Properties

Label 1920.2.f.p.769.6
Level $1920$
Weight $2$
Character 1920.769
Analytic conductor $15.331$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1920,2,Mod(769,1920)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1920, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1920.769");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1920 = 2^{7} \cdot 3 \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1920.f (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(15.3312771881\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.0.350464.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} + 2x^{4} + 2x^{3} + 4x^{2} - 4x + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 769.6
Root \(-0.854638 + 0.854638i\) of defining polynomial
Character \(\chi\) \(=\) 1920.769
Dual form 1920.2.f.p.769.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000i q^{3} +(2.17009 - 0.539189i) q^{5} -2.34017i q^{7} -1.00000 q^{9} +3.07838 q^{11} -0.921622i q^{13} +(0.539189 + 2.17009i) q^{15} +7.75872i q^{17} -4.00000 q^{19} +2.34017 q^{21} +2.15676i q^{23} +(4.41855 - 2.34017i) q^{25} -1.00000i q^{27} +6.49693 q^{29} +2.00000 q^{31} +3.07838i q^{33} +(-1.26180 - 5.07838i) q^{35} +3.07838i q^{37} +0.921622 q^{39} +10.6803 q^{41} -2.15676i q^{43} +(-2.17009 + 0.539189i) q^{45} -8.68035i q^{47} +1.52359 q^{49} -7.75872 q^{51} -2.92162i q^{53} +(6.68035 - 1.65983i) q^{55} -4.00000i q^{57} -11.7587 q^{59} +6.00000 q^{61} +2.34017i q^{63} +(-0.496928 - 2.00000i) q^{65} -6.83710i q^{67} -2.15676 q^{69} +11.5174 q^{71} -6.52359i q^{73} +(2.34017 + 4.41855i) q^{75} -7.20394i q^{77} +15.3607 q^{79} +1.00000 q^{81} +1.84324i q^{83} +(4.18342 + 16.8371i) q^{85} +6.49693i q^{87} -6.00000 q^{89} -2.15676 q^{91} +2.00000i q^{93} +(-8.68035 + 2.15676i) q^{95} -3.07838 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 2 q^{5} - 6 q^{9} + 12 q^{11} - 24 q^{19} - 8 q^{21} - 2 q^{25} + 4 q^{29} + 12 q^{31} + 8 q^{35} + 12 q^{39} + 20 q^{41} - 2 q^{45} - 22 q^{49} + 4 q^{51} - 4 q^{55} - 20 q^{59} + 36 q^{61} + 32 q^{65}+ \cdots - 12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1920\mathbb{Z}\right)^\times\).

\(n\) \(511\) \(641\) \(901\) \(1537\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.00000i 0.577350i
\(4\) 0 0
\(5\) 2.17009 0.539189i 0.970492 0.241133i
\(6\) 0 0
\(7\) 2.34017i 0.884502i −0.896891 0.442251i \(-0.854180\pi\)
0.896891 0.442251i \(-0.145820\pi\)
\(8\) 0 0
\(9\) −1.00000 −0.333333
\(10\) 0 0
\(11\) 3.07838 0.928166 0.464083 0.885792i \(-0.346384\pi\)
0.464083 + 0.885792i \(0.346384\pi\)
\(12\) 0 0
\(13\) 0.921622i 0.255612i −0.991799 0.127806i \(-0.959207\pi\)
0.991799 0.127806i \(-0.0407935\pi\)
\(14\) 0 0
\(15\) 0.539189 + 2.17009i 0.139218 + 0.560314i
\(16\) 0 0
\(17\) 7.75872i 1.88177i 0.338730 + 0.940883i \(0.390003\pi\)
−0.338730 + 0.940883i \(0.609997\pi\)
\(18\) 0 0
\(19\) −4.00000 −0.917663 −0.458831 0.888523i \(-0.651732\pi\)
−0.458831 + 0.888523i \(0.651732\pi\)
\(20\) 0 0
\(21\) 2.34017 0.510668
\(22\) 0 0
\(23\) 2.15676i 0.449715i 0.974392 + 0.224857i \(0.0721916\pi\)
−0.974392 + 0.224857i \(0.927808\pi\)
\(24\) 0 0
\(25\) 4.41855 2.34017i 0.883710 0.468035i
\(26\) 0 0
\(27\) 1.00000i 0.192450i
\(28\) 0 0
\(29\) 6.49693 1.20645 0.603225 0.797571i \(-0.293882\pi\)
0.603225 + 0.797571i \(0.293882\pi\)
\(30\) 0 0
\(31\) 2.00000 0.359211 0.179605 0.983739i \(-0.442518\pi\)
0.179605 + 0.983739i \(0.442518\pi\)
\(32\) 0 0
\(33\) 3.07838i 0.535877i
\(34\) 0 0
\(35\) −1.26180 5.07838i −0.213282 0.858403i
\(36\) 0 0
\(37\) 3.07838i 0.506082i 0.967456 + 0.253041i \(0.0814308\pi\)
−0.967456 + 0.253041i \(0.918569\pi\)
\(38\) 0 0
\(39\) 0.921622 0.147578
\(40\) 0 0
\(41\) 10.6803 1.66799 0.833995 0.551772i \(-0.186048\pi\)
0.833995 + 0.551772i \(0.186048\pi\)
\(42\) 0 0
\(43\) 2.15676i 0.328902i −0.986385 0.164451i \(-0.947415\pi\)
0.986385 0.164451i \(-0.0525853\pi\)
\(44\) 0 0
\(45\) −2.17009 + 0.539189i −0.323497 + 0.0803775i
\(46\) 0 0
\(47\) 8.68035i 1.26616i −0.774087 0.633079i \(-0.781791\pi\)
0.774087 0.633079i \(-0.218209\pi\)
\(48\) 0 0
\(49\) 1.52359 0.217656
\(50\) 0 0
\(51\) −7.75872 −1.08644
\(52\) 0 0
\(53\) 2.92162i 0.401316i −0.979661 0.200658i \(-0.935692\pi\)
0.979661 0.200658i \(-0.0643079\pi\)
\(54\) 0 0
\(55\) 6.68035 1.65983i 0.900778 0.223811i
\(56\) 0 0
\(57\) 4.00000i 0.529813i
\(58\) 0 0
\(59\) −11.7587 −1.53086 −0.765428 0.643522i \(-0.777473\pi\)
−0.765428 + 0.643522i \(0.777473\pi\)
\(60\) 0 0
\(61\) 6.00000 0.768221 0.384111 0.923287i \(-0.374508\pi\)
0.384111 + 0.923287i \(0.374508\pi\)
\(62\) 0 0
\(63\) 2.34017i 0.294834i
\(64\) 0 0
\(65\) −0.496928 2.00000i −0.0616364 0.248069i
\(66\) 0 0
\(67\) 6.83710i 0.835285i −0.908611 0.417642i \(-0.862856\pi\)
0.908611 0.417642i \(-0.137144\pi\)
\(68\) 0 0
\(69\) −2.15676 −0.259643
\(70\) 0 0
\(71\) 11.5174 1.36687 0.683435 0.730012i \(-0.260485\pi\)
0.683435 + 0.730012i \(0.260485\pi\)
\(72\) 0 0
\(73\) 6.52359i 0.763529i −0.924260 0.381764i \(-0.875317\pi\)
0.924260 0.381764i \(-0.124683\pi\)
\(74\) 0 0
\(75\) 2.34017 + 4.41855i 0.270220 + 0.510210i
\(76\) 0 0
\(77\) 7.20394i 0.820965i
\(78\) 0 0
\(79\) 15.3607 1.72821 0.864106 0.503309i \(-0.167884\pi\)
0.864106 + 0.503309i \(0.167884\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) 1.84324i 0.202322i 0.994870 + 0.101161i \(0.0322558\pi\)
−0.994870 + 0.101161i \(0.967744\pi\)
\(84\) 0 0
\(85\) 4.18342 + 16.8371i 0.453755 + 1.82624i
\(86\) 0 0
\(87\) 6.49693i 0.696544i
\(88\) 0 0
\(89\) −6.00000 −0.635999 −0.317999 0.948091i \(-0.603011\pi\)
−0.317999 + 0.948091i \(0.603011\pi\)
\(90\) 0 0
\(91\) −2.15676 −0.226089
\(92\) 0 0
\(93\) 2.00000i 0.207390i
\(94\) 0 0
\(95\) −8.68035 + 2.15676i −0.890585 + 0.221278i
\(96\) 0 0
\(97\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(98\) 0 0
\(99\) −3.07838 −0.309389
\(100\) 0 0
\(101\) 8.34017 0.829878 0.414939 0.909849i \(-0.363803\pi\)
0.414939 + 0.909849i \(0.363803\pi\)
\(102\) 0 0
\(103\) 10.3402i 1.01885i 0.860516 + 0.509424i \(0.170141\pi\)
−0.860516 + 0.509424i \(0.829859\pi\)
\(104\) 0 0
\(105\) 5.07838 1.26180i 0.495599 0.123139i
\(106\) 0 0
\(107\) 13.3607i 1.29163i −0.763495 0.645813i \(-0.776518\pi\)
0.763495 0.645813i \(-0.223482\pi\)
\(108\) 0 0
\(109\) −5.31965 −0.509530 −0.254765 0.967003i \(-0.581998\pi\)
−0.254765 + 0.967003i \(0.581998\pi\)
\(110\) 0 0
\(111\) −3.07838 −0.292187
\(112\) 0 0
\(113\) 19.7587i 1.85874i 0.369144 + 0.929372i \(0.379651\pi\)
−0.369144 + 0.929372i \(0.620349\pi\)
\(114\) 0 0
\(115\) 1.16290 + 4.68035i 0.108441 + 0.436445i
\(116\) 0 0
\(117\) 0.921622i 0.0852040i
\(118\) 0 0
\(119\) 18.1568 1.66443
\(120\) 0 0
\(121\) −1.52359 −0.138508
\(122\) 0 0
\(123\) 10.6803i 0.963014i
\(124\) 0 0
\(125\) 8.32684 7.46081i 0.744775 0.667315i
\(126\) 0 0
\(127\) 19.3340i 1.71562i 0.513969 + 0.857809i \(0.328175\pi\)
−0.513969 + 0.857809i \(0.671825\pi\)
\(128\) 0 0
\(129\) 2.15676 0.189892
\(130\) 0 0
\(131\) −7.44521 −0.650491 −0.325246 0.945630i \(-0.605447\pi\)
−0.325246 + 0.945630i \(0.605447\pi\)
\(132\) 0 0
\(133\) 9.36069i 0.811675i
\(134\) 0 0
\(135\) −0.539189 2.17009i −0.0464060 0.186771i
\(136\) 0 0
\(137\) 3.44521i 0.294344i −0.989111 0.147172i \(-0.952983\pi\)
0.989111 0.147172i \(-0.0470171\pi\)
\(138\) 0 0
\(139\) −19.2039 −1.62886 −0.814428 0.580264i \(-0.802949\pi\)
−0.814428 + 0.580264i \(0.802949\pi\)
\(140\) 0 0
\(141\) 8.68035 0.731017
\(142\) 0 0
\(143\) 2.83710i 0.237250i
\(144\) 0 0
\(145\) 14.0989 3.50307i 1.17085 0.290914i
\(146\) 0 0
\(147\) 1.52359i 0.125664i
\(148\) 0 0
\(149\) −9.81658 −0.804206 −0.402103 0.915594i \(-0.631721\pi\)
−0.402103 + 0.915594i \(0.631721\pi\)
\(150\) 0 0
\(151\) −23.6742 −1.92658 −0.963290 0.268464i \(-0.913484\pi\)
−0.963290 + 0.268464i \(0.913484\pi\)
\(152\) 0 0
\(153\) 7.75872i 0.627256i
\(154\) 0 0
\(155\) 4.34017 1.07838i 0.348611 0.0866174i
\(156\) 0 0
\(157\) 11.0784i 0.884151i −0.896978 0.442075i \(-0.854242\pi\)
0.896978 0.442075i \(-0.145758\pi\)
\(158\) 0 0
\(159\) 2.92162 0.231700
\(160\) 0 0
\(161\) 5.04718 0.397774
\(162\) 0 0
\(163\) 12.9939i 1.01776i 0.860838 + 0.508879i \(0.169940\pi\)
−0.860838 + 0.508879i \(0.830060\pi\)
\(164\) 0 0
\(165\) 1.65983 + 6.68035i 0.129217 + 0.520064i
\(166\) 0 0
\(167\) 12.0000i 0.928588i −0.885681 0.464294i \(-0.846308\pi\)
0.885681 0.464294i \(-0.153692\pi\)
\(168\) 0 0
\(169\) 12.1506 0.934662
\(170\) 0 0
\(171\) 4.00000 0.305888
\(172\) 0 0
\(173\) 18.4391i 1.40190i −0.713212 0.700948i \(-0.752760\pi\)
0.713212 0.700948i \(-0.247240\pi\)
\(174\) 0 0
\(175\) −5.47641 10.3402i −0.413978 0.781644i
\(176\) 0 0
\(177\) 11.7587i 0.883840i
\(178\) 0 0
\(179\) 1.91548 0.143170 0.0715848 0.997435i \(-0.477194\pi\)
0.0715848 + 0.997435i \(0.477194\pi\)
\(180\) 0 0
\(181\) −6.99386 −0.519849 −0.259925 0.965629i \(-0.583698\pi\)
−0.259925 + 0.965629i \(0.583698\pi\)
\(182\) 0 0
\(183\) 6.00000i 0.443533i
\(184\) 0 0
\(185\) 1.65983 + 6.68035i 0.122033 + 0.491149i
\(186\) 0 0
\(187\) 23.8843i 1.74659i
\(188\) 0 0
\(189\) −2.34017 −0.170223
\(190\) 0 0
\(191\) 6.15676 0.445487 0.222744 0.974877i \(-0.428499\pi\)
0.222744 + 0.974877i \(0.428499\pi\)
\(192\) 0 0
\(193\) 14.5236i 1.04543i 0.852507 + 0.522715i \(0.175081\pi\)
−0.852507 + 0.522715i \(0.824919\pi\)
\(194\) 0 0
\(195\) 2.00000 0.496928i 0.143223 0.0355858i
\(196\) 0 0
\(197\) 24.5958i 1.75238i 0.481966 + 0.876190i \(0.339923\pi\)
−0.481966 + 0.876190i \(0.660077\pi\)
\(198\) 0 0
\(199\) −3.36069 −0.238233 −0.119117 0.992880i \(-0.538006\pi\)
−0.119117 + 0.992880i \(0.538006\pi\)
\(200\) 0 0
\(201\) 6.83710 0.482252
\(202\) 0 0
\(203\) 15.2039i 1.06711i
\(204\) 0 0
\(205\) 23.1773 5.75872i 1.61877 0.402207i
\(206\) 0 0
\(207\) 2.15676i 0.149905i
\(208\) 0 0
\(209\) −12.3135 −0.851743
\(210\) 0 0
\(211\) 11.2039 0.771311 0.385655 0.922643i \(-0.373975\pi\)
0.385655 + 0.922643i \(0.373975\pi\)
\(212\) 0 0
\(213\) 11.5174i 0.789162i
\(214\) 0 0
\(215\) −1.16290 4.68035i −0.0793090 0.319197i
\(216\) 0 0
\(217\) 4.68035i 0.317723i
\(218\) 0 0
\(219\) 6.52359 0.440823
\(220\) 0 0
\(221\) 7.15061 0.481002
\(222\) 0 0
\(223\) 6.65368i 0.445564i 0.974868 + 0.222782i \(0.0715138\pi\)
−0.974868 + 0.222782i \(0.928486\pi\)
\(224\) 0 0
\(225\) −4.41855 + 2.34017i −0.294570 + 0.156012i
\(226\) 0 0
\(227\) 9.84324i 0.653319i −0.945142 0.326660i \(-0.894077\pi\)
0.945142 0.326660i \(-0.105923\pi\)
\(228\) 0 0
\(229\) −1.31965 −0.0872052 −0.0436026 0.999049i \(-0.513884\pi\)
−0.0436026 + 0.999049i \(0.513884\pi\)
\(230\) 0 0
\(231\) 7.20394 0.473984
\(232\) 0 0
\(233\) 2.39803i 0.157100i −0.996910 0.0785501i \(-0.974971\pi\)
0.996910 0.0785501i \(-0.0250291\pi\)
\(234\) 0 0
\(235\) −4.68035 18.8371i −0.305312 1.22880i
\(236\) 0 0
\(237\) 15.3607i 0.997784i
\(238\) 0 0
\(239\) 6.15676 0.398247 0.199124 0.979974i \(-0.436190\pi\)
0.199124 + 0.979974i \(0.436190\pi\)
\(240\) 0 0
\(241\) 0.639308 0.0411815 0.0205907 0.999788i \(-0.493445\pi\)
0.0205907 + 0.999788i \(0.493445\pi\)
\(242\) 0 0
\(243\) 1.00000i 0.0641500i
\(244\) 0 0
\(245\) 3.30632 0.821503i 0.211233 0.0524839i
\(246\) 0 0
\(247\) 3.68649i 0.234566i
\(248\) 0 0
\(249\) −1.84324 −0.116811
\(250\) 0 0
\(251\) 12.9216 0.815606 0.407803 0.913070i \(-0.366295\pi\)
0.407803 + 0.913070i \(0.366295\pi\)
\(252\) 0 0
\(253\) 6.63931i 0.417410i
\(254\) 0 0
\(255\) −16.8371 + 4.18342i −1.05438 + 0.261976i
\(256\) 0 0
\(257\) 14.9627i 0.933345i 0.884430 + 0.466673i \(0.154547\pi\)
−0.884430 + 0.466673i \(0.845453\pi\)
\(258\) 0 0
\(259\) 7.20394 0.447631
\(260\) 0 0
\(261\) −6.49693 −0.402150
\(262\) 0 0
\(263\) 13.3607i 0.823856i −0.911216 0.411928i \(-0.864856\pi\)
0.911216 0.411928i \(-0.135144\pi\)
\(264\) 0 0
\(265\) −1.57531 6.34017i −0.0967703 0.389474i
\(266\) 0 0
\(267\) 6.00000i 0.367194i
\(268\) 0 0
\(269\) −27.5441 −1.67939 −0.839697 0.543055i \(-0.817267\pi\)
−0.839697 + 0.543055i \(0.817267\pi\)
\(270\) 0 0
\(271\) 10.0000 0.607457 0.303728 0.952759i \(-0.401768\pi\)
0.303728 + 0.952759i \(0.401768\pi\)
\(272\) 0 0
\(273\) 2.15676i 0.130533i
\(274\) 0 0
\(275\) 13.6020 7.20394i 0.820230 0.434414i
\(276\) 0 0
\(277\) 4.12556i 0.247881i 0.992290 + 0.123940i \(0.0395532\pi\)
−0.992290 + 0.123940i \(0.960447\pi\)
\(278\) 0 0
\(279\) −2.00000 −0.119737
\(280\) 0 0
\(281\) −11.3607 −0.677722 −0.338861 0.940836i \(-0.610042\pi\)
−0.338861 + 0.940836i \(0.610042\pi\)
\(282\) 0 0
\(283\) 10.5236i 0.625563i 0.949825 + 0.312781i \(0.101261\pi\)
−0.949825 + 0.312781i \(0.898739\pi\)
\(284\) 0 0
\(285\) −2.15676 8.68035i −0.127755 0.514179i
\(286\) 0 0
\(287\) 24.9939i 1.47534i
\(288\) 0 0
\(289\) −43.1978 −2.54105
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 32.5958i 1.90427i −0.305680 0.952134i \(-0.598884\pi\)
0.305680 0.952134i \(-0.401116\pi\)
\(294\) 0 0
\(295\) −25.5174 + 6.34017i −1.48568 + 0.369139i
\(296\) 0 0
\(297\) 3.07838i 0.178626i
\(298\) 0 0
\(299\) 1.98771 0.114952
\(300\) 0 0
\(301\) −5.04718 −0.290915
\(302\) 0 0
\(303\) 8.34017i 0.479130i
\(304\) 0 0
\(305\) 13.0205 3.23513i 0.745553 0.185243i
\(306\) 0 0
\(307\) 29.9877i 1.71149i 0.517398 + 0.855745i \(0.326901\pi\)
−0.517398 + 0.855745i \(0.673099\pi\)
\(308\) 0 0
\(309\) −10.3402 −0.588232
\(310\) 0 0
\(311\) −27.2039 −1.54259 −0.771297 0.636476i \(-0.780392\pi\)
−0.771297 + 0.636476i \(0.780392\pi\)
\(312\) 0 0
\(313\) 26.8371i 1.51692i −0.651718 0.758461i \(-0.725951\pi\)
0.651718 0.758461i \(-0.274049\pi\)
\(314\) 0 0
\(315\) 1.26180 + 5.07838i 0.0710941 + 0.286134i
\(316\) 0 0
\(317\) 24.5958i 1.38144i −0.723123 0.690720i \(-0.757294\pi\)
0.723123 0.690720i \(-0.242706\pi\)
\(318\) 0 0
\(319\) 20.0000 1.11979
\(320\) 0 0
\(321\) 13.3607 0.745721
\(322\) 0 0
\(323\) 31.0349i 1.72683i
\(324\) 0 0
\(325\) −2.15676 4.07223i −0.119635 0.225887i
\(326\) 0 0
\(327\) 5.31965i 0.294178i
\(328\) 0 0
\(329\) −20.3135 −1.11992
\(330\) 0 0
\(331\) 12.3135 0.676812 0.338406 0.941000i \(-0.390112\pi\)
0.338406 + 0.941000i \(0.390112\pi\)
\(332\) 0 0
\(333\) 3.07838i 0.168694i
\(334\) 0 0
\(335\) −3.68649 14.8371i −0.201414 0.810637i
\(336\) 0 0
\(337\) 9.47641i 0.516213i 0.966116 + 0.258106i \(0.0830985\pi\)
−0.966116 + 0.258106i \(0.916901\pi\)
\(338\) 0 0
\(339\) −19.7587 −1.07315
\(340\) 0 0
\(341\) 6.15676 0.333407
\(342\) 0 0
\(343\) 19.9467i 1.07702i
\(344\) 0 0
\(345\) −4.68035 + 1.16290i −0.251981 + 0.0626084i
\(346\) 0 0
\(347\) 7.51745i 0.403558i 0.979431 + 0.201779i \(0.0646722\pi\)
−0.979431 + 0.201779i \(0.935328\pi\)
\(348\) 0 0
\(349\) −27.6742 −1.48137 −0.740683 0.671855i \(-0.765498\pi\)
−0.740683 + 0.671855i \(0.765498\pi\)
\(350\) 0 0
\(351\) −0.921622 −0.0491926
\(352\) 0 0
\(353\) 21.6020i 1.14976i 0.818239 + 0.574878i \(0.194951\pi\)
−0.818239 + 0.574878i \(0.805049\pi\)
\(354\) 0 0
\(355\) 24.9939 6.21008i 1.32654 0.329597i
\(356\) 0 0
\(357\) 18.1568i 0.960957i
\(358\) 0 0
\(359\) 12.0000 0.633336 0.316668 0.948536i \(-0.397436\pi\)
0.316668 + 0.948536i \(0.397436\pi\)
\(360\) 0 0
\(361\) −3.00000 −0.157895
\(362\) 0 0
\(363\) 1.52359i 0.0799678i
\(364\) 0 0
\(365\) −3.51745 14.1568i −0.184112 0.740998i
\(366\) 0 0
\(367\) 23.0205i 1.20166i 0.799376 + 0.600831i \(0.205163\pi\)
−0.799376 + 0.600831i \(0.794837\pi\)
\(368\) 0 0
\(369\) −10.6803 −0.555997
\(370\) 0 0
\(371\) −6.83710 −0.354965
\(372\) 0 0
\(373\) 26.5958i 1.37708i −0.725199 0.688540i \(-0.758252\pi\)
0.725199 0.688540i \(-0.241748\pi\)
\(374\) 0 0
\(375\) 7.46081 + 8.32684i 0.385275 + 0.429996i
\(376\) 0 0
\(377\) 5.98771i 0.308383i
\(378\) 0 0
\(379\) −36.1445 −1.85662 −0.928308 0.371811i \(-0.878737\pi\)
−0.928308 + 0.371811i \(0.878737\pi\)
\(380\) 0 0
\(381\) −19.3340 −0.990512
\(382\) 0 0
\(383\) 6.83710i 0.349360i −0.984625 0.174680i \(-0.944111\pi\)
0.984625 0.174680i \(-0.0558890\pi\)
\(384\) 0 0
\(385\) −3.88428 15.6332i −0.197961 0.796740i
\(386\) 0 0
\(387\) 2.15676i 0.109634i
\(388\) 0 0
\(389\) −16.7070 −0.847079 −0.423539 0.905878i \(-0.639213\pi\)
−0.423539 + 0.905878i \(0.639213\pi\)
\(390\) 0 0
\(391\) −16.7337 −0.846258
\(392\) 0 0
\(393\) 7.44521i 0.375561i
\(394\) 0 0
\(395\) 33.3340 8.28231i 1.67722 0.416728i
\(396\) 0 0
\(397\) 3.56093i 0.178718i −0.995999 0.0893590i \(-0.971518\pi\)
0.995999 0.0893590i \(-0.0284818\pi\)
\(398\) 0 0
\(399\) −9.36069 −0.468621
\(400\) 0 0
\(401\) −25.7152 −1.28416 −0.642079 0.766639i \(-0.721928\pi\)
−0.642079 + 0.766639i \(0.721928\pi\)
\(402\) 0 0
\(403\) 1.84324i 0.0918185i
\(404\) 0 0
\(405\) 2.17009 0.539189i 0.107832 0.0267925i
\(406\) 0 0
\(407\) 9.47641i 0.469728i
\(408\) 0 0
\(409\) −28.8371 −1.42590 −0.712951 0.701213i \(-0.752642\pi\)
−0.712951 + 0.701213i \(0.752642\pi\)
\(410\) 0 0
\(411\) 3.44521 0.169940
\(412\) 0 0
\(413\) 27.5174i 1.35405i
\(414\) 0 0
\(415\) 0.993857 + 4.00000i 0.0487865 + 0.196352i
\(416\) 0 0
\(417\) 19.2039i 0.940421i
\(418\) 0 0
\(419\) −6.28231 −0.306911 −0.153456 0.988156i \(-0.549040\pi\)
−0.153456 + 0.988156i \(0.549040\pi\)
\(420\) 0 0
\(421\) −10.9939 −0.535808 −0.267904 0.963446i \(-0.586331\pi\)
−0.267904 + 0.963446i \(0.586331\pi\)
\(422\) 0 0
\(423\) 8.68035i 0.422053i
\(424\) 0 0
\(425\) 18.1568 + 34.2823i 0.880732 + 1.66294i
\(426\) 0 0
\(427\) 14.0410i 0.679493i
\(428\) 0 0
\(429\) 2.83710 0.136977
\(430\) 0 0
\(431\) −21.3607 −1.02891 −0.514454 0.857518i \(-0.672005\pi\)
−0.514454 + 0.857518i \(0.672005\pi\)
\(432\) 0 0
\(433\) 18.4703i 0.887624i 0.896120 + 0.443812i \(0.146374\pi\)
−0.896120 + 0.443812i \(0.853626\pi\)
\(434\) 0 0
\(435\) 3.50307 + 14.0989i 0.167959 + 0.675990i
\(436\) 0 0
\(437\) 8.62702i 0.412686i
\(438\) 0 0
\(439\) −6.31351 −0.301327 −0.150664 0.988585i \(-0.548141\pi\)
−0.150664 + 0.988585i \(0.548141\pi\)
\(440\) 0 0
\(441\) −1.52359 −0.0725519
\(442\) 0 0
\(443\) 27.8310i 1.32229i 0.750259 + 0.661144i \(0.229929\pi\)
−0.750259 + 0.661144i \(0.770071\pi\)
\(444\) 0 0
\(445\) −13.0205 + 3.23513i −0.617232 + 0.153360i
\(446\) 0 0
\(447\) 9.81658i 0.464308i
\(448\) 0 0
\(449\) −14.6803 −0.692808 −0.346404 0.938085i \(-0.612597\pi\)
−0.346404 + 0.938085i \(0.612597\pi\)
\(450\) 0 0
\(451\) 32.8781 1.54817
\(452\) 0 0
\(453\) 23.6742i 1.11231i
\(454\) 0 0
\(455\) −4.68035 + 1.16290i −0.219418 + 0.0545175i
\(456\) 0 0
\(457\) 19.6865i 0.920895i 0.887687 + 0.460448i \(0.152311\pi\)
−0.887687 + 0.460448i \(0.847689\pi\)
\(458\) 0 0
\(459\) 7.75872 0.362146
\(460\) 0 0
\(461\) 13.5031 0.628901 0.314450 0.949274i \(-0.398180\pi\)
0.314450 + 0.949274i \(0.398180\pi\)
\(462\) 0 0
\(463\) 6.02666i 0.280083i −0.990146 0.140041i \(-0.955276\pi\)
0.990146 0.140041i \(-0.0447236\pi\)
\(464\) 0 0
\(465\) 1.07838 + 4.34017i 0.0500086 + 0.201271i
\(466\) 0 0
\(467\) 19.8310i 0.917667i −0.888522 0.458834i \(-0.848267\pi\)
0.888522 0.458834i \(-0.151733\pi\)
\(468\) 0 0
\(469\) −16.0000 −0.738811
\(470\) 0 0
\(471\) 11.0784 0.510465
\(472\) 0 0
\(473\) 6.63931i 0.305276i
\(474\) 0 0
\(475\) −17.6742 + 9.36069i −0.810948 + 0.429498i
\(476\) 0 0
\(477\) 2.92162i 0.133772i
\(478\) 0 0
\(479\) −23.2039 −1.06021 −0.530107 0.847930i \(-0.677848\pi\)
−0.530107 + 0.847930i \(0.677848\pi\)
\(480\) 0 0
\(481\) 2.83710 0.129361
\(482\) 0 0
\(483\) 5.04718i 0.229655i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 23.3874i 1.05978i 0.848066 + 0.529891i \(0.177767\pi\)
−0.848066 + 0.529891i \(0.822233\pi\)
\(488\) 0 0
\(489\) −12.9939 −0.587603
\(490\) 0 0
\(491\) 30.2290 1.36422 0.682108 0.731252i \(-0.261064\pi\)
0.682108 + 0.731252i \(0.261064\pi\)
\(492\) 0 0
\(493\) 50.4079i 2.27026i
\(494\) 0 0
\(495\) −6.68035 + 1.65983i −0.300259 + 0.0746037i
\(496\) 0 0
\(497\) 26.9528i 1.20900i
\(498\) 0 0
\(499\) 1.36069 0.0609129 0.0304565 0.999536i \(-0.490304\pi\)
0.0304565 + 0.999536i \(0.490304\pi\)
\(500\) 0 0
\(501\) 12.0000 0.536120
\(502\) 0 0
\(503\) 16.6803i 0.743740i −0.928285 0.371870i \(-0.878717\pi\)
0.928285 0.371870i \(-0.121283\pi\)
\(504\) 0 0
\(505\) 18.0989 4.49693i 0.805390 0.200111i
\(506\) 0 0
\(507\) 12.1506i 0.539628i
\(508\) 0 0
\(509\) 14.0144 0.621176 0.310588 0.950545i \(-0.399474\pi\)
0.310588 + 0.950545i \(0.399474\pi\)
\(510\) 0 0
\(511\) −15.2663 −0.675343
\(512\) 0 0
\(513\) 4.00000i 0.176604i
\(514\) 0 0
\(515\) 5.57531 + 22.4391i 0.245677 + 0.988784i
\(516\) 0 0
\(517\) 26.7214i 1.17521i
\(518\) 0 0
\(519\) 18.4391 0.809385
\(520\) 0 0
\(521\) 6.68035 0.292671 0.146336 0.989235i \(-0.453252\pi\)
0.146336 + 0.989235i \(0.453252\pi\)
\(522\) 0 0
\(523\) 26.0410i 1.13870i −0.822097 0.569348i \(-0.807196\pi\)
0.822097 0.569348i \(-0.192804\pi\)
\(524\) 0 0
\(525\) 10.3402 5.47641i 0.451282 0.239010i
\(526\) 0 0
\(527\) 15.5174i 0.675951i
\(528\) 0 0
\(529\) 18.3484 0.797757
\(530\) 0 0
\(531\) 11.7587 0.510285
\(532\) 0 0
\(533\) 9.84324i 0.426358i
\(534\) 0 0
\(535\) −7.20394 28.9939i −0.311453 1.25351i
\(536\) 0 0
\(537\) 1.91548i 0.0826590i
\(538\) 0 0
\(539\) 4.69019 0.202021
\(540\) 0 0
\(541\) −14.9939 −0.644636 −0.322318 0.946631i \(-0.604462\pi\)
−0.322318 + 0.946631i \(0.604462\pi\)
\(542\) 0 0
\(543\) 6.99386i 0.300135i
\(544\) 0 0
\(545\) −11.5441 + 2.86830i −0.494495 + 0.122864i
\(546\) 0 0
\(547\) 26.1568i 1.11838i 0.829039 + 0.559191i \(0.188888\pi\)
−0.829039 + 0.559191i \(0.811112\pi\)
\(548\) 0 0
\(549\) −6.00000 −0.256074
\(550\) 0 0
\(551\) −25.9877 −1.10711
\(552\) 0 0
\(553\) 35.9467i 1.52861i
\(554\) 0 0
\(555\) −6.68035 + 1.65983i −0.283565 + 0.0704557i
\(556\) 0 0
\(557\) 14.7526i 0.625087i −0.949903 0.312543i \(-0.898819\pi\)
0.949903 0.312543i \(-0.101181\pi\)
\(558\) 0 0
\(559\) −1.98771 −0.0840713
\(560\) 0 0
\(561\) −23.8843 −1.00840
\(562\) 0 0
\(563\) 38.5523i 1.62479i 0.583109 + 0.812394i \(0.301836\pi\)
−0.583109 + 0.812394i \(0.698164\pi\)
\(564\) 0 0
\(565\) 10.6537 + 42.8781i 0.448204 + 1.80390i
\(566\) 0 0
\(567\) 2.34017i 0.0982780i
\(568\) 0 0
\(569\) −14.6803 −0.615432 −0.307716 0.951478i \(-0.599565\pi\)
−0.307716 + 0.951478i \(0.599565\pi\)
\(570\) 0 0
\(571\) −13.6742 −0.572248 −0.286124 0.958193i \(-0.592367\pi\)
−0.286124 + 0.958193i \(0.592367\pi\)
\(572\) 0 0
\(573\) 6.15676i 0.257202i
\(574\) 0 0
\(575\) 5.04718 + 9.52973i 0.210482 + 0.397417i
\(576\) 0 0
\(577\) 22.6681i 0.943684i −0.881683 0.471842i \(-0.843589\pi\)
0.881683 0.471842i \(-0.156411\pi\)
\(578\) 0 0
\(579\) −14.5236 −0.603580
\(580\) 0 0
\(581\) 4.31351 0.178955
\(582\) 0 0
\(583\) 8.99386i 0.372487i
\(584\) 0 0
\(585\) 0.496928 + 2.00000i 0.0205455 + 0.0826898i
\(586\) 0 0
\(587\) 37.3607i 1.54204i −0.636810 0.771020i \(-0.719747\pi\)
0.636810 0.771020i \(-0.280253\pi\)
\(588\) 0 0
\(589\) −8.00000 −0.329634
\(590\) 0 0
\(591\) −24.5958 −1.01174
\(592\) 0 0
\(593\) 15.5897i 0.640192i −0.947385 0.320096i \(-0.896285\pi\)
0.947385 0.320096i \(-0.103715\pi\)
\(594\) 0 0
\(595\) 39.4017 9.78992i 1.61531 0.401348i
\(596\) 0 0
\(597\) 3.36069i 0.137544i
\(598\) 0 0
\(599\) 45.3607 1.85339 0.926694 0.375817i \(-0.122638\pi\)
0.926694 + 0.375817i \(0.122638\pi\)
\(600\) 0 0
\(601\) 16.5236 0.674011 0.337006 0.941503i \(-0.390586\pi\)
0.337006 + 0.941503i \(0.390586\pi\)
\(602\) 0 0
\(603\) 6.83710i 0.278428i
\(604\) 0 0
\(605\) −3.30632 + 0.821503i −0.134421 + 0.0333988i
\(606\) 0 0
\(607\) 30.0554i 1.21991i −0.792435 0.609956i \(-0.791187\pi\)
0.792435 0.609956i \(-0.208813\pi\)
\(608\) 0 0
\(609\) 15.2039 0.616095
\(610\) 0 0
\(611\) −8.00000 −0.323645
\(612\) 0 0
\(613\) 24.2700i 0.980257i 0.871650 + 0.490129i \(0.163050\pi\)
−0.871650 + 0.490129i \(0.836950\pi\)
\(614\) 0 0
\(615\) 5.75872 + 23.1773i 0.232214 + 0.934598i
\(616\) 0 0
\(617\) 0.0722347i 0.00290806i 0.999999 + 0.00145403i \(0.000462832\pi\)
−0.999999 + 0.00145403i \(0.999537\pi\)
\(618\) 0 0
\(619\) 29.1917 1.17331 0.586656 0.809836i \(-0.300444\pi\)
0.586656 + 0.809836i \(0.300444\pi\)
\(620\) 0 0
\(621\) 2.15676 0.0865476
\(622\) 0 0
\(623\) 14.0410i 0.562542i
\(624\) 0 0
\(625\) 14.0472 20.6803i 0.561887 0.827214i
\(626\) 0 0
\(627\) 12.3135i 0.491754i
\(628\) 0 0
\(629\) −23.8843 −0.952329
\(630\) 0 0
\(631\) 3.36069 0.133787 0.0668935 0.997760i \(-0.478691\pi\)
0.0668935 + 0.997760i \(0.478691\pi\)
\(632\) 0 0
\(633\) 11.2039i 0.445316i
\(634\) 0 0
\(635\) 10.4247 + 41.9565i 0.413691 + 1.66499i
\(636\) 0 0
\(637\) 1.40417i 0.0556354i
\(638\) 0 0
\(639\) −11.5174 −0.455623
\(640\) 0 0
\(641\) 36.6681 1.44830 0.724151 0.689642i \(-0.242232\pi\)
0.724151 + 0.689642i \(0.242232\pi\)
\(642\) 0 0
\(643\) 40.6803i 1.60428i −0.597139 0.802138i \(-0.703696\pi\)
0.597139 0.802138i \(-0.296304\pi\)
\(644\) 0 0
\(645\) 4.68035 1.16290i 0.184288 0.0457891i
\(646\) 0 0
\(647\) 37.7275i 1.48322i −0.670830 0.741611i \(-0.734062\pi\)
0.670830 0.741611i \(-0.265938\pi\)
\(648\) 0 0
\(649\) −36.1978 −1.42089
\(650\) 0 0
\(651\) 4.68035 0.183437
\(652\) 0 0
\(653\) 38.9216i 1.52312i 0.648094 + 0.761560i \(0.275566\pi\)
−0.648094 + 0.761560i \(0.724434\pi\)
\(654\) 0 0
\(655\) −16.1568 + 4.01438i −0.631297 + 0.156855i
\(656\) 0 0
\(657\) 6.52359i 0.254510i
\(658\) 0 0
\(659\) −32.9504 −1.28356 −0.641782 0.766887i \(-0.721805\pi\)
−0.641782 + 0.766887i \(0.721805\pi\)
\(660\) 0 0
\(661\) 36.3012 1.41195 0.705977 0.708235i \(-0.250508\pi\)
0.705977 + 0.708235i \(0.250508\pi\)
\(662\) 0 0
\(663\) 7.15061i 0.277707i
\(664\) 0 0
\(665\) 5.04718 + 20.3135i 0.195721 + 0.787724i
\(666\) 0 0
\(667\) 14.0123i 0.542558i
\(668\) 0 0
\(669\) −6.65368 −0.257246
\(670\) 0 0
\(671\) 18.4703 0.713037
\(672\) 0 0
\(673\) 37.1917i 1.43363i −0.697262 0.716816i \(-0.745599\pi\)
0.697262 0.716816i \(-0.254401\pi\)
\(674\) 0 0
\(675\) −2.34017 4.41855i −0.0900733 0.170070i
\(676\) 0 0
\(677\) 9.07838i 0.348910i 0.984665 + 0.174455i \(0.0558164\pi\)
−0.984665 + 0.174455i \(0.944184\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 9.84324 0.377194
\(682\) 0 0
\(683\) 9.84324i 0.376641i −0.982108 0.188321i \(-0.939696\pi\)
0.982108 0.188321i \(-0.0603044\pi\)
\(684\) 0 0
\(685\) −1.85762 7.47641i −0.0709760 0.285659i
\(686\) 0 0
\(687\) 1.31965i 0.0503479i
\(688\) 0 0
\(689\) −2.69263 −0.102581
\(690\) 0 0
\(691\) −1.67420 −0.0636897 −0.0318448 0.999493i \(-0.510138\pi\)
−0.0318448 + 0.999493i \(0.510138\pi\)
\(692\) 0 0
\(693\) 7.20394i 0.273655i
\(694\) 0 0
\(695\) −41.6742 + 10.3545i −1.58079 + 0.392770i
\(696\) 0 0
\(697\) 82.8659i 3.13877i
\(698\) 0 0
\(699\) 2.39803 0.0907019
\(700\) 0 0
\(701\) −8.96719 −0.338686 −0.169343 0.985557i \(-0.554165\pi\)
−0.169343 + 0.985557i \(0.554165\pi\)
\(702\) 0 0
\(703\) 12.3135i 0.464413i
\(704\) 0 0
\(705\) 18.8371 4.68035i 0.709446 0.176272i
\(706\) 0 0
\(707\) 19.5174i 0.734029i
\(708\) 0 0
\(709\) −25.7152 −0.965756 −0.482878 0.875688i \(-0.660409\pi\)
−0.482878 + 0.875688i \(0.660409\pi\)
\(710\) 0 0
\(711\) −15.3607 −0.576071
\(712\) 0 0
\(713\) 4.31351i 0.161542i
\(714\) 0 0
\(715\) −1.52973 6.15676i −0.0572088 0.230250i
\(716\) 0 0
\(717\) 6.15676i 0.229928i
\(718\) 0 0
\(719\) −18.4079 −0.686498 −0.343249 0.939244i \(-0.611527\pi\)
−0.343249 + 0.939244i \(0.611527\pi\)
\(720\) 0 0
\(721\) 24.1978 0.901173
\(722\) 0 0
\(723\) 0.639308i 0.0237761i
\(724\) 0 0
\(725\) 28.7070 15.2039i 1.06615 0.564660i
\(726\) 0 0
\(727\) 42.3402i 1.57031i 0.619299 + 0.785155i \(0.287417\pi\)
−0.619299 + 0.785155i \(0.712583\pi\)
\(728\) 0 0
\(729\) −1.00000 −0.0370370
\(730\) 0 0
\(731\) 16.7337 0.618917
\(732\) 0 0
\(733\) 4.75258i 0.175541i −0.996141 0.0877703i \(-0.972026\pi\)
0.996141 0.0877703i \(-0.0279741\pi\)
\(734\) 0 0
\(735\) 0.821503 + 3.30632i 0.0303016 + 0.121956i
\(736\) 0 0
\(737\) 21.0472i 0.775283i
\(738\) 0 0
\(739\) −21.0472 −0.774233 −0.387117 0.922031i \(-0.626529\pi\)
−0.387117 + 0.922031i \(0.626529\pi\)
\(740\) 0 0
\(741\) −3.68649 −0.135427
\(742\) 0 0
\(743\) 49.5585i 1.81812i 0.416660 + 0.909062i \(0.363200\pi\)
−0.416660 + 0.909062i \(0.636800\pi\)
\(744\) 0 0
\(745\) −21.3028 + 5.29299i −0.780475 + 0.193920i
\(746\) 0 0
\(747\) 1.84324i 0.0674408i
\(748\) 0 0
\(749\) −31.2663 −1.14245
\(750\) 0 0
\(751\) 41.6619 1.52026 0.760132 0.649768i \(-0.225134\pi\)
0.760132 + 0.649768i \(0.225134\pi\)
\(752\) 0 0
\(753\) 12.9216i 0.470890i
\(754\) 0 0
\(755\) −51.3751 + 12.7649i −1.86973 + 0.464561i
\(756\) 0 0
\(757\) 21.9688i 0.798470i −0.916849 0.399235i \(-0.869276\pi\)
0.916849 0.399235i \(-0.130724\pi\)
\(758\) 0 0
\(759\) −6.63931 −0.240992
\(760\) 0 0
\(761\) −11.3074 −0.409892 −0.204946 0.978773i \(-0.565702\pi\)
−0.204946 + 0.978773i \(0.565702\pi\)
\(762\) 0 0
\(763\) 12.4489i 0.450681i
\(764\) 0 0
\(765\) −4.18342 16.8371i −0.151252 0.608747i
\(766\) 0 0
\(767\) 10.8371i 0.391305i
\(768\) 0 0
\(769\) −6.19779 −0.223498 −0.111749 0.993736i \(-0.535645\pi\)
−0.111749 + 0.993736i \(0.535645\pi\)
\(770\) 0 0
\(771\) −14.9627 −0.538867
\(772\) 0 0
\(773\) 30.4391i 1.09482i −0.836865 0.547409i \(-0.815614\pi\)
0.836865 0.547409i \(-0.184386\pi\)
\(774\) 0 0
\(775\) 8.83710 4.68035i 0.317438 0.168123i
\(776\) 0 0
\(777\) 7.20394i 0.258440i
\(778\) 0 0
\(779\) −42.7214 −1.53065
\(780\) 0 0
\(781\) 35.4551 1.26868
\(782\) 0 0
\(783\) 6.49693i 0.232181i
\(784\) 0 0
\(785\) −5.97334 24.0410i −0.213198 0.858061i
\(786\) 0 0
\(787\) 36.9939i 1.31869i 0.751841 + 0.659344i \(0.229166\pi\)
−0.751841 + 0.659344i \(0.770834\pi\)
\(788\) 0 0
\(789\) 13.3607 0.475653
\(790\) 0 0
\(791\) 46.2388 1.64406
\(792\) 0 0
\(793\) 5.52973i 0.196367i
\(794\) 0 0
\(795\) 6.34017 1.57531i 0.224863 0.0558704i
\(796\) 0 0
\(797\) 30.7526i 1.08931i 0.838659 + 0.544656i \(0.183340\pi\)
−0.838659 + 0.544656i \(0.816660\pi\)
\(798\) 0 0
\(799\) 67.3484 2.38262
\(800\) 0 0
\(801\) 6.00000 0.212000
\(802\) 0 0
\(803\) 20.0821i 0.708681i
\(804\) 0 0
\(805\) 10.9528 2.72138i 0.386036 0.0959162i
\(806\) 0 0
\(807\) 27.5441i 0.969599i
\(808\) 0 0
\(809\) 5.31965 0.187029 0.0935145 0.995618i \(-0.470190\pi\)
0.0935145 + 0.995618i \(0.470190\pi\)
\(810\) 0 0
\(811\) −49.9253 −1.75312 −0.876558 0.481297i \(-0.840166\pi\)
−0.876558 + 0.481297i \(0.840166\pi\)
\(812\) 0 0
\(813\) 10.0000i 0.350715i
\(814\) 0 0
\(815\) 7.00614 + 28.1978i 0.245414 + 0.987726i
\(816\) 0 0
\(817\) 8.62702i 0.301821i
\(818\) 0 0
\(819\) 2.15676 0.0753631
\(820\) 0 0
\(821\) −44.1711 −1.54158 −0.770792 0.637087i \(-0.780139\pi\)
−0.770792 + 0.637087i \(0.780139\pi\)
\(822\) 0 0
\(823\) 19.0738i 0.664872i −0.943126 0.332436i \(-0.892129\pi\)
0.943126 0.332436i \(-0.107871\pi\)
\(824\) 0 0
\(825\) 7.20394 + 13.6020i 0.250809 + 0.473560i
\(826\) 0 0
\(827\) 43.0349i 1.49647i 0.663434 + 0.748235i \(0.269098\pi\)
−0.663434 + 0.748235i \(0.730902\pi\)
\(828\) 0 0
\(829\) 36.0410 1.25176 0.625878 0.779921i \(-0.284741\pi\)
0.625878 + 0.779921i \(0.284741\pi\)
\(830\) 0 0
\(831\) −4.12556 −0.143114
\(832\) 0 0
\(833\) 11.8211i 0.409577i
\(834\) 0 0
\(835\) −6.47027 26.0410i −0.223913 0.901187i
\(836\) 0 0
\(837\) 2.00000i 0.0691301i
\(838\) 0 0
\(839\) 43.0349 1.48573 0.742865 0.669441i \(-0.233467\pi\)
0.742865 + 0.669441i \(0.233467\pi\)
\(840\) 0 0
\(841\) 13.2101 0.455520
\(842\) 0 0
\(843\) 11.3607i 0.391283i
\(844\) 0 0
\(845\) 26.3679 6.55148i 0.907083 0.225378i
\(846\) 0 0
\(847\) 3.56547i 0.122511i
\(848\) 0 0
\(849\) −10.5236 −0.361169
\(850\) 0 0
\(851\) −6.63931 −0.227593
\(852\) 0 0
\(853\) 47.1605i 1.61474i −0.590043 0.807372i \(-0.700889\pi\)
0.590043 0.807372i \(-0.299111\pi\)
\(854\) 0 0
\(855\) 8.68035 2.15676i 0.296862 0.0737595i
\(856\) 0 0
\(857\) 12.8059i 0.437441i 0.975788 + 0.218721i \(0.0701884\pi\)
−0.975788 + 0.218721i \(0.929812\pi\)
\(858\) 0 0
\(859\) 14.4703 0.493719 0.246860 0.969051i \(-0.420601\pi\)
0.246860 + 0.969051i \(0.420601\pi\)
\(860\) 0 0
\(861\) 24.9939 0.851788
\(862\) 0 0
\(863\) 24.3135i 0.827642i −0.910358 0.413821i \(-0.864194\pi\)
0.910358 0.413821i \(-0.135806\pi\)
\(864\) 0 0
\(865\) −9.94214 40.0144i −0.338043 1.36053i
\(866\) 0 0
\(867\) 43.1978i 1.46707i
\(868\) 0 0
\(869\) 47.2860 1.60407
\(870\) 0 0
\(871\) −6.30122 −0.213509
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −17.4596 19.4863i −0.590242 0.658756i
\(876\) 0 0
\(877\) 44.4391i 1.50060i −0.661097 0.750300i \(-0.729909\pi\)
0.661097 0.750300i \(-0.270091\pi\)
\(878\) 0 0
\(879\) 32.5958 1.09943
\(880\) 0 0
\(881\) 6.62702 0.223270 0.111635 0.993749i \(-0.464391\pi\)
0.111635 + 0.993749i \(0.464391\pi\)
\(882\) 0 0
\(883\) 7.31965i 0.246326i 0.992386 + 0.123163i \(0.0393038\pi\)
−0.992386 + 0.123163i \(0.960696\pi\)
\(884\) 0 0
\(885\) −6.34017 25.5174i −0.213123 0.857760i
\(886\) 0 0
\(887\) 12.0000i 0.402921i 0.979497 + 0.201460i \(0.0645687\pi\)
−0.979497 + 0.201460i \(0.935431\pi\)
\(888\) 0 0
\(889\) 45.2450 1.51747
\(890\) 0 0
\(891\) 3.07838 0.103130
\(892\) 0 0
\(893\) 34.7214i 1.16191i
\(894\) 0 0
\(895\) 4.15676 1.03281i 0.138945 0.0345229i
\(896\) 0 0
\(897\) 1.98771i 0.0663678i
\(898\) 0 0
\(899\) 12.9939 0.433369
\(900\) 0 0
\(901\) 22.6681 0.755183
\(902\) 0 0
\(903\) 5.04718i 0.167960i
\(904\) 0 0
\(905\) −15.1773 + 3.77101i −0.504510 + 0.125353i
\(906\) 0 0
\(907\) 4.48255i 0.148841i 0.997227 + 0.0744204i \(0.0237107\pi\)
−0.997227 + 0.0744204i \(0.976289\pi\)
\(908\) 0 0
\(909\) −8.34017 −0.276626
\(910\) 0 0
\(911\) 8.73367 0.289359 0.144680 0.989479i \(-0.453785\pi\)
0.144680 + 0.989479i \(0.453785\pi\)
\(912\) 0 0
\(913\) 5.67420i 0.187789i
\(914\) 0 0
\(915\) 3.23513 + 13.0205i 0.106950 + 0.430445i
\(916\) 0 0
\(917\) 17.4231i 0.575361i
\(918\) 0 0
\(919\) −18.7337 −0.617967 −0.308983 0.951067i \(-0.599989\pi\)
−0.308983 + 0.951067i \(0.599989\pi\)
\(920\) 0 0
\(921\) −29.9877 −0.988129
\(922\) 0 0
\(923\) 10.6147i 0.349388i
\(924\) 0 0
\(925\) 7.20394 + 13.6020i 0.236864 + 0.447230i
\(926\) 0 0
\(927\) 10.3402i 0.339616i
\(928\) 0 0
\(929\) 20.0410 0.657525 0.328763 0.944413i \(-0.393368\pi\)
0.328763 + 0.944413i \(0.393368\pi\)
\(930\) 0 0
\(931\) −6.09436 −0.199735
\(932\) 0 0
\(933\) 27.2039i 0.890617i
\(934\) 0 0
\(935\) 12.8781 + 51.8310i 0.421160 + 1.69505i
\(936\) 0 0
\(937\) 45.0472i 1.47163i 0.677184 + 0.735814i \(0.263200\pi\)
−0.677184 + 0.735814i \(0.736800\pi\)
\(938\) 0 0
\(939\) 26.8371 0.875796
\(940\) 0 0
\(941\) −19.3751 −0.631609 −0.315805 0.948824i \(-0.602274\pi\)
−0.315805 + 0.948824i \(0.602274\pi\)
\(942\) 0 0
\(943\) 23.0349i 0.750119i
\(944\) 0 0
\(945\) −5.07838 + 1.26180i −0.165200 + 0.0410462i
\(946\) 0 0
\(947\) 6.95282i 0.225936i −0.993599 0.112968i \(-0.963964\pi\)
0.993599 0.112968i \(-0.0360358\pi\)
\(948\) 0 0
\(949\) −6.01229 −0.195167
\(950\) 0 0
\(951\) 24.5958 0.797574
\(952\) 0 0
\(953\) 29.2885i 0.948746i −0.880324 0.474373i \(-0.842675\pi\)
0.880324 0.474373i \(-0.157325\pi\)
\(954\) 0 0
\(955\) 13.3607 3.31965i 0.432342 0.107421i
\(956\) 0 0
\(957\) 20.0000i 0.646508i
\(958\) 0 0
\(959\) −8.06239 −0.260348
\(960\) 0 0
\(961\) −27.0000 −0.870968
\(962\) 0 0
\(963\) 13.3607i 0.430542i
\(964\) 0 0
\(965\) 7.83096 + 31.5174i 0.252087 + 1.01458i
\(966\) 0 0
\(967\) 47.3874i 1.52387i −0.647651 0.761937i \(-0.724248\pi\)
0.647651 0.761937i \(-0.275752\pi\)
\(968\) 0 0
\(969\) 31.0349 0.996984
\(970\) 0 0
\(971\) 2.59583 0.0833040 0.0416520 0.999132i \(-0.486738\pi\)
0.0416520 + 0.999132i \(0.486738\pi\)
\(972\) 0 0
\(973\) 44.9405i 1.44073i
\(974\) 0 0
\(975\) 4.07223 2.15676i 0.130416 0.0690715i
\(976\) 0 0
\(977\) 28.3234i 0.906144i −0.891474 0.453072i \(-0.850328\pi\)
0.891474 0.453072i \(-0.149672\pi\)
\(978\) 0 0
\(979\) −18.4703 −0.590312
\(980\) 0 0
\(981\) 5.31965 0.169843
\(982\) 0 0
\(983\) 1.16290i 0.0370907i 0.999828 + 0.0185454i \(0.00590351\pi\)
−0.999828 + 0.0185454i \(0.994096\pi\)
\(984\) 0 0
\(985\) 13.2618 + 53.3751i 0.422556 + 1.70067i
\(986\) 0 0
\(987\) 20.3135i 0.646586i
\(988\) 0 0
\(989\) 4.65159 0.147912
\(990\) 0 0
\(991\) −12.9528 −0.411460 −0.205730 0.978609i \(-0.565957\pi\)
−0.205730 + 0.978609i \(0.565957\pi\)
\(992\) 0 0
\(993\) 12.3135i 0.390757i
\(994\) 0 0
\(995\) −7.29299 + 1.81205i −0.231203 + 0.0574458i
\(996\) 0 0
\(997\) 19.0784i 0.604218i −0.953273 0.302109i \(-0.902309\pi\)
0.953273 0.302109i \(-0.0976907\pi\)
\(998\) 0 0
\(999\) 3.07838 0.0973956
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1920.2.f.p.769.6 yes 6
4.3 odd 2 1920.2.f.o.769.3 yes 6
5.2 odd 4 9600.2.a.dt.1.3 3
5.3 odd 4 9600.2.a.dr.1.1 3
5.4 even 2 inner 1920.2.f.p.769.3 yes 6
8.3 odd 2 1920.2.f.n.769.4 yes 6
8.5 even 2 1920.2.f.m.769.1 6
16.3 odd 4 3840.2.d.bl.2689.3 6
16.5 even 4 3840.2.d.bk.2689.4 6
16.11 odd 4 3840.2.d.bi.2689.4 6
16.13 even 4 3840.2.d.bj.2689.3 6
20.3 even 4 9600.2.a.ds.1.3 3
20.7 even 4 9600.2.a.dq.1.1 3
20.19 odd 2 1920.2.f.o.769.6 yes 6
40.3 even 4 9600.2.a.dp.1.3 3
40.13 odd 4 9600.2.a.du.1.1 3
40.19 odd 2 1920.2.f.n.769.1 yes 6
40.27 even 4 9600.2.a.dv.1.1 3
40.29 even 2 1920.2.f.m.769.4 yes 6
40.37 odd 4 9600.2.a.do.1.3 3
80.19 odd 4 3840.2.d.bi.2689.3 6
80.29 even 4 3840.2.d.bk.2689.3 6
80.59 odd 4 3840.2.d.bl.2689.4 6
80.69 even 4 3840.2.d.bj.2689.4 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1920.2.f.m.769.1 6 8.5 even 2
1920.2.f.m.769.4 yes 6 40.29 even 2
1920.2.f.n.769.1 yes 6 40.19 odd 2
1920.2.f.n.769.4 yes 6 8.3 odd 2
1920.2.f.o.769.3 yes 6 4.3 odd 2
1920.2.f.o.769.6 yes 6 20.19 odd 2
1920.2.f.p.769.3 yes 6 5.4 even 2 inner
1920.2.f.p.769.6 yes 6 1.1 even 1 trivial
3840.2.d.bi.2689.3 6 80.19 odd 4
3840.2.d.bi.2689.4 6 16.11 odd 4
3840.2.d.bj.2689.3 6 16.13 even 4
3840.2.d.bj.2689.4 6 80.69 even 4
3840.2.d.bk.2689.3 6 80.29 even 4
3840.2.d.bk.2689.4 6 16.5 even 4
3840.2.d.bl.2689.3 6 16.3 odd 4
3840.2.d.bl.2689.4 6 80.59 odd 4
9600.2.a.do.1.3 3 40.37 odd 4
9600.2.a.dp.1.3 3 40.3 even 4
9600.2.a.dq.1.1 3 20.7 even 4
9600.2.a.dr.1.1 3 5.3 odd 4
9600.2.a.ds.1.3 3 20.3 even 4
9600.2.a.dt.1.3 3 5.2 odd 4
9600.2.a.du.1.1 3 40.13 odd 4
9600.2.a.dv.1.1 3 40.27 even 4