Properties

Label 192.5.b.a.31.2
Level $192$
Weight $5$
Character 192.31
Analytic conductor $19.847$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [192,5,Mod(31,192)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(192, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 0]))
 
N = Newforms(chi, 5, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("192.31");
 
S:= CuspForms(chi, 5);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 192 = 2^{6} \cdot 3 \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 192.b (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(19.8470329121\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{12})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 31.2
Root \(0.866025 + 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 192.31
Dual form 192.5.b.a.31.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-5.19615 q^{3} +24.2487i q^{5} -58.0000i q^{7} +27.0000 q^{9} +13.8564 q^{11} -20.7846i q^{13} -126.000i q^{15} -306.000 q^{17} +602.754 q^{19} +301.377i q^{21} +468.000i q^{23} +37.0000 q^{25} -140.296 q^{27} +1465.31i q^{29} -110.000i q^{31} -72.0000 q^{33} +1406.43 q^{35} +1039.23i q^{37} +108.000i q^{39} +2970.00 q^{41} +2889.06 q^{43} +654.715i q^{45} -396.000i q^{47} -963.000 q^{49} +1590.02 q^{51} +1125.83i q^{53} +336.000i q^{55} -3132.00 q^{57} +2681.21 q^{59} +5985.97i q^{61} -1566.00i q^{63} +504.000 q^{65} -4801.24 q^{67} -2431.80i q^{69} +6588.00i q^{71} -5894.00 q^{73} -192.258 q^{75} -803.672i q^{77} -8486.00i q^{79} +729.000 q^{81} -13.8564 q^{83} -7420.11i q^{85} -7614.00i q^{87} +8766.00 q^{89} -1205.51 q^{91} +571.577i q^{93} +14616.0i q^{95} +5918.00 q^{97} +374.123 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 108 q^{9} - 1224 q^{17} + 148 q^{25} - 288 q^{33} + 11880 q^{41} - 3852 q^{49} - 12528 q^{57} + 2016 q^{65} - 23576 q^{73} + 2916 q^{81} + 35064 q^{89} + 23672 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/192\mathbb{Z}\right)^\times\).

\(n\) \(65\) \(127\) \(133\)
\(\chi(n)\) \(1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −5.19615 −0.577350
\(4\) 0 0
\(5\) 24.2487i 0.969948i 0.874528 + 0.484974i \(0.161171\pi\)
−0.874528 + 0.484974i \(0.838829\pi\)
\(6\) 0 0
\(7\) − 58.0000i − 1.18367i −0.806058 0.591837i \(-0.798403\pi\)
0.806058 0.591837i \(-0.201597\pi\)
\(8\) 0 0
\(9\) 27.0000 0.333333
\(10\) 0 0
\(11\) 13.8564 0.114516 0.0572579 0.998359i \(-0.481764\pi\)
0.0572579 + 0.998359i \(0.481764\pi\)
\(12\) 0 0
\(13\) − 20.7846i − 0.122986i −0.998108 0.0614929i \(-0.980414\pi\)
0.998108 0.0614929i \(-0.0195862\pi\)
\(14\) 0 0
\(15\) − 126.000i − 0.560000i
\(16\) 0 0
\(17\) −306.000 −1.05882 −0.529412 0.848365i \(-0.677587\pi\)
−0.529412 + 0.848365i \(0.677587\pi\)
\(18\) 0 0
\(19\) 602.754 1.66968 0.834839 0.550494i \(-0.185561\pi\)
0.834839 + 0.550494i \(0.185561\pi\)
\(20\) 0 0
\(21\) 301.377i 0.683394i
\(22\) 0 0
\(23\) 468.000i 0.884688i 0.896845 + 0.442344i \(0.145853\pi\)
−0.896845 + 0.442344i \(0.854147\pi\)
\(24\) 0 0
\(25\) 37.0000 0.0592000
\(26\) 0 0
\(27\) −140.296 −0.192450
\(28\) 0 0
\(29\) 1465.31i 1.74235i 0.490974 + 0.871174i \(0.336641\pi\)
−0.490974 + 0.871174i \(0.663359\pi\)
\(30\) 0 0
\(31\) − 110.000i − 0.114464i −0.998361 0.0572320i \(-0.981773\pi\)
0.998361 0.0572320i \(-0.0182275\pi\)
\(32\) 0 0
\(33\) −72.0000 −0.0661157
\(34\) 0 0
\(35\) 1406.43 1.14810
\(36\) 0 0
\(37\) 1039.23i 0.759116i 0.925168 + 0.379558i \(0.123924\pi\)
−0.925168 + 0.379558i \(0.876076\pi\)
\(38\) 0 0
\(39\) 108.000i 0.0710059i
\(40\) 0 0
\(41\) 2970.00 1.76681 0.883403 0.468615i \(-0.155247\pi\)
0.883403 + 0.468615i \(0.155247\pi\)
\(42\) 0 0
\(43\) 2889.06 1.56250 0.781250 0.624219i \(-0.214583\pi\)
0.781250 + 0.624219i \(0.214583\pi\)
\(44\) 0 0
\(45\) 654.715i 0.323316i
\(46\) 0 0
\(47\) − 396.000i − 0.179267i −0.995975 0.0896333i \(-0.971430\pi\)
0.995975 0.0896333i \(-0.0285695\pi\)
\(48\) 0 0
\(49\) −963.000 −0.401083
\(50\) 0 0
\(51\) 1590.02 0.611312
\(52\) 0 0
\(53\) 1125.83i 0.400795i 0.979715 + 0.200397i \(0.0642234\pi\)
−0.979715 + 0.200397i \(0.935777\pi\)
\(54\) 0 0
\(55\) 336.000i 0.111074i
\(56\) 0 0
\(57\) −3132.00 −0.963989
\(58\) 0 0
\(59\) 2681.21 0.770243 0.385121 0.922866i \(-0.374160\pi\)
0.385121 + 0.922866i \(0.374160\pi\)
\(60\) 0 0
\(61\) 5985.97i 1.60870i 0.594157 + 0.804349i \(0.297486\pi\)
−0.594157 + 0.804349i \(0.702514\pi\)
\(62\) 0 0
\(63\) − 1566.00i − 0.394558i
\(64\) 0 0
\(65\) 504.000 0.119290
\(66\) 0 0
\(67\) −4801.24 −1.06956 −0.534779 0.844992i \(-0.679605\pi\)
−0.534779 + 0.844992i \(0.679605\pi\)
\(68\) 0 0
\(69\) − 2431.80i − 0.510775i
\(70\) 0 0
\(71\) 6588.00i 1.30688i 0.756977 + 0.653442i \(0.226676\pi\)
−0.756977 + 0.653442i \(0.773324\pi\)
\(72\) 0 0
\(73\) −5894.00 −1.10602 −0.553012 0.833173i \(-0.686522\pi\)
−0.553012 + 0.833173i \(0.686522\pi\)
\(74\) 0 0
\(75\) −192.258 −0.0341791
\(76\) 0 0
\(77\) − 803.672i − 0.135549i
\(78\) 0 0
\(79\) − 8486.00i − 1.35972i −0.733343 0.679859i \(-0.762041\pi\)
0.733343 0.679859i \(-0.237959\pi\)
\(80\) 0 0
\(81\) 729.000 0.111111
\(82\) 0 0
\(83\) −13.8564 −0.00201138 −0.00100569 0.999999i \(-0.500320\pi\)
−0.00100569 + 0.999999i \(0.500320\pi\)
\(84\) 0 0
\(85\) − 7420.11i − 1.02700i
\(86\) 0 0
\(87\) − 7614.00i − 1.00595i
\(88\) 0 0
\(89\) 8766.00 1.10668 0.553339 0.832956i \(-0.313353\pi\)
0.553339 + 0.832956i \(0.313353\pi\)
\(90\) 0 0
\(91\) −1205.51 −0.145575
\(92\) 0 0
\(93\) 571.577i 0.0660859i
\(94\) 0 0
\(95\) 14616.0i 1.61950i
\(96\) 0 0
\(97\) 5918.00 0.628972 0.314486 0.949262i \(-0.398168\pi\)
0.314486 + 0.949262i \(0.398168\pi\)
\(98\) 0 0
\(99\) 374.123 0.0381719
\(100\) 0 0
\(101\) − 16416.4i − 1.60929i −0.593756 0.804646i \(-0.702355\pi\)
0.593756 0.804646i \(-0.297645\pi\)
\(102\) 0 0
\(103\) − 5342.00i − 0.503535i −0.967788 0.251767i \(-0.918988\pi\)
0.967788 0.251767i \(-0.0810118\pi\)
\(104\) 0 0
\(105\) −7308.00 −0.662857
\(106\) 0 0
\(107\) −21733.8 −1.89831 −0.949156 0.314806i \(-0.898060\pi\)
−0.949156 + 0.314806i \(0.898060\pi\)
\(108\) 0 0
\(109\) − 8126.78i − 0.684015i −0.939697 0.342008i \(-0.888893\pi\)
0.939697 0.342008i \(-0.111107\pi\)
\(110\) 0 0
\(111\) − 5400.00i − 0.438276i
\(112\) 0 0
\(113\) 15354.0 1.20244 0.601222 0.799082i \(-0.294681\pi\)
0.601222 + 0.799082i \(0.294681\pi\)
\(114\) 0 0
\(115\) −11348.4 −0.858102
\(116\) 0 0
\(117\) − 561.184i − 0.0409953i
\(118\) 0 0
\(119\) 17748.0i 1.25330i
\(120\) 0 0
\(121\) −14449.0 −0.986886
\(122\) 0 0
\(123\) −15432.6 −1.02007
\(124\) 0 0
\(125\) 16052.6i 1.02737i
\(126\) 0 0
\(127\) 9998.00i 0.619877i 0.950757 + 0.309939i \(0.100309\pi\)
−0.950757 + 0.309939i \(0.899691\pi\)
\(128\) 0 0
\(129\) −15012.0 −0.902109
\(130\) 0 0
\(131\) −1877.54 −0.109408 −0.0547038 0.998503i \(-0.517421\pi\)
−0.0547038 + 0.998503i \(0.517421\pi\)
\(132\) 0 0
\(133\) − 34959.7i − 1.97635i
\(134\) 0 0
\(135\) − 3402.00i − 0.186667i
\(136\) 0 0
\(137\) 27882.0 1.48553 0.742767 0.669550i \(-0.233513\pi\)
0.742767 + 0.669550i \(0.233513\pi\)
\(138\) 0 0
\(139\) 11327.6 0.586285 0.293142 0.956069i \(-0.405299\pi\)
0.293142 + 0.956069i \(0.405299\pi\)
\(140\) 0 0
\(141\) 2057.68i 0.103500i
\(142\) 0 0
\(143\) − 288.000i − 0.0140838i
\(144\) 0 0
\(145\) −35532.0 −1.68999
\(146\) 0 0
\(147\) 5003.89 0.231565
\(148\) 0 0
\(149\) − 33134.1i − 1.49246i −0.665688 0.746231i \(-0.731862\pi\)
0.665688 0.746231i \(-0.268138\pi\)
\(150\) 0 0
\(151\) − 38794.0i − 1.70142i −0.525638 0.850708i \(-0.676173\pi\)
0.525638 0.850708i \(-0.323827\pi\)
\(152\) 0 0
\(153\) −8262.00 −0.352941
\(154\) 0 0
\(155\) 2667.36 0.111024
\(156\) 0 0
\(157\) 35957.4i 1.45878i 0.684100 + 0.729388i \(0.260195\pi\)
−0.684100 + 0.729388i \(0.739805\pi\)
\(158\) 0 0
\(159\) − 5850.00i − 0.231399i
\(160\) 0 0
\(161\) 27144.0 1.04718
\(162\) 0 0
\(163\) −3013.77 −0.113432 −0.0567159 0.998390i \(-0.518063\pi\)
−0.0567159 + 0.998390i \(0.518063\pi\)
\(164\) 0 0
\(165\) − 1745.91i − 0.0641288i
\(166\) 0 0
\(167\) 11304.0i 0.405321i 0.979249 + 0.202661i \(0.0649588\pi\)
−0.979249 + 0.202661i \(0.935041\pi\)
\(168\) 0 0
\(169\) 28129.0 0.984874
\(170\) 0 0
\(171\) 16274.3 0.556559
\(172\) 0 0
\(173\) 35309.6i 1.17978i 0.807484 + 0.589889i \(0.200829\pi\)
−0.807484 + 0.589889i \(0.799171\pi\)
\(174\) 0 0
\(175\) − 2146.00i − 0.0700735i
\(176\) 0 0
\(177\) −13932.0 −0.444700
\(178\) 0 0
\(179\) 6699.57 0.209094 0.104547 0.994520i \(-0.466661\pi\)
0.104547 + 0.994520i \(0.466661\pi\)
\(180\) 0 0
\(181\) 14445.3i 0.440930i 0.975395 + 0.220465i \(0.0707575\pi\)
−0.975395 + 0.220465i \(0.929243\pi\)
\(182\) 0 0
\(183\) − 31104.0i − 0.928783i
\(184\) 0 0
\(185\) −25200.0 −0.736304
\(186\) 0 0
\(187\) −4240.06 −0.121252
\(188\) 0 0
\(189\) 8137.17i 0.227798i
\(190\) 0 0
\(191\) 35064.0i 0.961158i 0.876951 + 0.480579i \(0.159573\pi\)
−0.876951 + 0.480579i \(0.840427\pi\)
\(192\) 0 0
\(193\) −11230.0 −0.301485 −0.150742 0.988573i \(-0.548166\pi\)
−0.150742 + 0.988573i \(0.548166\pi\)
\(194\) 0 0
\(195\) −2618.86 −0.0688721
\(196\) 0 0
\(197\) 28991.1i 0.747019i 0.927626 + 0.373510i \(0.121846\pi\)
−0.927626 + 0.373510i \(0.878154\pi\)
\(198\) 0 0
\(199\) 18226.0i 0.460241i 0.973162 + 0.230120i \(0.0739120\pi\)
−0.973162 + 0.230120i \(0.926088\pi\)
\(200\) 0 0
\(201\) 24948.0 0.617509
\(202\) 0 0
\(203\) 84988.3 2.06237
\(204\) 0 0
\(205\) 72018.7i 1.71371i
\(206\) 0 0
\(207\) 12636.0i 0.294896i
\(208\) 0 0
\(209\) 8352.00 0.191204
\(210\) 0 0
\(211\) 37266.8 0.837061 0.418531 0.908203i \(-0.362545\pi\)
0.418531 + 0.908203i \(0.362545\pi\)
\(212\) 0 0
\(213\) − 34232.3i − 0.754530i
\(214\) 0 0
\(215\) 70056.0i 1.51554i
\(216\) 0 0
\(217\) −6380.00 −0.135488
\(218\) 0 0
\(219\) 30626.1 0.638563
\(220\) 0 0
\(221\) 6360.09i 0.130220i
\(222\) 0 0
\(223\) − 10162.0i − 0.204348i −0.994767 0.102174i \(-0.967420\pi\)
0.994767 0.102174i \(-0.0325798\pi\)
\(224\) 0 0
\(225\) 999.000 0.0197333
\(226\) 0 0
\(227\) 15214.3 0.295258 0.147629 0.989043i \(-0.452836\pi\)
0.147629 + 0.989043i \(0.452836\pi\)
\(228\) 0 0
\(229\) − 7711.09i − 0.147043i −0.997294 0.0735216i \(-0.976576\pi\)
0.997294 0.0735216i \(-0.0234238\pi\)
\(230\) 0 0
\(231\) 4176.00i 0.0782594i
\(232\) 0 0
\(233\) −21258.0 −0.391571 −0.195786 0.980647i \(-0.562726\pi\)
−0.195786 + 0.980647i \(0.562726\pi\)
\(234\) 0 0
\(235\) 9602.49 0.173879
\(236\) 0 0
\(237\) 44094.5i 0.785034i
\(238\) 0 0
\(239\) − 97056.0i − 1.69913i −0.527484 0.849565i \(-0.676865\pi\)
0.527484 0.849565i \(-0.323135\pi\)
\(240\) 0 0
\(241\) 47242.0 0.813381 0.406691 0.913566i \(-0.366683\pi\)
0.406691 + 0.913566i \(0.366683\pi\)
\(242\) 0 0
\(243\) −3788.00 −0.0641500
\(244\) 0 0
\(245\) − 23351.5i − 0.389030i
\(246\) 0 0
\(247\) − 12528.0i − 0.205347i
\(248\) 0 0
\(249\) 72.0000 0.00116127
\(250\) 0 0
\(251\) −78191.7 −1.24112 −0.620559 0.784160i \(-0.713094\pi\)
−0.620559 + 0.784160i \(0.713094\pi\)
\(252\) 0 0
\(253\) 6484.80i 0.101311i
\(254\) 0 0
\(255\) 38556.0i 0.592941i
\(256\) 0 0
\(257\) 23922.0 0.362186 0.181093 0.983466i \(-0.442037\pi\)
0.181093 + 0.983466i \(0.442037\pi\)
\(258\) 0 0
\(259\) 60275.4 0.898546
\(260\) 0 0
\(261\) 39563.5i 0.580783i
\(262\) 0 0
\(263\) − 84528.0i − 1.22205i −0.791611 0.611025i \(-0.790757\pi\)
0.791611 0.611025i \(-0.209243\pi\)
\(264\) 0 0
\(265\) −27300.0 −0.388750
\(266\) 0 0
\(267\) −45549.5 −0.638941
\(268\) 0 0
\(269\) 92751.3i 1.28179i 0.767630 + 0.640893i \(0.221436\pi\)
−0.767630 + 0.640893i \(0.778564\pi\)
\(270\) 0 0
\(271\) 61118.0i 0.832205i 0.909318 + 0.416103i \(0.136604\pi\)
−0.909318 + 0.416103i \(0.863396\pi\)
\(272\) 0 0
\(273\) 6264.00 0.0840478
\(274\) 0 0
\(275\) 512.687 0.00677933
\(276\) 0 0
\(277\) − 69441.4i − 0.905021i −0.891759 0.452511i \(-0.850528\pi\)
0.891759 0.452511i \(-0.149472\pi\)
\(278\) 0 0
\(279\) − 2970.00i − 0.0381547i
\(280\) 0 0
\(281\) −60570.0 −0.767088 −0.383544 0.923523i \(-0.625296\pi\)
−0.383544 + 0.923523i \(0.625296\pi\)
\(282\) 0 0
\(283\) −87565.6 −1.09335 −0.546677 0.837344i \(-0.684107\pi\)
−0.546677 + 0.837344i \(0.684107\pi\)
\(284\) 0 0
\(285\) − 75947.0i − 0.935020i
\(286\) 0 0
\(287\) − 172260.i − 2.09132i
\(288\) 0 0
\(289\) 10115.0 0.121107
\(290\) 0 0
\(291\) −30750.8 −0.363137
\(292\) 0 0
\(293\) − 77162.9i − 0.898821i −0.893325 0.449410i \(-0.851634\pi\)
0.893325 0.449410i \(-0.148366\pi\)
\(294\) 0 0
\(295\) 65016.0i 0.747096i
\(296\) 0 0
\(297\) −1944.00 −0.0220386
\(298\) 0 0
\(299\) 9727.20 0.108804
\(300\) 0 0
\(301\) − 167566.i − 1.84949i
\(302\) 0 0
\(303\) 85302.0i 0.929125i
\(304\) 0 0
\(305\) −145152. −1.56035
\(306\) 0 0
\(307\) 12657.8 0.134302 0.0671510 0.997743i \(-0.478609\pi\)
0.0671510 + 0.997743i \(0.478609\pi\)
\(308\) 0 0
\(309\) 27757.8i 0.290716i
\(310\) 0 0
\(311\) 137592.i 1.42257i 0.702906 + 0.711283i \(0.251886\pi\)
−0.702906 + 0.711283i \(0.748114\pi\)
\(312\) 0 0
\(313\) 13198.0 0.134716 0.0673580 0.997729i \(-0.478543\pi\)
0.0673580 + 0.997729i \(0.478543\pi\)
\(314\) 0 0
\(315\) 37973.5 0.382701
\(316\) 0 0
\(317\) − 134106.i − 1.33453i −0.744820 0.667266i \(-0.767464\pi\)
0.744820 0.667266i \(-0.232536\pi\)
\(318\) 0 0
\(319\) 20304.0i 0.199526i
\(320\) 0 0
\(321\) 112932. 1.09599
\(322\) 0 0
\(323\) −184443. −1.76789
\(324\) 0 0
\(325\) − 769.031i − 0.00728076i
\(326\) 0 0
\(327\) 42228.0i 0.394916i
\(328\) 0 0
\(329\) −22968.0 −0.212193
\(330\) 0 0
\(331\) −52107.0 −0.475598 −0.237799 0.971314i \(-0.576426\pi\)
−0.237799 + 0.971314i \(0.576426\pi\)
\(332\) 0 0
\(333\) 28059.2i 0.253039i
\(334\) 0 0
\(335\) − 116424.i − 1.03742i
\(336\) 0 0
\(337\) 84470.0 0.743777 0.371888 0.928277i \(-0.378710\pi\)
0.371888 + 0.928277i \(0.378710\pi\)
\(338\) 0 0
\(339\) −79781.7 −0.694231
\(340\) 0 0
\(341\) − 1524.20i − 0.0131079i
\(342\) 0 0
\(343\) − 83404.0i − 0.708922i
\(344\) 0 0
\(345\) 58968.0 0.495425
\(346\) 0 0
\(347\) −57670.4 −0.478954 −0.239477 0.970902i \(-0.576976\pi\)
−0.239477 + 0.970902i \(0.576976\pi\)
\(348\) 0 0
\(349\) 43315.1i 0.355622i 0.984065 + 0.177811i \(0.0569016\pi\)
−0.984065 + 0.177811i \(0.943098\pi\)
\(350\) 0 0
\(351\) 2916.00i 0.0236686i
\(352\) 0 0
\(353\) −188118. −1.50967 −0.754833 0.655917i \(-0.772282\pi\)
−0.754833 + 0.655917i \(0.772282\pi\)
\(354\) 0 0
\(355\) −159751. −1.26761
\(356\) 0 0
\(357\) − 92221.3i − 0.723594i
\(358\) 0 0
\(359\) − 14148.0i − 0.109776i −0.998493 0.0548878i \(-0.982520\pi\)
0.998493 0.0548878i \(-0.0174801\pi\)
\(360\) 0 0
\(361\) 232991. 1.78782
\(362\) 0 0
\(363\) 75079.2 0.569779
\(364\) 0 0
\(365\) − 142922.i − 1.07279i
\(366\) 0 0
\(367\) 265810.i 1.97351i 0.162220 + 0.986755i \(0.448135\pi\)
−0.162220 + 0.986755i \(0.551865\pi\)
\(368\) 0 0
\(369\) 80190.0 0.588935
\(370\) 0 0
\(371\) 65298.3 0.474410
\(372\) 0 0
\(373\) 131774.i 0.947138i 0.880757 + 0.473569i \(0.157035\pi\)
−0.880757 + 0.473569i \(0.842965\pi\)
\(374\) 0 0
\(375\) − 83412.0i − 0.593152i
\(376\) 0 0
\(377\) 30456.0 0.214284
\(378\) 0 0
\(379\) −91930.3 −0.640001 −0.320000 0.947417i \(-0.603683\pi\)
−0.320000 + 0.947417i \(0.603683\pi\)
\(380\) 0 0
\(381\) − 51951.1i − 0.357886i
\(382\) 0 0
\(383\) − 189000.i − 1.28844i −0.764840 0.644220i \(-0.777182\pi\)
0.764840 0.644220i \(-0.222818\pi\)
\(384\) 0 0
\(385\) 19488.0 0.131476
\(386\) 0 0
\(387\) 78004.6 0.520833
\(388\) 0 0
\(389\) 180906.i 1.19551i 0.801679 + 0.597755i \(0.203940\pi\)
−0.801679 + 0.597755i \(0.796060\pi\)
\(390\) 0 0
\(391\) − 143208.i − 0.936729i
\(392\) 0 0
\(393\) 9756.00 0.0631665
\(394\) 0 0
\(395\) 205775. 1.31886
\(396\) 0 0
\(397\) − 140005.i − 0.888307i −0.895951 0.444153i \(-0.853505\pi\)
0.895951 0.444153i \(-0.146495\pi\)
\(398\) 0 0
\(399\) 181656.i 1.14105i
\(400\) 0 0
\(401\) −208674. −1.29772 −0.648858 0.760910i \(-0.724753\pi\)
−0.648858 + 0.760910i \(0.724753\pi\)
\(402\) 0 0
\(403\) −2286.31 −0.0140775
\(404\) 0 0
\(405\) 17677.3i 0.107772i
\(406\) 0 0
\(407\) 14400.0i 0.0869308i
\(408\) 0 0
\(409\) −194078. −1.16019 −0.580096 0.814548i \(-0.696985\pi\)
−0.580096 + 0.814548i \(0.696985\pi\)
\(410\) 0 0
\(411\) −144879. −0.857674
\(412\) 0 0
\(413\) − 155510.i − 0.911716i
\(414\) 0 0
\(415\) − 336.000i − 0.00195094i
\(416\) 0 0
\(417\) −58860.0 −0.338492
\(418\) 0 0
\(419\) 72829.3 0.414837 0.207419 0.978252i \(-0.433494\pi\)
0.207419 + 0.978252i \(0.433494\pi\)
\(420\) 0 0
\(421\) 107893.i 0.608736i 0.952555 + 0.304368i \(0.0984452\pi\)
−0.952555 + 0.304368i \(0.901555\pi\)
\(422\) 0 0
\(423\) − 10692.0i − 0.0597555i
\(424\) 0 0
\(425\) −11322.0 −0.0626824
\(426\) 0 0
\(427\) 347186. 1.90417
\(428\) 0 0
\(429\) 1496.49i 0.00813130i
\(430\) 0 0
\(431\) − 151380.i − 0.814918i −0.913223 0.407459i \(-0.866415\pi\)
0.913223 0.407459i \(-0.133585\pi\)
\(432\) 0 0
\(433\) −13922.0 −0.0742550 −0.0371275 0.999311i \(-0.511821\pi\)
−0.0371275 + 0.999311i \(0.511821\pi\)
\(434\) 0 0
\(435\) 184630. 0.975715
\(436\) 0 0
\(437\) 282089.i 1.47714i
\(438\) 0 0
\(439\) 171130.i 0.887968i 0.896035 + 0.443984i \(0.146435\pi\)
−0.896035 + 0.443984i \(0.853565\pi\)
\(440\) 0 0
\(441\) −26001.0 −0.133694
\(442\) 0 0
\(443\) −226719. −1.15526 −0.577630 0.816299i \(-0.696022\pi\)
−0.577630 + 0.816299i \(0.696022\pi\)
\(444\) 0 0
\(445\) 212564.i 1.07342i
\(446\) 0 0
\(447\) 172170.i 0.861673i
\(448\) 0 0
\(449\) 160830. 0.797764 0.398882 0.917002i \(-0.369398\pi\)
0.398882 + 0.917002i \(0.369398\pi\)
\(450\) 0 0
\(451\) 41153.5 0.202327
\(452\) 0 0
\(453\) 201580.i 0.982313i
\(454\) 0 0
\(455\) − 29232.0i − 0.141200i
\(456\) 0 0
\(457\) −146030. −0.699213 −0.349607 0.936897i \(-0.613685\pi\)
−0.349607 + 0.936897i \(0.613685\pi\)
\(458\) 0 0
\(459\) 42930.6 0.203771
\(460\) 0 0
\(461\) 99561.7i 0.468480i 0.972179 + 0.234240i \(0.0752601\pi\)
−0.972179 + 0.234240i \(0.924740\pi\)
\(462\) 0 0
\(463\) − 47194.0i − 0.220153i −0.993923 0.110077i \(-0.964890\pi\)
0.993923 0.110077i \(-0.0351096\pi\)
\(464\) 0 0
\(465\) −13860.0 −0.0640999
\(466\) 0 0
\(467\) 279872. 1.28329 0.641646 0.767001i \(-0.278252\pi\)
0.641646 + 0.767001i \(0.278252\pi\)
\(468\) 0 0
\(469\) 278472.i 1.26601i
\(470\) 0 0
\(471\) − 186840.i − 0.842225i
\(472\) 0 0
\(473\) 40032.0 0.178931
\(474\) 0 0
\(475\) 22301.9 0.0988449
\(476\) 0 0
\(477\) 30397.5i 0.133598i
\(478\) 0 0
\(479\) − 126828.i − 0.552770i −0.961047 0.276385i \(-0.910864\pi\)
0.961047 0.276385i \(-0.0891364\pi\)
\(480\) 0 0
\(481\) 21600.0 0.0933606
\(482\) 0 0
\(483\) −141044. −0.604591
\(484\) 0 0
\(485\) 143504.i 0.610071i
\(486\) 0 0
\(487\) − 177010.i − 0.746345i −0.927762 0.373173i \(-0.878270\pi\)
0.927762 0.373173i \(-0.121730\pi\)
\(488\) 0 0
\(489\) 15660.0 0.0654899
\(490\) 0 0
\(491\) 85667.2 0.355346 0.177673 0.984090i \(-0.443143\pi\)
0.177673 + 0.984090i \(0.443143\pi\)
\(492\) 0 0
\(493\) − 448386.i − 1.84484i
\(494\) 0 0
\(495\) 9072.00i 0.0370248i
\(496\) 0 0
\(497\) 382104. 1.54692
\(498\) 0 0
\(499\) 318566. 1.27938 0.639688 0.768635i \(-0.279064\pi\)
0.639688 + 0.768635i \(0.279064\pi\)
\(500\) 0 0
\(501\) − 58737.3i − 0.234012i
\(502\) 0 0
\(503\) 379404.i 1.49957i 0.661683 + 0.749784i \(0.269842\pi\)
−0.661683 + 0.749784i \(0.730158\pi\)
\(504\) 0 0
\(505\) 398076. 1.56093
\(506\) 0 0
\(507\) −146163. −0.568618
\(508\) 0 0
\(509\) 234973.i 0.906950i 0.891269 + 0.453475i \(0.149816\pi\)
−0.891269 + 0.453475i \(0.850184\pi\)
\(510\) 0 0
\(511\) 341852.i 1.30917i
\(512\) 0 0
\(513\) −84564.0 −0.321330
\(514\) 0 0
\(515\) 129537. 0.488403
\(516\) 0 0
\(517\) − 5487.14i − 0.0205289i
\(518\) 0 0
\(519\) − 183474.i − 0.681145i
\(520\) 0 0
\(521\) −289422. −1.06624 −0.533121 0.846039i \(-0.678981\pi\)
−0.533121 + 0.846039i \(0.678981\pi\)
\(522\) 0 0
\(523\) 382790. 1.39945 0.699725 0.714412i \(-0.253306\pi\)
0.699725 + 0.714412i \(0.253306\pi\)
\(524\) 0 0
\(525\) 11150.9i 0.0404569i
\(526\) 0 0
\(527\) 33660.0i 0.121197i
\(528\) 0 0
\(529\) 60817.0 0.217327
\(530\) 0 0
\(531\) 72392.8 0.256748
\(532\) 0 0
\(533\) − 61730.3i − 0.217292i
\(534\) 0 0
\(535\) − 527016.i − 1.84126i
\(536\) 0 0
\(537\) −34812.0 −0.120720
\(538\) 0 0
\(539\) −13343.7 −0.0459303
\(540\) 0 0
\(541\) − 79043.9i − 0.270068i −0.990841 0.135034i \(-0.956886\pi\)
0.990841 0.135034i \(-0.0431144\pi\)
\(542\) 0 0
\(543\) − 75060.0i − 0.254571i
\(544\) 0 0
\(545\) 197064. 0.663459
\(546\) 0 0
\(547\) −305970. −1.02260 −0.511299 0.859403i \(-0.670835\pi\)
−0.511299 + 0.859403i \(0.670835\pi\)
\(548\) 0 0
\(549\) 161621.i 0.536233i
\(550\) 0 0
\(551\) 883224.i 2.90916i
\(552\) 0 0
\(553\) −492188. −1.60946
\(554\) 0 0
\(555\) 130943. 0.425105
\(556\) 0 0
\(557\) − 333714.i − 1.07563i −0.843062 0.537817i \(-0.819249\pi\)
0.843062 0.537817i \(-0.180751\pi\)
\(558\) 0 0
\(559\) − 60048.0i − 0.192165i
\(560\) 0 0
\(561\) 22032.0 0.0700049
\(562\) 0 0
\(563\) −472088. −1.48938 −0.744691 0.667410i \(-0.767403\pi\)
−0.744691 + 0.667410i \(0.767403\pi\)
\(564\) 0 0
\(565\) 372315.i 1.16631i
\(566\) 0 0
\(567\) − 42282.0i − 0.131519i
\(568\) 0 0
\(569\) 21258.0 0.0656595 0.0328298 0.999461i \(-0.489548\pi\)
0.0328298 + 0.999461i \(0.489548\pi\)
\(570\) 0 0
\(571\) −490205. −1.50351 −0.751754 0.659444i \(-0.770792\pi\)
−0.751754 + 0.659444i \(0.770792\pi\)
\(572\) 0 0
\(573\) − 182198.i − 0.554925i
\(574\) 0 0
\(575\) 17316.0i 0.0523735i
\(576\) 0 0
\(577\) −454610. −1.36549 −0.682743 0.730658i \(-0.739213\pi\)
−0.682743 + 0.730658i \(0.739213\pi\)
\(578\) 0 0
\(579\) 58352.8 0.174062
\(580\) 0 0
\(581\) 803.672i 0.00238082i
\(582\) 0 0
\(583\) 15600.0i 0.0458973i
\(584\) 0 0
\(585\) 13608.0 0.0397633
\(586\) 0 0
\(587\) −35243.8 −0.102284 −0.0511418 0.998691i \(-0.516286\pi\)
−0.0511418 + 0.998691i \(0.516286\pi\)
\(588\) 0 0
\(589\) − 66302.9i − 0.191118i
\(590\) 0 0
\(591\) − 150642.i − 0.431292i
\(592\) 0 0
\(593\) 197658. 0.562089 0.281044 0.959695i \(-0.409319\pi\)
0.281044 + 0.959695i \(0.409319\pi\)
\(594\) 0 0
\(595\) −430366. −1.21564
\(596\) 0 0
\(597\) − 94705.1i − 0.265720i
\(598\) 0 0
\(599\) 204156.i 0.568995i 0.958677 + 0.284498i \(0.0918268\pi\)
−0.958677 + 0.284498i \(0.908173\pi\)
\(600\) 0 0
\(601\) 294242. 0.814621 0.407311 0.913290i \(-0.366467\pi\)
0.407311 + 0.913290i \(0.366467\pi\)
\(602\) 0 0
\(603\) −129634. −0.356519
\(604\) 0 0
\(605\) − 350370.i − 0.957229i
\(606\) 0 0
\(607\) − 331762.i − 0.900429i −0.892921 0.450214i \(-0.851348\pi\)
0.892921 0.450214i \(-0.148652\pi\)
\(608\) 0 0
\(609\) −441612. −1.19071
\(610\) 0 0
\(611\) −8230.71 −0.0220473
\(612\) 0 0
\(613\) − 448698.i − 1.19408i −0.802212 0.597040i \(-0.796343\pi\)
0.802212 0.597040i \(-0.203657\pi\)
\(614\) 0 0
\(615\) − 374220.i − 0.989411i
\(616\) 0 0
\(617\) 358470. 0.941635 0.470817 0.882231i \(-0.343959\pi\)
0.470817 + 0.882231i \(0.343959\pi\)
\(618\) 0 0
\(619\) 321808. 0.839877 0.419939 0.907553i \(-0.362052\pi\)
0.419939 + 0.907553i \(0.362052\pi\)
\(620\) 0 0
\(621\) − 65658.6i − 0.170258i
\(622\) 0 0
\(623\) − 508428.i − 1.30995i
\(624\) 0 0
\(625\) −366131. −0.937295
\(626\) 0 0
\(627\) −43398.3 −0.110392
\(628\) 0 0
\(629\) − 318005.i − 0.803770i
\(630\) 0 0
\(631\) − 26002.0i − 0.0653052i −0.999467 0.0326526i \(-0.989605\pi\)
0.999467 0.0326526i \(-0.0103955\pi\)
\(632\) 0 0
\(633\) −193644. −0.483278
\(634\) 0 0
\(635\) −242439. −0.601249
\(636\) 0 0
\(637\) 20015.6i 0.0493275i
\(638\) 0 0
\(639\) 177876.i 0.435628i
\(640\) 0 0
\(641\) 322758. 0.785527 0.392763 0.919640i \(-0.371519\pi\)
0.392763 + 0.919640i \(0.371519\pi\)
\(642\) 0 0
\(643\) −596788. −1.44344 −0.721720 0.692186i \(-0.756648\pi\)
−0.721720 + 0.692186i \(0.756648\pi\)
\(644\) 0 0
\(645\) − 364022.i − 0.874999i
\(646\) 0 0
\(647\) 345348.i 0.824989i 0.910960 + 0.412495i \(0.135342\pi\)
−0.910960 + 0.412495i \(0.864658\pi\)
\(648\) 0 0
\(649\) 37152.0 0.0882049
\(650\) 0 0
\(651\) 33151.5 0.0782241
\(652\) 0 0
\(653\) − 76095.9i − 0.178458i −0.996011 0.0892288i \(-0.971560\pi\)
0.996011 0.0892288i \(-0.0284402\pi\)
\(654\) 0 0
\(655\) − 45528.0i − 0.106120i
\(656\) 0 0
\(657\) −159138. −0.368675
\(658\) 0 0
\(659\) 303712. 0.699344 0.349672 0.936872i \(-0.386293\pi\)
0.349672 + 0.936872i \(0.386293\pi\)
\(660\) 0 0
\(661\) − 595978.i − 1.36404i −0.731333 0.682020i \(-0.761102\pi\)
0.731333 0.682020i \(-0.238898\pi\)
\(662\) 0 0
\(663\) − 33048.0i − 0.0751827i
\(664\) 0 0
\(665\) 847728. 1.91696
\(666\) 0 0
\(667\) −685767. −1.54143
\(668\) 0 0
\(669\) 52803.3i 0.117980i
\(670\) 0 0
\(671\) 82944.0i 0.184221i
\(672\) 0 0
\(673\) 362542. 0.800439 0.400219 0.916419i \(-0.368934\pi\)
0.400219 + 0.916419i \(0.368934\pi\)
\(674\) 0 0
\(675\) −5190.96 −0.0113930
\(676\) 0 0
\(677\) − 109026.i − 0.237876i −0.992902 0.118938i \(-0.962051\pi\)
0.992902 0.118938i \(-0.0379490\pi\)
\(678\) 0 0
\(679\) − 343244.i − 0.744498i
\(680\) 0 0
\(681\) −79056.0 −0.170467
\(682\) 0 0
\(683\) 210382. 0.450990 0.225495 0.974244i \(-0.427600\pi\)
0.225495 + 0.974244i \(0.427600\pi\)
\(684\) 0 0
\(685\) 676103.i 1.44089i
\(686\) 0 0
\(687\) 40068.0i 0.0848954i
\(688\) 0 0
\(689\) 23400.0 0.0492921
\(690\) 0 0
\(691\) 521673. 1.09255 0.546276 0.837605i \(-0.316045\pi\)
0.546276 + 0.837605i \(0.316045\pi\)
\(692\) 0 0
\(693\) − 21699.1i − 0.0451831i
\(694\) 0 0
\(695\) 274680.i 0.568666i
\(696\) 0 0
\(697\) −908820. −1.87074
\(698\) 0 0
\(699\) 110460. 0.226074
\(700\) 0 0
\(701\) − 264813.i − 0.538894i −0.963015 0.269447i \(-0.913159\pi\)
0.963015 0.269447i \(-0.0868410\pi\)
\(702\) 0 0
\(703\) 626400.i 1.26748i
\(704\) 0 0
\(705\) −49896.0 −0.100389
\(706\) 0 0
\(707\) −952150. −1.90488
\(708\) 0 0
\(709\) 143767.i 0.286001i 0.989723 + 0.143000i \(0.0456750\pi\)
−0.989723 + 0.143000i \(0.954325\pi\)
\(710\) 0 0
\(711\) − 229122.i − 0.453239i
\(712\) 0 0
\(713\) 51480.0 0.101265
\(714\) 0 0
\(715\) 6983.63 0.0136606
\(716\) 0 0
\(717\) 504318.i 0.980993i
\(718\) 0 0
\(719\) 283212.i 0.547840i 0.961752 + 0.273920i \(0.0883204\pi\)
−0.961752 + 0.273920i \(0.911680\pi\)
\(720\) 0 0
\(721\) −309836. −0.596021
\(722\) 0 0
\(723\) −245477. −0.469606
\(724\) 0 0
\(725\) 54216.7i 0.103147i
\(726\) 0 0
\(727\) 225086.i 0.425873i 0.977066 + 0.212936i \(0.0683027\pi\)
−0.977066 + 0.212936i \(0.931697\pi\)
\(728\) 0 0
\(729\) 19683.0 0.0370370
\(730\) 0 0
\(731\) −884053. −1.65441
\(732\) 0 0
\(733\) − 368158.i − 0.685214i −0.939479 0.342607i \(-0.888690\pi\)
0.939479 0.342607i \(-0.111310\pi\)
\(734\) 0 0
\(735\) 121338.i 0.224606i
\(736\) 0 0
\(737\) −66528.0 −0.122481
\(738\) 0 0
\(739\) 1.06623e6 1.95237 0.976184 0.216942i \(-0.0696083\pi\)
0.976184 + 0.216942i \(0.0696083\pi\)
\(740\) 0 0
\(741\) 65097.4i 0.118557i
\(742\) 0 0
\(743\) 903024.i 1.63577i 0.575383 + 0.817884i \(0.304853\pi\)
−0.575383 + 0.817884i \(0.695147\pi\)
\(744\) 0 0
\(745\) 803460. 1.44761
\(746\) 0 0
\(747\) −374.123 −0.000670460 0
\(748\) 0 0
\(749\) 1.26056e6i 2.24698i
\(750\) 0 0
\(751\) − 765038.i − 1.35645i −0.734855 0.678224i \(-0.762750\pi\)
0.734855 0.678224i \(-0.237250\pi\)
\(752\) 0 0
\(753\) 406296. 0.716560
\(754\) 0 0
\(755\) 940705. 1.65029
\(756\) 0 0
\(757\) − 583944.i − 1.01901i −0.860467 0.509506i \(-0.829828\pi\)
0.860467 0.509506i \(-0.170172\pi\)
\(758\) 0 0
\(759\) − 33696.0i − 0.0584918i
\(760\) 0 0
\(761\) −20430.0 −0.0352776 −0.0176388 0.999844i \(-0.505615\pi\)
−0.0176388 + 0.999844i \(0.505615\pi\)
\(762\) 0 0
\(763\) −471353. −0.809650
\(764\) 0 0
\(765\) − 200343.i − 0.342335i
\(766\) 0 0
\(767\) − 55728.0i − 0.0947290i
\(768\) 0 0
\(769\) −172654. −0.291960 −0.145980 0.989288i \(-0.546634\pi\)
−0.145980 + 0.989288i \(0.546634\pi\)
\(770\) 0 0
\(771\) −124302. −0.209108
\(772\) 0 0
\(773\) − 402525.i − 0.673650i −0.941567 0.336825i \(-0.890647\pi\)
0.941567 0.336825i \(-0.109353\pi\)
\(774\) 0 0
\(775\) − 4070.00i − 0.00677627i
\(776\) 0 0
\(777\) −313200. −0.518776
\(778\) 0 0
\(779\) 1.79018e6 2.95000
\(780\) 0 0
\(781\) 91286.0i 0.149659i
\(782\) 0 0
\(783\) − 205578.i − 0.335315i
\(784\) 0 0
\(785\) −871920. −1.41494
\(786\) 0 0
\(787\) 938986. 1.51604 0.758018 0.652233i \(-0.226168\pi\)
0.758018 + 0.652233i \(0.226168\pi\)
\(788\) 0 0
\(789\) 439220.i 0.705551i
\(790\) 0 0
\(791\) − 890532.i − 1.42330i
\(792\) 0 0
\(793\) 124416. 0.197847
\(794\) 0 0
\(795\) 141855. 0.224445
\(796\) 0 0
\(797\) 1.01547e6i 1.59864i 0.600906 + 0.799320i \(0.294807\pi\)
−0.600906 + 0.799320i \(0.705193\pi\)
\(798\) 0 0
\(799\) 121176.i 0.189812i
\(800\) 0 0
\(801\) 236682. 0.368893
\(802\) 0 0
\(803\) −81669.7 −0.126657
\(804\) 0 0
\(805\) 658207.i 1.01571i
\(806\) 0 0
\(807\) − 481950.i − 0.740040i
\(808\) 0 0
\(809\) −572742. −0.875109 −0.437554 0.899192i \(-0.644155\pi\)
−0.437554 + 0.899192i \(0.644155\pi\)
\(810\) 0 0
\(811\) 503590. 0.765659 0.382830 0.923819i \(-0.374950\pi\)
0.382830 + 0.923819i \(0.374950\pi\)
\(812\) 0 0
\(813\) − 317578.i − 0.480474i
\(814\) 0 0
\(815\) − 73080.0i − 0.110023i
\(816\) 0 0
\(817\) 1.74139e6 2.60887
\(818\) 0 0
\(819\) −32548.7 −0.0485250
\(820\) 0 0
\(821\) − 345783.i − 0.513000i −0.966544 0.256500i \(-0.917431\pi\)
0.966544 0.256500i \(-0.0825694\pi\)
\(822\) 0 0
\(823\) − 739546.i − 1.09186i −0.837832 0.545928i \(-0.816177\pi\)
0.837832 0.545928i \(-0.183823\pi\)
\(824\) 0 0
\(825\) −2664.00 −0.00391405
\(826\) 0 0
\(827\) −551769. −0.806764 −0.403382 0.915032i \(-0.632165\pi\)
−0.403382 + 0.915032i \(0.632165\pi\)
\(828\) 0 0
\(829\) 885944.i 1.28913i 0.764549 + 0.644566i \(0.222962\pi\)
−0.764549 + 0.644566i \(0.777038\pi\)
\(830\) 0 0
\(831\) 360828.i 0.522514i
\(832\) 0 0
\(833\) 294678. 0.424676
\(834\) 0 0
\(835\) −274107. −0.393141
\(836\) 0 0
\(837\) 15432.6i 0.0220286i
\(838\) 0 0
\(839\) − 418140.i − 0.594016i −0.954875 0.297008i \(-0.904011\pi\)
0.954875 0.297008i \(-0.0959887\pi\)
\(840\) 0 0
\(841\) −1.43987e6 −2.03578
\(842\) 0 0
\(843\) 314731. 0.442878
\(844\) 0 0
\(845\) 682092.i 0.955277i
\(846\) 0 0
\(847\) 838042.i 1.16815i
\(848\) 0 0
\(849\) 455004. 0.631248
\(850\) 0 0
\(851\) −486360. −0.671581
\(852\) 0 0
\(853\) − 422634.i − 0.580854i −0.956897 0.290427i \(-0.906203\pi\)
0.956897 0.290427i \(-0.0937973\pi\)
\(854\) 0 0
\(855\) 394632.i 0.539834i
\(856\) 0 0
\(857\) 49914.0 0.0679612 0.0339806 0.999422i \(-0.489182\pi\)
0.0339806 + 0.999422i \(0.489182\pi\)
\(858\) 0 0
\(859\) 726443. 0.984499 0.492249 0.870454i \(-0.336175\pi\)
0.492249 + 0.870454i \(0.336175\pi\)
\(860\) 0 0
\(861\) 895089.i 1.20742i
\(862\) 0 0
\(863\) − 375912.i − 0.504736i −0.967631 0.252368i \(-0.918791\pi\)
0.967631 0.252368i \(-0.0812094\pi\)
\(864\) 0 0
\(865\) −856212. −1.14432
\(866\) 0 0
\(867\) −52559.1 −0.0699213
\(868\) 0 0
\(869\) − 117585.i − 0.155709i
\(870\) 0 0
\(871\) 99792.0i 0.131540i
\(872\) 0 0
\(873\) 159786. 0.209657
\(874\) 0 0
\(875\) 931054. 1.21607
\(876\) 0 0
\(877\) 1.41335e6i 1.83760i 0.394720 + 0.918801i \(0.370841\pi\)
−0.394720 + 0.918801i \(0.629159\pi\)
\(878\) 0 0
\(879\) 400950.i 0.518934i
\(880\) 0 0
\(881\) −689742. −0.888658 −0.444329 0.895864i \(-0.646558\pi\)
−0.444329 + 0.895864i \(0.646558\pi\)
\(882\) 0 0
\(883\) −707695. −0.907663 −0.453832 0.891087i \(-0.649943\pi\)
−0.453832 + 0.891087i \(0.649943\pi\)
\(884\) 0 0
\(885\) − 337833.i − 0.431336i
\(886\) 0 0
\(887\) − 706032.i − 0.897382i −0.893687 0.448691i \(-0.851890\pi\)
0.893687 0.448691i \(-0.148110\pi\)
\(888\) 0 0
\(889\) 579884. 0.733732
\(890\) 0 0
\(891\) 10101.3 0.0127240
\(892\) 0 0
\(893\) − 238690.i − 0.299318i
\(894\) 0 0
\(895\) 162456.i 0.202810i
\(896\) 0 0
\(897\) −50544.0 −0.0628181
\(898\) 0 0
\(899\) 161185. 0.199436
\(900\) 0 0
\(901\) − 344505.i − 0.424371i
\(902\) 0 0
\(903\) 870696.i 1.06780i
\(904\) 0 0
\(905\) −350280. −0.427679
\(906\) 0 0
\(907\) 13364.5 0.0162457 0.00812285 0.999967i \(-0.497414\pi\)
0.00812285 + 0.999967i \(0.497414\pi\)
\(908\) 0 0
\(909\) − 443242.i − 0.536430i
\(910\) 0 0
\(911\) − 194544.i − 0.234413i −0.993108 0.117206i \(-0.962606\pi\)
0.993108 0.117206i \(-0.0373939\pi\)
\(912\) 0 0
\(913\) −192.000 −0.000230335 0
\(914\) 0 0
\(915\) 754232. 0.900871
\(916\) 0 0
\(917\) 108897.i 0.129503i
\(918\) 0 0
\(919\) 1.17935e6i 1.39641i 0.715900 + 0.698203i \(0.246017\pi\)
−0.715900 + 0.698203i \(0.753983\pi\)
\(920\) 0 0
\(921\) −65772.0 −0.0775393
\(922\) 0 0
\(923\) 136929. 0.160728
\(924\) 0 0
\(925\) 38451.5i 0.0449397i
\(926\) 0 0
\(927\) − 144234.i − 0.167845i
\(928\) 0 0
\(929\) 232110. 0.268944 0.134472 0.990917i \(-0.457066\pi\)
0.134472 + 0.990917i \(0.457066\pi\)
\(930\) 0 0
\(931\) −580452. −0.669679
\(932\) 0 0
\(933\) − 714949.i − 0.821319i
\(934\) 0 0
\(935\) − 102816.i − 0.117608i
\(936\) 0 0
\(937\) 1.21008e6 1.37827 0.689135 0.724633i \(-0.257991\pi\)
0.689135 + 0.724633i \(0.257991\pi\)
\(938\) 0 0
\(939\) −68578.8 −0.0777784
\(940\) 0 0
\(941\) − 1.19574e6i − 1.35038i −0.737644 0.675190i \(-0.764062\pi\)
0.737644 0.675190i \(-0.235938\pi\)
\(942\) 0 0
\(943\) 1.38996e6i 1.56307i
\(944\) 0 0
\(945\) −197316. −0.220952
\(946\) 0 0
\(947\) 986985. 1.10055 0.550276 0.834983i \(-0.314523\pi\)
0.550276 + 0.834983i \(0.314523\pi\)
\(948\) 0 0
\(949\) 122504.i 0.136025i
\(950\) 0 0
\(951\) 696834.i 0.770492i
\(952\) 0 0
\(953\) −156078. −0.171853 −0.0859263 0.996301i \(-0.527385\pi\)
−0.0859263 + 0.996301i \(0.527385\pi\)
\(954\) 0 0
\(955\) −850257. −0.932274
\(956\) 0 0
\(957\) − 105503.i − 0.115197i
\(958\) 0 0
\(959\) − 1.61716e6i − 1.75839i
\(960\) 0 0
\(961\) 911421. 0.986898
\(962\) 0 0
\(963\) −586812. −0.632771
\(964\) 0 0
\(965\) − 272313.i − 0.292425i
\(966\) 0 0
\(967\) − 1.04281e6i − 1.11520i −0.830109 0.557601i \(-0.811722\pi\)
0.830109 0.557601i \(-0.188278\pi\)
\(968\) 0 0
\(969\) 958392. 1.02069
\(970\) 0 0
\(971\) −1.15445e6 −1.22443 −0.612217 0.790690i \(-0.709722\pi\)
−0.612217 + 0.790690i \(0.709722\pi\)
\(972\) 0 0
\(973\) − 657002.i − 0.693970i
\(974\) 0 0
\(975\) 3996.00i 0.00420355i
\(976\) 0 0
\(977\) −1.24965e6 −1.30918 −0.654590 0.755984i \(-0.727159\pi\)
−0.654590 + 0.755984i \(0.727159\pi\)
\(978\) 0 0
\(979\) 121465. 0.126732
\(980\) 0 0
\(981\) − 219423.i − 0.228005i
\(982\) 0 0
\(983\) − 839088.i − 0.868361i −0.900826 0.434181i \(-0.857038\pi\)
0.900826 0.434181i \(-0.142962\pi\)
\(984\) 0 0
\(985\) −702996. −0.724570
\(986\) 0 0
\(987\) 119345. 0.122510
\(988\) 0 0
\(989\) 1.35208e6i 1.38232i
\(990\) 0 0
\(991\) − 422558.i − 0.430268i −0.976585 0.215134i \(-0.930981\pi\)
0.976585 0.215134i \(-0.0690188\pi\)
\(992\) 0 0
\(993\) 270756. 0.274587
\(994\) 0 0
\(995\) −441957. −0.446410
\(996\) 0 0
\(997\) − 945533.i − 0.951232i −0.879653 0.475616i \(-0.842225\pi\)
0.879653 0.475616i \(-0.157775\pi\)
\(998\) 0 0
\(999\) − 145800.i − 0.146092i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 192.5.b.a.31.2 yes 4
3.2 odd 2 576.5.b.f.415.1 4
4.3 odd 2 inner 192.5.b.a.31.4 yes 4
8.3 odd 2 inner 192.5.b.a.31.1 4
8.5 even 2 inner 192.5.b.a.31.3 yes 4
12.11 even 2 576.5.b.f.415.2 4
16.3 odd 4 768.5.g.e.511.4 4
16.5 even 4 768.5.g.e.511.3 4
16.11 odd 4 768.5.g.e.511.1 4
16.13 even 4 768.5.g.e.511.2 4
24.5 odd 2 576.5.b.f.415.3 4
24.11 even 2 576.5.b.f.415.4 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
192.5.b.a.31.1 4 8.3 odd 2 inner
192.5.b.a.31.2 yes 4 1.1 even 1 trivial
192.5.b.a.31.3 yes 4 8.5 even 2 inner
192.5.b.a.31.4 yes 4 4.3 odd 2 inner
576.5.b.f.415.1 4 3.2 odd 2
576.5.b.f.415.2 4 12.11 even 2
576.5.b.f.415.3 4 24.5 odd 2
576.5.b.f.415.4 4 24.11 even 2
768.5.g.e.511.1 4 16.11 odd 4
768.5.g.e.511.2 4 16.13 even 4
768.5.g.e.511.3 4 16.5 even 4
768.5.g.e.511.4 4 16.3 odd 4