Properties

Label 1980.2.y.b.1297.3
Level $1980$
Weight $2$
Character 1980.1297
Analytic conductor $15.810$
Analytic rank $0$
Dimension $8$
CM discriminant -11
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1980,2,Mod(1297,1980)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1980, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([0, 0, 1, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1980.1297");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1980 = 2^{2} \cdot 3^{2} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1980.y (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(15.8103796002\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(i)\)
Coefficient field: 8.0.303595776.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 5x^{6} + 16x^{4} + 45x^{2} + 81 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{23}]\)
Coefficient ring index: \( 2^{2}\cdot 5 \)
Twist minimal: no (minimal twist has level 220)
Sato-Tate group: $\mathrm{U}(1)[D_{4}]$

Embedding invariants

Embedding label 1297.3
Root \(0.396143 + 1.68614i\) of defining polynomial
Character \(\chi\) \(=\) 1980.1297
Dual form 1980.2.y.b.1693.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.469882 - 2.18614i) q^{5} +3.31662 q^{11} +(5.54013 - 5.54013i) q^{23} +(-4.55842 - 2.05446i) q^{25} -0.644810 q^{31} +(2.96014 + 2.96014i) q^{37} +(2.68338 + 2.68338i) q^{47} +7.00000i q^{49} +(9.63325 - 9.63325i) q^{53} +(1.55842 - 7.25061i) q^{55} -11.3321i q^{59} +(-10.7001 - 10.7001i) q^{67} -15.8614 q^{71} -9.86141i q^{89} +(3.68467 + 3.68467i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 18 q^{23} - 2 q^{25} + 14 q^{37} + 48 q^{47} + 24 q^{53} - 22 q^{55} - 26 q^{67} - 12 q^{71} + 34 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1980\mathbb{Z}\right)^\times\).

\(n\) \(397\) \(541\) \(991\) \(1541\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 0.469882 2.18614i 0.210138 0.977672i
\(6\) 0 0
\(7\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 3.31662 1.00000
\(12\) 0 0
\(13\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(18\) 0 0
\(19\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 5.54013 5.54013i 1.15520 1.15520i 0.169701 0.985496i \(-0.445720\pi\)
0.985496 0.169701i \(-0.0542803\pi\)
\(24\) 0 0
\(25\) −4.55842 2.05446i −0.911684 0.410891i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(30\) 0 0
\(31\) −0.644810 −0.115811 −0.0579057 0.998322i \(-0.518442\pi\)
−0.0579057 + 0.998322i \(0.518442\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 2.96014 + 2.96014i 0.486643 + 0.486643i 0.907245 0.420602i \(-0.138181\pi\)
−0.420602 + 0.907245i \(0.638181\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(42\) 0 0
\(43\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 2.68338 + 2.68338i 0.391411 + 0.391411i 0.875190 0.483779i \(-0.160736\pi\)
−0.483779 + 0.875190i \(0.660736\pi\)
\(48\) 0 0
\(49\) 7.00000i 1.00000i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 9.63325 9.63325i 1.32323 1.32323i 0.412082 0.911147i \(-0.364802\pi\)
0.911147 0.412082i \(-0.135198\pi\)
\(54\) 0 0
\(55\) 1.55842 7.25061i 0.210138 0.977672i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 11.3321i 1.47531i −0.675178 0.737655i \(-0.735933\pi\)
0.675178 0.737655i \(-0.264067\pi\)
\(60\) 0 0
\(61\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) −10.7001 10.7001i −1.30723 1.30723i −0.923408 0.383819i \(-0.874609\pi\)
−0.383819 0.923408i \(-0.625391\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −15.8614 −1.88240 −0.941201 0.337846i \(-0.890302\pi\)
−0.941201 + 0.337846i \(0.890302\pi\)
\(72\) 0 0
\(73\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 9.86141i 1.04531i −0.852545 0.522654i \(-0.824942\pi\)
0.852545 0.522654i \(-0.175058\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 3.68467 + 3.68467i 0.374122 + 0.374122i 0.868976 0.494854i \(-0.164778\pi\)
−0.494854 + 0.868976i \(0.664778\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(102\) 0 0
\(103\) 11.9499 11.9499i 1.17746 1.17746i 0.197066 0.980390i \(-0.436859\pi\)
0.980390 0.197066i \(-0.0631413\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(108\) 0 0
\(109\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 6.10856 6.10856i 0.574645 0.574645i −0.358778 0.933423i \(-0.616806\pi\)
0.933423 + 0.358778i \(0.116806\pi\)
\(114\) 0 0
\(115\) −9.50830 14.7147i −0.886653 1.37215i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 11.0000 1.00000
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −6.63325 + 9.00000i −0.593296 + 0.804984i
\(126\) 0 0
\(127\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −2.19985 2.19985i −0.187946 0.187946i 0.606861 0.794808i \(-0.292428\pi\)
−0.794808 + 0.606861i \(0.792428\pi\)
\(138\) 0 0
\(139\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(150\) 0 0
\(151\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −0.302985 + 1.40965i −0.0243363 + 0.113225i
\(156\) 0 0
\(157\) 11.0052 + 11.0052i 0.878309 + 0.878309i 0.993360 0.115050i \(-0.0367030\pi\)
−0.115050 + 0.993360i \(0.536703\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 1.94987 1.94987i 0.152726 0.152726i −0.626608 0.779334i \(-0.715557\pi\)
0.779334 + 0.626608i \(0.215557\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(168\) 0 0
\(169\) 13.0000i 1.00000i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 3.86141i 0.288615i 0.989533 + 0.144308i \(0.0460955\pi\)
−0.989533 + 0.144308i \(0.953905\pi\)
\(180\) 0 0
\(181\) 16.6757 1.23949 0.619747 0.784801i \(-0.287235\pi\)
0.619747 + 0.784801i \(0.287235\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 7.86219 5.08036i 0.578039 0.373515i
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −24.5986 −1.77989 −0.889945 0.456068i \(-0.849257\pi\)
−0.889945 + 0.456068i \(0.849257\pi\)
\(192\) 0 0
\(193\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(198\) 0 0
\(199\) 19.8997i 1.41066i 0.708881 + 0.705328i \(0.249200\pi\)
−0.708881 + 0.705328i \(0.750800\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) −4.77985 + 4.77985i −0.320082 + 0.320082i −0.848799 0.528716i \(-0.822674\pi\)
0.528716 + 0.848799i \(0.322674\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(228\) 0 0
\(229\) 19.2549i 1.27240i 0.771523 + 0.636201i \(0.219495\pi\)
−0.771523 + 0.636201i \(0.780505\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(234\) 0 0
\(235\) 7.12711 4.60537i 0.464921 0.300421i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(240\) 0 0
\(241\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 15.3030 + 3.28917i 0.977672 + 0.210138i
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 27.8614 1.75860 0.879298 0.476272i \(-0.158012\pi\)
0.879298 + 0.476272i \(0.158012\pi\)
\(252\) 0 0
\(253\) 18.3745 18.3745i 1.15520 1.15520i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 4.26650 + 4.26650i 0.266137 + 0.266137i 0.827541 0.561405i \(-0.189739\pi\)
−0.561405 + 0.827541i \(0.689739\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(264\) 0 0
\(265\) −16.5331 25.5861i −1.01562 1.57174i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 13.2665i 0.808873i 0.914566 + 0.404436i \(0.132532\pi\)
−0.914566 + 0.404436i \(0.867468\pi\)
\(270\) 0 0
\(271\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −15.1186 6.81386i −0.911684 0.410891i
\(276\) 0 0
\(277\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(282\) 0 0
\(283\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 17.0000i 1.00000i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(294\) 0 0
\(295\) −24.7735 5.32473i −1.44237 0.310018i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −12.0000 −0.680458 −0.340229 0.940343i \(-0.610505\pi\)
−0.340229 + 0.940343i \(0.610505\pi\)
\(312\) 0 0
\(313\) −18.4401 + 18.4401i −1.04230 + 1.04230i −0.0432311 + 0.999065i \(0.513765\pi\)
−0.999065 + 0.0432311i \(0.986235\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 20.7984 + 20.7984i 1.16816 + 1.16816i 0.982642 + 0.185514i \(0.0593950\pi\)
0.185514 + 0.982642i \(0.440605\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −35.2858 −1.93948 −0.969742 0.244131i \(-0.921497\pi\)
−0.969742 + 0.244131i \(0.921497\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −28.4198 + 18.3642i −1.55274 + 1.00334i
\(336\) 0 0
\(337\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −2.13859 −0.115811
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(348\) 0 0
\(349\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 23.2712 23.2712i 1.23860 1.23860i 0.278024 0.960574i \(-0.410320\pi\)
0.960574 0.278024i \(-0.0896796\pi\)
\(354\) 0 0
\(355\) −7.45299 + 34.6753i −0.395564 + 1.84037i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(360\) 0 0
\(361\) −19.0000 −1.00000
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 0.0244206 + 0.0244206i 0.00127475 + 0.00127475i 0.707744 0.706469i \(-0.249713\pi\)
−0.706469 + 0.707744i \(0.749713\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 36.5754i 1.87875i 0.342885 + 0.939377i \(0.388596\pi\)
−0.342885 + 0.939377i \(0.611404\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −4.87220 + 4.87220i −0.248958 + 0.248958i −0.820543 0.571585i \(-0.806329\pi\)
0.571585 + 0.820543i \(0.306329\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 31.2318i 1.58352i 0.610835 + 0.791758i \(0.290834\pi\)
−0.610835 + 0.791758i \(0.709166\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 18.8997 + 18.8997i 0.948551 + 0.948551i 0.998740 0.0501886i \(-0.0159822\pi\)
−0.0501886 + 0.998740i \(0.515982\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −26.5330 −1.32499 −0.662497 0.749064i \(-0.730503\pi\)
−0.662497 + 0.749064i \(0.730503\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 9.81766 + 9.81766i 0.486643 + 0.486643i
\(408\) 0 0
\(409\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 24.0000i 1.17248i −0.810139 0.586238i \(-0.800608\pi\)
0.810139 0.586238i \(-0.199392\pi\)
\(420\) 0 0
\(421\) −39.7995 −1.93971 −0.969854 0.243685i \(-0.921644\pi\)
−0.969854 + 0.243685i \(0.921644\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(432\) 0 0
\(433\) 25.6950 25.6950i 1.23482 1.23482i 0.272736 0.962089i \(-0.412071\pi\)
0.962089 0.272736i \(-0.0879285\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −21.0201 + 21.0201i −0.998695 + 0.998695i −0.999999 0.00130426i \(-0.999585\pi\)
0.00130426 + 0.999999i \(0.499585\pi\)
\(444\) 0 0
\(445\) −21.5584 4.63370i −1.02197 0.219658i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 33.8614i 1.59802i 0.601319 + 0.799009i \(0.294642\pi\)
−0.601319 + 0.799009i \(0.705358\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(462\) 0 0
\(463\) 14.7143 14.7143i 0.683830 0.683830i −0.277031 0.960861i \(-0.589350\pi\)
0.960861 + 0.277031i \(0.0893503\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 9.93984 + 9.93984i 0.459961 + 0.459961i 0.898642 0.438682i \(-0.144554\pi\)
−0.438682 + 0.898642i \(0.644554\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 9.78658 6.32386i 0.444386 0.287151i
\(486\) 0 0
\(487\) 14.6654 + 14.6654i 0.664554 + 0.664554i 0.956450 0.291896i \(-0.0942860\pi\)
−0.291896 + 0.956450i \(0.594286\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 19.8997i 0.890835i 0.895323 + 0.445418i \(0.146945\pi\)
−0.895323 + 0.445418i \(0.853055\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 40.6295i 1.80087i 0.434992 + 0.900434i \(0.356751\pi\)
−0.434992 + 0.900434i \(0.643249\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −20.5091 31.7391i −0.903738 1.39859i
\(516\) 0 0
\(517\) 8.89975 + 8.89975i 0.391411 + 0.391411i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 8.56768 0.375357 0.187678 0.982231i \(-0.439904\pi\)
0.187678 + 0.982231i \(0.439904\pi\)
\(522\) 0 0
\(523\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) 38.3861i 1.66896i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 23.2164i 1.00000i
\(540\) 0 0
\(541\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(564\) 0 0
\(565\) −10.4839 16.2245i −0.441060 0.682569i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(570\) 0 0
\(571\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −36.6362 + 13.8723i −1.52784 + 0.578515i
\(576\) 0 0
\(577\) 30.2806 + 30.2806i 1.26060 + 1.26060i 0.950803 + 0.309797i \(0.100261\pi\)
0.309797 + 0.950803i \(0.399739\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 31.9499 31.9499i 1.32323 1.32323i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −27.3166 27.3166i −1.12748 1.12748i −0.990586 0.136892i \(-0.956289\pi\)
−0.136892 0.990586i \(-0.543711\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 36.0000i 1.47092i 0.677568 + 0.735460i \(0.263034\pi\)
−0.677568 + 0.735460i \(0.736966\pi\)
\(600\) 0 0
\(601\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 5.16870 24.0475i 0.210138 0.977672i
\(606\) 0 0
\(607\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 34.2665 + 34.2665i 1.37952 + 1.37952i 0.845428 + 0.534089i \(0.179345\pi\)
0.534089 + 0.845428i \(0.320655\pi\)
\(618\) 0 0
\(619\) 43.5842i 1.75180i 0.482495 + 0.875899i \(0.339731\pi\)
−0.482495 + 0.875899i \(0.660269\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 16.5584 + 18.7302i 0.662337 + 0.749206i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) 39.5842 1.57582 0.787911 0.615789i \(-0.211162\pi\)
0.787911 + 0.615789i \(0.211162\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 27.3630 1.08077 0.540386 0.841417i \(-0.318278\pi\)
0.540386 + 0.841417i \(0.318278\pi\)
\(642\) 0 0
\(643\) 22.5407 22.5407i 0.888917 0.888917i −0.105502 0.994419i \(-0.533645\pi\)
0.994419 + 0.105502i \(0.0336450\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −24.5075 24.5075i −0.963490 0.963490i 0.0358667 0.999357i \(-0.488581\pi\)
−0.999357 + 0.0358667i \(0.988581\pi\)
\(648\) 0 0
\(649\) 37.5842i 1.47531i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −35.4406 + 35.4406i −1.38690 + 1.38690i −0.555147 + 0.831753i \(0.687338\pi\)
−0.831753 + 0.555147i \(0.812662\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(660\) 0 0
\(661\) 49.5842 1.92860 0.964301 0.264807i \(-0.0853084\pi\)
0.964301 + 0.264807i \(0.0853084\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 11.2164 11.2164i 0.429183 0.429183i −0.459167 0.888350i \(-0.651852\pi\)
0.888350 + 0.459167i \(0.151852\pi\)
\(684\) 0 0
\(685\) −5.84286 + 3.77552i −0.223244 + 0.144255i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) −51.5842 −1.96236 −0.981178 0.193105i \(-0.938144\pi\)
−0.981178 + 0.193105i \(0.938144\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 33.5842i 1.26128i 0.776075 + 0.630641i \(0.217208\pi\)
−0.776075 + 0.630641i \(0.782792\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −3.57233 + 3.57233i −0.133785 + 0.133785i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 39.8614i 1.48658i −0.668970 0.743290i \(-0.733264\pi\)
0.668970 0.743290i \(-0.266736\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) −38.0206 38.0206i −1.41011 1.41011i −0.758901 0.651206i \(-0.774263\pi\)
−0.651206 0.758901i \(-0.725737\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −35.4883 35.4883i −1.30723 1.30723i
\(738\) 0 0
\(739\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) −31.5842 −1.15252 −0.576262 0.817265i \(-0.695489\pi\)
−0.576262 + 0.817265i \(0.695489\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 38.8997 + 38.8997i 1.41384 + 1.41384i 0.723269 + 0.690567i \(0.242639\pi\)
0.690567 + 0.723269i \(0.257361\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −20.3668 + 20.3668i −0.732541 + 0.732541i −0.971123 0.238581i \(-0.923318\pi\)
0.238581 + 0.971123i \(0.423318\pi\)
\(774\) 0 0
\(775\) 2.93932 + 1.32473i 0.105583 + 0.0475859i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) −52.6063 −1.88240
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 29.2300 18.8877i 1.04326 0.674132i
\(786\) 0 0
\(787\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 37.9610 + 37.9610i 1.34465 + 1.34465i 0.891368 + 0.453279i \(0.149746\pi\)
0.453279 + 0.891368i \(0.350254\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(810\) 0 0
\(811\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −3.34649 5.17891i −0.117222 0.181409i
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(822\) 0 0
\(823\) 29.3553 29.3553i 1.02326 1.02326i 0.0235383 0.999723i \(-0.492507\pi\)
0.999723 0.0235383i \(-0.00749316\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(828\) 0 0
\(829\) 57.5842i 1.99998i −0.00416865 0.999991i \(-0.501327\pi\)
0.00416865 0.999991i \(-0.498673\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 20.7297i 0.715669i −0.933785 0.357834i \(-0.883515\pi\)
0.933785 0.357834i \(-0.116485\pi\)
\(840\) 0 0
\(841\) −29.0000 −1.00000
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −28.4198 6.10846i −0.977672 0.210138i
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 32.7991 1.12434
\(852\) 0 0
\(853\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(858\) 0 0
\(859\) 27.5842i 0.941161i −0.882357 0.470581i \(-0.844044\pi\)
0.882357 0.470581i \(-0.155956\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 41.2164 41.2164i 1.40302 1.40302i 0.612727 0.790295i \(-0.290072\pi\)
0.790295 0.612727i \(-0.209928\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 14.1386 0.476341 0.238171 0.971223i \(-0.423452\pi\)
0.238171 + 0.971223i \(0.423452\pi\)
\(882\) 0 0
\(883\) −18.0501 + 18.0501i −0.607435 + 0.607435i −0.942275 0.334840i \(-0.891318\pi\)
0.334840 + 0.942275i \(0.391318\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 8.44158 + 1.81441i 0.282171 + 0.0606489i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 7.83561 36.4554i 0.260464 1.21182i
\(906\) 0 0
\(907\) −25.8496 25.8496i −0.858323 0.858323i 0.132818 0.991140i \(-0.457597\pi\)
−0.991140 + 0.132818i \(0.957597\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 6.63325 0.219769 0.109885 0.993944i \(-0.464952\pi\)
0.109885 + 0.993944i \(0.464952\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) −7.41208 19.5750i −0.243708 0.643623i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 53.0660i 1.74104i −0.492134 0.870519i \(-0.663783\pi\)
0.492134 0.870519i \(-0.336217\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −43.1806 43.1806i −1.40318 1.40318i −0.789741 0.613441i \(-0.789785\pi\)
−0.613441 0.789741i \(-0.710215\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(954\) 0 0
\(955\) −11.5584 + 53.7759i −0.374022 + 1.74015i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −30.5842 −0.986588
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 60.5292 1.94247 0.971237 0.238114i \(-0.0765291\pi\)
0.971237 + 0.238114i \(0.0765291\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −28.7601 28.7601i −0.920116 0.920116i 0.0769208 0.997037i \(-0.475491\pi\)
−0.997037 + 0.0769208i \(0.975491\pi\)
\(978\) 0 0
\(979\) 32.7066i 1.04531i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 34.2519 34.2519i 1.09247 1.09247i 0.0972017 0.995265i \(-0.469011\pi\)
0.995265 0.0972017i \(-0.0309892\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 59.6992 1.89641 0.948205 0.317660i \(-0.102897\pi\)
0.948205 + 0.317660i \(0.102897\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 43.5036 + 9.35053i 1.37916 + 0.296432i
\(996\) 0 0
\(997\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1980.2.y.b.1297.3 8
3.2 odd 2 220.2.k.b.197.1 yes 8
5.3 odd 4 inner 1980.2.y.b.1693.3 8
11.10 odd 2 CM 1980.2.y.b.1297.3 8
12.11 even 2 880.2.bd.h.417.4 8
15.2 even 4 1100.2.k.b.593.4 8
15.8 even 4 220.2.k.b.153.1 8
15.14 odd 2 1100.2.k.b.857.4 8
33.32 even 2 220.2.k.b.197.1 yes 8
55.43 even 4 inner 1980.2.y.b.1693.3 8
60.23 odd 4 880.2.bd.h.593.4 8
132.131 odd 2 880.2.bd.h.417.4 8
165.32 odd 4 1100.2.k.b.593.4 8
165.98 odd 4 220.2.k.b.153.1 8
165.164 even 2 1100.2.k.b.857.4 8
660.263 even 4 880.2.bd.h.593.4 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
220.2.k.b.153.1 8 15.8 even 4
220.2.k.b.153.1 8 165.98 odd 4
220.2.k.b.197.1 yes 8 3.2 odd 2
220.2.k.b.197.1 yes 8 33.32 even 2
880.2.bd.h.417.4 8 12.11 even 2
880.2.bd.h.417.4 8 132.131 odd 2
880.2.bd.h.593.4 8 60.23 odd 4
880.2.bd.h.593.4 8 660.263 even 4
1100.2.k.b.593.4 8 15.2 even 4
1100.2.k.b.593.4 8 165.32 odd 4
1100.2.k.b.857.4 8 15.14 odd 2
1100.2.k.b.857.4 8 165.164 even 2
1980.2.y.b.1297.3 8 1.1 even 1 trivial
1980.2.y.b.1297.3 8 11.10 odd 2 CM
1980.2.y.b.1693.3 8 5.3 odd 4 inner
1980.2.y.b.1693.3 8 55.43 even 4 inner