Properties

Label 192.5.b.a.31.2
Level 192192
Weight 55
Character 192.31
Analytic conductor 19.84719.847
Analytic rank 00
Dimension 44
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [192,5,Mod(31,192)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(192, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 0]))
 
N = Newforms(chi, 5, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("192.31");
 
S:= CuspForms(chi, 5);
 
N := Newforms(S);
 
Level: N N == 192=263 192 = 2^{6} \cdot 3
Weight: k k == 5 5
Character orbit: [χ][\chi] == 192.b (of order 22, degree 11, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 19.847032912119.8470329121
Analytic rank: 00
Dimension: 44
Coefficient field: Q(ζ12)\Q(\zeta_{12})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x4x2+1 x^{4} - x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a7]\Z[a_1, \ldots, a_{7}]
Coefficient ring index: 24 2^{4}
Twist minimal: yes
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

Embedding invariants

Embedding label 31.2
Root 0.866025+0.500000i0.866025 + 0.500000i of defining polynomial
Character χ\chi == 192.31
Dual form 192.5.b.a.31.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q5.19615q3+24.2487iq558.0000iq7+27.0000q9+13.8564q1120.7846iq13126.000iq15306.000q17+602.754q19+301.377iq21+468.000iq23+37.0000q25140.296q27+1465.31iq29110.000iq3172.0000q33+1406.43q35+1039.23iq37+108.000iq39+2970.00q41+2889.06q43+654.715iq45396.000iq47963.000q49+1590.02q51+1125.83iq53+336.000iq553132.00q57+2681.21q59+5985.97iq611566.00iq63+504.000q654801.24q672431.80iq69+6588.00iq715894.00q73192.258q75803.672iq778486.00iq79+729.000q8113.8564q837420.11iq857614.00iq87+8766.00q891205.51q91+571.577iq93+14616.0iq95+5918.00q97+374.123q99+O(q100)q-5.19615 q^{3} +24.2487i q^{5} -58.0000i q^{7} +27.0000 q^{9} +13.8564 q^{11} -20.7846i q^{13} -126.000i q^{15} -306.000 q^{17} +602.754 q^{19} +301.377i q^{21} +468.000i q^{23} +37.0000 q^{25} -140.296 q^{27} +1465.31i q^{29} -110.000i q^{31} -72.0000 q^{33} +1406.43 q^{35} +1039.23i q^{37} +108.000i q^{39} +2970.00 q^{41} +2889.06 q^{43} +654.715i q^{45} -396.000i q^{47} -963.000 q^{49} +1590.02 q^{51} +1125.83i q^{53} +336.000i q^{55} -3132.00 q^{57} +2681.21 q^{59} +5985.97i q^{61} -1566.00i q^{63} +504.000 q^{65} -4801.24 q^{67} -2431.80i q^{69} +6588.00i q^{71} -5894.00 q^{73} -192.258 q^{75} -803.672i q^{77} -8486.00i q^{79} +729.000 q^{81} -13.8564 q^{83} -7420.11i q^{85} -7614.00i q^{87} +8766.00 q^{89} -1205.51 q^{91} +571.577i q^{93} +14616.0i q^{95} +5918.00 q^{97} +374.123 q^{99} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q+108q91224q17+148q25288q33+11880q413852q4912528q57+2016q6523576q73+2916q81+35064q89+23672q97+O(q100) 4 q + 108 q^{9} - 1224 q^{17} + 148 q^{25} - 288 q^{33} + 11880 q^{41} - 3852 q^{49} - 12528 q^{57} + 2016 q^{65} - 23576 q^{73} + 2916 q^{81} + 35064 q^{89} + 23672 q^{97}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/192Z)×\left(\mathbb{Z}/192\mathbb{Z}\right)^\times.

nn 6565 127127 133133
χ(n)\chi(n) 11 1-1 1-1

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 0 0
33 −5.19615 −0.577350
44 0 0
55 24.2487i 0.969948i 0.874528 + 0.484974i 0.161171π0.161171\pi
−0.874528 + 0.484974i 0.838829π0.838829\pi
66 0 0
77 − 58.0000i − 1.18367i −0.806058 0.591837i 0.798403π-0.798403\pi
0.806058 0.591837i 0.201597π-0.201597\pi
88 0 0
99 27.0000 0.333333
1010 0 0
1111 13.8564 0.114516 0.0572579 0.998359i 0.481764π-0.481764\pi
0.0572579 + 0.998359i 0.481764π0.481764\pi
1212 0 0
1313 − 20.7846i − 0.122986i −0.998108 0.0614929i 0.980414π-0.980414\pi
0.998108 0.0614929i 0.0195862π-0.0195862\pi
1414 0 0
1515 − 126.000i − 0.560000i
1616 0 0
1717 −306.000 −1.05882 −0.529412 0.848365i 0.677587π-0.677587\pi
−0.529412 + 0.848365i 0.677587π0.677587\pi
1818 0 0
1919 602.754 1.66968 0.834839 0.550494i 0.185561π-0.185561\pi
0.834839 + 0.550494i 0.185561π0.185561\pi
2020 0 0
2121 301.377i 0.683394i
2222 0 0
2323 468.000i 0.884688i 0.896845 + 0.442344i 0.145853π0.145853\pi
−0.896845 + 0.442344i 0.854147π0.854147\pi
2424 0 0
2525 37.0000 0.0592000
2626 0 0
2727 −140.296 −0.192450
2828 0 0
2929 1465.31i 1.74235i 0.490974 + 0.871174i 0.336641π0.336641\pi
−0.490974 + 0.871174i 0.663359π0.663359\pi
3030 0 0
3131 − 110.000i − 0.114464i −0.998361 0.0572320i 0.981773π-0.981773\pi
0.998361 0.0572320i 0.0182275π-0.0182275\pi
3232 0 0
3333 −72.0000 −0.0661157
3434 0 0
3535 1406.43 1.14810
3636 0 0
3737 1039.23i 0.759116i 0.925168 + 0.379558i 0.123924π0.123924\pi
−0.925168 + 0.379558i 0.876076π0.876076\pi
3838 0 0
3939 108.000i 0.0710059i
4040 0 0
4141 2970.00 1.76681 0.883403 0.468615i 0.155247π-0.155247\pi
0.883403 + 0.468615i 0.155247π0.155247\pi
4242 0 0
4343 2889.06 1.56250 0.781250 0.624219i 0.214583π-0.214583\pi
0.781250 + 0.624219i 0.214583π0.214583\pi
4444 0 0
4545 654.715i 0.323316i
4646 0 0
4747 − 396.000i − 0.179267i −0.995975 0.0896333i 0.971430π-0.971430\pi
0.995975 0.0896333i 0.0285695π-0.0285695\pi
4848 0 0
4949 −963.000 −0.401083
5050 0 0
5151 1590.02 0.611312
5252 0 0
5353 1125.83i 0.400795i 0.979715 + 0.200397i 0.0642234π0.0642234\pi
−0.979715 + 0.200397i 0.935777π0.935777\pi
5454 0 0
5555 336.000i 0.111074i
5656 0 0
5757 −3132.00 −0.963989
5858 0 0
5959 2681.21 0.770243 0.385121 0.922866i 0.374160π-0.374160\pi
0.385121 + 0.922866i 0.374160π0.374160\pi
6060 0 0
6161 5985.97i 1.60870i 0.594157 + 0.804349i 0.297486π0.297486\pi
−0.594157 + 0.804349i 0.702514π0.702514\pi
6262 0 0
6363 − 1566.00i − 0.394558i
6464 0 0
6565 504.000 0.119290
6666 0 0
6767 −4801.24 −1.06956 −0.534779 0.844992i 0.679605π-0.679605\pi
−0.534779 + 0.844992i 0.679605π0.679605\pi
6868 0 0
6969 − 2431.80i − 0.510775i
7070 0 0
7171 6588.00i 1.30688i 0.756977 + 0.653442i 0.226676π0.226676\pi
−0.756977 + 0.653442i 0.773324π0.773324\pi
7272 0 0
7373 −5894.00 −1.10602 −0.553012 0.833173i 0.686522π-0.686522\pi
−0.553012 + 0.833173i 0.686522π0.686522\pi
7474 0 0
7575 −192.258 −0.0341791
7676 0 0
7777 − 803.672i − 0.135549i
7878 0 0
7979 − 8486.00i − 1.35972i −0.733343 0.679859i 0.762041π-0.762041\pi
0.733343 0.679859i 0.237959π-0.237959\pi
8080 0 0
8181 729.000 0.111111
8282 0 0
8383 −13.8564 −0.00201138 −0.00100569 0.999999i 0.500320π-0.500320\pi
−0.00100569 + 0.999999i 0.500320π0.500320\pi
8484 0 0
8585 − 7420.11i − 1.02700i
8686 0 0
8787 − 7614.00i − 1.00595i
8888 0 0
8989 8766.00 1.10668 0.553339 0.832956i 0.313353π-0.313353\pi
0.553339 + 0.832956i 0.313353π0.313353\pi
9090 0 0
9191 −1205.51 −0.145575
9292 0 0
9393 571.577i 0.0660859i
9494 0 0
9595 14616.0i 1.61950i
9696 0 0
9797 5918.00 0.628972 0.314486 0.949262i 0.398168π-0.398168\pi
0.314486 + 0.949262i 0.398168π0.398168\pi
9898 0 0
9999 374.123 0.0381719
100100 0 0
101101 − 16416.4i − 1.60929i −0.593756 0.804646i 0.702355π-0.702355\pi
0.593756 0.804646i 0.297645π-0.297645\pi
102102 0 0
103103 − 5342.00i − 0.503535i −0.967788 0.251767i 0.918988π-0.918988\pi
0.967788 0.251767i 0.0810118π-0.0810118\pi
104104 0 0
105105 −7308.00 −0.662857
106106 0 0
107107 −21733.8 −1.89831 −0.949156 0.314806i 0.898060π-0.898060\pi
−0.949156 + 0.314806i 0.898060π0.898060\pi
108108 0 0
109109 − 8126.78i − 0.684015i −0.939697 0.342008i 0.888893π-0.888893\pi
0.939697 0.342008i 0.111107π-0.111107\pi
110110 0 0
111111 − 5400.00i − 0.438276i
112112 0 0
113113 15354.0 1.20244 0.601222 0.799082i 0.294681π-0.294681\pi
0.601222 + 0.799082i 0.294681π0.294681\pi
114114 0 0
115115 −11348.4 −0.858102
116116 0 0
117117 − 561.184i − 0.0409953i
118118 0 0
119119 17748.0i 1.25330i
120120 0 0
121121 −14449.0 −0.986886
122122 0 0
123123 −15432.6 −1.02007
124124 0 0
125125 16052.6i 1.02737i
126126 0 0
127127 9998.00i 0.619877i 0.950757 + 0.309939i 0.100309π0.100309\pi
−0.950757 + 0.309939i 0.899691π0.899691\pi
128128 0 0
129129 −15012.0 −0.902109
130130 0 0
131131 −1877.54 −0.109408 −0.0547038 0.998503i 0.517421π-0.517421\pi
−0.0547038 + 0.998503i 0.517421π0.517421\pi
132132 0 0
133133 − 34959.7i − 1.97635i
134134 0 0
135135 − 3402.00i − 0.186667i
136136 0 0
137137 27882.0 1.48553 0.742767 0.669550i 0.233513π-0.233513\pi
0.742767 + 0.669550i 0.233513π0.233513\pi
138138 0 0
139139 11327.6 0.586285 0.293142 0.956069i 0.405299π-0.405299\pi
0.293142 + 0.956069i 0.405299π0.405299\pi
140140 0 0
141141 2057.68i 0.103500i
142142 0 0
143143 − 288.000i − 0.0140838i
144144 0 0
145145 −35532.0 −1.68999
146146 0 0
147147 5003.89 0.231565
148148 0 0
149149 − 33134.1i − 1.49246i −0.665688 0.746231i 0.731862π-0.731862\pi
0.665688 0.746231i 0.268138π-0.268138\pi
150150 0 0
151151 − 38794.0i − 1.70142i −0.525638 0.850708i 0.676173π-0.676173\pi
0.525638 0.850708i 0.323827π-0.323827\pi
152152 0 0
153153 −8262.00 −0.352941
154154 0 0
155155 2667.36 0.111024
156156 0 0
157157 35957.4i 1.45878i 0.684100 + 0.729388i 0.260195π0.260195\pi
−0.684100 + 0.729388i 0.739805π0.739805\pi
158158 0 0
159159 − 5850.00i − 0.231399i
160160 0 0
161161 27144.0 1.04718
162162 0 0
163163 −3013.77 −0.113432 −0.0567159 0.998390i 0.518063π-0.518063\pi
−0.0567159 + 0.998390i 0.518063π0.518063\pi
164164 0 0
165165 − 1745.91i − 0.0641288i
166166 0 0
167167 11304.0i 0.405321i 0.979249 + 0.202661i 0.0649588π0.0649588\pi
−0.979249 + 0.202661i 0.935041π0.935041\pi
168168 0 0
169169 28129.0 0.984874
170170 0 0
171171 16274.3 0.556559
172172 0 0
173173 35309.6i 1.17978i 0.807484 + 0.589889i 0.200829π0.200829\pi
−0.807484 + 0.589889i 0.799171π0.799171\pi
174174 0 0
175175 − 2146.00i − 0.0700735i
176176 0 0
177177 −13932.0 −0.444700
178178 0 0
179179 6699.57 0.209094 0.104547 0.994520i 0.466661π-0.466661\pi
0.104547 + 0.994520i 0.466661π0.466661\pi
180180 0 0
181181 14445.3i 0.440930i 0.975395 + 0.220465i 0.0707575π0.0707575\pi
−0.975395 + 0.220465i 0.929243π0.929243\pi
182182 0 0
183183 − 31104.0i − 0.928783i
184184 0 0
185185 −25200.0 −0.736304
186186 0 0
187187 −4240.06 −0.121252
188188 0 0
189189 8137.17i 0.227798i
190190 0 0
191191 35064.0i 0.961158i 0.876951 + 0.480579i 0.159573π0.159573\pi
−0.876951 + 0.480579i 0.840427π0.840427\pi
192192 0 0
193193 −11230.0 −0.301485 −0.150742 0.988573i 0.548166π-0.548166\pi
−0.150742 + 0.988573i 0.548166π0.548166\pi
194194 0 0
195195 −2618.86 −0.0688721
196196 0 0
197197 28991.1i 0.747019i 0.927626 + 0.373510i 0.121846π0.121846\pi
−0.927626 + 0.373510i 0.878154π0.878154\pi
198198 0 0
199199 18226.0i 0.460241i 0.973162 + 0.230120i 0.0739120π0.0739120\pi
−0.973162 + 0.230120i 0.926088π0.926088\pi
200200 0 0
201201 24948.0 0.617509
202202 0 0
203203 84988.3 2.06237
204204 0 0
205205 72018.7i 1.71371i
206206 0 0
207207 12636.0i 0.294896i
208208 0 0
209209 8352.00 0.191204
210210 0 0
211211 37266.8 0.837061 0.418531 0.908203i 0.362545π-0.362545\pi
0.418531 + 0.908203i 0.362545π0.362545\pi
212212 0 0
213213 − 34232.3i − 0.754530i
214214 0 0
215215 70056.0i 1.51554i
216216 0 0
217217 −6380.00 −0.135488
218218 0 0
219219 30626.1 0.638563
220220 0 0
221221 6360.09i 0.130220i
222222 0 0
223223 − 10162.0i − 0.204348i −0.994767 0.102174i 0.967420π-0.967420\pi
0.994767 0.102174i 0.0325798π-0.0325798\pi
224224 0 0
225225 999.000 0.0197333
226226 0 0
227227 15214.3 0.295258 0.147629 0.989043i 0.452836π-0.452836\pi
0.147629 + 0.989043i 0.452836π0.452836\pi
228228 0 0
229229 − 7711.09i − 0.147043i −0.997294 0.0735216i 0.976576π-0.976576\pi
0.997294 0.0735216i 0.0234238π-0.0234238\pi
230230 0 0
231231 4176.00i 0.0782594i
232232 0 0
233233 −21258.0 −0.391571 −0.195786 0.980647i 0.562726π-0.562726\pi
−0.195786 + 0.980647i 0.562726π0.562726\pi
234234 0 0
235235 9602.49 0.173879
236236 0 0
237237 44094.5i 0.785034i
238238 0 0
239239 − 97056.0i − 1.69913i −0.527484 0.849565i 0.676865π-0.676865\pi
0.527484 0.849565i 0.323135π-0.323135\pi
240240 0 0
241241 47242.0 0.813381 0.406691 0.913566i 0.366683π-0.366683\pi
0.406691 + 0.913566i 0.366683π0.366683\pi
242242 0 0
243243 −3788.00 −0.0641500
244244 0 0
245245 − 23351.5i − 0.389030i
246246 0 0
247247 − 12528.0i − 0.205347i
248248 0 0
249249 72.0000 0.00116127
250250 0 0
251251 −78191.7 −1.24112 −0.620559 0.784160i 0.713094π-0.713094\pi
−0.620559 + 0.784160i 0.713094π0.713094\pi
252252 0 0
253253 6484.80i 0.101311i
254254 0 0
255255 38556.0i 0.592941i
256256 0 0
257257 23922.0 0.362186 0.181093 0.983466i 0.442037π-0.442037\pi
0.181093 + 0.983466i 0.442037π0.442037\pi
258258 0 0
259259 60275.4 0.898546
260260 0 0
261261 39563.5i 0.580783i
262262 0 0
263263 − 84528.0i − 1.22205i −0.791611 0.611025i 0.790757π-0.790757\pi
0.791611 0.611025i 0.209243π-0.209243\pi
264264 0 0
265265 −27300.0 −0.388750
266266 0 0
267267 −45549.5 −0.638941
268268 0 0
269269 92751.3i 1.28179i 0.767630 + 0.640893i 0.221436π0.221436\pi
−0.767630 + 0.640893i 0.778564π0.778564\pi
270270 0 0
271271 61118.0i 0.832205i 0.909318 + 0.416103i 0.136604π0.136604\pi
−0.909318 + 0.416103i 0.863396π0.863396\pi
272272 0 0
273273 6264.00 0.0840478
274274 0 0
275275 512.687 0.00677933
276276 0 0
277277 − 69441.4i − 0.905021i −0.891759 0.452511i 0.850528π-0.850528\pi
0.891759 0.452511i 0.149472π-0.149472\pi
278278 0 0
279279 − 2970.00i − 0.0381547i
280280 0 0
281281 −60570.0 −0.767088 −0.383544 0.923523i 0.625296π-0.625296\pi
−0.383544 + 0.923523i 0.625296π0.625296\pi
282282 0 0
283283 −87565.6 −1.09335 −0.546677 0.837344i 0.684107π-0.684107\pi
−0.546677 + 0.837344i 0.684107π0.684107\pi
284284 0 0
285285 − 75947.0i − 0.935020i
286286 0 0
287287 − 172260.i − 2.09132i
288288 0 0
289289 10115.0 0.121107
290290 0 0
291291 −30750.8 −0.363137
292292 0 0
293293 − 77162.9i − 0.898821i −0.893325 0.449410i 0.851634π-0.851634\pi
0.893325 0.449410i 0.148366π-0.148366\pi
294294 0 0
295295 65016.0i 0.747096i
296296 0 0
297297 −1944.00 −0.0220386
298298 0 0
299299 9727.20 0.108804
300300 0 0
301301 − 167566.i − 1.84949i
302302 0 0
303303 85302.0i 0.929125i
304304 0 0
305305 −145152. −1.56035
306306 0 0
307307 12657.8 0.134302 0.0671510 0.997743i 0.478609π-0.478609\pi
0.0671510 + 0.997743i 0.478609π0.478609\pi
308308 0 0
309309 27757.8i 0.290716i
310310 0 0
311311 137592.i 1.42257i 0.702906 + 0.711283i 0.251886π0.251886\pi
−0.702906 + 0.711283i 0.748114π0.748114\pi
312312 0 0
313313 13198.0 0.134716 0.0673580 0.997729i 0.478543π-0.478543\pi
0.0673580 + 0.997729i 0.478543π0.478543\pi
314314 0 0
315315 37973.5 0.382701
316316 0 0
317317 − 134106.i − 1.33453i −0.744820 0.667266i 0.767464π-0.767464\pi
0.744820 0.667266i 0.232536π-0.232536\pi
318318 0 0
319319 20304.0i 0.199526i
320320 0 0
321321 112932. 1.09599
322322 0 0
323323 −184443. −1.76789
324324 0 0
325325 − 769.031i − 0.00728076i
326326 0 0
327327 42228.0i 0.394916i
328328 0 0
329329 −22968.0 −0.212193
330330 0 0
331331 −52107.0 −0.475598 −0.237799 0.971314i 0.576426π-0.576426\pi
−0.237799 + 0.971314i 0.576426π0.576426\pi
332332 0 0
333333 28059.2i 0.253039i
334334 0 0
335335 − 116424.i − 1.03742i
336336 0 0
337337 84470.0 0.743777 0.371888 0.928277i 0.378710π-0.378710\pi
0.371888 + 0.928277i 0.378710π0.378710\pi
338338 0 0
339339 −79781.7 −0.694231
340340 0 0
341341 − 1524.20i − 0.0131079i
342342 0 0
343343 − 83404.0i − 0.708922i
344344 0 0
345345 58968.0 0.495425
346346 0 0
347347 −57670.4 −0.478954 −0.239477 0.970902i 0.576976π-0.576976\pi
−0.239477 + 0.970902i 0.576976π0.576976\pi
348348 0 0
349349 43315.1i 0.355622i 0.984065 + 0.177811i 0.0569016π0.0569016\pi
−0.984065 + 0.177811i 0.943098π0.943098\pi
350350 0 0
351351 2916.00i 0.0236686i
352352 0 0
353353 −188118. −1.50967 −0.754833 0.655917i 0.772282π-0.772282\pi
−0.754833 + 0.655917i 0.772282π0.772282\pi
354354 0 0
355355 −159751. −1.26761
356356 0 0
357357 − 92221.3i − 0.723594i
358358 0 0
359359 − 14148.0i − 0.109776i −0.998493 0.0548878i 0.982520π-0.982520\pi
0.998493 0.0548878i 0.0174801π-0.0174801\pi
360360 0 0
361361 232991. 1.78782
362362 0 0
363363 75079.2 0.569779
364364 0 0
365365 − 142922.i − 1.07279i
366366 0 0
367367 265810.i 1.97351i 0.162220 + 0.986755i 0.448135π0.448135\pi
−0.162220 + 0.986755i 0.551865π0.551865\pi
368368 0 0
369369 80190.0 0.588935
370370 0 0
371371 65298.3 0.474410
372372 0 0
373373 131774.i 0.947138i 0.880757 + 0.473569i 0.157035π0.157035\pi
−0.880757 + 0.473569i 0.842965π0.842965\pi
374374 0 0
375375 − 83412.0i − 0.593152i
376376 0 0
377377 30456.0 0.214284
378378 0 0
379379 −91930.3 −0.640001 −0.320000 0.947417i 0.603683π-0.603683\pi
−0.320000 + 0.947417i 0.603683π0.603683\pi
380380 0 0
381381 − 51951.1i − 0.357886i
382382 0 0
383383 − 189000.i − 1.28844i −0.764840 0.644220i 0.777182π-0.777182\pi
0.764840 0.644220i 0.222818π-0.222818\pi
384384 0 0
385385 19488.0 0.131476
386386 0 0
387387 78004.6 0.520833
388388 0 0
389389 180906.i 1.19551i 0.801679 + 0.597755i 0.203940π0.203940\pi
−0.801679 + 0.597755i 0.796060π0.796060\pi
390390 0 0
391391 − 143208.i − 0.936729i
392392 0 0
393393 9756.00 0.0631665
394394 0 0
395395 205775. 1.31886
396396 0 0
397397 − 140005.i − 0.888307i −0.895951 0.444153i 0.853505π-0.853505\pi
0.895951 0.444153i 0.146495π-0.146495\pi
398398 0 0
399399 181656.i 1.14105i
400400 0 0
401401 −208674. −1.29772 −0.648858 0.760910i 0.724753π-0.724753\pi
−0.648858 + 0.760910i 0.724753π0.724753\pi
402402 0 0
403403 −2286.31 −0.0140775
404404 0 0
405405 17677.3i 0.107772i
406406 0 0
407407 14400.0i 0.0869308i
408408 0 0
409409 −194078. −1.16019 −0.580096 0.814548i 0.696985π-0.696985\pi
−0.580096 + 0.814548i 0.696985π0.696985\pi
410410 0 0
411411 −144879. −0.857674
412412 0 0
413413 − 155510.i − 0.911716i
414414 0 0
415415 − 336.000i − 0.00195094i
416416 0 0
417417 −58860.0 −0.338492
418418 0 0
419419 72829.3 0.414837 0.207419 0.978252i 0.433494π-0.433494\pi
0.207419 + 0.978252i 0.433494π0.433494\pi
420420 0 0
421421 107893.i 0.608736i 0.952555 + 0.304368i 0.0984452π0.0984452\pi
−0.952555 + 0.304368i 0.901555π0.901555\pi
422422 0 0
423423 − 10692.0i − 0.0597555i
424424 0 0
425425 −11322.0 −0.0626824
426426 0 0
427427 347186. 1.90417
428428 0 0
429429 1496.49i 0.00813130i
430430 0 0
431431 − 151380.i − 0.814918i −0.913223 0.407459i 0.866415π-0.866415\pi
0.913223 0.407459i 0.133585π-0.133585\pi
432432 0 0
433433 −13922.0 −0.0742550 −0.0371275 0.999311i 0.511821π-0.511821\pi
−0.0371275 + 0.999311i 0.511821π0.511821\pi
434434 0 0
435435 184630. 0.975715
436436 0 0
437437 282089.i 1.47714i
438438 0 0
439439 171130.i 0.887968i 0.896035 + 0.443984i 0.146435π0.146435\pi
−0.896035 + 0.443984i 0.853565π0.853565\pi
440440 0 0
441441 −26001.0 −0.133694
442442 0 0
443443 −226719. −1.15526 −0.577630 0.816299i 0.696022π-0.696022\pi
−0.577630 + 0.816299i 0.696022π0.696022\pi
444444 0 0
445445 212564.i 1.07342i
446446 0 0
447447 172170.i 0.861673i
448448 0 0
449449 160830. 0.797764 0.398882 0.917002i 0.369398π-0.369398\pi
0.398882 + 0.917002i 0.369398π0.369398\pi
450450 0 0
451451 41153.5 0.202327
452452 0 0
453453 201580.i 0.982313i
454454 0 0
455455 − 29232.0i − 0.141200i
456456 0 0
457457 −146030. −0.699213 −0.349607 0.936897i 0.613685π-0.613685\pi
−0.349607 + 0.936897i 0.613685π0.613685\pi
458458 0 0
459459 42930.6 0.203771
460460 0 0
461461 99561.7i 0.468480i 0.972179 + 0.234240i 0.0752601π0.0752601\pi
−0.972179 + 0.234240i 0.924740π0.924740\pi
462462 0 0
463463 − 47194.0i − 0.220153i −0.993923 0.110077i 0.964890π-0.964890\pi
0.993923 0.110077i 0.0351096π-0.0351096\pi
464464 0 0
465465 −13860.0 −0.0640999
466466 0 0
467467 279872. 1.28329 0.641646 0.767001i 0.278252π-0.278252\pi
0.641646 + 0.767001i 0.278252π0.278252\pi
468468 0 0
469469 278472.i 1.26601i
470470 0 0
471471 − 186840.i − 0.842225i
472472 0 0
473473 40032.0 0.178931
474474 0 0
475475 22301.9 0.0988449
476476 0 0
477477 30397.5i 0.133598i
478478 0 0
479479 − 126828.i − 0.552770i −0.961047 0.276385i 0.910864π-0.910864\pi
0.961047 0.276385i 0.0891364π-0.0891364\pi
480480 0 0
481481 21600.0 0.0933606
482482 0 0
483483 −141044. −0.604591
484484 0 0
485485 143504.i 0.610071i
486486 0 0
487487 − 177010.i − 0.746345i −0.927762 0.373173i 0.878270π-0.878270\pi
0.927762 0.373173i 0.121730π-0.121730\pi
488488 0 0
489489 15660.0 0.0654899
490490 0 0
491491 85667.2 0.355346 0.177673 0.984090i 0.443143π-0.443143\pi
0.177673 + 0.984090i 0.443143π0.443143\pi
492492 0 0
493493 − 448386.i − 1.84484i
494494 0 0
495495 9072.00i 0.0370248i
496496 0 0
497497 382104. 1.54692
498498 0 0
499499 318566. 1.27938 0.639688 0.768635i 0.279064π-0.279064\pi
0.639688 + 0.768635i 0.279064π0.279064\pi
500500 0 0
501501 − 58737.3i − 0.234012i
502502 0 0
503503 379404.i 1.49957i 0.661683 + 0.749784i 0.269842π0.269842\pi
−0.661683 + 0.749784i 0.730158π0.730158\pi
504504 0 0
505505 398076. 1.56093
506506 0 0
507507 −146163. −0.568618
508508 0 0
509509 234973.i 0.906950i 0.891269 + 0.453475i 0.149816π0.149816\pi
−0.891269 + 0.453475i 0.850184π0.850184\pi
510510 0 0
511511 341852.i 1.30917i
512512 0 0
513513 −84564.0 −0.321330
514514 0 0
515515 129537. 0.488403
516516 0 0
517517 − 5487.14i − 0.0205289i
518518 0 0
519519 − 183474.i − 0.681145i
520520 0 0
521521 −289422. −1.06624 −0.533121 0.846039i 0.678981π-0.678981\pi
−0.533121 + 0.846039i 0.678981π0.678981\pi
522522 0 0
523523 382790. 1.39945 0.699725 0.714412i 0.253306π-0.253306\pi
0.699725 + 0.714412i 0.253306π0.253306\pi
524524 0 0
525525 11150.9i 0.0404569i
526526 0 0
527527 33660.0i 0.121197i
528528 0 0
529529 60817.0 0.217327
530530 0 0
531531 72392.8 0.256748
532532 0 0
533533 − 61730.3i − 0.217292i
534534 0 0
535535 − 527016.i − 1.84126i
536536 0 0
537537 −34812.0 −0.120720
538538 0 0
539539 −13343.7 −0.0459303
540540 0 0
541541 − 79043.9i − 0.270068i −0.990841 0.135034i 0.956886π-0.956886\pi
0.990841 0.135034i 0.0431144π-0.0431144\pi
542542 0 0
543543 − 75060.0i − 0.254571i
544544 0 0
545545 197064. 0.663459
546546 0 0
547547 −305970. −1.02260 −0.511299 0.859403i 0.670835π-0.670835\pi
−0.511299 + 0.859403i 0.670835π0.670835\pi
548548 0 0
549549 161621.i 0.536233i
550550 0 0
551551 883224.i 2.90916i
552552 0 0
553553 −492188. −1.60946
554554 0 0
555555 130943. 0.425105
556556 0 0
557557 − 333714.i − 1.07563i −0.843062 0.537817i 0.819249π-0.819249\pi
0.843062 0.537817i 0.180751π-0.180751\pi
558558 0 0
559559 − 60048.0i − 0.192165i
560560 0 0
561561 22032.0 0.0700049
562562 0 0
563563 −472088. −1.48938 −0.744691 0.667410i 0.767403π-0.767403\pi
−0.744691 + 0.667410i 0.767403π0.767403\pi
564564 0 0
565565 372315.i 1.16631i
566566 0 0
567567 − 42282.0i − 0.131519i
568568 0 0
569569 21258.0 0.0656595 0.0328298 0.999461i 0.489548π-0.489548\pi
0.0328298 + 0.999461i 0.489548π0.489548\pi
570570 0 0
571571 −490205. −1.50351 −0.751754 0.659444i 0.770792π-0.770792\pi
−0.751754 + 0.659444i 0.770792π0.770792\pi
572572 0 0
573573 − 182198.i − 0.554925i
574574 0 0
575575 17316.0i 0.0523735i
576576 0 0
577577 −454610. −1.36549 −0.682743 0.730658i 0.739213π-0.739213\pi
−0.682743 + 0.730658i 0.739213π0.739213\pi
578578 0 0
579579 58352.8 0.174062
580580 0 0
581581 803.672i 0.00238082i
582582 0 0
583583 15600.0i 0.0458973i
584584 0 0
585585 13608.0 0.0397633
586586 0 0
587587 −35243.8 −0.102284 −0.0511418 0.998691i 0.516286π-0.516286\pi
−0.0511418 + 0.998691i 0.516286π0.516286\pi
588588 0 0
589589 − 66302.9i − 0.191118i
590590 0 0
591591 − 150642.i − 0.431292i
592592 0 0
593593 197658. 0.562089 0.281044 0.959695i 0.409319π-0.409319\pi
0.281044 + 0.959695i 0.409319π0.409319\pi
594594 0 0
595595 −430366. −1.21564
596596 0 0
597597 − 94705.1i − 0.265720i
598598 0 0
599599 204156.i 0.568995i 0.958677 + 0.284498i 0.0918268π0.0918268\pi
−0.958677 + 0.284498i 0.908173π0.908173\pi
600600 0 0
601601 294242. 0.814621 0.407311 0.913290i 0.366467π-0.366467\pi
0.407311 + 0.913290i 0.366467π0.366467\pi
602602 0 0
603603 −129634. −0.356519
604604 0 0
605605 − 350370.i − 0.957229i
606606 0 0
607607 − 331762.i − 0.900429i −0.892921 0.450214i 0.851348π-0.851348\pi
0.892921 0.450214i 0.148652π-0.148652\pi
608608 0 0
609609 −441612. −1.19071
610610 0 0
611611 −8230.71 −0.0220473
612612 0 0
613613 − 448698.i − 1.19408i −0.802212 0.597040i 0.796343π-0.796343\pi
0.802212 0.597040i 0.203657π-0.203657\pi
614614 0 0
615615 − 374220.i − 0.989411i
616616 0 0
617617 358470. 0.941635 0.470817 0.882231i 0.343959π-0.343959\pi
0.470817 + 0.882231i 0.343959π0.343959\pi
618618 0 0
619619 321808. 0.839877 0.419939 0.907553i 0.362052π-0.362052\pi
0.419939 + 0.907553i 0.362052π0.362052\pi
620620 0 0
621621 − 65658.6i − 0.170258i
622622 0 0
623623 − 508428.i − 1.30995i
624624 0 0
625625 −366131. −0.937295
626626 0 0
627627 −43398.3 −0.110392
628628 0 0
629629 − 318005.i − 0.803770i
630630 0 0
631631 − 26002.0i − 0.0653052i −0.999467 0.0326526i 0.989605π-0.989605\pi
0.999467 0.0326526i 0.0103955π-0.0103955\pi
632632 0 0
633633 −193644. −0.483278
634634 0 0
635635 −242439. −0.601249
636636 0 0
637637 20015.6i 0.0493275i
638638 0 0
639639 177876.i 0.435628i
640640 0 0
641641 322758. 0.785527 0.392763 0.919640i 0.371519π-0.371519\pi
0.392763 + 0.919640i 0.371519π0.371519\pi
642642 0 0
643643 −596788. −1.44344 −0.721720 0.692186i 0.756648π-0.756648\pi
−0.721720 + 0.692186i 0.756648π0.756648\pi
644644 0 0
645645 − 364022.i − 0.874999i
646646 0 0
647647 345348.i 0.824989i 0.910960 + 0.412495i 0.135342π0.135342\pi
−0.910960 + 0.412495i 0.864658π0.864658\pi
648648 0 0
649649 37152.0 0.0882049
650650 0 0
651651 33151.5 0.0782241
652652 0 0
653653 − 76095.9i − 0.178458i −0.996011 0.0892288i 0.971560π-0.971560\pi
0.996011 0.0892288i 0.0284402π-0.0284402\pi
654654 0 0
655655 − 45528.0i − 0.106120i
656656 0 0
657657 −159138. −0.368675
658658 0 0
659659 303712. 0.699344 0.349672 0.936872i 0.386293π-0.386293\pi
0.349672 + 0.936872i 0.386293π0.386293\pi
660660 0 0
661661 − 595978.i − 1.36404i −0.731333 0.682020i 0.761102π-0.761102\pi
0.731333 0.682020i 0.238898π-0.238898\pi
662662 0 0
663663 − 33048.0i − 0.0751827i
664664 0 0
665665 847728. 1.91696
666666 0 0
667667 −685767. −1.54143
668668 0 0
669669 52803.3i 0.117980i
670670 0 0
671671 82944.0i 0.184221i
672672 0 0
673673 362542. 0.800439 0.400219 0.916419i 0.368934π-0.368934\pi
0.400219 + 0.916419i 0.368934π0.368934\pi
674674 0 0
675675 −5190.96 −0.0113930
676676 0 0
677677 − 109026.i − 0.237876i −0.992902 0.118938i 0.962051π-0.962051\pi
0.992902 0.118938i 0.0379490π-0.0379490\pi
678678 0 0
679679 − 343244.i − 0.744498i
680680 0 0
681681 −79056.0 −0.170467
682682 0 0
683683 210382. 0.450990 0.225495 0.974244i 0.427600π-0.427600\pi
0.225495 + 0.974244i 0.427600π0.427600\pi
684684 0 0
685685 676103.i 1.44089i
686686 0 0
687687 40068.0i 0.0848954i
688688 0 0
689689 23400.0 0.0492921
690690 0 0
691691 521673. 1.09255 0.546276 0.837605i 0.316045π-0.316045\pi
0.546276 + 0.837605i 0.316045π0.316045\pi
692692 0 0
693693 − 21699.1i − 0.0451831i
694694 0 0
695695 274680.i 0.568666i
696696 0 0
697697 −908820. −1.87074
698698 0 0
699699 110460. 0.226074
700700 0 0
701701 − 264813.i − 0.538894i −0.963015 0.269447i 0.913159π-0.913159\pi
0.963015 0.269447i 0.0868410π-0.0868410\pi
702702 0 0
703703 626400.i 1.26748i
704704 0 0
705705 −49896.0 −0.100389
706706 0 0
707707 −952150. −1.90488
708708 0 0
709709 143767.i 0.286001i 0.989723 + 0.143000i 0.0456750π0.0456750\pi
−0.989723 + 0.143000i 0.954325π0.954325\pi
710710 0 0
711711 − 229122.i − 0.453239i
712712 0 0
713713 51480.0 0.101265
714714 0 0
715715 6983.63 0.0136606
716716 0 0
717717 504318.i 0.980993i
718718 0 0
719719 283212.i 0.547840i 0.961752 + 0.273920i 0.0883204π0.0883204\pi
−0.961752 + 0.273920i 0.911680π0.911680\pi
720720 0 0
721721 −309836. −0.596021
722722 0 0
723723 −245477. −0.469606
724724 0 0
725725 54216.7i 0.103147i
726726 0 0
727727 225086.i 0.425873i 0.977066 + 0.212936i 0.0683027π0.0683027\pi
−0.977066 + 0.212936i 0.931697π0.931697\pi
728728 0 0
729729 19683.0 0.0370370
730730 0 0
731731 −884053. −1.65441
732732 0 0
733733 − 368158.i − 0.685214i −0.939479 0.342607i 0.888690π-0.888690\pi
0.939479 0.342607i 0.111310π-0.111310\pi
734734 0 0
735735 121338.i 0.224606i
736736 0 0
737737 −66528.0 −0.122481
738738 0 0
739739 1.06623e6 1.95237 0.976184 0.216942i 0.0696083π-0.0696083\pi
0.976184 + 0.216942i 0.0696083π0.0696083\pi
740740 0 0
741741 65097.4i 0.118557i
742742 0 0
743743 903024.i 1.63577i 0.575383 + 0.817884i 0.304853π0.304853\pi
−0.575383 + 0.817884i 0.695147π0.695147\pi
744744 0 0
745745 803460. 1.44761
746746 0 0
747747 −374.123 −0.000670460 0
748748 0 0
749749 1.26056e6i 2.24698i
750750 0 0
751751 − 765038.i − 1.35645i −0.734855 0.678224i 0.762750π-0.762750\pi
0.734855 0.678224i 0.237250π-0.237250\pi
752752 0 0
753753 406296. 0.716560
754754 0 0
755755 940705. 1.65029
756756 0 0
757757 − 583944.i − 1.01901i −0.860467 0.509506i 0.829828π-0.829828\pi
0.860467 0.509506i 0.170172π-0.170172\pi
758758 0 0
759759 − 33696.0i − 0.0584918i
760760 0 0
761761 −20430.0 −0.0352776 −0.0176388 0.999844i 0.505615π-0.505615\pi
−0.0176388 + 0.999844i 0.505615π0.505615\pi
762762 0 0
763763 −471353. −0.809650
764764 0 0
765765 − 200343.i − 0.342335i
766766 0 0
767767 − 55728.0i − 0.0947290i
768768 0 0
769769 −172654. −0.291960 −0.145980 0.989288i 0.546634π-0.546634\pi
−0.145980 + 0.989288i 0.546634π0.546634\pi
770770 0 0
771771 −124302. −0.209108
772772 0 0
773773 − 402525.i − 0.673650i −0.941567 0.336825i 0.890647π-0.890647\pi
0.941567 0.336825i 0.109353π-0.109353\pi
774774 0 0
775775 − 4070.00i − 0.00677627i
776776 0 0
777777 −313200. −0.518776
778778 0 0
779779 1.79018e6 2.95000
780780 0 0
781781 91286.0i 0.149659i
782782 0 0
783783 − 205578.i − 0.335315i
784784 0 0
785785 −871920. −1.41494
786786 0 0
787787 938986. 1.51604 0.758018 0.652233i 0.226168π-0.226168\pi
0.758018 + 0.652233i 0.226168π0.226168\pi
788788 0 0
789789 439220.i 0.705551i
790790 0 0
791791 − 890532.i − 1.42330i
792792 0 0
793793 124416. 0.197847
794794 0 0
795795 141855. 0.224445
796796 0 0
797797 1.01547e6i 1.59864i 0.600906 + 0.799320i 0.294807π0.294807\pi
−0.600906 + 0.799320i 0.705193π0.705193\pi
798798 0 0
799799 121176.i 0.189812i
800800 0 0
801801 236682. 0.368893
802802 0 0
803803 −81669.7 −0.126657
804804 0 0
805805 658207.i 1.01571i
806806 0 0
807807 − 481950.i − 0.740040i
808808 0 0
809809 −572742. −0.875109 −0.437554 0.899192i 0.644155π-0.644155\pi
−0.437554 + 0.899192i 0.644155π0.644155\pi
810810 0 0
811811 503590. 0.765659 0.382830 0.923819i 0.374950π-0.374950\pi
0.382830 + 0.923819i 0.374950π0.374950\pi
812812 0 0
813813 − 317578.i − 0.480474i
814814 0 0
815815 − 73080.0i − 0.110023i
816816 0 0
817817 1.74139e6 2.60887
818818 0 0
819819 −32548.7 −0.0485250
820820 0 0
821821 − 345783.i − 0.513000i −0.966544 0.256500i 0.917431π-0.917431\pi
0.966544 0.256500i 0.0825694π-0.0825694\pi
822822 0 0
823823 − 739546.i − 1.09186i −0.837832 0.545928i 0.816177π-0.816177\pi
0.837832 0.545928i 0.183823π-0.183823\pi
824824 0 0
825825 −2664.00 −0.00391405
826826 0 0
827827 −551769. −0.806764 −0.403382 0.915032i 0.632165π-0.632165\pi
−0.403382 + 0.915032i 0.632165π0.632165\pi
828828 0 0
829829 885944.i 1.28913i 0.764549 + 0.644566i 0.222962π0.222962\pi
−0.764549 + 0.644566i 0.777038π0.777038\pi
830830 0 0
831831 360828.i 0.522514i
832832 0 0
833833 294678. 0.424676
834834 0 0
835835 −274107. −0.393141
836836 0 0
837837 15432.6i 0.0220286i
838838 0 0
839839 − 418140.i − 0.594016i −0.954875 0.297008i 0.904011π-0.904011\pi
0.954875 0.297008i 0.0959887π-0.0959887\pi
840840 0 0
841841 −1.43987e6 −2.03578
842842 0 0
843843 314731. 0.442878
844844 0 0
845845 682092.i 0.955277i
846846 0 0
847847 838042.i 1.16815i
848848 0 0
849849 455004. 0.631248
850850 0 0
851851 −486360. −0.671581
852852 0 0
853853 − 422634.i − 0.580854i −0.956897 0.290427i 0.906203π-0.906203\pi
0.956897 0.290427i 0.0937973π-0.0937973\pi
854854 0 0
855855 394632.i 0.539834i
856856 0 0
857857 49914.0 0.0679612 0.0339806 0.999422i 0.489182π-0.489182\pi
0.0339806 + 0.999422i 0.489182π0.489182\pi
858858 0 0
859859 726443. 0.984499 0.492249 0.870454i 0.336175π-0.336175\pi
0.492249 + 0.870454i 0.336175π0.336175\pi
860860 0 0
861861 895089.i 1.20742i
862862 0 0
863863 − 375912.i − 0.504736i −0.967631 0.252368i 0.918791π-0.918791\pi
0.967631 0.252368i 0.0812094π-0.0812094\pi
864864 0 0
865865 −856212. −1.14432
866866 0 0
867867 −52559.1 −0.0699213
868868 0 0
869869 − 117585.i − 0.155709i
870870 0 0
871871 99792.0i 0.131540i
872872 0 0
873873 159786. 0.209657
874874 0 0
875875 931054. 1.21607
876876 0 0
877877 1.41335e6i 1.83760i 0.394720 + 0.918801i 0.370841π0.370841\pi
−0.394720 + 0.918801i 0.629159π0.629159\pi
878878 0 0
879879 400950.i 0.518934i
880880 0 0
881881 −689742. −0.888658 −0.444329 0.895864i 0.646558π-0.646558\pi
−0.444329 + 0.895864i 0.646558π0.646558\pi
882882 0 0
883883 −707695. −0.907663 −0.453832 0.891087i 0.649943π-0.649943\pi
−0.453832 + 0.891087i 0.649943π0.649943\pi
884884 0 0
885885 − 337833.i − 0.431336i
886886 0 0
887887 − 706032.i − 0.897382i −0.893687 0.448691i 0.851890π-0.851890\pi
0.893687 0.448691i 0.148110π-0.148110\pi
888888 0 0
889889 579884. 0.733732
890890 0 0
891891 10101.3 0.0127240
892892 0 0
893893 − 238690.i − 0.299318i
894894 0 0
895895 162456.i 0.202810i
896896 0 0
897897 −50544.0 −0.0628181
898898 0 0
899899 161185. 0.199436
900900 0 0
901901 − 344505.i − 0.424371i
902902 0 0
903903 870696.i 1.06780i
904904 0 0
905905 −350280. −0.427679
906906 0 0
907907 13364.5 0.0162457 0.00812285 0.999967i 0.497414π-0.497414\pi
0.00812285 + 0.999967i 0.497414π0.497414\pi
908908 0 0
909909 − 443242.i − 0.536430i
910910 0 0
911911 − 194544.i − 0.234413i −0.993108 0.117206i 0.962606π-0.962606\pi
0.993108 0.117206i 0.0373939π-0.0373939\pi
912912 0 0
913913 −192.000 −0.000230335 0
914914 0 0
915915 754232. 0.900871
916916 0 0
917917 108897.i 0.129503i
918918 0 0
919919 1.17935e6i 1.39641i 0.715900 + 0.698203i 0.246017π0.246017\pi
−0.715900 + 0.698203i 0.753983π0.753983\pi
920920 0 0
921921 −65772.0 −0.0775393
922922 0 0
923923 136929. 0.160728
924924 0 0
925925 38451.5i 0.0449397i
926926 0 0
927927 − 144234.i − 0.167845i
928928 0 0
929929 232110. 0.268944 0.134472 0.990917i 0.457066π-0.457066\pi
0.134472 + 0.990917i 0.457066π0.457066\pi
930930 0 0
931931 −580452. −0.669679
932932 0 0
933933 − 714949.i − 0.821319i
934934 0 0
935935 − 102816.i − 0.117608i
936936 0 0
937937 1.21008e6 1.37827 0.689135 0.724633i 0.257991π-0.257991\pi
0.689135 + 0.724633i 0.257991π0.257991\pi
938938 0 0
939939 −68578.8 −0.0777784
940940 0 0
941941 − 1.19574e6i − 1.35038i −0.737644 0.675190i 0.764062π-0.764062\pi
0.737644 0.675190i 0.235938π-0.235938\pi
942942 0 0
943943 1.38996e6i 1.56307i
944944 0 0
945945 −197316. −0.220952
946946 0 0
947947 986985. 1.10055 0.550276 0.834983i 0.314523π-0.314523\pi
0.550276 + 0.834983i 0.314523π0.314523\pi
948948 0 0
949949 122504.i 0.136025i
950950 0 0
951951 696834.i 0.770492i
952952 0 0
953953 −156078. −0.171853 −0.0859263 0.996301i 0.527385π-0.527385\pi
−0.0859263 + 0.996301i 0.527385π0.527385\pi
954954 0 0
955955 −850257. −0.932274
956956 0 0
957957 − 105503.i − 0.115197i
958958 0 0
959959 − 1.61716e6i − 1.75839i
960960 0 0
961961 911421. 0.986898
962962 0 0
963963 −586812. −0.632771
964964 0 0
965965 − 272313.i − 0.292425i
966966 0 0
967967 − 1.04281e6i − 1.11520i −0.830109 0.557601i 0.811722π-0.811722\pi
0.830109 0.557601i 0.188278π-0.188278\pi
968968 0 0
969969 958392. 1.02069
970970 0 0
971971 −1.15445e6 −1.22443 −0.612217 0.790690i 0.709722π-0.709722\pi
−0.612217 + 0.790690i 0.709722π0.709722\pi
972972 0 0
973973 − 657002.i − 0.693970i
974974 0 0
975975 3996.00i 0.00420355i
976976 0 0
977977 −1.24965e6 −1.30918 −0.654590 0.755984i 0.727159π-0.727159\pi
−0.654590 + 0.755984i 0.727159π0.727159\pi
978978 0 0
979979 121465. 0.126732
980980 0 0
981981 − 219423.i − 0.228005i
982982 0 0
983983 − 839088.i − 0.868361i −0.900826 0.434181i 0.857038π-0.857038\pi
0.900826 0.434181i 0.142962π-0.142962\pi
984984 0 0
985985 −702996. −0.724570
986986 0 0
987987 119345. 0.122510
988988 0 0
989989 1.35208e6i 1.38232i
990990 0 0
991991 − 422558.i − 0.430268i −0.976585 0.215134i 0.930981π-0.930981\pi
0.976585 0.215134i 0.0690188π-0.0690188\pi
992992 0 0
993993 270756. 0.274587
994994 0 0
995995 −441957. −0.446410
996996 0 0
997997 − 945533.i − 0.951232i −0.879653 0.475616i 0.842225π-0.842225\pi
0.879653 0.475616i 0.157775π-0.157775\pi
998998 0 0
999999 − 145800.i − 0.146092i
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 192.5.b.a.31.2 yes 4
3.2 odd 2 576.5.b.f.415.1 4
4.3 odd 2 inner 192.5.b.a.31.4 yes 4
8.3 odd 2 inner 192.5.b.a.31.1 4
8.5 even 2 inner 192.5.b.a.31.3 yes 4
12.11 even 2 576.5.b.f.415.2 4
16.3 odd 4 768.5.g.e.511.4 4
16.5 even 4 768.5.g.e.511.3 4
16.11 odd 4 768.5.g.e.511.1 4
16.13 even 4 768.5.g.e.511.2 4
24.5 odd 2 576.5.b.f.415.3 4
24.11 even 2 576.5.b.f.415.4 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
192.5.b.a.31.1 4 8.3 odd 2 inner
192.5.b.a.31.2 yes 4 1.1 even 1 trivial
192.5.b.a.31.3 yes 4 8.5 even 2 inner
192.5.b.a.31.4 yes 4 4.3 odd 2 inner
576.5.b.f.415.1 4 3.2 odd 2
576.5.b.f.415.2 4 12.11 even 2
576.5.b.f.415.3 4 24.5 odd 2
576.5.b.f.415.4 4 24.11 even 2
768.5.g.e.511.1 4 16.11 odd 4
768.5.g.e.511.2 4 16.13 even 4
768.5.g.e.511.3 4 16.5 even 4
768.5.g.e.511.4 4 16.3 odd 4