Properties

Label 3840.2.d.bl.2689.4
Level $3840$
Weight $2$
Character 3840.2689
Analytic conductor $30.663$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3840,2,Mod(2689,3840)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3840, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3840.2689");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3840 = 2^{8} \cdot 3 \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3840.d (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(30.6625543762\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.0.350464.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} + 2x^{4} + 2x^{3} + 4x^{2} - 4x + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{5} \)
Twist minimal: no (minimal twist has level 1920)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 2689.4
Root \(-0.854638 - 0.854638i\) of defining polynomial
Character \(\chi\) \(=\) 3840.2689
Dual form 3840.2.d.bl.2689.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{3} +(-0.539189 + 2.17009i) q^{5} +2.34017i q^{7} +1.00000 q^{9} -3.07838i q^{11} +0.921622 q^{13} +(-0.539189 + 2.17009i) q^{15} -7.75872i q^{17} -4.00000i q^{19} +2.34017i q^{21} -2.15676i q^{23} +(-4.41855 - 2.34017i) q^{25} +1.00000 q^{27} -6.49693i q^{29} -2.00000 q^{31} -3.07838i q^{33} +(-5.07838 - 1.26180i) q^{35} +3.07838 q^{37} +0.921622 q^{39} -10.6803 q^{41} +2.15676 q^{43} +(-0.539189 + 2.17009i) q^{45} -8.68035i q^{47} +1.52359 q^{49} -7.75872i q^{51} -2.92162 q^{53} +(6.68035 + 1.65983i) q^{55} -4.00000i q^{57} +11.7587i q^{59} -6.00000i q^{61} +2.34017i q^{63} +(-0.496928 + 2.00000i) q^{65} -6.83710 q^{67} -2.15676i q^{69} +11.5174 q^{71} -6.52359i q^{73} +(-4.41855 - 2.34017i) q^{75} +7.20394 q^{77} -15.3607 q^{79} +1.00000 q^{81} +1.84324 q^{83} +(16.8371 + 4.18342i) q^{85} -6.49693i q^{87} +6.00000 q^{89} +2.15676i q^{91} -2.00000 q^{93} +(8.68035 + 2.15676i) q^{95} -3.07838i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 6 q^{3} + 6 q^{9} + 12 q^{13} + 2 q^{25} + 6 q^{27} - 12 q^{31} - 24 q^{35} + 12 q^{37} + 12 q^{39} - 20 q^{41} - 22 q^{49} - 24 q^{53} - 4 q^{55} + 32 q^{65} + 16 q^{67} - 32 q^{71} + 2 q^{75} - 32 q^{77}+ \cdots + 8 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3840\mathbb{Z}\right)^\times\).

\(n\) \(511\) \(1537\) \(2561\) \(2821\)
\(\chi(n)\) \(1\) \(-1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.00000 0.577350
\(4\) 0 0
\(5\) −0.539189 + 2.17009i −0.241133 + 0.970492i
\(6\) 0 0
\(7\) 2.34017i 0.884502i 0.896891 + 0.442251i \(0.145820\pi\)
−0.896891 + 0.442251i \(0.854180\pi\)
\(8\) 0 0
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) 3.07838i 0.928166i −0.885792 0.464083i \(-0.846384\pi\)
0.885792 0.464083i \(-0.153616\pi\)
\(12\) 0 0
\(13\) 0.921622 0.255612 0.127806 0.991799i \(-0.459207\pi\)
0.127806 + 0.991799i \(0.459207\pi\)
\(14\) 0 0
\(15\) −0.539189 + 2.17009i −0.139218 + 0.560314i
\(16\) 0 0
\(17\) 7.75872i 1.88177i −0.338730 0.940883i \(-0.609997\pi\)
0.338730 0.940883i \(-0.390003\pi\)
\(18\) 0 0
\(19\) 4.00000i 0.917663i −0.888523 0.458831i \(-0.848268\pi\)
0.888523 0.458831i \(-0.151732\pi\)
\(20\) 0 0
\(21\) 2.34017i 0.510668i
\(22\) 0 0
\(23\) 2.15676i 0.449715i −0.974392 0.224857i \(-0.927808\pi\)
0.974392 0.224857i \(-0.0721916\pi\)
\(24\) 0 0
\(25\) −4.41855 2.34017i −0.883710 0.468035i
\(26\) 0 0
\(27\) 1.00000 0.192450
\(28\) 0 0
\(29\) 6.49693i 1.20645i −0.797571 0.603225i \(-0.793882\pi\)
0.797571 0.603225i \(-0.206118\pi\)
\(30\) 0 0
\(31\) −2.00000 −0.359211 −0.179605 0.983739i \(-0.557482\pi\)
−0.179605 + 0.983739i \(0.557482\pi\)
\(32\) 0 0
\(33\) 3.07838i 0.535877i
\(34\) 0 0
\(35\) −5.07838 1.26180i −0.858403 0.213282i
\(36\) 0 0
\(37\) 3.07838 0.506082 0.253041 0.967456i \(-0.418569\pi\)
0.253041 + 0.967456i \(0.418569\pi\)
\(38\) 0 0
\(39\) 0.921622 0.147578
\(40\) 0 0
\(41\) −10.6803 −1.66799 −0.833995 0.551772i \(-0.813952\pi\)
−0.833995 + 0.551772i \(0.813952\pi\)
\(42\) 0 0
\(43\) 2.15676 0.328902 0.164451 0.986385i \(-0.447415\pi\)
0.164451 + 0.986385i \(0.447415\pi\)
\(44\) 0 0
\(45\) −0.539189 + 2.17009i −0.0803775 + 0.323497i
\(46\) 0 0
\(47\) 8.68035i 1.26616i −0.774087 0.633079i \(-0.781791\pi\)
0.774087 0.633079i \(-0.218209\pi\)
\(48\) 0 0
\(49\) 1.52359 0.217656
\(50\) 0 0
\(51\) 7.75872i 1.08644i
\(52\) 0 0
\(53\) −2.92162 −0.401316 −0.200658 0.979661i \(-0.564308\pi\)
−0.200658 + 0.979661i \(0.564308\pi\)
\(54\) 0 0
\(55\) 6.68035 + 1.65983i 0.900778 + 0.223811i
\(56\) 0 0
\(57\) 4.00000i 0.529813i
\(58\) 0 0
\(59\) 11.7587i 1.53086i 0.643522 + 0.765428i \(0.277473\pi\)
−0.643522 + 0.765428i \(0.722527\pi\)
\(60\) 0 0
\(61\) 6.00000i 0.768221i −0.923287 0.384111i \(-0.874508\pi\)
0.923287 0.384111i \(-0.125492\pi\)
\(62\) 0 0
\(63\) 2.34017i 0.294834i
\(64\) 0 0
\(65\) −0.496928 + 2.00000i −0.0616364 + 0.248069i
\(66\) 0 0
\(67\) −6.83710 −0.835285 −0.417642 0.908611i \(-0.637144\pi\)
−0.417642 + 0.908611i \(0.637144\pi\)
\(68\) 0 0
\(69\) 2.15676i 0.259643i
\(70\) 0 0
\(71\) 11.5174 1.36687 0.683435 0.730012i \(-0.260485\pi\)
0.683435 + 0.730012i \(0.260485\pi\)
\(72\) 0 0
\(73\) 6.52359i 0.763529i −0.924260 0.381764i \(-0.875317\pi\)
0.924260 0.381764i \(-0.124683\pi\)
\(74\) 0 0
\(75\) −4.41855 2.34017i −0.510210 0.270220i
\(76\) 0 0
\(77\) 7.20394 0.820965
\(78\) 0 0
\(79\) −15.3607 −1.72821 −0.864106 0.503309i \(-0.832116\pi\)
−0.864106 + 0.503309i \(0.832116\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) 1.84324 0.202322 0.101161 0.994870i \(-0.467744\pi\)
0.101161 + 0.994870i \(0.467744\pi\)
\(84\) 0 0
\(85\) 16.8371 + 4.18342i 1.82624 + 0.453755i
\(86\) 0 0
\(87\) 6.49693i 0.696544i
\(88\) 0 0
\(89\) 6.00000 0.635999 0.317999 0.948091i \(-0.396989\pi\)
0.317999 + 0.948091i \(0.396989\pi\)
\(90\) 0 0
\(91\) 2.15676i 0.226089i
\(92\) 0 0
\(93\) −2.00000 −0.207390
\(94\) 0 0
\(95\) 8.68035 + 2.15676i 0.890585 + 0.221278i
\(96\) 0 0
\(97\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(98\) 0 0
\(99\) 3.07838i 0.309389i
\(100\) 0 0
\(101\) 8.34017i 0.829878i 0.909849 + 0.414939i \(0.136197\pi\)
−0.909849 + 0.414939i \(0.863803\pi\)
\(102\) 0 0
\(103\) 10.3402i 1.01885i −0.860516 0.509424i \(-0.829859\pi\)
0.860516 0.509424i \(-0.170141\pi\)
\(104\) 0 0
\(105\) −5.07838 1.26180i −0.495599 0.123139i
\(106\) 0 0
\(107\) 13.3607 1.29163 0.645813 0.763495i \(-0.276518\pi\)
0.645813 + 0.763495i \(0.276518\pi\)
\(108\) 0 0
\(109\) 5.31965i 0.509530i 0.967003 + 0.254765i \(0.0819982\pi\)
−0.967003 + 0.254765i \(0.918002\pi\)
\(110\) 0 0
\(111\) 3.07838 0.292187
\(112\) 0 0
\(113\) 19.7587i 1.85874i −0.369144 0.929372i \(-0.620349\pi\)
0.369144 0.929372i \(-0.379651\pi\)
\(114\) 0 0
\(115\) 4.68035 + 1.16290i 0.436445 + 0.108441i
\(116\) 0 0
\(117\) 0.921622 0.0852040
\(118\) 0 0
\(119\) 18.1568 1.66443
\(120\) 0 0
\(121\) 1.52359 0.138508
\(122\) 0 0
\(123\) −10.6803 −0.963014
\(124\) 0 0
\(125\) 7.46081 8.32684i 0.667315 0.744775i
\(126\) 0 0
\(127\) 19.3340i 1.71562i 0.513969 + 0.857809i \(0.328175\pi\)
−0.513969 + 0.857809i \(0.671825\pi\)
\(128\) 0 0
\(129\) 2.15676 0.189892
\(130\) 0 0
\(131\) 7.44521i 0.650491i −0.945630 0.325246i \(-0.894553\pi\)
0.945630 0.325246i \(-0.105447\pi\)
\(132\) 0 0
\(133\) 9.36069 0.811675
\(134\) 0 0
\(135\) −0.539189 + 2.17009i −0.0464060 + 0.186771i
\(136\) 0 0
\(137\) 3.44521i 0.294344i −0.989111 0.147172i \(-0.952983\pi\)
0.989111 0.147172i \(-0.0470171\pi\)
\(138\) 0 0
\(139\) 19.2039i 1.62886i 0.580264 + 0.814428i \(0.302949\pi\)
−0.580264 + 0.814428i \(0.697051\pi\)
\(140\) 0 0
\(141\) 8.68035i 0.731017i
\(142\) 0 0
\(143\) 2.83710i 0.237250i
\(144\) 0 0
\(145\) 14.0989 + 3.50307i 1.17085 + 0.290914i
\(146\) 0 0
\(147\) 1.52359 0.125664
\(148\) 0 0
\(149\) 9.81658i 0.804206i −0.915594 0.402103i \(-0.868279\pi\)
0.915594 0.402103i \(-0.131721\pi\)
\(150\) 0 0
\(151\) −23.6742 −1.92658 −0.963290 0.268464i \(-0.913484\pi\)
−0.963290 + 0.268464i \(0.913484\pi\)
\(152\) 0 0
\(153\) 7.75872i 0.627256i
\(154\) 0 0
\(155\) 1.07838 4.34017i 0.0866174 0.348611i
\(156\) 0 0
\(157\) 11.0784 0.884151 0.442075 0.896978i \(-0.354242\pi\)
0.442075 + 0.896978i \(0.354242\pi\)
\(158\) 0 0
\(159\) −2.92162 −0.231700
\(160\) 0 0
\(161\) 5.04718 0.397774
\(162\) 0 0
\(163\) 12.9939 1.01776 0.508879 0.860838i \(-0.330060\pi\)
0.508879 + 0.860838i \(0.330060\pi\)
\(164\) 0 0
\(165\) 6.68035 + 1.65983i 0.520064 + 0.129217i
\(166\) 0 0
\(167\) 12.0000i 0.928588i 0.885681 + 0.464294i \(0.153692\pi\)
−0.885681 + 0.464294i \(0.846308\pi\)
\(168\) 0 0
\(169\) −12.1506 −0.934662
\(170\) 0 0
\(171\) 4.00000i 0.305888i
\(172\) 0 0
\(173\) 18.4391 1.40190 0.700948 0.713212i \(-0.252760\pi\)
0.700948 + 0.713212i \(0.252760\pi\)
\(174\) 0 0
\(175\) 5.47641 10.3402i 0.413978 0.781644i
\(176\) 0 0
\(177\) 11.7587i 0.883840i
\(178\) 0 0
\(179\) 1.91548i 0.143170i 0.997435 + 0.0715848i \(0.0228057\pi\)
−0.997435 + 0.0715848i \(0.977194\pi\)
\(180\) 0 0
\(181\) 6.99386i 0.519849i −0.965629 0.259925i \(-0.916302\pi\)
0.965629 0.259925i \(-0.0836977\pi\)
\(182\) 0 0
\(183\) 6.00000i 0.443533i
\(184\) 0 0
\(185\) −1.65983 + 6.68035i −0.122033 + 0.491149i
\(186\) 0 0
\(187\) −23.8843 −1.74659
\(188\) 0 0
\(189\) 2.34017i 0.170223i
\(190\) 0 0
\(191\) −6.15676 −0.445487 −0.222744 0.974877i \(-0.571501\pi\)
−0.222744 + 0.974877i \(0.571501\pi\)
\(192\) 0 0
\(193\) 14.5236i 1.04543i −0.852507 0.522715i \(-0.824919\pi\)
0.852507 0.522715i \(-0.175081\pi\)
\(194\) 0 0
\(195\) −0.496928 + 2.00000i −0.0355858 + 0.143223i
\(196\) 0 0
\(197\) 24.5958 1.75238 0.876190 0.481966i \(-0.160077\pi\)
0.876190 + 0.481966i \(0.160077\pi\)
\(198\) 0 0
\(199\) −3.36069 −0.238233 −0.119117 0.992880i \(-0.538006\pi\)
−0.119117 + 0.992880i \(0.538006\pi\)
\(200\) 0 0
\(201\) −6.83710 −0.482252
\(202\) 0 0
\(203\) 15.2039 1.06711
\(204\) 0 0
\(205\) 5.75872 23.1773i 0.402207 1.61877i
\(206\) 0 0
\(207\) 2.15676i 0.149905i
\(208\) 0 0
\(209\) −12.3135 −0.851743
\(210\) 0 0
\(211\) 11.2039i 0.771311i 0.922643 + 0.385655i \(0.126025\pi\)
−0.922643 + 0.385655i \(0.873975\pi\)
\(212\) 0 0
\(213\) 11.5174 0.789162
\(214\) 0 0
\(215\) −1.16290 + 4.68035i −0.0793090 + 0.319197i
\(216\) 0 0
\(217\) 4.68035i 0.317723i
\(218\) 0 0
\(219\) 6.52359i 0.440823i
\(220\) 0 0
\(221\) 7.15061i 0.481002i
\(222\) 0 0
\(223\) 6.65368i 0.445564i 0.974868 + 0.222782i \(0.0715138\pi\)
−0.974868 + 0.222782i \(0.928486\pi\)
\(224\) 0 0
\(225\) −4.41855 2.34017i −0.294570 0.156012i
\(226\) 0 0
\(227\) −9.84324 −0.653319 −0.326660 0.945142i \(-0.605923\pi\)
−0.326660 + 0.945142i \(0.605923\pi\)
\(228\) 0 0
\(229\) 1.31965i 0.0872052i −0.999049 0.0436026i \(-0.986116\pi\)
0.999049 0.0436026i \(-0.0138835\pi\)
\(230\) 0 0
\(231\) 7.20394 0.473984
\(232\) 0 0
\(233\) 2.39803i 0.157100i −0.996910 0.0785501i \(-0.974971\pi\)
0.996910 0.0785501i \(-0.0250291\pi\)
\(234\) 0 0
\(235\) 18.8371 + 4.68035i 1.22880 + 0.305312i
\(236\) 0 0
\(237\) −15.3607 −0.997784
\(238\) 0 0
\(239\) −6.15676 −0.398247 −0.199124 0.979974i \(-0.563810\pi\)
−0.199124 + 0.979974i \(0.563810\pi\)
\(240\) 0 0
\(241\) 0.639308 0.0411815 0.0205907 0.999788i \(-0.493445\pi\)
0.0205907 + 0.999788i \(0.493445\pi\)
\(242\) 0 0
\(243\) 1.00000 0.0641500
\(244\) 0 0
\(245\) −0.821503 + 3.30632i −0.0524839 + 0.211233i
\(246\) 0 0
\(247\) 3.68649i 0.234566i
\(248\) 0 0
\(249\) 1.84324 0.116811
\(250\) 0 0
\(251\) 12.9216i 0.815606i −0.913070 0.407803i \(-0.866295\pi\)
0.913070 0.407803i \(-0.133705\pi\)
\(252\) 0 0
\(253\) −6.63931 −0.417410
\(254\) 0 0
\(255\) 16.8371 + 4.18342i 1.05438 + 0.261976i
\(256\) 0 0
\(257\) 14.9627i 0.933345i −0.884430 0.466673i \(-0.845453\pi\)
0.884430 0.466673i \(-0.154547\pi\)
\(258\) 0 0
\(259\) 7.20394i 0.447631i
\(260\) 0 0
\(261\) 6.49693i 0.402150i
\(262\) 0 0
\(263\) 13.3607i 0.823856i 0.911216 + 0.411928i \(0.135144\pi\)
−0.911216 + 0.411928i \(0.864856\pi\)
\(264\) 0 0
\(265\) 1.57531 6.34017i 0.0967703 0.389474i
\(266\) 0 0
\(267\) 6.00000 0.367194
\(268\) 0 0
\(269\) 27.5441i 1.67939i 0.543055 + 0.839697i \(0.317267\pi\)
−0.543055 + 0.839697i \(0.682733\pi\)
\(270\) 0 0
\(271\) −10.0000 −0.607457 −0.303728 0.952759i \(-0.598232\pi\)
−0.303728 + 0.952759i \(0.598232\pi\)
\(272\) 0 0
\(273\) 2.15676i 0.130533i
\(274\) 0 0
\(275\) −7.20394 + 13.6020i −0.434414 + 0.820230i
\(276\) 0 0
\(277\) 4.12556 0.247881 0.123940 0.992290i \(-0.460447\pi\)
0.123940 + 0.992290i \(0.460447\pi\)
\(278\) 0 0
\(279\) −2.00000 −0.119737
\(280\) 0 0
\(281\) 11.3607 0.677722 0.338861 0.940836i \(-0.389958\pi\)
0.338861 + 0.940836i \(0.389958\pi\)
\(282\) 0 0
\(283\) −10.5236 −0.625563 −0.312781 0.949825i \(-0.601261\pi\)
−0.312781 + 0.949825i \(0.601261\pi\)
\(284\) 0 0
\(285\) 8.68035 + 2.15676i 0.514179 + 0.127755i
\(286\) 0 0
\(287\) 24.9939i 1.47534i
\(288\) 0 0
\(289\) −43.1978 −2.54105
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −32.5958 −1.90427 −0.952134 0.305680i \(-0.901116\pi\)
−0.952134 + 0.305680i \(0.901116\pi\)
\(294\) 0 0
\(295\) −25.5174 6.34017i −1.48568 0.369139i
\(296\) 0 0
\(297\) 3.07838i 0.178626i
\(298\) 0 0
\(299\) 1.98771i 0.114952i
\(300\) 0 0
\(301\) 5.04718i 0.290915i
\(302\) 0 0
\(303\) 8.34017i 0.479130i
\(304\) 0 0
\(305\) 13.0205 + 3.23513i 0.745553 + 0.185243i
\(306\) 0 0
\(307\) 29.9877 1.71149 0.855745 0.517398i \(-0.173099\pi\)
0.855745 + 0.517398i \(0.173099\pi\)
\(308\) 0 0
\(309\) 10.3402i 0.588232i
\(310\) 0 0
\(311\) −27.2039 −1.54259 −0.771297 0.636476i \(-0.780392\pi\)
−0.771297 + 0.636476i \(0.780392\pi\)
\(312\) 0 0
\(313\) 26.8371i 1.51692i −0.651718 0.758461i \(-0.725951\pi\)
0.651718 0.758461i \(-0.274049\pi\)
\(314\) 0 0
\(315\) −5.07838 1.26180i −0.286134 0.0710941i
\(316\) 0 0
\(317\) 24.5958 1.38144 0.690720 0.723123i \(-0.257294\pi\)
0.690720 + 0.723123i \(0.257294\pi\)
\(318\) 0 0
\(319\) −20.0000 −1.11979
\(320\) 0 0
\(321\) 13.3607 0.745721
\(322\) 0 0
\(323\) −31.0349 −1.72683
\(324\) 0 0
\(325\) −4.07223 2.15676i −0.225887 0.119635i
\(326\) 0 0
\(327\) 5.31965i 0.294178i
\(328\) 0 0
\(329\) 20.3135 1.11992
\(330\) 0 0
\(331\) 12.3135i 0.676812i −0.941000 0.338406i \(-0.890112\pi\)
0.941000 0.338406i \(-0.109888\pi\)
\(332\) 0 0
\(333\) 3.07838 0.168694
\(334\) 0 0
\(335\) 3.68649 14.8371i 0.201414 0.810637i
\(336\) 0 0
\(337\) 9.47641i 0.516213i −0.966116 0.258106i \(-0.916901\pi\)
0.966116 0.258106i \(-0.0830985\pi\)
\(338\) 0 0
\(339\) 19.7587i 1.07315i
\(340\) 0 0
\(341\) 6.15676i 0.333407i
\(342\) 0 0
\(343\) 19.9467i 1.07702i
\(344\) 0 0
\(345\) 4.68035 + 1.16290i 0.251981 + 0.0626084i
\(346\) 0 0
\(347\) −7.51745 −0.403558 −0.201779 0.979431i \(-0.564672\pi\)
−0.201779 + 0.979431i \(0.564672\pi\)
\(348\) 0 0
\(349\) 27.6742i 1.48137i 0.671855 + 0.740683i \(0.265498\pi\)
−0.671855 + 0.740683i \(0.734502\pi\)
\(350\) 0 0
\(351\) 0.921622 0.0491926
\(352\) 0 0
\(353\) 21.6020i 1.14976i −0.818239 0.574878i \(-0.805049\pi\)
0.818239 0.574878i \(-0.194951\pi\)
\(354\) 0 0
\(355\) −6.21008 + 24.9939i −0.329597 + 1.32654i
\(356\) 0 0
\(357\) 18.1568 0.960957
\(358\) 0 0
\(359\) 12.0000 0.633336 0.316668 0.948536i \(-0.397436\pi\)
0.316668 + 0.948536i \(0.397436\pi\)
\(360\) 0 0
\(361\) 3.00000 0.157895
\(362\) 0 0
\(363\) 1.52359 0.0799678
\(364\) 0 0
\(365\) 14.1568 + 3.51745i 0.740998 + 0.184112i
\(366\) 0 0
\(367\) 23.0205i 1.20166i 0.799376 + 0.600831i \(0.205163\pi\)
−0.799376 + 0.600831i \(0.794837\pi\)
\(368\) 0 0
\(369\) −10.6803 −0.555997
\(370\) 0 0
\(371\) 6.83710i 0.354965i
\(372\) 0 0
\(373\) −26.5958 −1.37708 −0.688540 0.725199i \(-0.741748\pi\)
−0.688540 + 0.725199i \(0.741748\pi\)
\(374\) 0 0
\(375\) 7.46081 8.32684i 0.385275 0.429996i
\(376\) 0 0
\(377\) 5.98771i 0.308383i
\(378\) 0 0
\(379\) 36.1445i 1.85662i 0.371811 + 0.928308i \(0.378737\pi\)
−0.371811 + 0.928308i \(0.621263\pi\)
\(380\) 0 0
\(381\) 19.3340i 0.990512i
\(382\) 0 0
\(383\) 6.83710i 0.349360i −0.984625 0.174680i \(-0.944111\pi\)
0.984625 0.174680i \(-0.0558890\pi\)
\(384\) 0 0
\(385\) −3.88428 + 15.6332i −0.197961 + 0.796740i
\(386\) 0 0
\(387\) 2.15676 0.109634
\(388\) 0 0
\(389\) 16.7070i 0.847079i −0.905878 0.423539i \(-0.860787\pi\)
0.905878 0.423539i \(-0.139213\pi\)
\(390\) 0 0
\(391\) −16.7337 −0.846258
\(392\) 0 0
\(393\) 7.44521i 0.375561i
\(394\) 0 0
\(395\) 8.28231 33.3340i 0.416728 1.67722i
\(396\) 0 0
\(397\) 3.56093 0.178718 0.0893590 0.995999i \(-0.471518\pi\)
0.0893590 + 0.995999i \(0.471518\pi\)
\(398\) 0 0
\(399\) 9.36069 0.468621
\(400\) 0 0
\(401\) −25.7152 −1.28416 −0.642079 0.766639i \(-0.721928\pi\)
−0.642079 + 0.766639i \(0.721928\pi\)
\(402\) 0 0
\(403\) −1.84324 −0.0918185
\(404\) 0 0
\(405\) −0.539189 + 2.17009i −0.0267925 + 0.107832i
\(406\) 0 0
\(407\) 9.47641i 0.469728i
\(408\) 0 0
\(409\) 28.8371 1.42590 0.712951 0.701213i \(-0.247358\pi\)
0.712951 + 0.701213i \(0.247358\pi\)
\(410\) 0 0
\(411\) 3.44521i 0.169940i
\(412\) 0 0
\(413\) −27.5174 −1.35405
\(414\) 0 0
\(415\) −0.993857 + 4.00000i −0.0487865 + 0.196352i
\(416\) 0 0
\(417\) 19.2039i 0.940421i
\(418\) 0 0
\(419\) 6.28231i 0.306911i −0.988156 0.153456i \(-0.950960\pi\)
0.988156 0.153456i \(-0.0490402\pi\)
\(420\) 0 0
\(421\) 10.9939i 0.535808i −0.963446 0.267904i \(-0.913669\pi\)
0.963446 0.267904i \(-0.0863310\pi\)
\(422\) 0 0
\(423\) 8.68035i 0.422053i
\(424\) 0 0
\(425\) −18.1568 + 34.2823i −0.880732 + 1.66294i
\(426\) 0 0
\(427\) 14.0410 0.679493
\(428\) 0 0
\(429\) 2.83710i 0.136977i
\(430\) 0 0
\(431\) 21.3607 1.02891 0.514454 0.857518i \(-0.327995\pi\)
0.514454 + 0.857518i \(0.327995\pi\)
\(432\) 0 0
\(433\) 18.4703i 0.887624i −0.896120 0.443812i \(-0.853626\pi\)
0.896120 0.443812i \(-0.146374\pi\)
\(434\) 0 0
\(435\) 14.0989 + 3.50307i 0.675990 + 0.167959i
\(436\) 0 0
\(437\) −8.62702 −0.412686
\(438\) 0 0
\(439\) −6.31351 −0.301327 −0.150664 0.988585i \(-0.548141\pi\)
−0.150664 + 0.988585i \(0.548141\pi\)
\(440\) 0 0
\(441\) 1.52359 0.0725519
\(442\) 0 0
\(443\) −27.8310 −1.32229 −0.661144 0.750259i \(-0.729929\pi\)
−0.661144 + 0.750259i \(0.729929\pi\)
\(444\) 0 0
\(445\) −3.23513 + 13.0205i −0.153360 + 0.617232i
\(446\) 0 0
\(447\) 9.81658i 0.464308i
\(448\) 0 0
\(449\) −14.6803 −0.692808 −0.346404 0.938085i \(-0.612597\pi\)
−0.346404 + 0.938085i \(0.612597\pi\)
\(450\) 0 0
\(451\) 32.8781i 1.54817i
\(452\) 0 0
\(453\) −23.6742 −1.11231
\(454\) 0 0
\(455\) −4.68035 1.16290i −0.219418 0.0545175i
\(456\) 0 0
\(457\) 19.6865i 0.920895i 0.887687 + 0.460448i \(0.152311\pi\)
−0.887687 + 0.460448i \(0.847689\pi\)
\(458\) 0 0
\(459\) 7.75872i 0.362146i
\(460\) 0 0
\(461\) 13.5031i 0.628901i −0.949274 0.314450i \(-0.898180\pi\)
0.949274 0.314450i \(-0.101820\pi\)
\(462\) 0 0
\(463\) 6.02666i 0.280083i −0.990146 0.140041i \(-0.955276\pi\)
0.990146 0.140041i \(-0.0447236\pi\)
\(464\) 0 0
\(465\) 1.07838 4.34017i 0.0500086 0.201271i
\(466\) 0 0
\(467\) −19.8310 −0.917667 −0.458834 0.888522i \(-0.651733\pi\)
−0.458834 + 0.888522i \(0.651733\pi\)
\(468\) 0 0
\(469\) 16.0000i 0.738811i
\(470\) 0 0
\(471\) 11.0784 0.510465
\(472\) 0 0
\(473\) 6.63931i 0.305276i
\(474\) 0 0
\(475\) −9.36069 + 17.6742i −0.429498 + 0.810948i
\(476\) 0 0
\(477\) −2.92162 −0.133772
\(478\) 0 0
\(479\) 23.2039 1.06021 0.530107 0.847930i \(-0.322152\pi\)
0.530107 + 0.847930i \(0.322152\pi\)
\(480\) 0 0
\(481\) 2.83710 0.129361
\(482\) 0 0
\(483\) 5.04718 0.229655
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 23.3874i 1.05978i −0.848066 0.529891i \(-0.822233\pi\)
0.848066 0.529891i \(-0.177767\pi\)
\(488\) 0 0
\(489\) 12.9939 0.587603
\(490\) 0 0
\(491\) 30.2290i 1.36422i −0.731252 0.682108i \(-0.761064\pi\)
0.731252 0.682108i \(-0.238936\pi\)
\(492\) 0 0
\(493\) −50.4079 −2.27026
\(494\) 0 0
\(495\) 6.68035 + 1.65983i 0.300259 + 0.0746037i
\(496\) 0 0
\(497\) 26.9528i 1.20900i
\(498\) 0 0
\(499\) 1.36069i 0.0609129i 0.999536 + 0.0304565i \(0.00969609\pi\)
−0.999536 + 0.0304565i \(0.990304\pi\)
\(500\) 0 0
\(501\) 12.0000i 0.536120i
\(502\) 0 0
\(503\) 16.6803i 0.743740i 0.928285 + 0.371870i \(0.121283\pi\)
−0.928285 + 0.371870i \(0.878717\pi\)
\(504\) 0 0
\(505\) −18.0989 4.49693i −0.805390 0.200111i
\(506\) 0 0
\(507\) −12.1506 −0.539628
\(508\) 0 0
\(509\) 14.0144i 0.621176i −0.950545 0.310588i \(-0.899474\pi\)
0.950545 0.310588i \(-0.100526\pi\)
\(510\) 0 0
\(511\) 15.2663 0.675343
\(512\) 0 0
\(513\) 4.00000i 0.176604i
\(514\) 0 0
\(515\) 22.4391 + 5.57531i 0.988784 + 0.245677i
\(516\) 0 0
\(517\) −26.7214 −1.17521
\(518\) 0 0
\(519\) 18.4391 0.809385
\(520\) 0 0
\(521\) −6.68035 −0.292671 −0.146336 0.989235i \(-0.546748\pi\)
−0.146336 + 0.989235i \(0.546748\pi\)
\(522\) 0 0
\(523\) 26.0410 1.13870 0.569348 0.822097i \(-0.307196\pi\)
0.569348 + 0.822097i \(0.307196\pi\)
\(524\) 0 0
\(525\) 5.47641 10.3402i 0.239010 0.451282i
\(526\) 0 0
\(527\) 15.5174i 0.675951i
\(528\) 0 0
\(529\) 18.3484 0.797757
\(530\) 0 0
\(531\) 11.7587i 0.510285i
\(532\) 0 0
\(533\) −9.84324 −0.426358
\(534\) 0 0
\(535\) −7.20394 + 28.9939i −0.311453 + 1.25351i
\(536\) 0 0
\(537\) 1.91548i 0.0826590i
\(538\) 0 0
\(539\) 4.69019i 0.202021i
\(540\) 0 0
\(541\) 14.9939i 0.644636i 0.946631 + 0.322318i \(0.104462\pi\)
−0.946631 + 0.322318i \(0.895538\pi\)
\(542\) 0 0
\(543\) 6.99386i 0.300135i
\(544\) 0 0
\(545\) −11.5441 2.86830i −0.494495 0.122864i
\(546\) 0 0
\(547\) 26.1568 1.11838 0.559191 0.829039i \(-0.311112\pi\)
0.559191 + 0.829039i \(0.311112\pi\)
\(548\) 0 0
\(549\) 6.00000i 0.256074i
\(550\) 0 0
\(551\) −25.9877 −1.10711
\(552\) 0 0
\(553\) 35.9467i 1.52861i
\(554\) 0 0
\(555\) −1.65983 + 6.68035i −0.0704557 + 0.283565i
\(556\) 0 0
\(557\) 14.7526 0.625087 0.312543 0.949903i \(-0.398819\pi\)
0.312543 + 0.949903i \(0.398819\pi\)
\(558\) 0 0
\(559\) 1.98771 0.0840713
\(560\) 0 0
\(561\) −23.8843 −1.00840
\(562\) 0 0
\(563\) 38.5523 1.62479 0.812394 0.583109i \(-0.198164\pi\)
0.812394 + 0.583109i \(0.198164\pi\)
\(564\) 0 0
\(565\) 42.8781 + 10.6537i 1.80390 + 0.448204i
\(566\) 0 0
\(567\) 2.34017i 0.0982780i
\(568\) 0 0
\(569\) 14.6803 0.615432 0.307716 0.951478i \(-0.400435\pi\)
0.307716 + 0.951478i \(0.400435\pi\)
\(570\) 0 0
\(571\) 13.6742i 0.572248i 0.958193 + 0.286124i \(0.0923669\pi\)
−0.958193 + 0.286124i \(0.907633\pi\)
\(572\) 0 0
\(573\) −6.15676 −0.257202
\(574\) 0 0
\(575\) −5.04718 + 9.52973i −0.210482 + 0.397417i
\(576\) 0 0
\(577\) 22.6681i 0.943684i 0.881683 + 0.471842i \(0.156411\pi\)
−0.881683 + 0.471842i \(0.843589\pi\)
\(578\) 0 0
\(579\) 14.5236i 0.603580i
\(580\) 0 0
\(581\) 4.31351i 0.178955i
\(582\) 0 0
\(583\) 8.99386i 0.372487i
\(584\) 0 0
\(585\) −0.496928 + 2.00000i −0.0205455 + 0.0826898i
\(586\) 0 0
\(587\) 37.3607 1.54204 0.771020 0.636810i \(-0.219747\pi\)
0.771020 + 0.636810i \(0.219747\pi\)
\(588\) 0 0
\(589\) 8.00000i 0.329634i
\(590\) 0 0
\(591\) 24.5958 1.01174
\(592\) 0 0
\(593\) 15.5897i 0.640192i 0.947385 + 0.320096i \(0.103715\pi\)
−0.947385 + 0.320096i \(0.896285\pi\)
\(594\) 0 0
\(595\) −9.78992 + 39.4017i −0.401348 + 1.61531i
\(596\) 0 0
\(597\) −3.36069 −0.137544
\(598\) 0 0
\(599\) 45.3607 1.85339 0.926694 0.375817i \(-0.122638\pi\)
0.926694 + 0.375817i \(0.122638\pi\)
\(600\) 0 0
\(601\) −16.5236 −0.674011 −0.337006 0.941503i \(-0.609414\pi\)
−0.337006 + 0.941503i \(0.609414\pi\)
\(602\) 0 0
\(603\) −6.83710 −0.278428
\(604\) 0 0
\(605\) −0.821503 + 3.30632i −0.0333988 + 0.134421i
\(606\) 0 0
\(607\) 30.0554i 1.21991i −0.792435 0.609956i \(-0.791187\pi\)
0.792435 0.609956i \(-0.208813\pi\)
\(608\) 0 0
\(609\) 15.2039 0.616095
\(610\) 0 0
\(611\) 8.00000i 0.323645i
\(612\) 0 0
\(613\) 24.2700 0.980257 0.490129 0.871650i \(-0.336950\pi\)
0.490129 + 0.871650i \(0.336950\pi\)
\(614\) 0 0
\(615\) 5.75872 23.1773i 0.232214 0.934598i
\(616\) 0 0
\(617\) 0.0722347i 0.00290806i 0.999999 + 0.00145403i \(0.000462832\pi\)
−0.999999 + 0.00145403i \(0.999537\pi\)
\(618\) 0 0
\(619\) 29.1917i 1.17331i −0.809836 0.586656i \(-0.800444\pi\)
0.809836 0.586656i \(-0.199556\pi\)
\(620\) 0 0
\(621\) 2.15676i 0.0865476i
\(622\) 0 0
\(623\) 14.0410i 0.562542i
\(624\) 0 0
\(625\) 14.0472 + 20.6803i 0.561887 + 0.827214i
\(626\) 0 0
\(627\) −12.3135 −0.491754
\(628\) 0 0
\(629\) 23.8843i 0.952329i
\(630\) 0 0
\(631\) 3.36069 0.133787 0.0668935 0.997760i \(-0.478691\pi\)
0.0668935 + 0.997760i \(0.478691\pi\)
\(632\) 0 0
\(633\) 11.2039i 0.445316i
\(634\) 0 0
\(635\) −41.9565 10.4247i −1.66499 0.413691i
\(636\) 0 0
\(637\) 1.40417 0.0556354
\(638\) 0 0
\(639\) 11.5174 0.455623
\(640\) 0 0
\(641\) 36.6681 1.44830 0.724151 0.689642i \(-0.242232\pi\)
0.724151 + 0.689642i \(0.242232\pi\)
\(642\) 0 0
\(643\) −40.6803 −1.60428 −0.802138 0.597139i \(-0.796304\pi\)
−0.802138 + 0.597139i \(0.796304\pi\)
\(644\) 0 0
\(645\) −1.16290 + 4.68035i −0.0457891 + 0.184288i
\(646\) 0 0
\(647\) 37.7275i 1.48322i 0.670830 + 0.741611i \(0.265938\pi\)
−0.670830 + 0.741611i \(0.734062\pi\)
\(648\) 0 0
\(649\) 36.1978 1.42089
\(650\) 0 0
\(651\) 4.68035i 0.183437i
\(652\) 0 0
\(653\) −38.9216 −1.52312 −0.761560 0.648094i \(-0.775566\pi\)
−0.761560 + 0.648094i \(0.775566\pi\)
\(654\) 0 0
\(655\) 16.1568 + 4.01438i 0.631297 + 0.156855i
\(656\) 0 0
\(657\) 6.52359i 0.254510i
\(658\) 0 0
\(659\) 32.9504i 1.28356i −0.766887 0.641782i \(-0.778195\pi\)
0.766887 0.641782i \(-0.221805\pi\)
\(660\) 0 0
\(661\) 36.3012i 1.41195i 0.708235 + 0.705977i \(0.249492\pi\)
−0.708235 + 0.705977i \(0.750508\pi\)
\(662\) 0 0
\(663\) 7.15061i 0.277707i
\(664\) 0 0
\(665\) −5.04718 + 20.3135i −0.195721 + 0.787724i
\(666\) 0 0
\(667\) −14.0123 −0.542558
\(668\) 0 0
\(669\) 6.65368i 0.257246i
\(670\) 0 0
\(671\) −18.4703 −0.713037
\(672\) 0 0
\(673\) 37.1917i 1.43363i 0.697262 + 0.716816i \(0.254401\pi\)
−0.697262 + 0.716816i \(0.745599\pi\)
\(674\) 0 0
\(675\) −4.41855 2.34017i −0.170070 0.0900733i
\(676\) 0 0
\(677\) 9.07838 0.348910 0.174455 0.984665i \(-0.444184\pi\)
0.174455 + 0.984665i \(0.444184\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) −9.84324 −0.377194
\(682\) 0 0
\(683\) 9.84324 0.376641 0.188321 0.982108i \(-0.439696\pi\)
0.188321 + 0.982108i \(0.439696\pi\)
\(684\) 0 0
\(685\) 7.47641 + 1.85762i 0.285659 + 0.0709760i
\(686\) 0 0
\(687\) 1.31965i 0.0503479i
\(688\) 0 0
\(689\) −2.69263 −0.102581
\(690\) 0 0
\(691\) 1.67420i 0.0636897i −0.999493 0.0318448i \(-0.989862\pi\)
0.999493 0.0318448i \(-0.0101382\pi\)
\(692\) 0 0
\(693\) 7.20394 0.273655
\(694\) 0 0
\(695\) −41.6742 10.3545i −1.58079 0.392770i
\(696\) 0 0
\(697\) 82.8659i 3.13877i
\(698\) 0 0
\(699\) 2.39803i 0.0907019i
\(700\) 0 0
\(701\) 8.96719i 0.338686i 0.985557 + 0.169343i \(0.0541646\pi\)
−0.985557 + 0.169343i \(0.945835\pi\)
\(702\) 0 0
\(703\) 12.3135i 0.464413i
\(704\) 0 0
\(705\) 18.8371 + 4.68035i 0.709446 + 0.176272i
\(706\) 0 0
\(707\) −19.5174 −0.734029
\(708\) 0 0
\(709\) 25.7152i 0.965756i −0.875688 0.482878i \(-0.839591\pi\)
0.875688 0.482878i \(-0.160409\pi\)
\(710\) 0 0
\(711\) −15.3607 −0.576071
\(712\) 0 0
\(713\) 4.31351i 0.161542i
\(714\) 0 0
\(715\) 6.15676 + 1.52973i 0.230250 + 0.0572088i
\(716\) 0 0
\(717\) −6.15676 −0.229928
\(718\) 0 0
\(719\) 18.4079 0.686498 0.343249 0.939244i \(-0.388473\pi\)
0.343249 + 0.939244i \(0.388473\pi\)
\(720\) 0 0
\(721\) 24.1978 0.901173
\(722\) 0 0
\(723\) 0.639308 0.0237761
\(724\) 0 0
\(725\) −15.2039 + 28.7070i −0.564660 + 1.06615i
\(726\) 0 0
\(727\) 42.3402i 1.57031i −0.619299 0.785155i \(-0.712583\pi\)
0.619299 0.785155i \(-0.287417\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) 16.7337i 0.618917i
\(732\) 0 0
\(733\) 4.75258 0.175541 0.0877703 0.996141i \(-0.472026\pi\)
0.0877703 + 0.996141i \(0.472026\pi\)
\(734\) 0 0
\(735\) −0.821503 + 3.30632i −0.0303016 + 0.121956i
\(736\) 0 0
\(737\) 21.0472i 0.775283i
\(738\) 0 0
\(739\) 21.0472i 0.774233i −0.922031 0.387117i \(-0.873471\pi\)
0.922031 0.387117i \(-0.126529\pi\)
\(740\) 0 0
\(741\) 3.68649i 0.135427i
\(742\) 0 0
\(743\) 49.5585i 1.81812i −0.416660 0.909062i \(-0.636800\pi\)
0.416660 0.909062i \(-0.363200\pi\)
\(744\) 0 0
\(745\) 21.3028 + 5.29299i 0.780475 + 0.193920i
\(746\) 0 0
\(747\) 1.84324 0.0674408
\(748\) 0 0
\(749\) 31.2663i 1.14245i
\(750\) 0 0
\(751\) −41.6619 −1.52026 −0.760132 0.649768i \(-0.774866\pi\)
−0.760132 + 0.649768i \(0.774866\pi\)
\(752\) 0 0
\(753\) 12.9216i 0.470890i
\(754\) 0 0
\(755\) 12.7649 51.3751i 0.464561 1.86973i
\(756\) 0 0
\(757\) −21.9688 −0.798470 −0.399235 0.916849i \(-0.630724\pi\)
−0.399235 + 0.916849i \(0.630724\pi\)
\(758\) 0 0
\(759\) −6.63931 −0.240992
\(760\) 0 0
\(761\) 11.3074 0.409892 0.204946 0.978773i \(-0.434298\pi\)
0.204946 + 0.978773i \(0.434298\pi\)
\(762\) 0 0
\(763\) −12.4489 −0.450681
\(764\) 0 0
\(765\) 16.8371 + 4.18342i 0.608747 + 0.151252i
\(766\) 0 0
\(767\) 10.8371i 0.391305i
\(768\) 0 0
\(769\) −6.19779 −0.223498 −0.111749 0.993736i \(-0.535645\pi\)
−0.111749 + 0.993736i \(0.535645\pi\)
\(770\) 0 0
\(771\) 14.9627i 0.538867i
\(772\) 0 0
\(773\) −30.4391 −1.09482 −0.547409 0.836865i \(-0.684386\pi\)
−0.547409 + 0.836865i \(0.684386\pi\)
\(774\) 0 0
\(775\) 8.83710 + 4.68035i 0.317438 + 0.168123i
\(776\) 0 0
\(777\) 7.20394i 0.258440i
\(778\) 0 0
\(779\) 42.7214i 1.53065i
\(780\) 0 0
\(781\) 35.4551i 1.26868i
\(782\) 0 0
\(783\) 6.49693i 0.232181i
\(784\) 0 0
\(785\) −5.97334 + 24.0410i −0.213198 + 0.858061i
\(786\) 0 0
\(787\) 36.9939 1.31869 0.659344 0.751841i \(-0.270834\pi\)
0.659344 + 0.751841i \(0.270834\pi\)
\(788\) 0 0
\(789\) 13.3607i 0.475653i
\(790\) 0 0
\(791\) 46.2388 1.64406
\(792\) 0 0
\(793\) 5.52973i 0.196367i
\(794\) 0 0
\(795\) 1.57531 6.34017i 0.0558704 0.224863i
\(796\) 0 0
\(797\) −30.7526 −1.08931 −0.544656 0.838659i \(-0.683340\pi\)
−0.544656 + 0.838659i \(0.683340\pi\)
\(798\) 0 0
\(799\) −67.3484 −2.38262
\(800\) 0 0
\(801\) 6.00000 0.212000
\(802\) 0 0
\(803\) −20.0821 −0.708681
\(804\) 0 0
\(805\) −2.72138 + 10.9528i −0.0959162 + 0.386036i
\(806\) 0 0
\(807\) 27.5441i 0.969599i
\(808\) 0 0
\(809\) −5.31965 −0.187029 −0.0935145 0.995618i \(-0.529810\pi\)
−0.0935145 + 0.995618i \(0.529810\pi\)
\(810\) 0 0
\(811\) 49.9253i 1.75312i 0.481297 + 0.876558i \(0.340166\pi\)
−0.481297 + 0.876558i \(0.659834\pi\)
\(812\) 0 0
\(813\) −10.0000 −0.350715
\(814\) 0 0
\(815\) −7.00614 + 28.1978i −0.245414 + 0.987726i
\(816\) 0 0
\(817\) 8.62702i 0.301821i
\(818\) 0 0
\(819\) 2.15676i 0.0753631i
\(820\) 0 0
\(821\) 44.1711i 1.54158i −0.637087 0.770792i \(-0.719861\pi\)
0.637087 0.770792i \(-0.280139\pi\)
\(822\) 0 0
\(823\) 19.0738i 0.664872i 0.943126 + 0.332436i \(0.107871\pi\)
−0.943126 + 0.332436i \(0.892129\pi\)
\(824\) 0 0
\(825\) −7.20394 + 13.6020i −0.250809 + 0.473560i
\(826\) 0 0
\(827\) −43.0349 −1.49647 −0.748235 0.663434i \(-0.769098\pi\)
−0.748235 + 0.663434i \(0.769098\pi\)
\(828\) 0 0
\(829\) 36.0410i 1.25176i −0.779921 0.625878i \(-0.784741\pi\)
0.779921 0.625878i \(-0.215259\pi\)
\(830\) 0 0
\(831\) 4.12556 0.143114
\(832\) 0 0
\(833\) 11.8211i 0.409577i
\(834\) 0 0
\(835\) −26.0410 6.47027i −0.901187 0.223913i
\(836\) 0 0
\(837\) −2.00000 −0.0691301
\(838\) 0 0
\(839\) 43.0349 1.48573 0.742865 0.669441i \(-0.233467\pi\)
0.742865 + 0.669441i \(0.233467\pi\)
\(840\) 0 0
\(841\) −13.2101 −0.455520
\(842\) 0 0
\(843\) 11.3607 0.391283
\(844\) 0 0
\(845\) 6.55148 26.3679i 0.225378 0.907083i
\(846\) 0 0
\(847\) 3.56547i 0.122511i
\(848\) 0 0
\(849\) −10.5236 −0.361169
\(850\) 0 0
\(851\) 6.63931i 0.227593i
\(852\) 0 0
\(853\) −47.1605 −1.61474 −0.807372 0.590043i \(-0.799111\pi\)
−0.807372 + 0.590043i \(0.799111\pi\)
\(854\) 0 0
\(855\) 8.68035 + 2.15676i 0.296862 + 0.0737595i
\(856\) 0 0
\(857\) 12.8059i 0.437441i 0.975788 + 0.218721i \(0.0701884\pi\)
−0.975788 + 0.218721i \(0.929812\pi\)
\(858\) 0 0
\(859\) 14.4703i 0.493719i −0.969051 0.246860i \(-0.920601\pi\)
0.969051 0.246860i \(-0.0793986\pi\)
\(860\) 0 0
\(861\) 24.9939i 0.851788i
\(862\) 0 0
\(863\) 24.3135i 0.827642i −0.910358 0.413821i \(-0.864194\pi\)
0.910358 0.413821i \(-0.135806\pi\)
\(864\) 0 0
\(865\) −9.94214 + 40.0144i −0.338043 + 1.36053i
\(866\) 0 0
\(867\) −43.1978 −1.46707
\(868\) 0 0
\(869\) 47.2860i 1.60407i
\(870\) 0 0
\(871\) −6.30122 −0.213509
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 19.4863 + 17.4596i 0.658756 + 0.590242i
\(876\) 0 0
\(877\) 44.4391 1.50060 0.750300 0.661097i \(-0.229909\pi\)
0.750300 + 0.661097i \(0.229909\pi\)
\(878\) 0 0
\(879\) −32.5958 −1.09943
\(880\) 0 0
\(881\) 6.62702 0.223270 0.111635 0.993749i \(-0.464391\pi\)
0.111635 + 0.993749i \(0.464391\pi\)
\(882\) 0 0
\(883\) 7.31965 0.246326 0.123163 0.992386i \(-0.460696\pi\)
0.123163 + 0.992386i \(0.460696\pi\)
\(884\) 0 0
\(885\) −25.5174 6.34017i −0.857760 0.213123i
\(886\) 0 0
\(887\) 12.0000i 0.402921i −0.979497 0.201460i \(-0.935431\pi\)
0.979497 0.201460i \(-0.0645687\pi\)
\(888\) 0 0
\(889\) −45.2450 −1.51747
\(890\) 0 0
\(891\) 3.07838i 0.103130i
\(892\) 0 0
\(893\) −34.7214 −1.16191
\(894\) 0 0
\(895\) −4.15676 1.03281i −0.138945 0.0345229i
\(896\) 0 0
\(897\) 1.98771i 0.0663678i
\(898\) 0 0
\(899\) 12.9939i 0.433369i
\(900\) 0 0
\(901\) 22.6681i 0.755183i
\(902\) 0 0
\(903\) 5.04718i 0.167960i
\(904\) 0 0
\(905\) 15.1773 + 3.77101i 0.504510 + 0.125353i
\(906\) 0 0
\(907\) −4.48255 −0.148841 −0.0744204 0.997227i \(-0.523711\pi\)
−0.0744204 + 0.997227i \(0.523711\pi\)
\(908\) 0 0
\(909\) 8.34017i 0.276626i
\(910\) 0 0
\(911\) −8.73367 −0.289359 −0.144680 0.989479i \(-0.546215\pi\)
−0.144680 + 0.989479i \(0.546215\pi\)
\(912\) 0 0
\(913\) 5.67420i 0.187789i
\(914\) 0 0
\(915\) 13.0205 + 3.23513i 0.430445 + 0.106950i
\(916\) 0 0
\(917\) 17.4231 0.575361
\(918\) 0 0
\(919\) −18.7337 −0.617967 −0.308983 0.951067i \(-0.599989\pi\)
−0.308983 + 0.951067i \(0.599989\pi\)
\(920\) 0 0
\(921\) 29.9877 0.988129
\(922\) 0 0
\(923\) 10.6147 0.349388
\(924\) 0 0
\(925\) −13.6020 7.20394i −0.447230 0.236864i
\(926\) 0 0
\(927\) 10.3402i 0.339616i
\(928\) 0 0
\(929\) 20.0410 0.657525 0.328763 0.944413i \(-0.393368\pi\)
0.328763 + 0.944413i \(0.393368\pi\)
\(930\) 0 0
\(931\) 6.09436i 0.199735i
\(932\) 0 0
\(933\) −27.2039 −0.890617
\(934\) 0 0
\(935\) 12.8781 51.8310i 0.421160 1.69505i
\(936\) 0 0
\(937\) 45.0472i 1.47163i 0.677184 + 0.735814i \(0.263200\pi\)
−0.677184 + 0.735814i \(0.736800\pi\)
\(938\) 0 0
\(939\) 26.8371i 0.875796i
\(940\) 0 0
\(941\) 19.3751i 0.631609i 0.948824 + 0.315805i \(0.102274\pi\)
−0.948824 + 0.315805i \(0.897726\pi\)
\(942\) 0 0
\(943\) 23.0349i 0.750119i
\(944\) 0 0
\(945\) −5.07838 1.26180i −0.165200 0.0410462i
\(946\) 0 0
\(947\) −6.95282 −0.225936 −0.112968 0.993599i \(-0.536036\pi\)
−0.112968 + 0.993599i \(0.536036\pi\)
\(948\) 0 0
\(949\) 6.01229i 0.195167i
\(950\) 0 0
\(951\) 24.5958 0.797574
\(952\) 0 0
\(953\) 29.2885i 0.948746i −0.880324 0.474373i \(-0.842675\pi\)
0.880324 0.474373i \(-0.157325\pi\)
\(954\) 0 0
\(955\) 3.31965 13.3607i 0.107421 0.432342i
\(956\) 0 0
\(957\) −20.0000 −0.646508
\(958\) 0 0
\(959\) 8.06239 0.260348
\(960\) 0 0
\(961\) −27.0000 −0.870968
\(962\) 0 0
\(963\) 13.3607 0.430542
\(964\) 0 0
\(965\) 31.5174 + 7.83096i 1.01458 + 0.252087i
\(966\) 0 0
\(967\) 47.3874i 1.52387i 0.647651 + 0.761937i \(0.275752\pi\)
−0.647651 + 0.761937i \(0.724248\pi\)
\(968\) 0 0
\(969\) −31.0349 −0.996984
\(970\) 0 0
\(971\) 2.59583i 0.0833040i −0.999132 0.0416520i \(-0.986738\pi\)
0.999132 0.0416520i \(-0.0132621\pi\)
\(972\) 0 0
\(973\) −44.9405 −1.44073
\(974\) 0 0
\(975\) −4.07223 2.15676i −0.130416 0.0690715i
\(976\) 0 0
\(977\) 28.3234i 0.906144i 0.891474 + 0.453072i \(0.149672\pi\)
−0.891474 + 0.453072i \(0.850328\pi\)
\(978\) 0 0
\(979\) 18.4703i 0.590312i
\(980\) 0 0
\(981\) 5.31965i 0.169843i
\(982\) 0 0
\(983\) 1.16290i 0.0370907i −0.999828 0.0185454i \(-0.994096\pi\)
0.999828 0.0185454i \(-0.00590351\pi\)
\(984\) 0 0
\(985\) −13.2618 + 53.3751i −0.422556 + 1.70067i
\(986\) 0 0
\(987\) 20.3135 0.646586
\(988\) 0 0
\(989\) 4.65159i 0.147912i
\(990\) 0 0
\(991\) 12.9528 0.411460 0.205730 0.978609i \(-0.434043\pi\)
0.205730 + 0.978609i \(0.434043\pi\)
\(992\) 0 0
\(993\) 12.3135i 0.390757i
\(994\) 0 0
\(995\) 1.81205 7.29299i 0.0574458 0.231203i
\(996\) 0 0
\(997\) −19.0784 −0.604218 −0.302109 0.953273i \(-0.597691\pi\)
−0.302109 + 0.953273i \(0.597691\pi\)
\(998\) 0 0
\(999\) 3.07838 0.0973956
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3840.2.d.bl.2689.4 6
4.3 odd 2 3840.2.d.bj.2689.4 6
5.4 even 2 3840.2.d.bi.2689.4 6
8.3 odd 2 3840.2.d.bk.2689.3 6
8.5 even 2 3840.2.d.bi.2689.3 6
16.3 odd 4 1920.2.f.p.769.3 yes 6
16.5 even 4 1920.2.f.n.769.1 yes 6
16.11 odd 4 1920.2.f.m.769.4 yes 6
16.13 even 4 1920.2.f.o.769.6 yes 6
20.19 odd 2 3840.2.d.bk.2689.4 6
40.19 odd 2 3840.2.d.bj.2689.3 6
40.29 even 2 inner 3840.2.d.bl.2689.3 6
80.3 even 4 9600.2.a.dt.1.3 3
80.13 odd 4 9600.2.a.dq.1.1 3
80.19 odd 4 1920.2.f.p.769.6 yes 6
80.27 even 4 9600.2.a.du.1.1 3
80.29 even 4 1920.2.f.o.769.3 yes 6
80.37 odd 4 9600.2.a.dp.1.3 3
80.43 even 4 9600.2.a.do.1.3 3
80.53 odd 4 9600.2.a.dv.1.1 3
80.59 odd 4 1920.2.f.m.769.1 6
80.67 even 4 9600.2.a.dr.1.1 3
80.69 even 4 1920.2.f.n.769.4 yes 6
80.77 odd 4 9600.2.a.ds.1.3 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1920.2.f.m.769.1 6 80.59 odd 4
1920.2.f.m.769.4 yes 6 16.11 odd 4
1920.2.f.n.769.1 yes 6 16.5 even 4
1920.2.f.n.769.4 yes 6 80.69 even 4
1920.2.f.o.769.3 yes 6 80.29 even 4
1920.2.f.o.769.6 yes 6 16.13 even 4
1920.2.f.p.769.3 yes 6 16.3 odd 4
1920.2.f.p.769.6 yes 6 80.19 odd 4
3840.2.d.bi.2689.3 6 8.5 even 2
3840.2.d.bi.2689.4 6 5.4 even 2
3840.2.d.bj.2689.3 6 40.19 odd 2
3840.2.d.bj.2689.4 6 4.3 odd 2
3840.2.d.bk.2689.3 6 8.3 odd 2
3840.2.d.bk.2689.4 6 20.19 odd 2
3840.2.d.bl.2689.3 6 40.29 even 2 inner
3840.2.d.bl.2689.4 6 1.1 even 1 trivial
9600.2.a.do.1.3 3 80.43 even 4
9600.2.a.dp.1.3 3 80.37 odd 4
9600.2.a.dq.1.1 3 80.13 odd 4
9600.2.a.dr.1.1 3 80.67 even 4
9600.2.a.ds.1.3 3 80.77 odd 4
9600.2.a.dt.1.3 3 80.3 even 4
9600.2.a.du.1.1 3 80.27 even 4
9600.2.a.dv.1.1 3 80.53 odd 4