Properties

Label 9600.2.a.dp.1.3
Level $9600$
Weight $2$
Character 9600.1
Self dual yes
Analytic conductor $76.656$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [9600,2,Mod(1,9600)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(9600, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("9600.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 9600 = 2^{7} \cdot 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9600.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(76.6563859404\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.148.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 3x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 1920)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(2.17009\) of defining polynomial
Character \(\chi\) \(=\) 9600.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{3} +2.34017 q^{7} +1.00000 q^{9} +3.07838 q^{11} -0.921622 q^{13} +7.75872 q^{17} +4.00000 q^{19} -2.34017 q^{21} +2.15676 q^{23} -1.00000 q^{27} +6.49693 q^{29} -2.00000 q^{31} -3.07838 q^{33} -3.07838 q^{37} +0.921622 q^{39} +10.6803 q^{41} +2.15676 q^{43} +8.68035 q^{47} -1.52359 q^{49} -7.75872 q^{51} -2.92162 q^{53} -4.00000 q^{57} +11.7587 q^{59} -6.00000 q^{61} +2.34017 q^{63} -6.83710 q^{67} -2.15676 q^{69} -11.5174 q^{71} +6.52359 q^{73} +7.20394 q^{77} +15.3607 q^{79} +1.00000 q^{81} -1.84324 q^{83} -6.49693 q^{87} +6.00000 q^{89} -2.15676 q^{91} +2.00000 q^{93} +3.07838 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 3 q^{3} - 4 q^{7} + 3 q^{9} + 6 q^{11} - 6 q^{13} - 2 q^{17} + 12 q^{19} + 4 q^{21} - 3 q^{27} + 2 q^{29} - 6 q^{31} - 6 q^{33} - 6 q^{37} + 6 q^{39} + 10 q^{41} + 4 q^{47} + 11 q^{49} + 2 q^{51}+ \cdots + 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.00000 −0.577350
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 2.34017 0.884502 0.442251 0.896891i \(-0.354180\pi\)
0.442251 + 0.896891i \(0.354180\pi\)
\(8\) 0 0
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) 3.07838 0.928166 0.464083 0.885792i \(-0.346384\pi\)
0.464083 + 0.885792i \(0.346384\pi\)
\(12\) 0 0
\(13\) −0.921622 −0.255612 −0.127806 0.991799i \(-0.540793\pi\)
−0.127806 + 0.991799i \(0.540793\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 7.75872 1.88177 0.940883 0.338730i \(-0.109997\pi\)
0.940883 + 0.338730i \(0.109997\pi\)
\(18\) 0 0
\(19\) 4.00000 0.917663 0.458831 0.888523i \(-0.348268\pi\)
0.458831 + 0.888523i \(0.348268\pi\)
\(20\) 0 0
\(21\) −2.34017 −0.510668
\(22\) 0 0
\(23\) 2.15676 0.449715 0.224857 0.974392i \(-0.427808\pi\)
0.224857 + 0.974392i \(0.427808\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) −1.00000 −0.192450
\(28\) 0 0
\(29\) 6.49693 1.20645 0.603225 0.797571i \(-0.293882\pi\)
0.603225 + 0.797571i \(0.293882\pi\)
\(30\) 0 0
\(31\) −2.00000 −0.359211 −0.179605 0.983739i \(-0.557482\pi\)
−0.179605 + 0.983739i \(0.557482\pi\)
\(32\) 0 0
\(33\) −3.07838 −0.535877
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −3.07838 −0.506082 −0.253041 0.967456i \(-0.581431\pi\)
−0.253041 + 0.967456i \(0.581431\pi\)
\(38\) 0 0
\(39\) 0.921622 0.147578
\(40\) 0 0
\(41\) 10.6803 1.66799 0.833995 0.551772i \(-0.186048\pi\)
0.833995 + 0.551772i \(0.186048\pi\)
\(42\) 0 0
\(43\) 2.15676 0.328902 0.164451 0.986385i \(-0.447415\pi\)
0.164451 + 0.986385i \(0.447415\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 8.68035 1.26616 0.633079 0.774087i \(-0.281791\pi\)
0.633079 + 0.774087i \(0.281791\pi\)
\(48\) 0 0
\(49\) −1.52359 −0.217656
\(50\) 0 0
\(51\) −7.75872 −1.08644
\(52\) 0 0
\(53\) −2.92162 −0.401316 −0.200658 0.979661i \(-0.564308\pi\)
−0.200658 + 0.979661i \(0.564308\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) −4.00000 −0.529813
\(58\) 0 0
\(59\) 11.7587 1.53086 0.765428 0.643522i \(-0.222527\pi\)
0.765428 + 0.643522i \(0.222527\pi\)
\(60\) 0 0
\(61\) −6.00000 −0.768221 −0.384111 0.923287i \(-0.625492\pi\)
−0.384111 + 0.923287i \(0.625492\pi\)
\(62\) 0 0
\(63\) 2.34017 0.294834
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) −6.83710 −0.835285 −0.417642 0.908611i \(-0.637144\pi\)
−0.417642 + 0.908611i \(0.637144\pi\)
\(68\) 0 0
\(69\) −2.15676 −0.259643
\(70\) 0 0
\(71\) −11.5174 −1.36687 −0.683435 0.730012i \(-0.739515\pi\)
−0.683435 + 0.730012i \(0.739515\pi\)
\(72\) 0 0
\(73\) 6.52359 0.763529 0.381764 0.924260i \(-0.375317\pi\)
0.381764 + 0.924260i \(0.375317\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 7.20394 0.820965
\(78\) 0 0
\(79\) 15.3607 1.72821 0.864106 0.503309i \(-0.167884\pi\)
0.864106 + 0.503309i \(0.167884\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) −1.84324 −0.202322 −0.101161 0.994870i \(-0.532256\pi\)
−0.101161 + 0.994870i \(0.532256\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) −6.49693 −0.696544
\(88\) 0 0
\(89\) 6.00000 0.635999 0.317999 0.948091i \(-0.396989\pi\)
0.317999 + 0.948091i \(0.396989\pi\)
\(90\) 0 0
\(91\) −2.15676 −0.226089
\(92\) 0 0
\(93\) 2.00000 0.207390
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(98\) 0 0
\(99\) 3.07838 0.309389
\(100\) 0 0
\(101\) −8.34017 −0.829878 −0.414939 0.909849i \(-0.636197\pi\)
−0.414939 + 0.909849i \(0.636197\pi\)
\(102\) 0 0
\(103\) 10.3402 1.01885 0.509424 0.860516i \(-0.329859\pi\)
0.509424 + 0.860516i \(0.329859\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −13.3607 −1.29163 −0.645813 0.763495i \(-0.723482\pi\)
−0.645813 + 0.763495i \(0.723482\pi\)
\(108\) 0 0
\(109\) −5.31965 −0.509530 −0.254765 0.967003i \(-0.581998\pi\)
−0.254765 + 0.967003i \(0.581998\pi\)
\(110\) 0 0
\(111\) 3.07838 0.292187
\(112\) 0 0
\(113\) −19.7587 −1.85874 −0.929372 0.369144i \(-0.879651\pi\)
−0.929372 + 0.369144i \(0.879651\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) −0.921622 −0.0852040
\(118\) 0 0
\(119\) 18.1568 1.66443
\(120\) 0 0
\(121\) −1.52359 −0.138508
\(122\) 0 0
\(123\) −10.6803 −0.963014
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) −19.3340 −1.71562 −0.857809 0.513969i \(-0.828175\pi\)
−0.857809 + 0.513969i \(0.828175\pi\)
\(128\) 0 0
\(129\) −2.15676 −0.189892
\(130\) 0 0
\(131\) −7.44521 −0.650491 −0.325246 0.945630i \(-0.605447\pi\)
−0.325246 + 0.945630i \(0.605447\pi\)
\(132\) 0 0
\(133\) 9.36069 0.811675
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −3.44521 −0.294344 −0.147172 0.989111i \(-0.547017\pi\)
−0.147172 + 0.989111i \(0.547017\pi\)
\(138\) 0 0
\(139\) 19.2039 1.62886 0.814428 0.580264i \(-0.197051\pi\)
0.814428 + 0.580264i \(0.197051\pi\)
\(140\) 0 0
\(141\) −8.68035 −0.731017
\(142\) 0 0
\(143\) −2.83710 −0.237250
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 1.52359 0.125664
\(148\) 0 0
\(149\) −9.81658 −0.804206 −0.402103 0.915594i \(-0.631721\pi\)
−0.402103 + 0.915594i \(0.631721\pi\)
\(150\) 0 0
\(151\) 23.6742 1.92658 0.963290 0.268464i \(-0.0865161\pi\)
0.963290 + 0.268464i \(0.0865161\pi\)
\(152\) 0 0
\(153\) 7.75872 0.627256
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 11.0784 0.884151 0.442075 0.896978i \(-0.354242\pi\)
0.442075 + 0.896978i \(0.354242\pi\)
\(158\) 0 0
\(159\) 2.92162 0.231700
\(160\) 0 0
\(161\) 5.04718 0.397774
\(162\) 0 0
\(163\) −12.9939 −1.01776 −0.508879 0.860838i \(-0.669940\pi\)
−0.508879 + 0.860838i \(0.669940\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 12.0000 0.928588 0.464294 0.885681i \(-0.346308\pi\)
0.464294 + 0.885681i \(0.346308\pi\)
\(168\) 0 0
\(169\) −12.1506 −0.934662
\(170\) 0 0
\(171\) 4.00000 0.305888
\(172\) 0 0
\(173\) −18.4391 −1.40190 −0.700948 0.713212i \(-0.747240\pi\)
−0.700948 + 0.713212i \(0.747240\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −11.7587 −0.883840
\(178\) 0 0
\(179\) −1.91548 −0.143170 −0.0715848 0.997435i \(-0.522806\pi\)
−0.0715848 + 0.997435i \(0.522806\pi\)
\(180\) 0 0
\(181\) 6.99386 0.519849 0.259925 0.965629i \(-0.416302\pi\)
0.259925 + 0.965629i \(0.416302\pi\)
\(182\) 0 0
\(183\) 6.00000 0.443533
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 23.8843 1.74659
\(188\) 0 0
\(189\) −2.34017 −0.170223
\(190\) 0 0
\(191\) −6.15676 −0.445487 −0.222744 0.974877i \(-0.571501\pi\)
−0.222744 + 0.974877i \(0.571501\pi\)
\(192\) 0 0
\(193\) −14.5236 −1.04543 −0.522715 0.852507i \(-0.675081\pi\)
−0.522715 + 0.852507i \(0.675081\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −24.5958 −1.75238 −0.876190 0.481966i \(-0.839923\pi\)
−0.876190 + 0.481966i \(0.839923\pi\)
\(198\) 0 0
\(199\) −3.36069 −0.238233 −0.119117 0.992880i \(-0.538006\pi\)
−0.119117 + 0.992880i \(0.538006\pi\)
\(200\) 0 0
\(201\) 6.83710 0.482252
\(202\) 0 0
\(203\) 15.2039 1.06711
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 2.15676 0.149905
\(208\) 0 0
\(209\) 12.3135 0.851743
\(210\) 0 0
\(211\) 11.2039 0.771311 0.385655 0.922643i \(-0.373975\pi\)
0.385655 + 0.922643i \(0.373975\pi\)
\(212\) 0 0
\(213\) 11.5174 0.789162
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) −4.68035 −0.317723
\(218\) 0 0
\(219\) −6.52359 −0.440823
\(220\) 0 0
\(221\) −7.15061 −0.481002
\(222\) 0 0
\(223\) 6.65368 0.445564 0.222782 0.974868i \(-0.428486\pi\)
0.222782 + 0.974868i \(0.428486\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −9.84324 −0.653319 −0.326660 0.945142i \(-0.605923\pi\)
−0.326660 + 0.945142i \(0.605923\pi\)
\(228\) 0 0
\(229\) −1.31965 −0.0872052 −0.0436026 0.999049i \(-0.513884\pi\)
−0.0436026 + 0.999049i \(0.513884\pi\)
\(230\) 0 0
\(231\) −7.20394 −0.473984
\(232\) 0 0
\(233\) 2.39803 0.157100 0.0785501 0.996910i \(-0.474971\pi\)
0.0785501 + 0.996910i \(0.474971\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) −15.3607 −0.997784
\(238\) 0 0
\(239\) 6.15676 0.398247 0.199124 0.979974i \(-0.436190\pi\)
0.199124 + 0.979974i \(0.436190\pi\)
\(240\) 0 0
\(241\) 0.639308 0.0411815 0.0205907 0.999788i \(-0.493445\pi\)
0.0205907 + 0.999788i \(0.493445\pi\)
\(242\) 0 0
\(243\) −1.00000 −0.0641500
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −3.68649 −0.234566
\(248\) 0 0
\(249\) 1.84324 0.116811
\(250\) 0 0
\(251\) 12.9216 0.815606 0.407803 0.913070i \(-0.366295\pi\)
0.407803 + 0.913070i \(0.366295\pi\)
\(252\) 0 0
\(253\) 6.63931 0.417410
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 14.9627 0.933345 0.466673 0.884430i \(-0.345453\pi\)
0.466673 + 0.884430i \(0.345453\pi\)
\(258\) 0 0
\(259\) −7.20394 −0.447631
\(260\) 0 0
\(261\) 6.49693 0.402150
\(262\) 0 0
\(263\) −13.3607 −0.823856 −0.411928 0.911216i \(-0.635144\pi\)
−0.411928 + 0.911216i \(0.635144\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) −6.00000 −0.367194
\(268\) 0 0
\(269\) −27.5441 −1.67939 −0.839697 0.543055i \(-0.817267\pi\)
−0.839697 + 0.543055i \(0.817267\pi\)
\(270\) 0 0
\(271\) −10.0000 −0.607457 −0.303728 0.952759i \(-0.598232\pi\)
−0.303728 + 0.952759i \(0.598232\pi\)
\(272\) 0 0
\(273\) 2.15676 0.130533
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −4.12556 −0.247881 −0.123940 0.992290i \(-0.539553\pi\)
−0.123940 + 0.992290i \(0.539553\pi\)
\(278\) 0 0
\(279\) −2.00000 −0.119737
\(280\) 0 0
\(281\) −11.3607 −0.677722 −0.338861 0.940836i \(-0.610042\pi\)
−0.338861 + 0.940836i \(0.610042\pi\)
\(282\) 0 0
\(283\) −10.5236 −0.625563 −0.312781 0.949825i \(-0.601261\pi\)
−0.312781 + 0.949825i \(0.601261\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 24.9939 1.47534
\(288\) 0 0
\(289\) 43.1978 2.54105
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −32.5958 −1.90427 −0.952134 0.305680i \(-0.901116\pi\)
−0.952134 + 0.305680i \(0.901116\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) −3.07838 −0.178626
\(298\) 0 0
\(299\) −1.98771 −0.114952
\(300\) 0 0
\(301\) 5.04718 0.290915
\(302\) 0 0
\(303\) 8.34017 0.479130
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 29.9877 1.71149 0.855745 0.517398i \(-0.173099\pi\)
0.855745 + 0.517398i \(0.173099\pi\)
\(308\) 0 0
\(309\) −10.3402 −0.588232
\(310\) 0 0
\(311\) 27.2039 1.54259 0.771297 0.636476i \(-0.219608\pi\)
0.771297 + 0.636476i \(0.219608\pi\)
\(312\) 0 0
\(313\) 26.8371 1.51692 0.758461 0.651718i \(-0.225951\pi\)
0.758461 + 0.651718i \(0.225951\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 24.5958 1.38144 0.690720 0.723123i \(-0.257294\pi\)
0.690720 + 0.723123i \(0.257294\pi\)
\(318\) 0 0
\(319\) 20.0000 1.11979
\(320\) 0 0
\(321\) 13.3607 0.745721
\(322\) 0 0
\(323\) 31.0349 1.72683
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 5.31965 0.294178
\(328\) 0 0
\(329\) 20.3135 1.11992
\(330\) 0 0
\(331\) 12.3135 0.676812 0.338406 0.941000i \(-0.390112\pi\)
0.338406 + 0.941000i \(0.390112\pi\)
\(332\) 0 0
\(333\) −3.07838 −0.168694
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 9.47641 0.516213 0.258106 0.966116i \(-0.416901\pi\)
0.258106 + 0.966116i \(0.416901\pi\)
\(338\) 0 0
\(339\) 19.7587 1.07315
\(340\) 0 0
\(341\) −6.15676 −0.333407
\(342\) 0 0
\(343\) −19.9467 −1.07702
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 7.51745 0.403558 0.201779 0.979431i \(-0.435328\pi\)
0.201779 + 0.979431i \(0.435328\pi\)
\(348\) 0 0
\(349\) −27.6742 −1.48137 −0.740683 0.671855i \(-0.765498\pi\)
−0.740683 + 0.671855i \(0.765498\pi\)
\(350\) 0 0
\(351\) 0.921622 0.0491926
\(352\) 0 0
\(353\) −21.6020 −1.14976 −0.574878 0.818239i \(-0.694951\pi\)
−0.574878 + 0.818239i \(0.694951\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) −18.1568 −0.960957
\(358\) 0 0
\(359\) 12.0000 0.633336 0.316668 0.948536i \(-0.397436\pi\)
0.316668 + 0.948536i \(0.397436\pi\)
\(360\) 0 0
\(361\) −3.00000 −0.157895
\(362\) 0 0
\(363\) 1.52359 0.0799678
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) −23.0205 −1.20166 −0.600831 0.799376i \(-0.705163\pi\)
−0.600831 + 0.799376i \(0.705163\pi\)
\(368\) 0 0
\(369\) 10.6803 0.555997
\(370\) 0 0
\(371\) −6.83710 −0.354965
\(372\) 0 0
\(373\) −26.5958 −1.37708 −0.688540 0.725199i \(-0.741748\pi\)
−0.688540 + 0.725199i \(0.741748\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −5.98771 −0.308383
\(378\) 0 0
\(379\) 36.1445 1.85662 0.928308 0.371811i \(-0.121263\pi\)
0.928308 + 0.371811i \(0.121263\pi\)
\(380\) 0 0
\(381\) 19.3340 0.990512
\(382\) 0 0
\(383\) −6.83710 −0.349360 −0.174680 0.984625i \(-0.555889\pi\)
−0.174680 + 0.984625i \(0.555889\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 2.15676 0.109634
\(388\) 0 0
\(389\) −16.7070 −0.847079 −0.423539 0.905878i \(-0.639213\pi\)
−0.423539 + 0.905878i \(0.639213\pi\)
\(390\) 0 0
\(391\) 16.7337 0.846258
\(392\) 0 0
\(393\) 7.44521 0.375561
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 3.56093 0.178718 0.0893590 0.995999i \(-0.471518\pi\)
0.0893590 + 0.995999i \(0.471518\pi\)
\(398\) 0 0
\(399\) −9.36069 −0.468621
\(400\) 0 0
\(401\) −25.7152 −1.28416 −0.642079 0.766639i \(-0.721928\pi\)
−0.642079 + 0.766639i \(0.721928\pi\)
\(402\) 0 0
\(403\) 1.84324 0.0918185
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −9.47641 −0.469728
\(408\) 0 0
\(409\) 28.8371 1.42590 0.712951 0.701213i \(-0.247358\pi\)
0.712951 + 0.701213i \(0.247358\pi\)
\(410\) 0 0
\(411\) 3.44521 0.169940
\(412\) 0 0
\(413\) 27.5174 1.35405
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) −19.2039 −0.940421
\(418\) 0 0
\(419\) 6.28231 0.306911 0.153456 0.988156i \(-0.450960\pi\)
0.153456 + 0.988156i \(0.450960\pi\)
\(420\) 0 0
\(421\) 10.9939 0.535808 0.267904 0.963446i \(-0.413669\pi\)
0.267904 + 0.963446i \(0.413669\pi\)
\(422\) 0 0
\(423\) 8.68035 0.422053
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) −14.0410 −0.679493
\(428\) 0 0
\(429\) 2.83710 0.136977
\(430\) 0 0
\(431\) 21.3607 1.02891 0.514454 0.857518i \(-0.327995\pi\)
0.514454 + 0.857518i \(0.327995\pi\)
\(432\) 0 0
\(433\) −18.4703 −0.887624 −0.443812 0.896120i \(-0.646374\pi\)
−0.443812 + 0.896120i \(0.646374\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 8.62702 0.412686
\(438\) 0 0
\(439\) −6.31351 −0.301327 −0.150664 0.988585i \(-0.548141\pi\)
−0.150664 + 0.988585i \(0.548141\pi\)
\(440\) 0 0
\(441\) −1.52359 −0.0725519
\(442\) 0 0
\(443\) −27.8310 −1.32229 −0.661144 0.750259i \(-0.729929\pi\)
−0.661144 + 0.750259i \(0.729929\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 9.81658 0.464308
\(448\) 0 0
\(449\) 14.6803 0.692808 0.346404 0.938085i \(-0.387403\pi\)
0.346404 + 0.938085i \(0.387403\pi\)
\(450\) 0 0
\(451\) 32.8781 1.54817
\(452\) 0 0
\(453\) −23.6742 −1.11231
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 19.6865 0.920895 0.460448 0.887687i \(-0.347689\pi\)
0.460448 + 0.887687i \(0.347689\pi\)
\(458\) 0 0
\(459\) −7.75872 −0.362146
\(460\) 0 0
\(461\) −13.5031 −0.628901 −0.314450 0.949274i \(-0.601820\pi\)
−0.314450 + 0.949274i \(0.601820\pi\)
\(462\) 0 0
\(463\) −6.02666 −0.280083 −0.140041 0.990146i \(-0.544724\pi\)
−0.140041 + 0.990146i \(0.544724\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −19.8310 −0.917667 −0.458834 0.888522i \(-0.651733\pi\)
−0.458834 + 0.888522i \(0.651733\pi\)
\(468\) 0 0
\(469\) −16.0000 −0.738811
\(470\) 0 0
\(471\) −11.0784 −0.510465
\(472\) 0 0
\(473\) 6.63931 0.305276
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) −2.92162 −0.133772
\(478\) 0 0
\(479\) −23.2039 −1.06021 −0.530107 0.847930i \(-0.677848\pi\)
−0.530107 + 0.847930i \(0.677848\pi\)
\(480\) 0 0
\(481\) 2.83710 0.129361
\(482\) 0 0
\(483\) −5.04718 −0.229655
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) −23.3874 −1.05978 −0.529891 0.848066i \(-0.677767\pi\)
−0.529891 + 0.848066i \(0.677767\pi\)
\(488\) 0 0
\(489\) 12.9939 0.587603
\(490\) 0 0
\(491\) 30.2290 1.36422 0.682108 0.731252i \(-0.261064\pi\)
0.682108 + 0.731252i \(0.261064\pi\)
\(492\) 0 0
\(493\) 50.4079 2.27026
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −26.9528 −1.20900
\(498\) 0 0
\(499\) −1.36069 −0.0609129 −0.0304565 0.999536i \(-0.509696\pi\)
−0.0304565 + 0.999536i \(0.509696\pi\)
\(500\) 0 0
\(501\) −12.0000 −0.536120
\(502\) 0 0
\(503\) −16.6803 −0.743740 −0.371870 0.928285i \(-0.621283\pi\)
−0.371870 + 0.928285i \(0.621283\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 12.1506 0.539628
\(508\) 0 0
\(509\) 14.0144 0.621176 0.310588 0.950545i \(-0.399474\pi\)
0.310588 + 0.950545i \(0.399474\pi\)
\(510\) 0 0
\(511\) 15.2663 0.675343
\(512\) 0 0
\(513\) −4.00000 −0.176604
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 26.7214 1.17521
\(518\) 0 0
\(519\) 18.4391 0.809385
\(520\) 0 0
\(521\) 6.68035 0.292671 0.146336 0.989235i \(-0.453252\pi\)
0.146336 + 0.989235i \(0.453252\pi\)
\(522\) 0 0
\(523\) 26.0410 1.13870 0.569348 0.822097i \(-0.307196\pi\)
0.569348 + 0.822097i \(0.307196\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −15.5174 −0.675951
\(528\) 0 0
\(529\) −18.3484 −0.797757
\(530\) 0 0
\(531\) 11.7587 0.510285
\(532\) 0 0
\(533\) −9.84324 −0.426358
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 1.91548 0.0826590
\(538\) 0 0
\(539\) −4.69019 −0.202021
\(540\) 0 0
\(541\) 14.9939 0.644636 0.322318 0.946631i \(-0.395538\pi\)
0.322318 + 0.946631i \(0.395538\pi\)
\(542\) 0 0
\(543\) −6.99386 −0.300135
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 26.1568 1.11838 0.559191 0.829039i \(-0.311112\pi\)
0.559191 + 0.829039i \(0.311112\pi\)
\(548\) 0 0
\(549\) −6.00000 −0.256074
\(550\) 0 0
\(551\) 25.9877 1.10711
\(552\) 0 0
\(553\) 35.9467 1.52861
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 14.7526 0.625087 0.312543 0.949903i \(-0.398819\pi\)
0.312543 + 0.949903i \(0.398819\pi\)
\(558\) 0 0
\(559\) −1.98771 −0.0840713
\(560\) 0 0
\(561\) −23.8843 −1.00840
\(562\) 0 0
\(563\) −38.5523 −1.62479 −0.812394 0.583109i \(-0.801836\pi\)
−0.812394 + 0.583109i \(0.801836\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 2.34017 0.0982780
\(568\) 0 0
\(569\) 14.6803 0.615432 0.307716 0.951478i \(-0.400435\pi\)
0.307716 + 0.951478i \(0.400435\pi\)
\(570\) 0 0
\(571\) −13.6742 −0.572248 −0.286124 0.958193i \(-0.592367\pi\)
−0.286124 + 0.958193i \(0.592367\pi\)
\(572\) 0 0
\(573\) 6.15676 0.257202
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −22.6681 −0.943684 −0.471842 0.881683i \(-0.656411\pi\)
−0.471842 + 0.881683i \(0.656411\pi\)
\(578\) 0 0
\(579\) 14.5236 0.603580
\(580\) 0 0
\(581\) −4.31351 −0.178955
\(582\) 0 0
\(583\) −8.99386 −0.372487
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −37.3607 −1.54204 −0.771020 0.636810i \(-0.780253\pi\)
−0.771020 + 0.636810i \(0.780253\pi\)
\(588\) 0 0
\(589\) −8.00000 −0.329634
\(590\) 0 0
\(591\) 24.5958 1.01174
\(592\) 0 0
\(593\) 15.5897 0.640192 0.320096 0.947385i \(-0.396285\pi\)
0.320096 + 0.947385i \(0.396285\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 3.36069 0.137544
\(598\) 0 0
\(599\) 45.3607 1.85339 0.926694 0.375817i \(-0.122638\pi\)
0.926694 + 0.375817i \(0.122638\pi\)
\(600\) 0 0
\(601\) 16.5236 0.674011 0.337006 0.941503i \(-0.390586\pi\)
0.337006 + 0.941503i \(0.390586\pi\)
\(602\) 0 0
\(603\) −6.83710 −0.278428
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 30.0554 1.21991 0.609956 0.792435i \(-0.291187\pi\)
0.609956 + 0.792435i \(0.291187\pi\)
\(608\) 0 0
\(609\) −15.2039 −0.616095
\(610\) 0 0
\(611\) −8.00000 −0.323645
\(612\) 0 0
\(613\) 24.2700 0.980257 0.490129 0.871650i \(-0.336950\pi\)
0.490129 + 0.871650i \(0.336950\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 0.0722347 0.00290806 0.00145403 0.999999i \(-0.499537\pi\)
0.00145403 + 0.999999i \(0.499537\pi\)
\(618\) 0 0
\(619\) −29.1917 −1.17331 −0.586656 0.809836i \(-0.699556\pi\)
−0.586656 + 0.809836i \(0.699556\pi\)
\(620\) 0 0
\(621\) −2.15676 −0.0865476
\(622\) 0 0
\(623\) 14.0410 0.562542
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) −12.3135 −0.491754
\(628\) 0 0
\(629\) −23.8843 −0.952329
\(630\) 0 0
\(631\) −3.36069 −0.133787 −0.0668935 0.997760i \(-0.521309\pi\)
−0.0668935 + 0.997760i \(0.521309\pi\)
\(632\) 0 0
\(633\) −11.2039 −0.445316
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 1.40417 0.0556354
\(638\) 0 0
\(639\) −11.5174 −0.455623
\(640\) 0 0
\(641\) 36.6681 1.44830 0.724151 0.689642i \(-0.242232\pi\)
0.724151 + 0.689642i \(0.242232\pi\)
\(642\) 0 0
\(643\) 40.6803 1.60428 0.802138 0.597139i \(-0.203696\pi\)
0.802138 + 0.597139i \(0.203696\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 37.7275 1.48322 0.741611 0.670830i \(-0.234062\pi\)
0.741611 + 0.670830i \(0.234062\pi\)
\(648\) 0 0
\(649\) 36.1978 1.42089
\(650\) 0 0
\(651\) 4.68035 0.183437
\(652\) 0 0
\(653\) 38.9216 1.52312 0.761560 0.648094i \(-0.224434\pi\)
0.761560 + 0.648094i \(0.224434\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 6.52359 0.254510
\(658\) 0 0
\(659\) 32.9504 1.28356 0.641782 0.766887i \(-0.278195\pi\)
0.641782 + 0.766887i \(0.278195\pi\)
\(660\) 0 0
\(661\) −36.3012 −1.41195 −0.705977 0.708235i \(-0.749492\pi\)
−0.705977 + 0.708235i \(0.749492\pi\)
\(662\) 0 0
\(663\) 7.15061 0.277707
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 14.0123 0.542558
\(668\) 0 0
\(669\) −6.65368 −0.257246
\(670\) 0 0
\(671\) −18.4703 −0.713037
\(672\) 0 0
\(673\) 37.1917 1.43363 0.716816 0.697262i \(-0.245599\pi\)
0.716816 + 0.697262i \(0.245599\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −9.07838 −0.348910 −0.174455 0.984665i \(-0.555816\pi\)
−0.174455 + 0.984665i \(0.555816\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 9.84324 0.377194
\(682\) 0 0
\(683\) 9.84324 0.376641 0.188321 0.982108i \(-0.439696\pi\)
0.188321 + 0.982108i \(0.439696\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 1.31965 0.0503479
\(688\) 0 0
\(689\) 2.69263 0.102581
\(690\) 0 0
\(691\) −1.67420 −0.0636897 −0.0318448 0.999493i \(-0.510138\pi\)
−0.0318448 + 0.999493i \(0.510138\pi\)
\(692\) 0 0
\(693\) 7.20394 0.273655
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 82.8659 3.13877
\(698\) 0 0
\(699\) −2.39803 −0.0907019
\(700\) 0 0
\(701\) 8.96719 0.338686 0.169343 0.985557i \(-0.445835\pi\)
0.169343 + 0.985557i \(0.445835\pi\)
\(702\) 0 0
\(703\) −12.3135 −0.464413
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −19.5174 −0.734029
\(708\) 0 0
\(709\) −25.7152 −0.965756 −0.482878 0.875688i \(-0.660409\pi\)
−0.482878 + 0.875688i \(0.660409\pi\)
\(710\) 0 0
\(711\) 15.3607 0.576071
\(712\) 0 0
\(713\) −4.31351 −0.161542
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −6.15676 −0.229928
\(718\) 0 0
\(719\) −18.4079 −0.686498 −0.343249 0.939244i \(-0.611527\pi\)
−0.343249 + 0.939244i \(0.611527\pi\)
\(720\) 0 0
\(721\) 24.1978 0.901173
\(722\) 0 0
\(723\) −0.639308 −0.0237761
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) −42.3402 −1.57031 −0.785155 0.619299i \(-0.787417\pi\)
−0.785155 + 0.619299i \(0.787417\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) 16.7337 0.618917
\(732\) 0 0
\(733\) −4.75258 −0.175541 −0.0877703 0.996141i \(-0.527974\pi\)
−0.0877703 + 0.996141i \(0.527974\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −21.0472 −0.775283
\(738\) 0 0
\(739\) 21.0472 0.774233 0.387117 0.922031i \(-0.373471\pi\)
0.387117 + 0.922031i \(0.373471\pi\)
\(740\) 0 0
\(741\) 3.68649 0.135427
\(742\) 0 0
\(743\) 49.5585 1.81812 0.909062 0.416660i \(-0.136800\pi\)
0.909062 + 0.416660i \(0.136800\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) −1.84324 −0.0674408
\(748\) 0 0
\(749\) −31.2663 −1.14245
\(750\) 0 0
\(751\) −41.6619 −1.52026 −0.760132 0.649768i \(-0.774866\pi\)
−0.760132 + 0.649768i \(0.774866\pi\)
\(752\) 0 0
\(753\) −12.9216 −0.470890
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 21.9688 0.798470 0.399235 0.916849i \(-0.369276\pi\)
0.399235 + 0.916849i \(0.369276\pi\)
\(758\) 0 0
\(759\) −6.63931 −0.240992
\(760\) 0 0
\(761\) −11.3074 −0.409892 −0.204946 0.978773i \(-0.565702\pi\)
−0.204946 + 0.978773i \(0.565702\pi\)
\(762\) 0 0
\(763\) −12.4489 −0.450681
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −10.8371 −0.391305
\(768\) 0 0
\(769\) 6.19779 0.223498 0.111749 0.993736i \(-0.464355\pi\)
0.111749 + 0.993736i \(0.464355\pi\)
\(770\) 0 0
\(771\) −14.9627 −0.538867
\(772\) 0 0
\(773\) −30.4391 −1.09482 −0.547409 0.836865i \(-0.684386\pi\)
−0.547409 + 0.836865i \(0.684386\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 7.20394 0.258440
\(778\) 0 0
\(779\) 42.7214 1.53065
\(780\) 0 0
\(781\) −35.4551 −1.26868
\(782\) 0 0
\(783\) −6.49693 −0.232181
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 36.9939 1.31869 0.659344 0.751841i \(-0.270834\pi\)
0.659344 + 0.751841i \(0.270834\pi\)
\(788\) 0 0
\(789\) 13.3607 0.475653
\(790\) 0 0
\(791\) −46.2388 −1.64406
\(792\) 0 0
\(793\) 5.52973 0.196367
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −30.7526 −1.08931 −0.544656 0.838659i \(-0.683340\pi\)
−0.544656 + 0.838659i \(0.683340\pi\)
\(798\) 0 0
\(799\) 67.3484 2.38262
\(800\) 0 0
\(801\) 6.00000 0.212000
\(802\) 0 0
\(803\) 20.0821 0.708681
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 27.5441 0.969599
\(808\) 0 0
\(809\) −5.31965 −0.187029 −0.0935145 0.995618i \(-0.529810\pi\)
−0.0935145 + 0.995618i \(0.529810\pi\)
\(810\) 0 0
\(811\) −49.9253 −1.75312 −0.876558 0.481297i \(-0.840166\pi\)
−0.876558 + 0.481297i \(0.840166\pi\)
\(812\) 0 0
\(813\) 10.0000 0.350715
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 8.62702 0.301821
\(818\) 0 0
\(819\) −2.15676 −0.0753631
\(820\) 0 0
\(821\) 44.1711 1.54158 0.770792 0.637087i \(-0.219861\pi\)
0.770792 + 0.637087i \(0.219861\pi\)
\(822\) 0 0
\(823\) −19.0738 −0.664872 −0.332436 0.943126i \(-0.607871\pi\)
−0.332436 + 0.943126i \(0.607871\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 43.0349 1.49647 0.748235 0.663434i \(-0.230902\pi\)
0.748235 + 0.663434i \(0.230902\pi\)
\(828\) 0 0
\(829\) 36.0410 1.25176 0.625878 0.779921i \(-0.284741\pi\)
0.625878 + 0.779921i \(0.284741\pi\)
\(830\) 0 0
\(831\) 4.12556 0.143114
\(832\) 0 0
\(833\) −11.8211 −0.409577
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 2.00000 0.0691301
\(838\) 0 0
\(839\) 43.0349 1.48573 0.742865 0.669441i \(-0.233467\pi\)
0.742865 + 0.669441i \(0.233467\pi\)
\(840\) 0 0
\(841\) 13.2101 0.455520
\(842\) 0 0
\(843\) 11.3607 0.391283
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) −3.56547 −0.122511
\(848\) 0 0
\(849\) 10.5236 0.361169
\(850\) 0 0
\(851\) −6.63931 −0.227593
\(852\) 0 0
\(853\) −47.1605 −1.61474 −0.807372 0.590043i \(-0.799111\pi\)
−0.807372 + 0.590043i \(0.799111\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 12.8059 0.437441 0.218721 0.975788i \(-0.429812\pi\)
0.218721 + 0.975788i \(0.429812\pi\)
\(858\) 0 0
\(859\) −14.4703 −0.493719 −0.246860 0.969051i \(-0.579399\pi\)
−0.246860 + 0.969051i \(0.579399\pi\)
\(860\) 0 0
\(861\) −24.9939 −0.851788
\(862\) 0 0
\(863\) −24.3135 −0.827642 −0.413821 0.910358i \(-0.635806\pi\)
−0.413821 + 0.910358i \(0.635806\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) −43.1978 −1.46707
\(868\) 0 0
\(869\) 47.2860 1.60407
\(870\) 0 0
\(871\) 6.30122 0.213509
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 44.4391 1.50060 0.750300 0.661097i \(-0.229909\pi\)
0.750300 + 0.661097i \(0.229909\pi\)
\(878\) 0 0
\(879\) 32.5958 1.09943
\(880\) 0 0
\(881\) 6.62702 0.223270 0.111635 0.993749i \(-0.464391\pi\)
0.111635 + 0.993749i \(0.464391\pi\)
\(882\) 0 0
\(883\) −7.31965 −0.246326 −0.123163 0.992386i \(-0.539304\pi\)
−0.123163 + 0.992386i \(0.539304\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −12.0000 −0.402921 −0.201460 0.979497i \(-0.564569\pi\)
−0.201460 + 0.979497i \(0.564569\pi\)
\(888\) 0 0
\(889\) −45.2450 −1.51747
\(890\) 0 0
\(891\) 3.07838 0.103130
\(892\) 0 0
\(893\) 34.7214 1.16191
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 1.98771 0.0663678
\(898\) 0 0
\(899\) −12.9939 −0.433369
\(900\) 0 0
\(901\) −22.6681 −0.755183
\(902\) 0 0
\(903\) −5.04718 −0.167960
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 4.48255 0.148841 0.0744204 0.997227i \(-0.476289\pi\)
0.0744204 + 0.997227i \(0.476289\pi\)
\(908\) 0 0
\(909\) −8.34017 −0.276626
\(910\) 0 0
\(911\) −8.73367 −0.289359 −0.144680 0.989479i \(-0.546215\pi\)
−0.144680 + 0.989479i \(0.546215\pi\)
\(912\) 0 0
\(913\) −5.67420 −0.187789
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −17.4231 −0.575361
\(918\) 0 0
\(919\) −18.7337 −0.617967 −0.308983 0.951067i \(-0.599989\pi\)
−0.308983 + 0.951067i \(0.599989\pi\)
\(920\) 0 0
\(921\) −29.9877 −0.988129
\(922\) 0 0
\(923\) 10.6147 0.349388
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 10.3402 0.339616
\(928\) 0 0
\(929\) −20.0410 −0.657525 −0.328763 0.944413i \(-0.606632\pi\)
−0.328763 + 0.944413i \(0.606632\pi\)
\(930\) 0 0
\(931\) −6.09436 −0.199735
\(932\) 0 0
\(933\) −27.2039 −0.890617
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 45.0472 1.47163 0.735814 0.677184i \(-0.236800\pi\)
0.735814 + 0.677184i \(0.236800\pi\)
\(938\) 0 0
\(939\) −26.8371 −0.875796
\(940\) 0 0
\(941\) 19.3751 0.631609 0.315805 0.948824i \(-0.397726\pi\)
0.315805 + 0.948824i \(0.397726\pi\)
\(942\) 0 0
\(943\) 23.0349 0.750119
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −6.95282 −0.225936 −0.112968 0.993599i \(-0.536036\pi\)
−0.112968 + 0.993599i \(0.536036\pi\)
\(948\) 0 0
\(949\) −6.01229 −0.195167
\(950\) 0 0
\(951\) −24.5958 −0.797574
\(952\) 0 0
\(953\) 29.2885 0.948746 0.474373 0.880324i \(-0.342675\pi\)
0.474373 + 0.880324i \(0.342675\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) −20.0000 −0.646508
\(958\) 0 0
\(959\) −8.06239 −0.260348
\(960\) 0 0
\(961\) −27.0000 −0.870968
\(962\) 0 0
\(963\) −13.3607 −0.430542
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 47.3874 1.52387 0.761937 0.647651i \(-0.224248\pi\)
0.761937 + 0.647651i \(0.224248\pi\)
\(968\) 0 0
\(969\) −31.0349 −0.996984
\(970\) 0 0
\(971\) 2.59583 0.0833040 0.0416520 0.999132i \(-0.486738\pi\)
0.0416520 + 0.999132i \(0.486738\pi\)
\(972\) 0 0
\(973\) 44.9405 1.44073
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −28.3234 −0.906144 −0.453072 0.891474i \(-0.649672\pi\)
−0.453072 + 0.891474i \(0.649672\pi\)
\(978\) 0 0
\(979\) 18.4703 0.590312
\(980\) 0 0
\(981\) −5.31965 −0.169843
\(982\) 0 0
\(983\) 1.16290 0.0370907 0.0185454 0.999828i \(-0.494096\pi\)
0.0185454 + 0.999828i \(0.494096\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) −20.3135 −0.646586
\(988\) 0 0
\(989\) 4.65159 0.147912
\(990\) 0 0
\(991\) 12.9528 0.411460 0.205730 0.978609i \(-0.434043\pi\)
0.205730 + 0.978609i \(0.434043\pi\)
\(992\) 0 0
\(993\) −12.3135 −0.390757
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 19.0784 0.604218 0.302109 0.953273i \(-0.402309\pi\)
0.302109 + 0.953273i \(0.402309\pi\)
\(998\) 0 0
\(999\) 3.07838 0.0973956
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 9600.2.a.dp.1.3 3
4.3 odd 2 9600.2.a.du.1.1 3
5.2 odd 4 1920.2.f.n.769.4 yes 6
5.3 odd 4 1920.2.f.n.769.1 yes 6
5.4 even 2 9600.2.a.dv.1.1 3
8.3 odd 2 9600.2.a.dr.1.1 3
8.5 even 2 9600.2.a.ds.1.3 3
20.3 even 4 1920.2.f.m.769.4 yes 6
20.7 even 4 1920.2.f.m.769.1 6
20.19 odd 2 9600.2.a.do.1.3 3
40.3 even 4 1920.2.f.p.769.3 yes 6
40.13 odd 4 1920.2.f.o.769.6 yes 6
40.19 odd 2 9600.2.a.dt.1.3 3
40.27 even 4 1920.2.f.p.769.6 yes 6
40.29 even 2 9600.2.a.dq.1.1 3
40.37 odd 4 1920.2.f.o.769.3 yes 6
80.3 even 4 3840.2.d.bj.2689.4 6
80.13 odd 4 3840.2.d.bl.2689.4 6
80.27 even 4 3840.2.d.bj.2689.3 6
80.37 odd 4 3840.2.d.bl.2689.3 6
80.43 even 4 3840.2.d.bk.2689.3 6
80.53 odd 4 3840.2.d.bi.2689.3 6
80.67 even 4 3840.2.d.bk.2689.4 6
80.77 odd 4 3840.2.d.bi.2689.4 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1920.2.f.m.769.1 6 20.7 even 4
1920.2.f.m.769.4 yes 6 20.3 even 4
1920.2.f.n.769.1 yes 6 5.3 odd 4
1920.2.f.n.769.4 yes 6 5.2 odd 4
1920.2.f.o.769.3 yes 6 40.37 odd 4
1920.2.f.o.769.6 yes 6 40.13 odd 4
1920.2.f.p.769.3 yes 6 40.3 even 4
1920.2.f.p.769.6 yes 6 40.27 even 4
3840.2.d.bi.2689.3 6 80.53 odd 4
3840.2.d.bi.2689.4 6 80.77 odd 4
3840.2.d.bj.2689.3 6 80.27 even 4
3840.2.d.bj.2689.4 6 80.3 even 4
3840.2.d.bk.2689.3 6 80.43 even 4
3840.2.d.bk.2689.4 6 80.67 even 4
3840.2.d.bl.2689.3 6 80.37 odd 4
3840.2.d.bl.2689.4 6 80.13 odd 4
9600.2.a.do.1.3 3 20.19 odd 2
9600.2.a.dp.1.3 3 1.1 even 1 trivial
9600.2.a.dq.1.1 3 40.29 even 2
9600.2.a.dr.1.1 3 8.3 odd 2
9600.2.a.ds.1.3 3 8.5 even 2
9600.2.a.dt.1.3 3 40.19 odd 2
9600.2.a.du.1.1 3 4.3 odd 2
9600.2.a.dv.1.1 3 5.4 even 2