.p.d.26.4 yes 12 3.2 odd 2 inner
189.2.p.d.80.3 yes 12 21.17 even 6 inner
189.2.p.d.80.4 yes 12 7.3 odd 6 inner
567.2.i.f.215.3 12 9.2 odd 6
567.2.i.f.215.4 12 9.7 even 3
567.2.i.f.269.3 12 63.59 even 6
567.2.i.f.269.4 12 63.31 odd 6
567.2.s.f.26.3 12 9.5 odd 6
567.2.s.f.26.4 12 9.4 even 3
567.2.s.f.458.3 12 63.52 odd 6
567.2.s.f.458.4 12 63.38 even 6
1323.2.c.d.1322.5 12 21.2 odd 6
1323.2.c.d.1322.6 12 21.5 even 6
1323.2.c.d.1322.7 12 7.5 odd 6
1323.2.c.d.1322.8 12 7.2 even 3