Properties

Label 189.2.p.d.80.4
Level $189$
Weight $2$
Character 189.80
Analytic conductor $1.509$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [189,2,Mod(26,189)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(189, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 5]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("189.26");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 189 = 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 189.p (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.50917259820\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{6})\)
Coefficient field: 12.0.13026266817859584.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 9x^{10} + 59x^{8} - 180x^{6} + 403x^{4} - 198x^{2} + 81 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 3^{4} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 80.4
Root \(-1.65604 + 0.956115i\) of defining polynomial
Character \(\chi\) \(=\) 189.80
Dual form 189.2.p.d.26.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.568650 - 0.328310i) q^{2} +(-0.784425 + 1.35866i) q^{4} +(1.65604 + 2.86834i) q^{5} +(-2.58392 - 0.568650i) q^{7} +2.34338i q^{8} +(1.88341 + 1.08739i) q^{10} +(2.02943 + 1.17169i) q^{11} -1.58003i q^{13} +(-1.65604 + 0.524964i) q^{14} +(-0.799494 - 1.38476i) q^{16} +(0.568650 - 0.984931i) q^{17} +(3.85327 - 2.22469i) q^{19} -5.19615 q^{20} +1.53871 q^{22} +(8.13484 - 4.69665i) q^{23} +(-2.98493 + 5.17005i) q^{25} +(-0.518739 - 0.898482i) q^{26} +(2.79949 - 3.06461i) q^{28} +3.65662i q^{29} +(-6.33821 - 3.65936i) q^{31} +(-4.96812 - 2.86834i) q^{32} -0.746774i q^{34} +(-2.64799 - 8.35327i) q^{35} +(2.58392 + 4.47548i) q^{37} +(1.46078 - 2.53014i) q^{38} +(-6.72162 + 3.88073i) q^{40} -9.64553 q^{41} -2.16784 q^{43} +(-3.18386 + 1.83821i) q^{44} +(3.08392 - 5.34150i) q^{46} +(-2.79334 - 4.83821i) q^{47} +(6.35327 + 2.93869i) q^{49} +3.91993i q^{50} +(2.14673 + 1.23941i) q^{52} +(8.70349 + 5.02496i) q^{53} +7.76146i q^{55} +(1.33256 - 6.05510i) q^{56} +(1.20051 + 2.07934i) q^{58} +(1.08739 - 1.88341i) q^{59} +(3.46986 - 2.00333i) q^{61} -4.80563 q^{62} -0.568850 q^{64} +(4.53206 - 2.61659i) q^{65} +(5.38341 - 9.32435i) q^{67} +(0.892126 + 1.54521i) q^{68} +(-4.24824 - 3.88073i) q^{70} +6.39331i q^{71} +(-9.25176 - 5.34150i) q^{73} +(2.93869 + 1.69665i) q^{74} +6.98041i q^{76} +(-4.57759 - 4.18158i) q^{77} +(-0.616587 - 1.06796i) q^{79} +(2.64799 - 4.58645i) q^{80} +(-5.48493 + 3.16673i) q^{82} +1.03748 q^{83} +3.76683 q^{85} +(-1.23274 + 0.711723i) q^{86} +(-2.74571 + 4.75572i) q^{88} +(3.73538 + 6.46986i) q^{89} +(-0.898482 + 4.08266i) q^{91} +14.7367i q^{92} +(-3.17686 - 1.83416i) q^{94} +(12.7623 + 7.36834i) q^{95} -13.5524i q^{97} +(4.57759 - 0.414758i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 8 q^{4} - 8 q^{7} - 6 q^{10} - 4 q^{16} - 6 q^{19} - 40 q^{22} - 24 q^{25} + 28 q^{28} - 12 q^{31} + 8 q^{37} + 12 q^{40} + 20 q^{43} + 14 q^{46} + 24 q^{49} + 78 q^{52} + 20 q^{58} + 18 q^{61} + 28 q^{64}+ \cdots - 114 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/189\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(136\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.568650 0.328310i 0.402096 0.232150i −0.285292 0.958441i \(-0.592091\pi\)
0.687388 + 0.726290i \(0.258757\pi\)
\(3\) 0 0
\(4\) −0.784425 + 1.35866i −0.392212 + 0.679332i
\(5\) 1.65604 + 2.86834i 0.740603 + 1.28276i 0.952221 + 0.305410i \(0.0987935\pi\)
−0.211618 + 0.977352i \(0.567873\pi\)
\(6\) 0 0
\(7\) −2.58392 0.568650i −0.976630 0.214929i
\(8\) 2.34338i 0.828510i
\(9\) 0 0
\(10\) 1.88341 + 1.08739i 0.595588 + 0.343863i
\(11\) 2.02943 + 1.17169i 0.611895 + 0.353278i 0.773707 0.633544i \(-0.218400\pi\)
−0.161812 + 0.986822i \(0.551734\pi\)
\(12\) 0 0
\(13\) 1.58003i 0.438221i −0.975700 0.219110i \(-0.929685\pi\)
0.975700 0.219110i \(-0.0703155\pi\)
\(14\) −1.65604 + 0.524964i −0.442595 + 0.140303i
\(15\) 0 0
\(16\) −0.799494 1.38476i −0.199874 0.346191i
\(17\) 0.568650 0.984931i 0.137918 0.238881i −0.788790 0.614662i \(-0.789292\pi\)
0.926708 + 0.375781i \(0.122626\pi\)
\(18\) 0 0
\(19\) 3.85327 2.22469i 0.884002 0.510379i 0.0120260 0.999928i \(-0.496172\pi\)
0.871976 + 0.489549i \(0.162839\pi\)
\(20\) −5.19615 −1.16190
\(21\) 0 0
\(22\) 1.53871 0.328054
\(23\) 8.13484 4.69665i 1.69623 0.979320i 0.746957 0.664872i \(-0.231514\pi\)
0.949275 0.314448i \(-0.101819\pi\)
\(24\) 0 0
\(25\) −2.98493 + 5.17005i −0.596986 + 1.03401i
\(26\) −0.518739 0.898482i −0.101733 0.176207i
\(27\) 0 0
\(28\) 2.79949 3.06461i 0.529055 0.579158i
\(29\) 3.65662i 0.679017i 0.940603 + 0.339509i \(0.110261\pi\)
−0.940603 + 0.339509i \(0.889739\pi\)
\(30\) 0 0
\(31\) −6.33821 3.65936i −1.13838 0.657241i −0.192347 0.981327i \(-0.561610\pi\)
−0.946028 + 0.324086i \(0.894943\pi\)
\(32\) −4.96812 2.86834i −0.878247 0.507056i
\(33\) 0 0
\(34\) 0.746774i 0.128071i
\(35\) −2.64799 8.35327i −0.447592 1.41196i
\(36\) 0 0
\(37\) 2.58392 + 4.47548i 0.424794 + 0.735764i 0.996401 0.0847630i \(-0.0270133\pi\)
−0.571607 + 0.820527i \(0.693680\pi\)
\(38\) 1.46078 2.53014i 0.236969 0.410443i
\(39\) 0 0
\(40\) −6.72162 + 3.88073i −1.06278 + 0.613597i
\(41\) −9.64553 −1.50638 −0.753189 0.657804i \(-0.771486\pi\)
−0.753189 + 0.657804i \(0.771486\pi\)
\(42\) 0 0
\(43\) −2.16784 −0.330592 −0.165296 0.986244i \(-0.552858\pi\)
−0.165296 + 0.986244i \(0.552858\pi\)
\(44\) −3.18386 + 1.83821i −0.479986 + 0.277120i
\(45\) 0 0
\(46\) 3.08392 5.34150i 0.454699 0.787562i
\(47\) −2.79334 4.83821i −0.407450 0.705725i 0.587153 0.809476i \(-0.300249\pi\)
−0.994603 + 0.103751i \(0.966915\pi\)
\(48\) 0 0
\(49\) 6.35327 + 2.93869i 0.907611 + 0.419813i
\(50\) 3.91993i 0.554362i
\(51\) 0 0
\(52\) 2.14673 + 1.23941i 0.297697 + 0.171876i
\(53\) 8.70349 + 5.02496i 1.19552 + 0.690232i 0.959552 0.281530i \(-0.0908418\pi\)
0.235964 + 0.971762i \(0.424175\pi\)
\(54\) 0 0
\(55\) 7.76146i 1.04655i
\(56\) 1.33256 6.05510i 0.178071 0.809147i
\(57\) 0 0
\(58\) 1.20051 + 2.07934i 0.157634 + 0.273030i
\(59\) 1.08739 1.88341i 0.141566 0.245200i −0.786521 0.617564i \(-0.788120\pi\)
0.928087 + 0.372365i \(0.121453\pi\)
\(60\) 0 0
\(61\) 3.46986 2.00333i 0.444270 0.256500i −0.261137 0.965302i \(-0.584097\pi\)
0.705407 + 0.708802i \(0.250764\pi\)
\(62\) −4.80563 −0.610315
\(63\) 0 0
\(64\) −0.568850 −0.0711062
\(65\) 4.53206 2.61659i 0.562133 0.324548i
\(66\) 0 0
\(67\) 5.38341 9.32435i 0.657689 1.13915i −0.323524 0.946220i \(-0.604868\pi\)
0.981213 0.192930i \(-0.0617990\pi\)
\(68\) 0.892126 + 1.54521i 0.108186 + 0.187384i
\(69\) 0 0
\(70\) −4.24824 3.88073i −0.507762 0.463836i
\(71\) 6.39331i 0.758746i 0.925244 + 0.379373i \(0.123860\pi\)
−0.925244 + 0.379373i \(0.876140\pi\)
\(72\) 0 0
\(73\) −9.25176 5.34150i −1.08284 0.625176i −0.151176 0.988507i \(-0.548306\pi\)
−0.931660 + 0.363331i \(0.881639\pi\)
\(74\) 2.93869 + 1.69665i 0.341616 + 0.197232i
\(75\) 0 0
\(76\) 6.98041i 0.800707i
\(77\) −4.57759 4.18158i −0.521665 0.476536i
\(78\) 0 0
\(79\) −0.616587 1.06796i −0.0693714 0.120155i 0.829253 0.558873i \(-0.188766\pi\)
−0.898625 + 0.438718i \(0.855433\pi\)
\(80\) 2.64799 4.58645i 0.296054 0.512780i
\(81\) 0 0
\(82\) −5.48493 + 3.16673i −0.605709 + 0.349706i
\(83\) 1.03748 0.113878 0.0569390 0.998378i \(-0.481866\pi\)
0.0569390 + 0.998378i \(0.481866\pi\)
\(84\) 0 0
\(85\) 3.76683 0.408570
\(86\) −1.23274 + 0.711723i −0.132930 + 0.0767471i
\(87\) 0 0
\(88\) −2.74571 + 4.75572i −0.292694 + 0.506961i
\(89\) 3.73538 + 6.46986i 0.395949 + 0.685804i 0.993222 0.116234i \(-0.0370823\pi\)
−0.597273 + 0.802038i \(0.703749\pi\)
\(90\) 0 0
\(91\) −0.898482 + 4.08266i −0.0941866 + 0.427979i
\(92\) 14.7367i 1.53641i
\(93\) 0 0
\(94\) −3.17686 1.83416i −0.327669 0.189180i
\(95\) 12.7623 + 7.36834i 1.30939 + 0.755976i
\(96\) 0 0
\(97\) 13.5524i 1.37603i −0.725695 0.688017i \(-0.758482\pi\)
0.725695 0.688017i \(-0.241518\pi\)
\(98\) 4.57759 0.414758i 0.462407 0.0418969i
\(99\) 0 0
\(100\) −4.68291 8.11103i −0.468291 0.811103i
\(101\) −6.85219 + 11.8683i −0.681819 + 1.18094i 0.292607 + 0.956233i \(0.405477\pi\)
−0.974425 + 0.224711i \(0.927856\pi\)
\(102\) 0 0
\(103\) 4.23669 2.44605i 0.417453 0.241017i −0.276534 0.961004i \(-0.589186\pi\)
0.693987 + 0.719987i \(0.255852\pi\)
\(104\) 3.70260 0.363070
\(105\) 0 0
\(106\) 6.59899 0.640950
\(107\) 2.12487 1.22679i 0.205419 0.118599i −0.393762 0.919213i \(-0.628827\pi\)
0.599180 + 0.800614i \(0.295493\pi\)
\(108\) 0 0
\(109\) −2.16784 + 3.75481i −0.207641 + 0.359645i −0.950971 0.309280i \(-0.899912\pi\)
0.743330 + 0.668925i \(0.233245\pi\)
\(110\) 2.54817 + 4.41355i 0.242958 + 0.420816i
\(111\) 0 0
\(112\) 1.27838 + 4.03275i 0.120796 + 0.381059i
\(113\) 7.16013i 0.673569i 0.941582 + 0.336784i \(0.109339\pi\)
−0.941582 + 0.336784i \(0.890661\pi\)
\(114\) 0 0
\(115\) 26.9432 + 15.5557i 2.51247 + 1.45058i
\(116\) −4.96812 2.86834i −0.461278 0.266319i
\(117\) 0 0
\(118\) 1.42800i 0.131458i
\(119\) −2.02943 + 2.22162i −0.186037 + 0.203655i
\(120\) 0 0
\(121\) −2.75429 4.77056i −0.250390 0.433688i
\(122\) 1.31542 2.27838i 0.119093 0.206275i
\(123\) 0 0
\(124\) 9.94369 5.74099i 0.892970 0.515556i
\(125\) −3.21226 −0.287313
\(126\) 0 0
\(127\) −17.7065 −1.57120 −0.785601 0.618733i \(-0.787646\pi\)
−0.785601 + 0.618733i \(0.787646\pi\)
\(128\) 9.61276 5.54993i 0.849656 0.490549i
\(129\) 0 0
\(130\) 1.71810 2.97584i 0.150688 0.260999i
\(131\) −6.80228 11.7819i −0.594318 1.02939i −0.993643 0.112579i \(-0.964089\pi\)
0.399325 0.916810i \(-0.369245\pi\)
\(132\) 0 0
\(133\) −11.2216 + 3.55725i −0.973038 + 0.308453i
\(134\) 7.06972i 0.610731i
\(135\) 0 0
\(136\) 2.30807 + 1.33256i 0.197915 + 0.114266i
\(137\) −8.79893 5.08007i −0.751744 0.434019i 0.0745799 0.997215i \(-0.476238\pi\)
−0.826324 + 0.563196i \(0.809572\pi\)
\(138\) 0 0
\(139\) 3.85463i 0.326945i 0.986548 + 0.163473i \(0.0522695\pi\)
−0.986548 + 0.163473i \(0.947730\pi\)
\(140\) 13.4264 + 2.95479i 1.13474 + 0.249725i
\(141\) 0 0
\(142\) 2.09899 + 3.63555i 0.176143 + 0.305089i
\(143\) 1.85130 3.20655i 0.154814 0.268145i
\(144\) 0 0
\(145\) −10.4884 + 6.05551i −0.871018 + 0.502882i
\(146\) −7.01468 −0.580539
\(147\) 0 0
\(148\) −8.10756 −0.666437
\(149\) −4.39947 + 2.54003i −0.360418 + 0.208088i −0.669264 0.743024i \(-0.733391\pi\)
0.308846 + 0.951112i \(0.400057\pi\)
\(150\) 0 0
\(151\) −9.15277 + 15.8531i −0.744842 + 1.29010i 0.205427 + 0.978672i \(0.434142\pi\)
−0.950269 + 0.311431i \(0.899192\pi\)
\(152\) 5.21329 + 9.02968i 0.422854 + 0.732404i
\(153\) 0 0
\(154\) −3.97590 0.874988i −0.320387 0.0705085i
\(155\) 24.2402i 1.94702i
\(156\) 0 0
\(157\) 2.86834 + 1.65604i 0.228919 + 0.132166i 0.610073 0.792345i \(-0.291140\pi\)
−0.381154 + 0.924511i \(0.624473\pi\)
\(158\) −0.701244 0.404864i −0.0557880 0.0322092i
\(159\) 0 0
\(160\) 19.0004i 1.50211i
\(161\) −23.6905 + 7.50989i −1.86708 + 0.591863i
\(162\) 0 0
\(163\) 1.14673 + 1.98619i 0.0898185 + 0.155570i 0.907434 0.420194i \(-0.138038\pi\)
−0.817616 + 0.575764i \(0.804705\pi\)
\(164\) 7.56619 13.1050i 0.590820 1.02333i
\(165\) 0 0
\(166\) 0.589962 0.340615i 0.0457899 0.0264368i
\(167\) −2.66513 −0.206234 −0.103117 0.994669i \(-0.532882\pi\)
−0.103117 + 0.994669i \(0.532882\pi\)
\(168\) 0 0
\(169\) 10.5035 0.807963
\(170\) 2.14201 1.23669i 0.164284 0.0948496i
\(171\) 0 0
\(172\) 1.70051 2.94536i 0.129662 0.224582i
\(173\) 1.28265 + 2.22162i 0.0975182 + 0.168907i 0.910657 0.413164i \(-0.135576\pi\)
−0.813139 + 0.582070i \(0.802243\pi\)
\(174\) 0 0
\(175\) 10.6528 11.6616i 0.805274 0.881535i
\(176\) 3.74704i 0.282444i
\(177\) 0 0
\(178\) 4.24824 + 2.45272i 0.318419 + 0.183839i
\(179\) −11.9828 6.91827i −0.895636 0.517096i −0.0198545 0.999803i \(-0.506320\pi\)
−0.875782 + 0.482707i \(0.839654\pi\)
\(180\) 0 0
\(181\) 4.74008i 0.352328i −0.984361 0.176164i \(-0.943631\pi\)
0.984361 0.176164i \(-0.0563688\pi\)
\(182\) 0.829458 + 2.61659i 0.0614835 + 0.193954i
\(183\) 0 0
\(184\) 11.0060 + 19.0630i 0.811376 + 1.40534i
\(185\) −8.55814 + 14.8231i −0.629207 + 1.08982i
\(186\) 0 0
\(187\) 2.30807 1.33256i 0.168783 0.0974466i
\(188\) 8.76466 0.639228
\(189\) 0 0
\(190\) 9.67641 0.702001
\(191\) −7.22558 + 4.17169i −0.522825 + 0.301853i −0.738090 0.674703i \(-0.764272\pi\)
0.215265 + 0.976556i \(0.430938\pi\)
\(192\) 0 0
\(193\) 8.92212 15.4536i 0.642229 1.11237i −0.342706 0.939443i \(-0.611343\pi\)
0.984934 0.172930i \(-0.0553233\pi\)
\(194\) −4.44938 7.70655i −0.319447 0.553298i
\(195\) 0 0
\(196\) −8.97636 + 6.32678i −0.641168 + 0.451913i
\(197\) 15.1102i 1.07656i −0.842767 0.538279i \(-0.819075\pi\)
0.842767 0.538279i \(-0.180925\pi\)
\(198\) 0 0
\(199\) −7.50000 4.33013i −0.531661 0.306955i 0.210032 0.977695i \(-0.432643\pi\)
−0.741693 + 0.670740i \(0.765977\pi\)
\(200\) −12.1154 6.99483i −0.856688 0.494609i
\(201\) 0 0
\(202\) 8.99858i 0.633138i
\(203\) 2.07934 9.44841i 0.145941 0.663148i
\(204\) 0 0
\(205\) −15.9734 27.6667i −1.11563 1.93233i
\(206\) 1.60613 2.78190i 0.111904 0.193824i
\(207\) 0 0
\(208\) −2.18797 + 1.26322i −0.151708 + 0.0875887i
\(209\) 10.4266 0.721222
\(210\) 0 0
\(211\) −14.5809 −1.00379 −0.501897 0.864928i \(-0.667364\pi\)
−0.501897 + 0.864928i \(0.667364\pi\)
\(212\) −13.6545 + 7.88341i −0.937793 + 0.541435i
\(213\) 0 0
\(214\) 0.805537 1.39523i 0.0550654 0.0953760i
\(215\) −3.59002 6.21810i −0.244838 0.424071i
\(216\) 0 0
\(217\) 14.2965 + 13.0597i 0.970510 + 0.886552i
\(218\) 2.84689i 0.192816i
\(219\) 0 0
\(220\) −10.5452 6.08828i −0.710958 0.410472i
\(221\) −1.55622 0.898482i −0.104683 0.0604385i
\(222\) 0 0
\(223\) 10.5832i 0.708703i 0.935112 + 0.354351i \(0.115298\pi\)
−0.935112 + 0.354351i \(0.884702\pi\)
\(224\) 11.2061 + 10.2367i 0.748741 + 0.683967i
\(225\) 0 0
\(226\) 2.35075 + 4.07161i 0.156369 + 0.270839i
\(227\) −3.36199 + 5.82314i −0.223143 + 0.386495i −0.955761 0.294145i \(-0.904965\pi\)
0.732618 + 0.680640i \(0.238298\pi\)
\(228\) 0 0
\(229\) −10.6201 + 6.13152i −0.701796 + 0.405182i −0.808016 0.589161i \(-0.799459\pi\)
0.106220 + 0.994343i \(0.466125\pi\)
\(230\) 20.4284 1.34701
\(231\) 0 0
\(232\) −8.56885 −0.562573
\(233\) 4.87268 2.81324i 0.319220 0.184302i −0.331825 0.943341i \(-0.607664\pi\)
0.651045 + 0.759039i \(0.274331\pi\)
\(234\) 0 0
\(235\) 9.25176 16.0245i 0.603518 1.04532i
\(236\) 1.70595 + 2.95479i 0.111048 + 0.192341i
\(237\) 0 0
\(238\) −0.424653 + 1.92960i −0.0275262 + 0.125078i
\(239\) 15.9595i 1.03234i −0.856488 0.516168i \(-0.827358\pi\)
0.856488 0.516168i \(-0.172642\pi\)
\(240\) 0 0
\(241\) −3.97338 2.29403i −0.255948 0.147771i 0.366537 0.930403i \(-0.380543\pi\)
−0.622485 + 0.782632i \(0.713877\pi\)
\(242\) −3.13245 1.80852i −0.201361 0.116256i
\(243\) 0 0
\(244\) 6.28583i 0.402409i
\(245\) 2.09209 + 23.0900i 0.133659 + 1.47516i
\(246\) 0 0
\(247\) −3.51507 6.08828i −0.223659 0.387388i
\(248\) 8.57528 14.8528i 0.544531 0.943155i
\(249\) 0 0
\(250\) −1.82665 + 1.05462i −0.115527 + 0.0666998i
\(251\) 13.8042 0.871314 0.435657 0.900113i \(-0.356516\pi\)
0.435657 + 0.900113i \(0.356516\pi\)
\(252\) 0 0
\(253\) 22.0121 1.38389
\(254\) −10.0688 + 5.81324i −0.631774 + 0.364755i
\(255\) 0 0
\(256\) 4.21305 7.29721i 0.263315 0.456076i
\(257\) 4.48215 + 7.76331i 0.279589 + 0.484262i 0.971283 0.237929i \(-0.0764685\pi\)
−0.691694 + 0.722191i \(0.743135\pi\)
\(258\) 0 0
\(259\) −4.13166 13.0336i −0.256729 0.809870i
\(260\) 8.21006i 0.509166i
\(261\) 0 0
\(262\) −7.73623 4.46652i −0.477946 0.275942i
\(263\) 24.7280 + 14.2767i 1.52479 + 0.880340i 0.999568 + 0.0293774i \(0.00935247\pi\)
0.525226 + 0.850963i \(0.323981\pi\)
\(264\) 0 0
\(265\) 33.2861i 2.04475i
\(266\) −5.21329 + 5.70700i −0.319647 + 0.349919i
\(267\) 0 0
\(268\) 8.44577 + 14.6285i 0.515907 + 0.893578i
\(269\) −11.9657 + 20.7251i −0.729559 + 1.26363i 0.227510 + 0.973776i \(0.426941\pi\)
−0.957070 + 0.289858i \(0.906392\pi\)
\(270\) 0 0
\(271\) 12.6467 7.30159i 0.768234 0.443540i −0.0640103 0.997949i \(-0.520389\pi\)
0.832244 + 0.554409i \(0.187056\pi\)
\(272\) −1.81853 −0.110265
\(273\) 0 0
\(274\) −6.67135 −0.403031
\(275\) −12.1154 + 6.99483i −0.730586 + 0.421804i
\(276\) 0 0
\(277\) −11.1915 + 19.3842i −0.672431 + 1.16468i 0.304782 + 0.952422i \(0.401416\pi\)
−0.977213 + 0.212262i \(0.931917\pi\)
\(278\) 1.26551 + 2.19193i 0.0759005 + 0.131463i
\(279\) 0 0
\(280\) 19.5749 6.20524i 1.16982 0.370834i
\(281\) 11.6067i 0.692397i −0.938161 0.346199i \(-0.887472\pi\)
0.938161 0.346199i \(-0.112528\pi\)
\(282\) 0 0
\(283\) −12.9849 7.49685i −0.771874 0.445642i 0.0616687 0.998097i \(-0.480358\pi\)
−0.833543 + 0.552455i \(0.813691\pi\)
\(284\) −8.68635 5.01507i −0.515440 0.297590i
\(285\) 0 0
\(286\) 2.43121i 0.143760i
\(287\) 24.9233 + 5.48493i 1.47117 + 0.323765i
\(288\) 0 0
\(289\) 7.85327 + 13.6023i 0.461957 + 0.800134i
\(290\) −3.97617 + 6.88693i −0.233489 + 0.404414i
\(291\) 0 0
\(292\) 14.5146 8.38002i 0.849404 0.490403i
\(293\) 16.3352 0.954314 0.477157 0.878818i \(-0.341667\pi\)
0.477157 + 0.878818i \(0.341667\pi\)
\(294\) 0 0
\(295\) 7.20304 0.419377
\(296\) −10.4877 + 6.05510i −0.609588 + 0.351946i
\(297\) 0 0
\(298\) −1.66784 + 2.88878i −0.0966153 + 0.167343i
\(299\) −7.42084 12.8533i −0.429158 0.743324i
\(300\) 0 0
\(301\) 5.60152 + 1.23274i 0.322866 + 0.0710540i
\(302\) 12.0198i 0.691661i
\(303\) 0 0
\(304\) −6.16134 3.55725i −0.353377 0.204022i
\(305\) 11.4925 + 6.63517i 0.658056 + 0.379929i
\(306\) 0 0
\(307\) 3.17340i 0.181115i −0.995891 0.0905577i \(-0.971135\pi\)
0.995891 0.0905577i \(-0.0288650\pi\)
\(308\) 9.27214 2.93927i 0.528329 0.167480i
\(309\) 0 0
\(310\) −7.95831 13.7842i −0.452001 0.782889i
\(311\) −12.5671 + 21.7668i −0.712614 + 1.23428i 0.251259 + 0.967920i \(0.419155\pi\)
−0.963873 + 0.266364i \(0.914178\pi\)
\(312\) 0 0
\(313\) −16.1463 + 9.32205i −0.912641 + 0.526914i −0.881280 0.472594i \(-0.843318\pi\)
−0.0313612 + 0.999508i \(0.509984\pi\)
\(314\) 2.17478 0.122730
\(315\) 0 0
\(316\) 1.93466 0.108833
\(317\) −6.91924 + 3.99483i −0.388623 + 0.224372i −0.681563 0.731759i \(-0.738700\pi\)
0.292940 + 0.956131i \(0.405366\pi\)
\(318\) 0 0
\(319\) −4.28442 + 7.42084i −0.239882 + 0.415487i
\(320\) −0.942037 1.63166i −0.0526615 0.0912124i
\(321\) 0 0
\(322\) −11.0060 + 12.0483i −0.613343 + 0.671428i
\(323\) 5.06028i 0.281561i
\(324\) 0 0
\(325\) 8.16882 + 4.71627i 0.453125 + 0.261612i
\(326\) 1.30417 + 0.752963i 0.0722313 + 0.0417028i
\(327\) 0 0
\(328\) 22.6031i 1.24805i
\(329\) 4.46652 + 14.0900i 0.246247 + 0.776805i
\(330\) 0 0
\(331\) 4.46733 + 7.73765i 0.245547 + 0.425299i 0.962285 0.272043i \(-0.0876992\pi\)
−0.716738 + 0.697342i \(0.754366\pi\)
\(332\) −0.813824 + 1.40958i −0.0446644 + 0.0773610i
\(333\) 0 0
\(334\) −1.51552 + 0.874988i −0.0829258 + 0.0478772i
\(335\) 35.6606 1.94835
\(336\) 0 0
\(337\) 4.24526 0.231254 0.115627 0.993293i \(-0.463112\pi\)
0.115627 + 0.993293i \(0.463112\pi\)
\(338\) 5.97282 3.44841i 0.324879 0.187569i
\(339\) 0 0
\(340\) −2.95479 + 5.11785i −0.160246 + 0.277554i
\(341\) −8.57528 14.8528i −0.464377 0.804325i
\(342\) 0 0
\(343\) −14.7453 11.2061i −0.796169 0.605074i
\(344\) 5.08007i 0.273899i
\(345\) 0 0
\(346\) 1.45876 + 0.842215i 0.0784234 + 0.0452778i
\(347\) −2.27460 1.31324i −0.122107 0.0704985i 0.437702 0.899120i \(-0.355792\pi\)
−0.559809 + 0.828621i \(0.689126\pi\)
\(348\) 0 0
\(349\) 32.4918i 1.73924i −0.493718 0.869622i \(-0.664363\pi\)
0.493718 0.869622i \(-0.335637\pi\)
\(350\) 2.22907 10.1288i 0.119149 0.541407i
\(351\) 0 0
\(352\) −6.72162 11.6422i −0.358263 0.620531i
\(353\) 11.6921 20.2513i 0.622307 1.07787i −0.366748 0.930321i \(-0.619529\pi\)
0.989055 0.147548i \(-0.0471380\pi\)
\(354\) 0 0
\(355\) −18.3382 + 10.5876i −0.973291 + 0.561930i
\(356\) −11.7205 −0.621185
\(357\) 0 0
\(358\) −9.08536 −0.480176
\(359\) −18.4900 + 10.6752i −0.975865 + 0.563416i −0.901019 0.433779i \(-0.857180\pi\)
−0.0748455 + 0.997195i \(0.523846\pi\)
\(360\) 0 0
\(361\) 0.398482 0.690192i 0.0209728 0.0363259i
\(362\) −1.55622 2.69545i −0.0817930 0.141670i
\(363\) 0 0
\(364\) −4.84217 4.42328i −0.253799 0.231843i
\(365\) 35.3830i 1.85203i
\(366\) 0 0
\(367\) 13.4432 + 7.76146i 0.701731 + 0.405145i 0.807992 0.589194i \(-0.200554\pi\)
−0.106261 + 0.994338i \(0.533888\pi\)
\(368\) −13.0075 7.50989i −0.678064 0.391480i
\(369\) 0 0
\(370\) 11.2389i 0.584283i
\(371\) −19.6317 17.9333i −1.01923 0.931053i
\(372\) 0 0
\(373\) 11.6764 + 20.2241i 0.604582 + 1.04717i 0.992117 + 0.125311i \(0.0399930\pi\)
−0.387536 + 0.921855i \(0.626674\pi\)
\(374\) 0.874988 1.51552i 0.0452445 0.0783659i
\(375\) 0 0
\(376\) 11.3378 6.54585i 0.584700 0.337577i
\(377\) 5.77756 0.297559
\(378\) 0 0
\(379\) 2.53871 0.130405 0.0652024 0.997872i \(-0.479231\pi\)
0.0652024 + 0.997872i \(0.479231\pi\)
\(380\) −20.0222 + 11.5598i −1.02712 + 0.593006i
\(381\) 0 0
\(382\) −2.73922 + 4.74446i −0.140151 + 0.242748i
\(383\) 8.10207 + 14.0332i 0.413996 + 0.717063i 0.995323 0.0966078i \(-0.0307992\pi\)
−0.581326 + 0.813671i \(0.697466\pi\)
\(384\) 0 0
\(385\) 4.41355 20.0550i 0.224935 1.02210i
\(386\) 11.7169i 0.596374i
\(387\) 0 0
\(388\) 18.4131 + 10.6308i 0.934783 + 0.539697i
\(389\) −19.3410 11.1665i −0.980626 0.566165i −0.0781671 0.996940i \(-0.524907\pi\)
−0.902459 + 0.430775i \(0.858240\pi\)
\(390\) 0 0
\(391\) 10.6830i 0.540263i
\(392\) −6.88647 + 14.8881i −0.347819 + 0.751964i
\(393\) 0 0
\(394\) −4.96083 8.59242i −0.249923 0.432880i
\(395\) 2.04218 3.53717i 0.102753 0.177974i
\(396\) 0 0
\(397\) 28.3116 16.3457i 1.42092 0.820367i 0.424540 0.905409i \(-0.360436\pi\)
0.996377 + 0.0850420i \(0.0271025\pi\)
\(398\) −5.68650 −0.285038
\(399\) 0 0
\(400\) 9.54574 0.477287
\(401\) 25.0515 14.4635i 1.25101 0.722272i 0.279701 0.960087i \(-0.409765\pi\)
0.971310 + 0.237815i \(0.0764313\pi\)
\(402\) 0 0
\(403\) −5.78190 + 10.0145i −0.288017 + 0.498860i
\(404\) −10.7501 18.6196i −0.534835 0.926362i
\(405\) 0 0
\(406\) −1.91959 6.05551i −0.0952679 0.300530i
\(407\) 12.1102i 0.600281i
\(408\) 0 0
\(409\) 0.910038 + 0.525411i 0.0449985 + 0.0259799i 0.522330 0.852743i \(-0.325063\pi\)
−0.477332 + 0.878723i \(0.658396\pi\)
\(410\) −18.1665 10.4884i −0.897180 0.517987i
\(411\) 0 0
\(412\) 7.67498i 0.378119i
\(413\) −3.88073 + 4.24824i −0.190958 + 0.209042i
\(414\) 0 0
\(415\) 1.71810 + 2.97584i 0.0843384 + 0.146078i
\(416\) −4.53206 + 7.84976i −0.222203 + 0.384866i
\(417\) 0 0
\(418\) 5.92908 3.42315i 0.290001 0.167432i
\(419\) −3.12120 −0.152480 −0.0762402 0.997089i \(-0.524292\pi\)
−0.0762402 + 0.997089i \(0.524292\pi\)
\(420\) 0 0
\(421\) −8.70655 −0.424331 −0.212166 0.977234i \(-0.568052\pi\)
−0.212166 + 0.977234i \(0.568052\pi\)
\(422\) −8.29145 + 4.78707i −0.403621 + 0.233031i
\(423\) 0 0
\(424\) −11.7754 + 20.3956i −0.571864 + 0.990497i
\(425\) 3.39476 + 5.87990i 0.164670 + 0.285217i
\(426\) 0 0
\(427\) −10.1050 + 3.20329i −0.489017 + 0.155018i
\(428\) 3.84931i 0.186063i
\(429\) 0 0
\(430\) −4.08293 2.35728i −0.196897 0.113678i
\(431\) 23.6279 + 13.6416i 1.13811 + 0.657090i 0.945963 0.324275i \(-0.105120\pi\)
0.192151 + 0.981365i \(0.438454\pi\)
\(432\) 0 0
\(433\) 12.8711i 0.618547i −0.950973 0.309274i \(-0.899914\pi\)
0.950973 0.309274i \(-0.100086\pi\)
\(434\) 12.4174 + 2.73272i 0.596052 + 0.131175i
\(435\) 0 0
\(436\) −3.40101 5.89073i −0.162879 0.282115i
\(437\) 20.8972 36.1950i 0.999648 1.73144i
\(438\) 0 0
\(439\) 15.9734 9.22223i 0.762368 0.440153i −0.0677776 0.997700i \(-0.521591\pi\)
0.830145 + 0.557547i \(0.188257\pi\)
\(440\) −18.1880 −0.867081
\(441\) 0 0
\(442\) −1.17992 −0.0561233
\(443\) −2.48550 + 1.43500i −0.118090 + 0.0681790i −0.557881 0.829921i \(-0.688386\pi\)
0.439792 + 0.898100i \(0.355052\pi\)
\(444\) 0 0
\(445\) −12.3719 + 21.4287i −0.586482 + 1.01582i
\(446\) 3.47457 + 6.01813i 0.164526 + 0.284967i
\(447\) 0 0
\(448\) 1.46986 + 0.323476i 0.0694444 + 0.0152828i
\(449\) 1.81675i 0.0857380i −0.999081 0.0428690i \(-0.986350\pi\)
0.999081 0.0428690i \(-0.0136498\pi\)
\(450\) 0 0
\(451\) −19.5749 11.3016i −0.921746 0.532170i
\(452\) −9.72821 5.61659i −0.457577 0.264182i
\(453\) 0 0
\(454\) 4.41510i 0.207211i
\(455\) −13.1984 + 4.18389i −0.618751 + 0.196144i
\(456\) 0 0
\(457\) −3.07788 5.33104i −0.143977 0.249375i 0.785014 0.619478i \(-0.212656\pi\)
−0.928991 + 0.370103i \(0.879322\pi\)
\(458\) −4.02608 + 6.97338i −0.188126 + 0.325844i
\(459\) 0 0
\(460\) −42.2699 + 24.4045i −1.97084 + 1.13787i
\(461\) −17.0507 −0.794132 −0.397066 0.917790i \(-0.629972\pi\)
−0.397066 + 0.917790i \(0.629972\pi\)
\(462\) 0 0
\(463\) 29.4131 1.36694 0.683471 0.729977i \(-0.260469\pi\)
0.683471 + 0.729977i \(0.260469\pi\)
\(464\) 5.06356 2.92345i 0.235070 0.135718i
\(465\) 0 0
\(466\) 1.84723 3.19950i 0.0855713 0.148214i
\(467\) −13.5590 23.4849i −0.627437 1.08675i −0.988064 0.154043i \(-0.950771\pi\)
0.360627 0.932710i \(-0.382563\pi\)
\(468\) 0 0
\(469\) −19.2126 + 21.0321i −0.887155 + 0.971171i
\(470\) 12.1498i 0.560428i
\(471\) 0 0
\(472\) 4.41355 + 2.54817i 0.203150 + 0.117289i
\(473\) −4.39947 2.54003i −0.202288 0.116791i
\(474\) 0 0
\(475\) 26.5622i 1.21876i
\(476\) −1.42650 4.50000i −0.0653835 0.206257i
\(477\) 0 0
\(478\) −5.23967 9.07538i −0.239657 0.415098i
\(479\) −10.7784 + 18.6688i −0.492480 + 0.853000i −0.999962 0.00866176i \(-0.997243\pi\)
0.507483 + 0.861662i \(0.330576\pi\)
\(480\) 0 0
\(481\) 7.07138 4.08266i 0.322427 0.186153i
\(482\) −3.01261 −0.137221
\(483\) 0 0
\(484\) 8.64212 0.392824
\(485\) 38.8728 22.4432i 1.76512 1.01909i
\(486\) 0 0
\(487\) 7.29047 12.6275i 0.330363 0.572205i −0.652220 0.758029i \(-0.726162\pi\)
0.982583 + 0.185825i \(0.0594956\pi\)
\(488\) 4.69455 + 8.13120i 0.212512 + 0.368082i
\(489\) 0 0
\(490\) 8.77034 + 12.4433i 0.396204 + 0.562129i
\(491\) 0.283102i 0.0127762i −0.999980 0.00638811i \(-0.997967\pi\)
0.999980 0.00638811i \(-0.00203341\pi\)
\(492\) 0 0
\(493\) 3.60152 + 2.07934i 0.162204 + 0.0936486i
\(494\) −3.99769 2.30807i −0.179864 0.103845i
\(495\) 0 0
\(496\) 11.7026i 0.525461i
\(497\) 3.63555 16.5198i 0.163077 0.741014i
\(498\) 0 0
\(499\) −6.15277 10.6569i −0.275436 0.477069i 0.694809 0.719194i \(-0.255489\pi\)
−0.970245 + 0.242125i \(0.922155\pi\)
\(500\) 2.51977 4.36438i 0.112688 0.195181i
\(501\) 0 0
\(502\) 7.84976 4.53206i 0.350352 0.202276i
\(503\) −1.78425 −0.0795559 −0.0397779 0.999209i \(-0.512665\pi\)
−0.0397779 + 0.999209i \(0.512665\pi\)
\(504\) 0 0
\(505\) −45.3900 −2.01983
\(506\) 12.5172 7.22679i 0.556456 0.321270i
\(507\) 0 0
\(508\) 13.8895 24.0572i 0.616245 1.06737i
\(509\) 19.5362 + 33.8378i 0.865928 + 1.49983i 0.866122 + 0.499832i \(0.166605\pi\)
−0.000194027 1.00000i \(0.500062\pi\)
\(510\) 0 0
\(511\) 20.8683 + 19.0630i 0.923161 + 0.843299i
\(512\) 16.6670i 0.736583i
\(513\) 0 0
\(514\) 5.09755 + 2.94307i 0.224843 + 0.129813i
\(515\) 14.0322 + 8.10152i 0.618334 + 0.356996i
\(516\) 0 0
\(517\) 13.0917i 0.575773i
\(518\) −6.62854 6.05510i −0.291241 0.266046i
\(519\) 0 0
\(520\) 6.13166 + 10.6203i 0.268891 + 0.465733i
\(521\) −10.1814 + 17.6347i −0.446056 + 0.772591i −0.998125 0.0612072i \(-0.980505\pi\)
0.552070 + 0.833798i \(0.313838\pi\)
\(522\) 0 0
\(523\) 1.24066 0.716293i 0.0542501 0.0313213i −0.472630 0.881261i \(-0.656695\pi\)
0.526880 + 0.849940i \(0.323362\pi\)
\(524\) 21.3435 0.932396
\(525\) 0 0
\(526\) 18.7488 0.817485
\(527\) −7.20844 + 4.16179i −0.314005 + 0.181291i
\(528\) 0 0
\(529\) 32.6171 56.4945i 1.41814 2.45628i
\(530\) 10.9282 + 18.9282i 0.474690 + 0.822187i
\(531\) 0 0
\(532\) 3.96941 18.0368i 0.172096 0.781994i
\(533\) 15.2402i 0.660126i
\(534\) 0 0
\(535\) 7.03773 + 4.06323i 0.304267 + 0.175669i
\(536\) 21.8505 + 12.6154i 0.943797 + 0.544901i
\(537\) 0 0
\(538\) 15.7138i 0.677470i
\(539\) 9.45027 + 13.4079i 0.407052 + 0.577520i
\(540\) 0 0
\(541\) 5.04521 + 8.73856i 0.216910 + 0.375700i 0.953862 0.300246i \(-0.0970687\pi\)
−0.736951 + 0.675946i \(0.763735\pi\)
\(542\) 4.79437 8.30410i 0.205936 0.356692i
\(543\) 0 0
\(544\) −5.65024 + 3.26217i −0.242252 + 0.139864i
\(545\) −14.3601 −0.615119
\(546\) 0 0
\(547\) 7.30048 0.312146 0.156073 0.987746i \(-0.450117\pi\)
0.156073 + 0.987746i \(0.450117\pi\)
\(548\) 13.8042 7.96986i 0.589686 0.340456i
\(549\) 0 0
\(550\) −4.59295 + 7.95521i −0.195844 + 0.339211i
\(551\) 8.13484 + 14.0900i 0.346556 + 0.600253i
\(552\) 0 0
\(553\) 0.985915 + 3.11014i 0.0419254 + 0.132257i
\(554\) 14.6971i 0.624420i
\(555\) 0 0
\(556\) −5.23714 3.02367i −0.222104 0.128232i
\(557\) −19.7970 11.4298i −0.838828 0.484297i 0.0180379 0.999837i \(-0.494258\pi\)
−0.856866 + 0.515540i \(0.827591\pi\)
\(558\) 0 0
\(559\) 3.42524i 0.144872i
\(560\) −9.45027 + 10.3452i −0.399347 + 0.437166i
\(561\) 0 0
\(562\) −3.81060 6.60015i −0.160740 0.278410i
\(563\) −10.5548 + 18.2814i −0.444832 + 0.770471i −0.998040 0.0625717i \(-0.980070\pi\)
0.553209 + 0.833043i \(0.313403\pi\)
\(564\) 0 0
\(565\) −20.5377 + 11.8575i −0.864029 + 0.498847i
\(566\) −9.84517 −0.413824
\(567\) 0 0
\(568\) −14.9819 −0.628629
\(569\) 22.9095 13.2268i 0.960415 0.554496i 0.0641144 0.997943i \(-0.479578\pi\)
0.896301 + 0.443447i \(0.146244\pi\)
\(570\) 0 0
\(571\) −6.01507 + 10.4184i −0.251723 + 0.435997i −0.964000 0.265901i \(-0.914330\pi\)
0.712277 + 0.701898i \(0.247664\pi\)
\(572\) 2.90441 + 5.03059i 0.121440 + 0.210340i
\(573\) 0 0
\(574\) 15.9734 5.06356i 0.666716 0.211349i
\(575\) 56.0767i 2.33856i
\(576\) 0 0
\(577\) −31.9055 18.4207i −1.32824 0.766862i −0.343216 0.939257i \(-0.611516\pi\)
−0.985028 + 0.172395i \(0.944850\pi\)
\(578\) 8.93153 + 5.15662i 0.371503 + 0.214487i
\(579\) 0 0
\(580\) 19.0004i 0.788947i
\(581\) −2.68076 0.589962i −0.111217 0.0244757i
\(582\) 0 0
\(583\) 11.7754 + 20.3956i 0.487687 + 0.844699i
\(584\) 12.5172 21.6804i 0.517964 0.897140i
\(585\) 0 0
\(586\) 9.28903 5.36302i 0.383726 0.221544i
\(587\) −28.7712 −1.18752 −0.593758 0.804644i \(-0.702356\pi\)
−0.593758 + 0.804644i \(0.702356\pi\)
\(588\) 0 0
\(589\) −32.5638 −1.34177
\(590\) 4.09601 2.36483i 0.168630 0.0973585i
\(591\) 0 0
\(592\) 4.13166 7.15624i 0.169810 0.294120i
\(593\) 5.29159 + 9.16531i 0.217300 + 0.376374i 0.953982 0.299865i \(-0.0969418\pi\)
−0.736682 + 0.676240i \(0.763608\pi\)
\(594\) 0 0
\(595\) −9.73317 2.14201i −0.399021 0.0878137i
\(596\) 7.96986i 0.326458i
\(597\) 0 0
\(598\) −8.43972 4.87268i −0.345126 0.199259i
\(599\) 15.7553 + 9.09634i 0.643745 + 0.371666i 0.786056 0.618156i \(-0.212120\pi\)
−0.142311 + 0.989822i \(0.545453\pi\)
\(600\) 0 0
\(601\) 26.4101i 1.07729i 0.842532 + 0.538646i \(0.181064\pi\)
−0.842532 + 0.538646i \(0.818936\pi\)
\(602\) 3.59002 1.13804i 0.146318 0.0463829i
\(603\) 0 0
\(604\) −14.3593 24.8711i −0.584272 1.01199i
\(605\) 9.12241 15.8005i 0.370879 0.642381i
\(606\) 0 0
\(607\) −21.6312 + 12.4888i −0.877983 + 0.506904i −0.869993 0.493064i \(-0.835877\pi\)
−0.00799043 + 0.999968i \(0.502543\pi\)
\(608\) −25.5247 −1.03516
\(609\) 0 0
\(610\) 8.71358 0.352802
\(611\) −7.64450 + 4.41355i −0.309263 + 0.178553i
\(612\) 0 0
\(613\) 7.05631 12.2219i 0.285002 0.493637i −0.687608 0.726082i \(-0.741339\pi\)
0.972610 + 0.232445i \(0.0746725\pi\)
\(614\) −1.04186 1.80455i −0.0420460 0.0728258i
\(615\) 0 0
\(616\) 9.79904 10.7270i 0.394815 0.432205i
\(617\) 14.6265i 0.588840i 0.955676 + 0.294420i \(0.0951264\pi\)
−0.955676 + 0.294420i \(0.904874\pi\)
\(618\) 0 0
\(619\) −22.9880 13.2721i −0.923965 0.533452i −0.0390674 0.999237i \(-0.512439\pi\)
−0.884898 + 0.465785i \(0.845772\pi\)
\(620\) 32.9343 + 19.0146i 1.32267 + 0.763645i
\(621\) 0 0
\(622\) 16.5036i 0.661734i
\(623\) −5.97282 18.8417i −0.239296 0.754878i
\(624\) 0 0
\(625\) 9.60503 + 16.6364i 0.384201 + 0.665456i
\(626\) −6.12105 + 10.6020i −0.244646 + 0.423740i
\(627\) 0 0
\(628\) −4.50000 + 2.59808i −0.179570 + 0.103675i
\(629\) 5.87738 0.234347
\(630\) 0 0
\(631\) −8.20304 −0.326558 −0.163279 0.986580i \(-0.552207\pi\)
−0.163279 + 0.986580i \(0.552207\pi\)
\(632\) 2.50264 1.44490i 0.0995495 0.0574749i
\(633\) 0 0
\(634\) −2.62308 + 4.54331i −0.104176 + 0.180438i
\(635\) −29.3227 50.7885i −1.16364 2.01548i
\(636\) 0 0
\(637\) 4.64321 10.0383i 0.183971 0.397734i
\(638\) 5.62648i 0.222755i
\(639\) 0 0
\(640\) 31.8382 + 18.3818i 1.25852 + 0.726604i
\(641\) 13.8996 + 8.02496i 0.549003 + 0.316967i 0.748720 0.662887i \(-0.230669\pi\)
−0.199717 + 0.979854i \(0.564002\pi\)
\(642\) 0 0
\(643\) 26.4101i 1.04151i −0.853705 0.520757i \(-0.825650\pi\)
0.853705 0.520757i \(-0.174350\pi\)
\(644\) 8.38002 38.0784i 0.330219 1.50050i
\(645\) 0 0
\(646\) −1.66134 2.87753i −0.0653646 0.113215i
\(647\) 15.8508 27.4543i 0.623158 1.07934i −0.365736 0.930719i \(-0.619183\pi\)
0.988894 0.148623i \(-0.0474840\pi\)
\(648\) 0 0
\(649\) 4.41355 2.54817i 0.173247 0.100024i
\(650\) 6.19360 0.242933
\(651\) 0 0
\(652\) −3.59808 −0.140912
\(653\) −11.5096 + 6.64506i −0.450405 + 0.260041i −0.708001 0.706211i \(-0.750403\pi\)
0.257596 + 0.966253i \(0.417070\pi\)
\(654\) 0 0
\(655\) 22.5297 39.0226i 0.880308 1.52474i
\(656\) 7.71155 + 13.3568i 0.301085 + 0.521495i
\(657\) 0 0
\(658\) 7.16576 + 6.54585i 0.279351 + 0.255184i
\(659\) 36.2125i 1.41064i 0.708890 + 0.705319i \(0.249196\pi\)
−0.708890 + 0.705319i \(0.750804\pi\)
\(660\) 0 0
\(661\) 43.9880 + 25.3965i 1.71093 + 0.987809i 0.933304 + 0.359087i \(0.116912\pi\)
0.777630 + 0.628722i \(0.216422\pi\)
\(662\) 5.08070 + 2.93334i 0.197467 + 0.114008i
\(663\) 0 0
\(664\) 2.43121i 0.0943491i
\(665\) −28.7869 26.2965i −1.11631 1.01973i
\(666\) 0 0
\(667\) 17.1739 + 29.7460i 0.664975 + 1.15177i
\(668\) 2.09059 3.62101i 0.0808874 0.140101i
\(669\) 0 0
\(670\) 20.2784 11.7077i 0.783422 0.452309i
\(671\) 9.38910 0.362462
\(672\) 0 0
\(673\) 3.32865 0.128310 0.0641550 0.997940i \(-0.479565\pi\)
0.0641550 + 0.997940i \(0.479565\pi\)
\(674\) 2.41407 1.39376i 0.0929864 0.0536857i
\(675\) 0 0
\(676\) −8.23922 + 14.2707i −0.316893 + 0.548875i
\(677\) 9.96901 + 17.2668i 0.383140 + 0.663618i 0.991509 0.130036i \(-0.0415093\pi\)
−0.608369 + 0.793654i \(0.708176\pi\)
\(678\) 0 0
\(679\) −7.70655 + 35.0182i −0.295750 + 1.34388i
\(680\) 8.82710i 0.338504i
\(681\) 0 0
\(682\) −9.75267 5.63070i −0.373449 0.215611i
\(683\) −24.8234 14.3318i −0.949843 0.548392i −0.0568107 0.998385i \(-0.518093\pi\)
−0.893032 + 0.449993i \(0.851426\pi\)
\(684\) 0 0
\(685\) 33.6512i 1.28574i
\(686\) −12.0640 1.53135i −0.460605 0.0584670i
\(687\) 0 0
\(688\) 1.73317 + 3.00195i 0.0660766 + 0.114448i
\(689\) 7.93958 13.7518i 0.302474 0.523900i
\(690\) 0 0
\(691\) −17.6387 + 10.1837i −0.671007 + 0.387406i −0.796458 0.604694i \(-0.793296\pi\)
0.125451 + 0.992100i \(0.459962\pi\)
\(692\) −4.02458 −0.152991
\(693\) 0 0
\(694\) −1.72460 −0.0654650
\(695\) −11.0564 + 6.38341i −0.419393 + 0.242137i
\(696\) 0 0
\(697\) −5.48493 + 9.50018i −0.207757 + 0.359845i
\(698\) −10.6674 18.4764i −0.403766 0.699343i
\(699\) 0 0
\(700\) 7.48791 + 23.6212i 0.283017 + 0.892797i
\(701\) 49.1172i 1.85513i −0.373659 0.927566i \(-0.621897\pi\)
0.373659 0.927566i \(-0.378103\pi\)
\(702\) 0 0
\(703\) 19.9131 + 11.4968i 0.751037 + 0.433611i
\(704\) −1.15444 0.666515i −0.0435095 0.0251202i
\(705\) 0 0
\(706\) 15.3545i 0.577876i
\(707\) 24.4544 26.7703i 0.919704 1.00680i
\(708\) 0 0
\(709\) −11.6829 20.2354i −0.438761 0.759956i 0.558833 0.829280i \(-0.311249\pi\)
−0.997594 + 0.0693240i \(0.977916\pi\)
\(710\) −6.95201 + 12.0412i −0.260904 + 0.451900i
\(711\) 0 0
\(712\) −15.1613 + 8.75340i −0.568195 + 0.328048i
\(713\) −68.7471 −2.57460
\(714\) 0 0
\(715\) 12.2633 0.458622
\(716\) 18.7992 10.8537i 0.702559 0.405623i
\(717\) 0 0
\(718\) −7.00956 + 12.1409i −0.261594 + 0.453095i
\(719\) 6.33345 + 10.9699i 0.236198 + 0.409107i 0.959620 0.281299i \(-0.0907653\pi\)
−0.723422 + 0.690406i \(0.757432\pi\)
\(720\) 0 0
\(721\) −12.3382 + 3.91121i −0.459499 + 0.145661i
\(722\) 0.523303i 0.0194753i
\(723\) 0 0
\(724\) 6.44018 + 3.71824i 0.239347 + 0.138187i
\(725\) −18.9049 10.9148i −0.702111 0.405364i
\(726\) 0 0
\(727\) 2.70398i 0.100285i −0.998742 0.0501426i \(-0.984032\pi\)
0.998742 0.0501426i \(-0.0159676\pi\)
\(728\) −9.56723 2.10549i −0.354585 0.0780345i
\(729\) 0 0
\(730\) −11.6166 20.1205i −0.429949 0.744694i
\(731\) −1.23274 + 2.13517i −0.0455946 + 0.0789721i
\(732\) 0 0
\(733\) 18.8869 10.9044i 0.697605 0.402762i −0.108850 0.994058i \(-0.534717\pi\)
0.806455 + 0.591296i \(0.201384\pi\)
\(734\) 10.1927 0.376218
\(735\) 0 0
\(736\) −53.8865 −1.98628
\(737\) 21.8505 12.6154i 0.804873 0.464694i
\(738\) 0 0
\(739\) −16.0633 + 27.8225i −0.590899 + 1.02347i 0.403212 + 0.915107i \(0.367894\pi\)
−0.994112 + 0.108361i \(0.965440\pi\)
\(740\) −13.4264 23.2553i −0.493566 0.854881i
\(741\) 0 0
\(742\) −17.0513 3.75251i −0.625971 0.137759i
\(743\) 41.2728i 1.51415i 0.653328 + 0.757075i \(0.273372\pi\)
−0.653328 + 0.757075i \(0.726628\pi\)
\(744\) 0 0
\(745\) −14.5714 8.41279i −0.533854 0.308221i
\(746\) 13.2796 + 7.66697i 0.486200 + 0.280708i
\(747\) 0 0
\(748\) 4.18118i 0.152879i
\(749\) −6.18810 + 1.96163i −0.226108 + 0.0716763i
\(750\) 0 0
\(751\) −22.9045 39.6718i −0.835798 1.44764i −0.893379 0.449304i \(-0.851672\pi\)
0.0575810 0.998341i \(-0.481661\pi\)
\(752\) −4.46652 + 7.73623i −0.162877 + 0.282111i
\(753\) 0 0
\(754\) 3.28541 1.89683i 0.119648 0.0690785i
\(755\) −60.6294 −2.20653
\(756\) 0 0
\(757\) 50.3427 1.82974 0.914868 0.403752i \(-0.132294\pi\)
0.914868 + 0.403752i \(0.132294\pi\)
\(758\) 1.44364 0.833485i 0.0524353 0.0302735i
\(759\) 0 0
\(760\) −17.2668 + 29.9070i −0.626334 + 1.08484i
\(761\) −15.1823 26.2965i −0.550358 0.953248i −0.998249 0.0591594i \(-0.981158\pi\)
0.447891 0.894088i \(-0.352175\pi\)
\(762\) 0 0
\(763\) 7.73669 8.46937i 0.280087 0.306612i
\(764\) 13.0895i 0.473562i
\(765\) 0 0
\(766\) 9.21448 + 5.31999i 0.332933 + 0.192219i
\(767\) −2.97584 1.71810i −0.107452 0.0620372i
\(768\) 0 0
\(769\) 41.3383i 1.49070i 0.666675 + 0.745349i \(0.267717\pi\)
−0.666675 + 0.745349i \(0.732283\pi\)
\(770\) −4.07449 12.8533i −0.146834 0.463200i
\(771\) 0 0
\(772\) 13.9975 + 24.2443i 0.503780 + 0.872573i
\(773\) −6.99754 + 12.1201i −0.251684 + 0.435930i −0.963990 0.265940i \(-0.914318\pi\)
0.712305 + 0.701870i \(0.247651\pi\)
\(774\) 0 0
\(775\) 37.8382 21.8459i 1.35919 0.784728i
\(776\) 31.7583 1.14006
\(777\) 0 0
\(778\) −14.6643 −0.525741
\(779\) −37.1669 + 21.4583i −1.33164 + 0.768824i
\(780\) 0 0
\(781\) −7.49097 + 12.9747i −0.268048 + 0.464273i
\(782\) −3.50734 6.07489i −0.125422 0.217238i
\(783\) 0 0
\(784\) −1.01001 11.1473i −0.0360718 0.398116i
\(785\) 10.9699i 0.391531i
\(786\) 0 0
\(787\) 11.6799 + 6.74341i 0.416344 + 0.240377i 0.693512 0.720445i \(-0.256062\pi\)
−0.277168 + 0.960822i \(0.589396\pi\)
\(788\) 20.5297 + 11.8528i 0.731340 + 0.422239i
\(789\) 0 0
\(790\) 2.68188i 0.0954170i
\(791\) 4.07161 18.5012i 0.144770 0.657827i
\(792\) 0 0
\(793\) −3.16531 5.48248i −0.112403 0.194688i
\(794\) 10.7329 18.5900i 0.380897 0.659733i
\(795\) 0 0
\(796\) 11.7664 6.79332i 0.417048 0.240783i
\(797\) −8.31735 −0.294616 −0.147308 0.989091i \(-0.547061\pi\)
−0.147308 + 0.989091i \(0.547061\pi\)
\(798\) 0 0
\(799\) −6.35373 −0.224779
\(800\) 29.6590 17.1236i 1.04860 0.605411i
\(801\) 0 0
\(802\) 9.49702 16.4493i 0.335351 0.580846i
\(803\) −12.5172 21.6804i −0.441721 0.765084i
\(804\) 0 0
\(805\) −60.7734 55.5159i −2.14198 1.95668i
\(806\) 7.59302i 0.267453i
\(807\) 0 0
\(808\) −27.8120 16.0573i −0.978424 0.564893i
\(809\) −12.5955 7.27200i −0.442833 0.255670i 0.261965 0.965077i \(-0.415629\pi\)
−0.704799 + 0.709407i \(0.748963\pi\)
\(810\) 0 0
\(811\) 41.8287i 1.46880i −0.678715 0.734401i \(-0.737463\pi\)
0.678715 0.734401i \(-0.262537\pi\)
\(812\) 11.2061 + 10.2367i 0.393258 + 0.359237i
\(813\) 0 0
\(814\) 3.97590 + 6.88647i 0.139355 + 0.241371i
\(815\) −3.79804 + 6.57841i −0.133040 + 0.230432i
\(816\) 0 0
\(817\) −8.35327 + 4.82277i −0.292244 + 0.168727i
\(818\) 0.689991 0.0241250
\(819\) 0 0
\(820\) 50.1196 1.75025
\(821\) 40.2553 23.2414i 1.40492 0.811131i 0.410027 0.912073i \(-0.365519\pi\)
0.994892 + 0.100942i \(0.0321858\pi\)
\(822\) 0 0
\(823\) −3.86834 + 6.70017i −0.134842 + 0.233553i −0.925537 0.378657i \(-0.876386\pi\)
0.790695 + 0.612210i \(0.209719\pi\)
\(824\) 5.73203 + 9.92817i 0.199685 + 0.345864i
\(825\) 0 0
\(826\) −0.812034 + 3.68985i −0.0282543 + 0.128386i
\(827\) 20.8898i 0.726409i 0.931709 + 0.363205i \(0.118317\pi\)
−0.931709 + 0.363205i \(0.881683\pi\)
\(828\) 0 0
\(829\) 41.2282 + 23.8031i 1.43191 + 0.826716i 0.997267 0.0738846i \(-0.0235396\pi\)
0.434647 + 0.900601i \(0.356873\pi\)
\(830\) 1.95400 + 1.12814i 0.0678243 + 0.0391584i
\(831\) 0 0
\(832\) 0.898798i 0.0311602i
\(833\) 6.50720 4.58645i 0.225461 0.158911i
\(834\) 0 0
\(835\) −4.41355 7.64450i −0.152737 0.264549i
\(836\) −8.17887 + 14.1662i −0.282872 + 0.489949i
\(837\) 0 0
\(838\) −1.77487 + 1.02472i −0.0613118 + 0.0353984i
\(839\) −22.4035 −0.773455 −0.386727 0.922194i \(-0.626395\pi\)
−0.386727 + 0.922194i \(0.626395\pi\)
\(840\) 0 0
\(841\) 15.6291 0.538935
\(842\) −4.95098 + 2.85845i −0.170622 + 0.0985087i
\(843\) 0 0
\(844\) 11.4376 19.8106i 0.393700 0.681909i
\(845\) 17.3942 + 30.1277i 0.598380 + 1.03642i
\(846\) 0 0
\(847\) 4.40407 + 13.8930i 0.151326 + 0.477368i
\(848\) 16.0697i 0.551836i
\(849\) 0 0
\(850\) 3.86086 + 2.22907i 0.132426 + 0.0764565i
\(851\) 42.0396 + 24.2715i 1.44110 + 0.832018i
\(852\) 0 0
\(853\) 48.4273i 1.65812i 0.559160 + 0.829060i \(0.311124\pi\)
−0.559160 + 0.829060i \(0.688876\pi\)
\(854\) −4.69455 + 5.13914i −0.160644 + 0.175858i
\(855\) 0 0
\(856\) 2.87484 + 4.97937i 0.0982600 + 0.170191i
\(857\) 24.5327 42.4920i 0.838023 1.45150i −0.0535230 0.998567i \(-0.517045\pi\)
0.891546 0.452931i \(-0.149622\pi\)
\(858\) 0 0
\(859\) −10.4136 + 6.01227i −0.355306 + 0.205136i −0.667020 0.745040i \(-0.732430\pi\)
0.311714 + 0.950176i \(0.399097\pi\)
\(860\) 11.2644 0.384113
\(861\) 0 0
\(862\) 17.9146 0.610175
\(863\) −39.8804 + 23.0250i −1.35754 + 0.783779i −0.989292 0.145947i \(-0.953377\pi\)
−0.368252 + 0.929726i \(0.620044\pi\)
\(864\) 0 0
\(865\) −4.24824 + 7.35817i −0.144445 + 0.250185i
\(866\) −4.22572 7.31917i −0.143596 0.248715i
\(867\) 0 0
\(868\) −28.9583 + 9.17978i −0.982909 + 0.311582i
\(869\) 2.88979i 0.0980296i
\(870\) 0 0
\(871\) −14.7327 8.50594i −0.499199 0.288213i
\(872\) −8.79893 5.08007i −0.297970 0.172033i
\(873\) 0 0
\(874\) 27.4430i 0.928275i
\(875\) 8.30021 + 1.82665i 0.280598 + 0.0617520i
\(876\) 0 0
\(877\) −6.73669 11.6683i −0.227482 0.394010i 0.729579 0.683896i \(-0.239716\pi\)
−0.957061 + 0.289886i \(0.906383\pi\)
\(878\) 6.05551 10.4884i 0.204363 0.353968i
\(879\) 0 0
\(880\) 10.7478 6.20524i 0.362308 0.209179i
\(881\) 25.5247 0.859949 0.429974 0.902841i \(-0.358523\pi\)
0.429974 + 0.902841i \(0.358523\pi\)
\(882\) 0 0
\(883\) 6.45532 0.217239 0.108619 0.994083i \(-0.465357\pi\)
0.108619 + 0.994083i \(0.465357\pi\)
\(884\) 2.44147 1.40958i 0.0821156 0.0474094i
\(885\) 0 0
\(886\) −0.942252 + 1.63203i −0.0316556 + 0.0548291i
\(887\) 16.5604 + 28.6834i 0.556043 + 0.963096i 0.997822 + 0.0659712i \(0.0210145\pi\)
−0.441778 + 0.897124i \(0.645652\pi\)
\(888\) 0 0
\(889\) 45.7523 + 10.0688i 1.53448 + 0.337698i
\(890\) 16.2472i 0.544608i
\(891\) 0 0
\(892\) −14.3790 8.30171i −0.481444 0.277962i
\(893\) −21.5270 12.4286i −0.720374 0.415908i
\(894\) 0 0
\(895\) 45.8277i 1.53185i
\(896\) −27.9946 + 8.87427i −0.935232 + 0.296469i
\(897\) 0 0
\(898\) −0.596459 1.03310i −0.0199041 0.0344749i
\(899\) 13.3809 23.1764i 0.446278 0.772977i
\(900\) 0 0
\(901\) 9.89848 5.71489i 0.329766 0.190391i
\(902\) −14.8417 −0.494174
\(903\) 0 0
\(904\) −16.7789 −0.558058
\(905\) 13.5962 7.84976i 0.451952 0.260935i
\(906\) 0 0
\(907\) −3.10756 + 5.38245i −0.103185 + 0.178721i −0.912995 0.407970i \(-0.866237\pi\)
0.809810 + 0.586692i \(0.199570\pi\)
\(908\) −5.27446 9.13562i −0.175039 0.303176i
\(909\) 0 0
\(910\) −6.13166 + 6.71234i −0.203262 + 0.222512i
\(911\) 18.0475i 0.597941i 0.954262 + 0.298970i \(0.0966432\pi\)
−0.954262 + 0.298970i \(0.903357\pi\)
\(912\) 0 0
\(913\) 2.10549 + 1.21560i 0.0696814 + 0.0402306i
\(914\) −3.50047 2.02100i −0.115785 0.0668486i
\(915\) 0 0
\(916\) 19.2389i 0.635670i
\(917\) 10.8768 + 34.3116i 0.359182 + 1.13307i
\(918\) 0 0
\(919\) 4.12913 + 7.15186i 0.136207 + 0.235918i 0.926058 0.377381i \(-0.123175\pi\)
−0.789851 + 0.613299i \(0.789842\pi\)
\(920\) −36.4529 + 63.1382i −1.20182 + 2.08161i
\(921\) 0 0
\(922\) −9.69590 + 5.59793i −0.319318 + 0.184358i
\(923\) 10.1016 0.332498
\(924\) 0 0
\(925\) −30.8513 −1.01438
\(926\) 16.7258 9.65662i 0.549642 0.317336i
\(927\) 0 0
\(928\) 10.4884 18.1665i 0.344300 0.596345i
\(929\) 17.3855 + 30.1125i 0.570399 + 0.987960i 0.996525 + 0.0832958i \(0.0265446\pi\)
−0.426126 + 0.904664i \(0.640122\pi\)
\(930\) 0 0
\(931\) 31.0186 2.81048i 1.01659 0.0921097i
\(932\) 8.82710i 0.289141i
\(933\) 0 0
\(934\) −15.4207 8.90314i −0.504580 0.291320i
\(935\) 7.64450 + 4.41355i 0.250002 + 0.144339i
\(936\) 0 0
\(937\) 51.0703i 1.66839i 0.551466 + 0.834197i \(0.314069\pi\)
−0.551466 + 0.834197i \(0.685931\pi\)
\(938\) −4.02020 + 18.2676i −0.131264 + 0.596458i
\(939\) 0 0
\(940\) 14.5146 + 25.1401i 0.473415 + 0.819978i
\(941\) −1.73872 + 3.01156i −0.0566807 + 0.0981739i −0.892974 0.450109i \(-0.851385\pi\)
0.836293 + 0.548283i \(0.184718\pi\)
\(942\) 0 0
\(943\) −78.4649 + 45.3017i −2.55517 + 1.47523i
\(944\) −3.47744 −0.113181
\(945\) 0 0
\(946\) −3.33568 −0.108452
\(947\) 12.4189 7.17003i 0.403559 0.232995i −0.284460 0.958688i \(-0.591814\pi\)
0.688018 + 0.725693i \(0.258481\pi\)
\(948\) 0 0
\(949\) −8.43972 + 14.6180i −0.273965 + 0.474521i
\(950\) 8.72063 + 15.1046i 0.282935 + 0.490057i
\(951\) 0 0
\(952\) −5.20609 4.75572i −0.168730 0.154134i
\(953\) 7.53697i 0.244147i 0.992521 + 0.122073i \(0.0389543\pi\)
−0.992521 + 0.122073i \(0.961046\pi\)
\(954\) 0 0
\(955\) −23.9317 13.8170i −0.774411 0.447106i
\(956\) 21.6836 + 12.5190i 0.701298 + 0.404895i
\(957\) 0 0
\(958\) 14.1547i 0.457318i
\(959\) 19.8470 + 18.1300i 0.640892 + 0.585448i
\(960\) 0 0
\(961\) 11.2819 + 19.5408i 0.363932 + 0.630349i
\(962\) 2.68076 4.64321i 0.0864312 0.149703i
\(963\) 0 0
\(964\) 6.23363 3.59899i 0.200772 0.115916i
\(965\) 59.1015 1.90255
\(966\) 0 0
\(967\) −11.6161 −0.373550 −0.186775 0.982403i \(-0.559803\pi\)
−0.186775 + 0.982403i \(0.559803\pi\)
\(968\) 11.1792 6.45434i 0.359314 0.207450i
\(969\) 0 0
\(970\) 14.7367 25.5247i 0.473167 0.819548i
\(971\) 17.7476 + 30.7397i 0.569548 + 0.986485i 0.996611 + 0.0822636i \(0.0262149\pi\)
−0.427063 + 0.904222i \(0.640452\pi\)
\(972\) 0 0
\(973\) 2.19193 9.96004i 0.0702702 0.319304i
\(974\) 9.57414i 0.306775i
\(975\) 0 0
\(976\) −5.54827 3.20329i −0.177596 0.102535i
\(977\) −27.7210 16.0047i −0.886873 0.512036i −0.0139546 0.999903i \(-0.504442\pi\)
−0.872918 + 0.487866i \(0.837775\pi\)
\(978\) 0 0
\(979\) 17.5068i 0.559520i
\(980\) −33.0126 15.2699i −1.05455 0.487779i
\(981\) 0 0
\(982\) −0.0929453 0.160986i −0.00296600 0.00513727i
\(983\) −24.7324 + 42.8378i −0.788841 + 1.36631i 0.137837 + 0.990455i \(0.455985\pi\)
−0.926678 + 0.375857i \(0.877348\pi\)
\(984\) 0 0
\(985\) 43.3413 25.0231i 1.38097 0.797302i
\(986\) 2.73067 0.0869623
\(987\) 0 0
\(988\) 11.0292 0.350887
\(989\) −17.6350 + 10.1816i −0.560761 + 0.323756i
\(990\) 0 0
\(991\) −8.97590 + 15.5467i −0.285129 + 0.493858i −0.972640 0.232316i \(-0.925370\pi\)
0.687511 + 0.726174i \(0.258703\pi\)
\(992\) 20.9926 + 36.3603i 0.666517 + 1.15444i
\(993\) 0 0
\(994\) −3.35626 10.5876i −0.106454 0.335817i
\(995\) 28.6834i 0.909326i
\(996\) 0 0
\(997\) −29.0151 16.7519i −0.918916 0.530537i −0.0356272 0.999365i \(-0.511343\pi\)
−0.883289 + 0.468828i \(0.844676\pi\)
\(998\) −6.99754 4.04003i −0.221503 0.127885i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 189.2.p.d.80.4 yes 12
3.2 odd 2 inner 189.2.p.d.80.3 yes 12
7.3 odd 6 1323.2.c.d.1322.8 12
7.4 even 3 1323.2.c.d.1322.7 12
7.5 odd 6 inner 189.2.p.d.26.3 12
9.2 odd 6 567.2.s.f.458.4 12
9.4 even 3 567.2.i.f.269.4 12
9.5 odd 6 567.2.i.f.269.3 12
9.7 even 3 567.2.s.f.458.3 12
21.5 even 6 inner 189.2.p.d.26.4 yes 12
21.11 odd 6 1323.2.c.d.1322.6 12
21.17 even 6 1323.2.c.d.1322.5 12
63.5 even 6 567.2.s.f.26.3 12
63.40 odd 6 567.2.s.f.26.4 12
63.47 even 6 567.2.i.f.215.3 12
63.61 odd 6 567.2.i.f.215.4 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
189.2.p.d.26.3 12 7.5 odd 6 inner
189.2.p.d.26.4 yes 12 21.5 even 6 inner
189.2.p.d.80.3 yes 12 3.2 odd 2 inner
189.2.p.d.80.4 yes 12 1.1 even 1 trivial
567.2.i.f.215.3 12 63.47 even 6
567.2.i.f.215.4 12 63.61 odd 6
567.2.i.f.269.3 12 9.5 odd 6
567.2.i.f.269.4 12 9.4 even 3
567.2.s.f.26.3 12 63.5 even 6
567.2.s.f.26.4 12 63.40 odd 6
567.2.s.f.458.3 12 9.7 even 3
567.2.s.f.458.4 12 9.2 odd 6
1323.2.c.d.1322.5 12 21.17 even 6
1323.2.c.d.1322.6 12 21.11 odd 6
1323.2.c.d.1322.7 12 7.4 even 3
1323.2.c.d.1322.8 12 7.3 odd 6