Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [1980,2,Mod(1297,1980)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1980, base_ring=CyclotomicField(4))
chi = DirichletCharacter(H, H._module([0, 0, 1, 2]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("1980.1297");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 1980 = 2^{2} \cdot 3^{2} \cdot 5 \cdot 11 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 1980.y (of order \(4\), degree \(2\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(15.8103796002\) |
Analytic rank: | \(0\) |
Dimension: | \(8\) |
Relative dimension: | \(4\) over \(\Q(i)\) |
Coefficient field: | 8.0.303595776.1 |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: | \( x^{8} + 5x^{6} + 16x^{4} + 45x^{2} + 81 \) |
Coefficient ring: | \(\Z[a_1, \ldots, a_{23}]\) |
Coefficient ring index: | \( 2^{2}\cdot 5 \) |
Twist minimal: | no (minimal twist has level 220) |
Sato-Tate group: | $\mathrm{U}(1)[D_{4}]$ |
Embedding invariants
Embedding label | 1297.3 | ||
Root | \(0.396143 + 1.68614i\) of defining polynomial | ||
Character | \(\chi\) | \(=\) | 1980.1297 |
Dual form | 1980.2.y.b.1693.3 |
$q$-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1980\mathbb{Z}\right)^\times\).
\(n\) | \(397\) | \(541\) | \(991\) | \(1541\) |
\(\chi(n)\) | \(e\left(\frac{1}{4}\right)\) | \(-1\) | \(1\) | \(1\) |
Coefficient data
For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).
(See \(a_n\) instead)
(See \(a_n\) instead)
(See \(a_n\) instead)
(See only \(a_p\))
(See only \(a_p\))
(See only \(a_p\))
\(n\) | \(a_n\) | \(a_n / n^{(k-1)/2}\) | \( \alpha_n \) | \( \theta_n \) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
\(p\) | \(a_p\) | \(a_p / p^{(k-1)/2}\) | \( \alpha_p\) | \( \theta_p \) | ||||||
\(2\) | 0 | 0 | ||||||||
\(3\) | 0 | 0 | ||||||||
\(4\) | 0 | 0 | ||||||||
\(5\) | 0.469882 | − | 2.18614i | 0.210138 | − | 0.977672i | ||||
\(6\) | 0 | 0 | ||||||||
\(7\) | 0 | 0 | −0.707107 | − | 0.707107i | \(-0.750000\pi\) | ||||
0.707107 | + | 0.707107i | \(0.250000\pi\) | |||||||
\(8\) | 0 | 0 | ||||||||
\(9\) | 0 | 0 | ||||||||
\(10\) | 0 | 0 | ||||||||
\(11\) | 3.31662 | 1.00000 | ||||||||
\(12\) | 0 | 0 | ||||||||
\(13\) | 0 | 0 | 0.707107 | − | 0.707107i | \(-0.250000\pi\) | ||||
−0.707107 | + | 0.707107i | \(0.750000\pi\) | |||||||
\(14\) | 0 | 0 | ||||||||
\(15\) | 0 | 0 | ||||||||
\(16\) | 0 | 0 | ||||||||
\(17\) | 0 | 0 | −0.707107 | − | 0.707107i | \(-0.750000\pi\) | ||||
0.707107 | + | 0.707107i | \(0.250000\pi\) | |||||||
\(18\) | 0 | 0 | ||||||||
\(19\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(20\) | 0 | 0 | ||||||||
\(21\) | 0 | 0 | ||||||||
\(22\) | 0 | 0 | ||||||||
\(23\) | 5.54013 | − | 5.54013i | 1.15520 | − | 1.15520i | 0.169701 | − | 0.985496i | \(-0.445720\pi\) |
0.985496 | − | 0.169701i | \(-0.0542803\pi\) | |||||||
\(24\) | 0 | 0 | ||||||||
\(25\) | −4.55842 | − | 2.05446i | −0.911684 | − | 0.410891i | ||||
\(26\) | 0 | 0 | ||||||||
\(27\) | 0 | 0 | ||||||||
\(28\) | 0 | 0 | ||||||||
\(29\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(30\) | 0 | 0 | ||||||||
\(31\) | −0.644810 | −0.115811 | −0.0579057 | − | 0.998322i | \(-0.518442\pi\) | ||||
−0.0579057 | + | 0.998322i | \(0.518442\pi\) | |||||||
\(32\) | 0 | 0 | ||||||||
\(33\) | 0 | 0 | ||||||||
\(34\) | 0 | 0 | ||||||||
\(35\) | 0 | 0 | ||||||||
\(36\) | 0 | 0 | ||||||||
\(37\) | 2.96014 | + | 2.96014i | 0.486643 | + | 0.486643i | 0.907245 | − | 0.420602i | \(-0.138181\pi\) |
−0.420602 | + | 0.907245i | \(0.638181\pi\) | |||||||
\(38\) | 0 | 0 | ||||||||
\(39\) | 0 | 0 | ||||||||
\(40\) | 0 | 0 | ||||||||
\(41\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(42\) | 0 | 0 | ||||||||
\(43\) | 0 | 0 | 0.707107 | − | 0.707107i | \(-0.250000\pi\) | ||||
−0.707107 | + | 0.707107i | \(0.750000\pi\) | |||||||
\(44\) | 0 | 0 | ||||||||
\(45\) | 0 | 0 | ||||||||
\(46\) | 0 | 0 | ||||||||
\(47\) | 2.68338 | + | 2.68338i | 0.391411 | + | 0.391411i | 0.875190 | − | 0.483779i | \(-0.160736\pi\) |
−0.483779 | + | 0.875190i | \(0.660736\pi\) | |||||||
\(48\) | 0 | 0 | ||||||||
\(49\) | 7.00000i | 1.00000i | ||||||||
\(50\) | 0 | 0 | ||||||||
\(51\) | 0 | 0 | ||||||||
\(52\) | 0 | 0 | ||||||||
\(53\) | 9.63325 | − | 9.63325i | 1.32323 | − | 1.32323i | 0.412082 | − | 0.911147i | \(-0.364802\pi\) |
0.911147 | − | 0.412082i | \(-0.135198\pi\) | |||||||
\(54\) | 0 | 0 | ||||||||
\(55\) | 1.55842 | − | 7.25061i | 0.210138 | − | 0.977672i | ||||
\(56\) | 0 | 0 | ||||||||
\(57\) | 0 | 0 | ||||||||
\(58\) | 0 | 0 | ||||||||
\(59\) | − | 11.3321i | − | 1.47531i | −0.675178 | − | 0.737655i | \(-0.735933\pi\) | ||
0.675178 | − | 0.737655i | \(-0.264067\pi\) | |||||||
\(60\) | 0 | 0 | ||||||||
\(61\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(62\) | 0 | 0 | ||||||||
\(63\) | 0 | 0 | ||||||||
\(64\) | 0 | 0 | ||||||||
\(65\) | 0 | 0 | ||||||||
\(66\) | 0 | 0 | ||||||||
\(67\) | −10.7001 | − | 10.7001i | −1.30723 | − | 1.30723i | −0.923408 | − | 0.383819i | \(-0.874609\pi\) |
−0.383819 | − | 0.923408i | \(-0.625391\pi\) | |||||||
\(68\) | 0 | 0 | ||||||||
\(69\) | 0 | 0 | ||||||||
\(70\) | 0 | 0 | ||||||||
\(71\) | −15.8614 | −1.88240 | −0.941201 | − | 0.337846i | \(-0.890302\pi\) | ||||
−0.941201 | + | 0.337846i | \(0.890302\pi\) | |||||||
\(72\) | 0 | 0 | ||||||||
\(73\) | 0 | 0 | 0.707107 | − | 0.707107i | \(-0.250000\pi\) | ||||
−0.707107 | + | 0.707107i | \(0.750000\pi\) | |||||||
\(74\) | 0 | 0 | ||||||||
\(75\) | 0 | 0 | ||||||||
\(76\) | 0 | 0 | ||||||||
\(77\) | 0 | 0 | ||||||||
\(78\) | 0 | 0 | ||||||||
\(79\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(80\) | 0 | 0 | ||||||||
\(81\) | 0 | 0 | ||||||||
\(82\) | 0 | 0 | ||||||||
\(83\) | 0 | 0 | 0.707107 | − | 0.707107i | \(-0.250000\pi\) | ||||
−0.707107 | + | 0.707107i | \(0.750000\pi\) | |||||||
\(84\) | 0 | 0 | ||||||||
\(85\) | 0 | 0 | ||||||||
\(86\) | 0 | 0 | ||||||||
\(87\) | 0 | 0 | ||||||||
\(88\) | 0 | 0 | ||||||||
\(89\) | − | 9.86141i | − | 1.04531i | −0.852545 | − | 0.522654i | \(-0.824942\pi\) | ||
0.852545 | − | 0.522654i | \(-0.175058\pi\) | |||||||
\(90\) | 0 | 0 | ||||||||
\(91\) | 0 | 0 | ||||||||
\(92\) | 0 | 0 | ||||||||
\(93\) | 0 | 0 | ||||||||
\(94\) | 0 | 0 | ||||||||
\(95\) | 0 | 0 | ||||||||
\(96\) | 0 | 0 | ||||||||
\(97\) | 3.68467 | + | 3.68467i | 0.374122 | + | 0.374122i | 0.868976 | − | 0.494854i | \(-0.164778\pi\) |
−0.494854 | + | 0.868976i | \(0.664778\pi\) | |||||||
\(98\) | 0 | 0 | ||||||||
\(99\) | 0 | 0 | ||||||||
\(100\) | 0 | 0 | ||||||||
\(101\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(102\) | 0 | 0 | ||||||||
\(103\) | 11.9499 | − | 11.9499i | 1.17746 | − | 1.17746i | 0.197066 | − | 0.980390i | \(-0.436859\pi\) |
0.980390 | − | 0.197066i | \(-0.0631413\pi\) | |||||||
\(104\) | 0 | 0 | ||||||||
\(105\) | 0 | 0 | ||||||||
\(106\) | 0 | 0 | ||||||||
\(107\) | 0 | 0 | −0.707107 | − | 0.707107i | \(-0.750000\pi\) | ||||
0.707107 | + | 0.707107i | \(0.250000\pi\) | |||||||
\(108\) | 0 | 0 | ||||||||
\(109\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(110\) | 0 | 0 | ||||||||
\(111\) | 0 | 0 | ||||||||
\(112\) | 0 | 0 | ||||||||
\(113\) | 6.10856 | − | 6.10856i | 0.574645 | − | 0.574645i | −0.358778 | − | 0.933423i | \(-0.616806\pi\) |
0.933423 | + | 0.358778i | \(0.116806\pi\) | |||||||
\(114\) | 0 | 0 | ||||||||
\(115\) | −9.50830 | − | 14.7147i | −0.886653 | − | 1.37215i | ||||
\(116\) | 0 | 0 | ||||||||
\(117\) | 0 | 0 | ||||||||
\(118\) | 0 | 0 | ||||||||
\(119\) | 0 | 0 | ||||||||
\(120\) | 0 | 0 | ||||||||
\(121\) | 11.0000 | 1.00000 | ||||||||
\(122\) | 0 | 0 | ||||||||
\(123\) | 0 | 0 | ||||||||
\(124\) | 0 | 0 | ||||||||
\(125\) | −6.63325 | + | 9.00000i | −0.593296 | + | 0.804984i | ||||
\(126\) | 0 | 0 | ||||||||
\(127\) | 0 | 0 | −0.707107 | − | 0.707107i | \(-0.750000\pi\) | ||||
0.707107 | + | 0.707107i | \(0.250000\pi\) | |||||||
\(128\) | 0 | 0 | ||||||||
\(129\) | 0 | 0 | ||||||||
\(130\) | 0 | 0 | ||||||||
\(131\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(132\) | 0 | 0 | ||||||||
\(133\) | 0 | 0 | ||||||||
\(134\) | 0 | 0 | ||||||||
\(135\) | 0 | 0 | ||||||||
\(136\) | 0 | 0 | ||||||||
\(137\) | −2.19985 | − | 2.19985i | −0.187946 | − | 0.187946i | 0.606861 | − | 0.794808i | \(-0.292428\pi\) |
−0.794808 | + | 0.606861i | \(0.792428\pi\) | |||||||
\(138\) | 0 | 0 | ||||||||
\(139\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(140\) | 0 | 0 | ||||||||
\(141\) | 0 | 0 | ||||||||
\(142\) | 0 | 0 | ||||||||
\(143\) | 0 | 0 | ||||||||
\(144\) | 0 | 0 | ||||||||
\(145\) | 0 | 0 | ||||||||
\(146\) | 0 | 0 | ||||||||
\(147\) | 0 | 0 | ||||||||
\(148\) | 0 | 0 | ||||||||
\(149\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(150\) | 0 | 0 | ||||||||
\(151\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(152\) | 0 | 0 | ||||||||
\(153\) | 0 | 0 | ||||||||
\(154\) | 0 | 0 | ||||||||
\(155\) | −0.302985 | + | 1.40965i | −0.0243363 | + | 0.113225i | ||||
\(156\) | 0 | 0 | ||||||||
\(157\) | 11.0052 | + | 11.0052i | 0.878309 | + | 0.878309i | 0.993360 | − | 0.115050i | \(-0.0367030\pi\) |
−0.115050 | + | 0.993360i | \(0.536703\pi\) | |||||||
\(158\) | 0 | 0 | ||||||||
\(159\) | 0 | 0 | ||||||||
\(160\) | 0 | 0 | ||||||||
\(161\) | 0 | 0 | ||||||||
\(162\) | 0 | 0 | ||||||||
\(163\) | 1.94987 | − | 1.94987i | 0.152726 | − | 0.152726i | −0.626608 | − | 0.779334i | \(-0.715557\pi\) |
0.779334 | + | 0.626608i | \(0.215557\pi\) | |||||||
\(164\) | 0 | 0 | ||||||||
\(165\) | 0 | 0 | ||||||||
\(166\) | 0 | 0 | ||||||||
\(167\) | 0 | 0 | −0.707107 | − | 0.707107i | \(-0.750000\pi\) | ||||
0.707107 | + | 0.707107i | \(0.250000\pi\) | |||||||
\(168\) | 0 | 0 | ||||||||
\(169\) | − | 13.0000i | − | 1.00000i | ||||||
\(170\) | 0 | 0 | ||||||||
\(171\) | 0 | 0 | ||||||||
\(172\) | 0 | 0 | ||||||||
\(173\) | 0 | 0 | 0.707107 | − | 0.707107i | \(-0.250000\pi\) | ||||
−0.707107 | + | 0.707107i | \(0.750000\pi\) | |||||||
\(174\) | 0 | 0 | ||||||||
\(175\) | 0 | 0 | ||||||||
\(176\) | 0 | 0 | ||||||||
\(177\) | 0 | 0 | ||||||||
\(178\) | 0 | 0 | ||||||||
\(179\) | 3.86141i | 0.288615i | 0.989533 | + | 0.144308i | \(0.0460955\pi\) | ||||
−0.989533 | + | 0.144308i | \(0.953905\pi\) | |||||||
\(180\) | 0 | 0 | ||||||||
\(181\) | 16.6757 | 1.23949 | 0.619747 | − | 0.784801i | \(-0.287235\pi\) | ||||
0.619747 | + | 0.784801i | \(0.287235\pi\) | |||||||
\(182\) | 0 | 0 | ||||||||
\(183\) | 0 | 0 | ||||||||
\(184\) | 0 | 0 | ||||||||
\(185\) | 7.86219 | − | 5.08036i | 0.578039 | − | 0.373515i | ||||
\(186\) | 0 | 0 | ||||||||
\(187\) | 0 | 0 | ||||||||
\(188\) | 0 | 0 | ||||||||
\(189\) | 0 | 0 | ||||||||
\(190\) | 0 | 0 | ||||||||
\(191\) | −24.5986 | −1.77989 | −0.889945 | − | 0.456068i | \(-0.849257\pi\) | ||||
−0.889945 | + | 0.456068i | \(0.849257\pi\) | |||||||
\(192\) | 0 | 0 | ||||||||
\(193\) | 0 | 0 | 0.707107 | − | 0.707107i | \(-0.250000\pi\) | ||||
−0.707107 | + | 0.707107i | \(0.750000\pi\) | |||||||
\(194\) | 0 | 0 | ||||||||
\(195\) | 0 | 0 | ||||||||
\(196\) | 0 | 0 | ||||||||
\(197\) | 0 | 0 | −0.707107 | − | 0.707107i | \(-0.750000\pi\) | ||||
0.707107 | + | 0.707107i | \(0.250000\pi\) | |||||||
\(198\) | 0 | 0 | ||||||||
\(199\) | 19.8997i | 1.41066i | 0.708881 | + | 0.705328i | \(0.249200\pi\) | ||||
−0.708881 | + | 0.705328i | \(0.750800\pi\) | |||||||
\(200\) | 0 | 0 | ||||||||
\(201\) | 0 | 0 | ||||||||
\(202\) | 0 | 0 | ||||||||
\(203\) | 0 | 0 | ||||||||
\(204\) | 0 | 0 | ||||||||
\(205\) | 0 | 0 | ||||||||
\(206\) | 0 | 0 | ||||||||
\(207\) | 0 | 0 | ||||||||
\(208\) | 0 | 0 | ||||||||
\(209\) | 0 | 0 | ||||||||
\(210\) | 0 | 0 | ||||||||
\(211\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(212\) | 0 | 0 | ||||||||
\(213\) | 0 | 0 | ||||||||
\(214\) | 0 | 0 | ||||||||
\(215\) | 0 | 0 | ||||||||
\(216\) | 0 | 0 | ||||||||
\(217\) | 0 | 0 | ||||||||
\(218\) | 0 | 0 | ||||||||
\(219\) | 0 | 0 | ||||||||
\(220\) | 0 | 0 | ||||||||
\(221\) | 0 | 0 | ||||||||
\(222\) | 0 | 0 | ||||||||
\(223\) | −4.77985 | + | 4.77985i | −0.320082 | + | 0.320082i | −0.848799 | − | 0.528716i | \(-0.822674\pi\) |
0.528716 | + | 0.848799i | \(0.322674\pi\) | |||||||
\(224\) | 0 | 0 | ||||||||
\(225\) | 0 | 0 | ||||||||
\(226\) | 0 | 0 | ||||||||
\(227\) | 0 | 0 | −0.707107 | − | 0.707107i | \(-0.750000\pi\) | ||||
0.707107 | + | 0.707107i | \(0.250000\pi\) | |||||||
\(228\) | 0 | 0 | ||||||||
\(229\) | 19.2549i | 1.27240i | 0.771523 | + | 0.636201i | \(0.219495\pi\) | ||||
−0.771523 | + | 0.636201i | \(0.780505\pi\) | |||||||
\(230\) | 0 | 0 | ||||||||
\(231\) | 0 | 0 | ||||||||
\(232\) | 0 | 0 | ||||||||
\(233\) | 0 | 0 | 0.707107 | − | 0.707107i | \(-0.250000\pi\) | ||||
−0.707107 | + | 0.707107i | \(0.750000\pi\) | |||||||
\(234\) | 0 | 0 | ||||||||
\(235\) | 7.12711 | − | 4.60537i | 0.464921 | − | 0.300421i | ||||
\(236\) | 0 | 0 | ||||||||
\(237\) | 0 | 0 | ||||||||
\(238\) | 0 | 0 | ||||||||
\(239\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(240\) | 0 | 0 | ||||||||
\(241\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(242\) | 0 | 0 | ||||||||
\(243\) | 0 | 0 | ||||||||
\(244\) | 0 | 0 | ||||||||
\(245\) | 15.3030 | + | 3.28917i | 0.977672 | + | 0.210138i | ||||
\(246\) | 0 | 0 | ||||||||
\(247\) | 0 | 0 | ||||||||
\(248\) | 0 | 0 | ||||||||
\(249\) | 0 | 0 | ||||||||
\(250\) | 0 | 0 | ||||||||
\(251\) | 27.8614 | 1.75860 | 0.879298 | − | 0.476272i | \(-0.158012\pi\) | ||||
0.879298 | + | 0.476272i | \(0.158012\pi\) | |||||||
\(252\) | 0 | 0 | ||||||||
\(253\) | 18.3745 | − | 18.3745i | 1.15520 | − | 1.15520i | ||||
\(254\) | 0 | 0 | ||||||||
\(255\) | 0 | 0 | ||||||||
\(256\) | 0 | 0 | ||||||||
\(257\) | 4.26650 | + | 4.26650i | 0.266137 | + | 0.266137i | 0.827541 | − | 0.561405i | \(-0.189739\pi\) |
−0.561405 | + | 0.827541i | \(0.689739\pi\) | |||||||
\(258\) | 0 | 0 | ||||||||
\(259\) | 0 | 0 | ||||||||
\(260\) | 0 | 0 | ||||||||
\(261\) | 0 | 0 | ||||||||
\(262\) | 0 | 0 | ||||||||
\(263\) | 0 | 0 | 0.707107 | − | 0.707107i | \(-0.250000\pi\) | ||||
−0.707107 | + | 0.707107i | \(0.750000\pi\) | |||||||
\(264\) | 0 | 0 | ||||||||
\(265\) | −16.5331 | − | 25.5861i | −1.01562 | − | 1.57174i | ||||
\(266\) | 0 | 0 | ||||||||
\(267\) | 0 | 0 | ||||||||
\(268\) | 0 | 0 | ||||||||
\(269\) | 13.2665i | 0.808873i | 0.914566 | + | 0.404436i | \(0.132532\pi\) | ||||
−0.914566 | + | 0.404436i | \(0.867468\pi\) | |||||||
\(270\) | 0 | 0 | ||||||||
\(271\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(272\) | 0 | 0 | ||||||||
\(273\) | 0 | 0 | ||||||||
\(274\) | 0 | 0 | ||||||||
\(275\) | −15.1186 | − | 6.81386i | −0.911684 | − | 0.410891i | ||||
\(276\) | 0 | 0 | ||||||||
\(277\) | 0 | 0 | −0.707107 | − | 0.707107i | \(-0.750000\pi\) | ||||
0.707107 | + | 0.707107i | \(0.250000\pi\) | |||||||
\(278\) | 0 | 0 | ||||||||
\(279\) | 0 | 0 | ||||||||
\(280\) | 0 | 0 | ||||||||
\(281\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(282\) | 0 | 0 | ||||||||
\(283\) | 0 | 0 | 0.707107 | − | 0.707107i | \(-0.250000\pi\) | ||||
−0.707107 | + | 0.707107i | \(0.750000\pi\) | |||||||
\(284\) | 0 | 0 | ||||||||
\(285\) | 0 | 0 | ||||||||
\(286\) | 0 | 0 | ||||||||
\(287\) | 0 | 0 | ||||||||
\(288\) | 0 | 0 | ||||||||
\(289\) | 17.0000i | 1.00000i | ||||||||
\(290\) | 0 | 0 | ||||||||
\(291\) | 0 | 0 | ||||||||
\(292\) | 0 | 0 | ||||||||
\(293\) | 0 | 0 | 0.707107 | − | 0.707107i | \(-0.250000\pi\) | ||||
−0.707107 | + | 0.707107i | \(0.750000\pi\) | |||||||
\(294\) | 0 | 0 | ||||||||
\(295\) | −24.7735 | − | 5.32473i | −1.44237 | − | 0.310018i | ||||
\(296\) | 0 | 0 | ||||||||
\(297\) | 0 | 0 | ||||||||
\(298\) | 0 | 0 | ||||||||
\(299\) | 0 | 0 | ||||||||
\(300\) | 0 | 0 | ||||||||
\(301\) | 0 | 0 | ||||||||
\(302\) | 0 | 0 | ||||||||
\(303\) | 0 | 0 | ||||||||
\(304\) | 0 | 0 | ||||||||
\(305\) | 0 | 0 | ||||||||
\(306\) | 0 | 0 | ||||||||
\(307\) | 0 | 0 | −0.707107 | − | 0.707107i | \(-0.750000\pi\) | ||||
0.707107 | + | 0.707107i | \(0.250000\pi\) | |||||||
\(308\) | 0 | 0 | ||||||||
\(309\) | 0 | 0 | ||||||||
\(310\) | 0 | 0 | ||||||||
\(311\) | −12.0000 | −0.680458 | −0.340229 | − | 0.940343i | \(-0.610505\pi\) | ||||
−0.340229 | + | 0.940343i | \(0.610505\pi\) | |||||||
\(312\) | 0 | 0 | ||||||||
\(313\) | −18.4401 | + | 18.4401i | −1.04230 | + | 1.04230i | −0.0432311 | + | 0.999065i | \(0.513765\pi\) |
−0.999065 | + | 0.0432311i | \(0.986235\pi\) | |||||||
\(314\) | 0 | 0 | ||||||||
\(315\) | 0 | 0 | ||||||||
\(316\) | 0 | 0 | ||||||||
\(317\) | 20.7984 | + | 20.7984i | 1.16816 | + | 1.16816i | 0.982642 | + | 0.185514i | \(0.0593950\pi\) |
0.185514 | + | 0.982642i | \(0.440605\pi\) | |||||||
\(318\) | 0 | 0 | ||||||||
\(319\) | 0 | 0 | ||||||||
\(320\) | 0 | 0 | ||||||||
\(321\) | 0 | 0 | ||||||||
\(322\) | 0 | 0 | ||||||||
\(323\) | 0 | 0 | ||||||||
\(324\) | 0 | 0 | ||||||||
\(325\) | 0 | 0 | ||||||||
\(326\) | 0 | 0 | ||||||||
\(327\) | 0 | 0 | ||||||||
\(328\) | 0 | 0 | ||||||||
\(329\) | 0 | 0 | ||||||||
\(330\) | 0 | 0 | ||||||||
\(331\) | −35.2858 | −1.93948 | −0.969742 | − | 0.244131i | \(-0.921497\pi\) | ||||
−0.969742 | + | 0.244131i | \(0.921497\pi\) | |||||||
\(332\) | 0 | 0 | ||||||||
\(333\) | 0 | 0 | ||||||||
\(334\) | 0 | 0 | ||||||||
\(335\) | −28.4198 | + | 18.3642i | −1.55274 | + | 1.00334i | ||||
\(336\) | 0 | 0 | ||||||||
\(337\) | 0 | 0 | −0.707107 | − | 0.707107i | \(-0.750000\pi\) | ||||
0.707107 | + | 0.707107i | \(0.250000\pi\) | |||||||
\(338\) | 0 | 0 | ||||||||
\(339\) | 0 | 0 | ||||||||
\(340\) | 0 | 0 | ||||||||
\(341\) | −2.13859 | −0.115811 | ||||||||
\(342\) | 0 | 0 | ||||||||
\(343\) | 0 | 0 | ||||||||
\(344\) | 0 | 0 | ||||||||
\(345\) | 0 | 0 | ||||||||
\(346\) | 0 | 0 | ||||||||
\(347\) | 0 | 0 | −0.707107 | − | 0.707107i | \(-0.750000\pi\) | ||||
0.707107 | + | 0.707107i | \(0.250000\pi\) | |||||||
\(348\) | 0 | 0 | ||||||||
\(349\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(350\) | 0 | 0 | ||||||||
\(351\) | 0 | 0 | ||||||||
\(352\) | 0 | 0 | ||||||||
\(353\) | 23.2712 | − | 23.2712i | 1.23860 | − | 1.23860i | 0.278024 | − | 0.960574i | \(-0.410320\pi\) |
0.960574 | − | 0.278024i | \(-0.0896796\pi\) | |||||||
\(354\) | 0 | 0 | ||||||||
\(355\) | −7.45299 | + | 34.6753i | −0.395564 | + | 1.84037i | ||||
\(356\) | 0 | 0 | ||||||||
\(357\) | 0 | 0 | ||||||||
\(358\) | 0 | 0 | ||||||||
\(359\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(360\) | 0 | 0 | ||||||||
\(361\) | −19.0000 | −1.00000 | ||||||||
\(362\) | 0 | 0 | ||||||||
\(363\) | 0 | 0 | ||||||||
\(364\) | 0 | 0 | ||||||||
\(365\) | 0 | 0 | ||||||||
\(366\) | 0 | 0 | ||||||||
\(367\) | 0.0244206 | + | 0.0244206i | 0.00127475 | + | 0.00127475i | 0.707744 | − | 0.706469i | \(-0.249713\pi\) |
−0.706469 | + | 0.707744i | \(0.749713\pi\) | |||||||
\(368\) | 0 | 0 | ||||||||
\(369\) | 0 | 0 | ||||||||
\(370\) | 0 | 0 | ||||||||
\(371\) | 0 | 0 | ||||||||
\(372\) | 0 | 0 | ||||||||
\(373\) | 0 | 0 | 0.707107 | − | 0.707107i | \(-0.250000\pi\) | ||||
−0.707107 | + | 0.707107i | \(0.750000\pi\) | |||||||
\(374\) | 0 | 0 | ||||||||
\(375\) | 0 | 0 | ||||||||
\(376\) | 0 | 0 | ||||||||
\(377\) | 0 | 0 | ||||||||
\(378\) | 0 | 0 | ||||||||
\(379\) | 36.5754i | 1.87875i | 0.342885 | + | 0.939377i | \(0.388596\pi\) | ||||
−0.342885 | + | 0.939377i | \(0.611404\pi\) | |||||||
\(380\) | 0 | 0 | ||||||||
\(381\) | 0 | 0 | ||||||||
\(382\) | 0 | 0 | ||||||||
\(383\) | −4.87220 | + | 4.87220i | −0.248958 | + | 0.248958i | −0.820543 | − | 0.571585i | \(-0.806329\pi\) |
0.571585 | + | 0.820543i | \(0.306329\pi\) | |||||||
\(384\) | 0 | 0 | ||||||||
\(385\) | 0 | 0 | ||||||||
\(386\) | 0 | 0 | ||||||||
\(387\) | 0 | 0 | ||||||||
\(388\) | 0 | 0 | ||||||||
\(389\) | 31.2318i | 1.58352i | 0.610835 | + | 0.791758i | \(0.290834\pi\) | ||||
−0.610835 | + | 0.791758i | \(0.709166\pi\) | |||||||
\(390\) | 0 | 0 | ||||||||
\(391\) | 0 | 0 | ||||||||
\(392\) | 0 | 0 | ||||||||
\(393\) | 0 | 0 | ||||||||
\(394\) | 0 | 0 | ||||||||
\(395\) | 0 | 0 | ||||||||
\(396\) | 0 | 0 | ||||||||
\(397\) | 18.8997 | + | 18.8997i | 0.948551 | + | 0.948551i | 0.998740 | − | 0.0501886i | \(-0.0159822\pi\) |
−0.0501886 | + | 0.998740i | \(0.515982\pi\) | |||||||
\(398\) | 0 | 0 | ||||||||
\(399\) | 0 | 0 | ||||||||
\(400\) | 0 | 0 | ||||||||
\(401\) | −26.5330 | −1.32499 | −0.662497 | − | 0.749064i | \(-0.730503\pi\) | ||||
−0.662497 | + | 0.749064i | \(0.730503\pi\) | |||||||
\(402\) | 0 | 0 | ||||||||
\(403\) | 0 | 0 | ||||||||
\(404\) | 0 | 0 | ||||||||
\(405\) | 0 | 0 | ||||||||
\(406\) | 0 | 0 | ||||||||
\(407\) | 9.81766 | + | 9.81766i | 0.486643 | + | 0.486643i | ||||
\(408\) | 0 | 0 | ||||||||
\(409\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(410\) | 0 | 0 | ||||||||
\(411\) | 0 | 0 | ||||||||
\(412\) | 0 | 0 | ||||||||
\(413\) | 0 | 0 | ||||||||
\(414\) | 0 | 0 | ||||||||
\(415\) | 0 | 0 | ||||||||
\(416\) | 0 | 0 | ||||||||
\(417\) | 0 | 0 | ||||||||
\(418\) | 0 | 0 | ||||||||
\(419\) | − | 24.0000i | − | 1.17248i | −0.810139 | − | 0.586238i | \(-0.800608\pi\) | ||
0.810139 | − | 0.586238i | \(-0.199392\pi\) | |||||||
\(420\) | 0 | 0 | ||||||||
\(421\) | −39.7995 | −1.93971 | −0.969854 | − | 0.243685i | \(-0.921644\pi\) | ||||
−0.969854 | + | 0.243685i | \(0.921644\pi\) | |||||||
\(422\) | 0 | 0 | ||||||||
\(423\) | 0 | 0 | ||||||||
\(424\) | 0 | 0 | ||||||||
\(425\) | 0 | 0 | ||||||||
\(426\) | 0 | 0 | ||||||||
\(427\) | 0 | 0 | ||||||||
\(428\) | 0 | 0 | ||||||||
\(429\) | 0 | 0 | ||||||||
\(430\) | 0 | 0 | ||||||||
\(431\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(432\) | 0 | 0 | ||||||||
\(433\) | 25.6950 | − | 25.6950i | 1.23482 | − | 1.23482i | 0.272736 | − | 0.962089i | \(-0.412071\pi\) |
0.962089 | − | 0.272736i | \(-0.0879285\pi\) | |||||||
\(434\) | 0 | 0 | ||||||||
\(435\) | 0 | 0 | ||||||||
\(436\) | 0 | 0 | ||||||||
\(437\) | 0 | 0 | ||||||||
\(438\) | 0 | 0 | ||||||||
\(439\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(440\) | 0 | 0 | ||||||||
\(441\) | 0 | 0 | ||||||||
\(442\) | 0 | 0 | ||||||||
\(443\) | −21.0201 | + | 21.0201i | −0.998695 | + | 0.998695i | −0.999999 | − | 0.00130426i | \(-0.999585\pi\) |
0.00130426 | + | 0.999999i | \(0.499585\pi\) | |||||||
\(444\) | 0 | 0 | ||||||||
\(445\) | −21.5584 | − | 4.63370i | −1.02197 | − | 0.219658i | ||||
\(446\) | 0 | 0 | ||||||||
\(447\) | 0 | 0 | ||||||||
\(448\) | 0 | 0 | ||||||||
\(449\) | 33.8614i | 1.59802i | 0.601319 | + | 0.799009i | \(0.294642\pi\) | ||||
−0.601319 | + | 0.799009i | \(0.705358\pi\) | |||||||
\(450\) | 0 | 0 | ||||||||
\(451\) | 0 | 0 | ||||||||
\(452\) | 0 | 0 | ||||||||
\(453\) | 0 | 0 | ||||||||
\(454\) | 0 | 0 | ||||||||
\(455\) | 0 | 0 | ||||||||
\(456\) | 0 | 0 | ||||||||
\(457\) | 0 | 0 | −0.707107 | − | 0.707107i | \(-0.750000\pi\) | ||||
0.707107 | + | 0.707107i | \(0.250000\pi\) | |||||||
\(458\) | 0 | 0 | ||||||||
\(459\) | 0 | 0 | ||||||||
\(460\) | 0 | 0 | ||||||||
\(461\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(462\) | 0 | 0 | ||||||||
\(463\) | 14.7143 | − | 14.7143i | 0.683830 | − | 0.683830i | −0.277031 | − | 0.960861i | \(-0.589350\pi\) |
0.960861 | + | 0.277031i | \(0.0893503\pi\) | |||||||
\(464\) | 0 | 0 | ||||||||
\(465\) | 0 | 0 | ||||||||
\(466\) | 0 | 0 | ||||||||
\(467\) | 9.93984 | + | 9.93984i | 0.459961 | + | 0.459961i | 0.898642 | − | 0.438682i | \(-0.144554\pi\) |
−0.438682 | + | 0.898642i | \(0.644554\pi\) | |||||||
\(468\) | 0 | 0 | ||||||||
\(469\) | 0 | 0 | ||||||||
\(470\) | 0 | 0 | ||||||||
\(471\) | 0 | 0 | ||||||||
\(472\) | 0 | 0 | ||||||||
\(473\) | 0 | 0 | ||||||||
\(474\) | 0 | 0 | ||||||||
\(475\) | 0 | 0 | ||||||||
\(476\) | 0 | 0 | ||||||||
\(477\) | 0 | 0 | ||||||||
\(478\) | 0 | 0 | ||||||||
\(479\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(480\) | 0 | 0 | ||||||||
\(481\) | 0 | 0 | ||||||||
\(482\) | 0 | 0 | ||||||||
\(483\) | 0 | 0 | ||||||||
\(484\) | 0 | 0 | ||||||||
\(485\) | 9.78658 | − | 6.32386i | 0.444386 | − | 0.287151i | ||||
\(486\) | 0 | 0 | ||||||||
\(487\) | 14.6654 | + | 14.6654i | 0.664554 | + | 0.664554i | 0.956450 | − | 0.291896i | \(-0.0942860\pi\) |
−0.291896 | + | 0.956450i | \(0.594286\pi\) | |||||||
\(488\) | 0 | 0 | ||||||||
\(489\) | 0 | 0 | ||||||||
\(490\) | 0 | 0 | ||||||||
\(491\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(492\) | 0 | 0 | ||||||||
\(493\) | 0 | 0 | ||||||||
\(494\) | 0 | 0 | ||||||||
\(495\) | 0 | 0 | ||||||||
\(496\) | 0 | 0 | ||||||||
\(497\) | 0 | 0 | ||||||||
\(498\) | 0 | 0 | ||||||||
\(499\) | 19.8997i | 0.890835i | 0.895323 | + | 0.445418i | \(0.146945\pi\) | ||||
−0.895323 | + | 0.445418i | \(0.853055\pi\) | |||||||
\(500\) | 0 | 0 | ||||||||
\(501\) | 0 | 0 | ||||||||
\(502\) | 0 | 0 | ||||||||
\(503\) | 0 | 0 | 0.707107 | − | 0.707107i | \(-0.250000\pi\) | ||||
−0.707107 | + | 0.707107i | \(0.750000\pi\) | |||||||
\(504\) | 0 | 0 | ||||||||
\(505\) | 0 | 0 | ||||||||
\(506\) | 0 | 0 | ||||||||
\(507\) | 0 | 0 | ||||||||
\(508\) | 0 | 0 | ||||||||
\(509\) | 40.6295i | 1.80087i | 0.434992 | + | 0.900434i | \(0.356751\pi\) | ||||
−0.434992 | + | 0.900434i | \(0.643249\pi\) | |||||||
\(510\) | 0 | 0 | ||||||||
\(511\) | 0 | 0 | ||||||||
\(512\) | 0 | 0 | ||||||||
\(513\) | 0 | 0 | ||||||||
\(514\) | 0 | 0 | ||||||||
\(515\) | −20.5091 | − | 31.7391i | −0.903738 | − | 1.39859i | ||||
\(516\) | 0 | 0 | ||||||||
\(517\) | 8.89975 | + | 8.89975i | 0.391411 | + | 0.391411i | ||||
\(518\) | 0 | 0 | ||||||||
\(519\) | 0 | 0 | ||||||||
\(520\) | 0 | 0 | ||||||||
\(521\) | 8.56768 | 0.375357 | 0.187678 | − | 0.982231i | \(-0.439904\pi\) | ||||
0.187678 | + | 0.982231i | \(0.439904\pi\) | |||||||
\(522\) | 0 | 0 | ||||||||
\(523\) | 0 | 0 | 0.707107 | − | 0.707107i | \(-0.250000\pi\) | ||||
−0.707107 | + | 0.707107i | \(0.750000\pi\) | |||||||
\(524\) | 0 | 0 | ||||||||
\(525\) | 0 | 0 | ||||||||
\(526\) | 0 | 0 | ||||||||
\(527\) | 0 | 0 | ||||||||
\(528\) | 0 | 0 | ||||||||
\(529\) | − | 38.3861i | − | 1.66896i | ||||||
\(530\) | 0 | 0 | ||||||||
\(531\) | 0 | 0 | ||||||||
\(532\) | 0 | 0 | ||||||||
\(533\) | 0 | 0 | ||||||||
\(534\) | 0 | 0 | ||||||||
\(535\) | 0 | 0 | ||||||||
\(536\) | 0 | 0 | ||||||||
\(537\) | 0 | 0 | ||||||||
\(538\) | 0 | 0 | ||||||||
\(539\) | 23.2164i | 1.00000i | ||||||||
\(540\) | 0 | 0 | ||||||||
\(541\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(542\) | 0 | 0 | ||||||||
\(543\) | 0 | 0 | ||||||||
\(544\) | 0 | 0 | ||||||||
\(545\) | 0 | 0 | ||||||||
\(546\) | 0 | 0 | ||||||||
\(547\) | 0 | 0 | −0.707107 | − | 0.707107i | \(-0.750000\pi\) | ||||
0.707107 | + | 0.707107i | \(0.250000\pi\) | |||||||
\(548\) | 0 | 0 | ||||||||
\(549\) | 0 | 0 | ||||||||
\(550\) | 0 | 0 | ||||||||
\(551\) | 0 | 0 | ||||||||
\(552\) | 0 | 0 | ||||||||
\(553\) | 0 | 0 | ||||||||
\(554\) | 0 | 0 | ||||||||
\(555\) | 0 | 0 | ||||||||
\(556\) | 0 | 0 | ||||||||
\(557\) | 0 | 0 | −0.707107 | − | 0.707107i | \(-0.750000\pi\) | ||||
0.707107 | + | 0.707107i | \(0.250000\pi\) | |||||||
\(558\) | 0 | 0 | ||||||||
\(559\) | 0 | 0 | ||||||||
\(560\) | 0 | 0 | ||||||||
\(561\) | 0 | 0 | ||||||||
\(562\) | 0 | 0 | ||||||||
\(563\) | 0 | 0 | 0.707107 | − | 0.707107i | \(-0.250000\pi\) | ||||
−0.707107 | + | 0.707107i | \(0.750000\pi\) | |||||||
\(564\) | 0 | 0 | ||||||||
\(565\) | −10.4839 | − | 16.2245i | −0.441060 | − | 0.682569i | ||||
\(566\) | 0 | 0 | ||||||||
\(567\) | 0 | 0 | ||||||||
\(568\) | 0 | 0 | ||||||||
\(569\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(570\) | 0 | 0 | ||||||||
\(571\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(572\) | 0 | 0 | ||||||||
\(573\) | 0 | 0 | ||||||||
\(574\) | 0 | 0 | ||||||||
\(575\) | −36.6362 | + | 13.8723i | −1.52784 | + | 0.578515i | ||||
\(576\) | 0 | 0 | ||||||||
\(577\) | 30.2806 | + | 30.2806i | 1.26060 | + | 1.26060i | 0.950803 | + | 0.309797i | \(0.100261\pi\) |
0.309797 | + | 0.950803i | \(0.399739\pi\) | |||||||
\(578\) | 0 | 0 | ||||||||
\(579\) | 0 | 0 | ||||||||
\(580\) | 0 | 0 | ||||||||
\(581\) | 0 | 0 | ||||||||
\(582\) | 0 | 0 | ||||||||
\(583\) | 31.9499 | − | 31.9499i | 1.32323 | − | 1.32323i | ||||
\(584\) | 0 | 0 | ||||||||
\(585\) | 0 | 0 | ||||||||
\(586\) | 0 | 0 | ||||||||
\(587\) | −27.3166 | − | 27.3166i | −1.12748 | − | 1.12748i | −0.990586 | − | 0.136892i | \(-0.956289\pi\) |
−0.136892 | − | 0.990586i | \(-0.543711\pi\) | |||||||
\(588\) | 0 | 0 | ||||||||
\(589\) | 0 | 0 | ||||||||
\(590\) | 0 | 0 | ||||||||
\(591\) | 0 | 0 | ||||||||
\(592\) | 0 | 0 | ||||||||
\(593\) | 0 | 0 | 0.707107 | − | 0.707107i | \(-0.250000\pi\) | ||||
−0.707107 | + | 0.707107i | \(0.750000\pi\) | |||||||
\(594\) | 0 | 0 | ||||||||
\(595\) | 0 | 0 | ||||||||
\(596\) | 0 | 0 | ||||||||
\(597\) | 0 | 0 | ||||||||
\(598\) | 0 | 0 | ||||||||
\(599\) | 36.0000i | 1.47092i | 0.677568 | + | 0.735460i | \(0.263034\pi\) | ||||
−0.677568 | + | 0.735460i | \(0.736966\pi\) | |||||||
\(600\) | 0 | 0 | ||||||||
\(601\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(602\) | 0 | 0 | ||||||||
\(603\) | 0 | 0 | ||||||||
\(604\) | 0 | 0 | ||||||||
\(605\) | 5.16870 | − | 24.0475i | 0.210138 | − | 0.977672i | ||||
\(606\) | 0 | 0 | ||||||||
\(607\) | 0 | 0 | −0.707107 | − | 0.707107i | \(-0.750000\pi\) | ||||
0.707107 | + | 0.707107i | \(0.250000\pi\) | |||||||
\(608\) | 0 | 0 | ||||||||
\(609\) | 0 | 0 | ||||||||
\(610\) | 0 | 0 | ||||||||
\(611\) | 0 | 0 | ||||||||
\(612\) | 0 | 0 | ||||||||
\(613\) | 0 | 0 | 0.707107 | − | 0.707107i | \(-0.250000\pi\) | ||||
−0.707107 | + | 0.707107i | \(0.750000\pi\) | |||||||
\(614\) | 0 | 0 | ||||||||
\(615\) | 0 | 0 | ||||||||
\(616\) | 0 | 0 | ||||||||
\(617\) | 34.2665 | + | 34.2665i | 1.37952 | + | 1.37952i | 0.845428 | + | 0.534089i | \(0.179345\pi\) |
0.534089 | + | 0.845428i | \(0.320655\pi\) | |||||||
\(618\) | 0 | 0 | ||||||||
\(619\) | 43.5842i | 1.75180i | 0.482495 | + | 0.875899i | \(0.339731\pi\) | ||||
−0.482495 | + | 0.875899i | \(0.660269\pi\) | |||||||
\(620\) | 0 | 0 | ||||||||
\(621\) | 0 | 0 | ||||||||
\(622\) | 0 | 0 | ||||||||
\(623\) | 0 | 0 | ||||||||
\(624\) | 0 | 0 | ||||||||
\(625\) | 16.5584 | + | 18.7302i | 0.662337 | + | 0.749206i | ||||
\(626\) | 0 | 0 | ||||||||
\(627\) | 0 | 0 | ||||||||
\(628\) | 0 | 0 | ||||||||
\(629\) | 0 | 0 | ||||||||
\(630\) | 0 | 0 | ||||||||
\(631\) | 39.5842 | 1.57582 | 0.787911 | − | 0.615789i | \(-0.211162\pi\) | ||||
0.787911 | + | 0.615789i | \(0.211162\pi\) | |||||||
\(632\) | 0 | 0 | ||||||||
\(633\) | 0 | 0 | ||||||||
\(634\) | 0 | 0 | ||||||||
\(635\) | 0 | 0 | ||||||||
\(636\) | 0 | 0 | ||||||||
\(637\) | 0 | 0 | ||||||||
\(638\) | 0 | 0 | ||||||||
\(639\) | 0 | 0 | ||||||||
\(640\) | 0 | 0 | ||||||||
\(641\) | 27.3630 | 1.08077 | 0.540386 | − | 0.841417i | \(-0.318278\pi\) | ||||
0.540386 | + | 0.841417i | \(0.318278\pi\) | |||||||
\(642\) | 0 | 0 | ||||||||
\(643\) | 22.5407 | − | 22.5407i | 0.888917 | − | 0.888917i | −0.105502 | − | 0.994419i | \(-0.533645\pi\) |
0.994419 | + | 0.105502i | \(0.0336450\pi\) | |||||||
\(644\) | 0 | 0 | ||||||||
\(645\) | 0 | 0 | ||||||||
\(646\) | 0 | 0 | ||||||||
\(647\) | −24.5075 | − | 24.5075i | −0.963490 | − | 0.963490i | 0.0358667 | − | 0.999357i | \(-0.488581\pi\) |
−0.999357 | + | 0.0358667i | \(0.988581\pi\) | |||||||
\(648\) | 0 | 0 | ||||||||
\(649\) | − | 37.5842i | − | 1.47531i | ||||||
\(650\) | 0 | 0 | ||||||||
\(651\) | 0 | 0 | ||||||||
\(652\) | 0 | 0 | ||||||||
\(653\) | −35.4406 | + | 35.4406i | −1.38690 | + | 1.38690i | −0.555147 | + | 0.831753i | \(0.687338\pi\) |
−0.831753 | + | 0.555147i | \(0.812662\pi\) | |||||||
\(654\) | 0 | 0 | ||||||||
\(655\) | 0 | 0 | ||||||||
\(656\) | 0 | 0 | ||||||||
\(657\) | 0 | 0 | ||||||||
\(658\) | 0 | 0 | ||||||||
\(659\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(660\) | 0 | 0 | ||||||||
\(661\) | 49.5842 | 1.92860 | 0.964301 | − | 0.264807i | \(-0.0853084\pi\) | ||||
0.964301 | + | 0.264807i | \(0.0853084\pi\) | |||||||
\(662\) | 0 | 0 | ||||||||
\(663\) | 0 | 0 | ||||||||
\(664\) | 0 | 0 | ||||||||
\(665\) | 0 | 0 | ||||||||
\(666\) | 0 | 0 | ||||||||
\(667\) | 0 | 0 | ||||||||
\(668\) | 0 | 0 | ||||||||
\(669\) | 0 | 0 | ||||||||
\(670\) | 0 | 0 | ||||||||
\(671\) | 0 | 0 | ||||||||
\(672\) | 0 | 0 | ||||||||
\(673\) | 0 | 0 | 0.707107 | − | 0.707107i | \(-0.250000\pi\) | ||||
−0.707107 | + | 0.707107i | \(0.750000\pi\) | |||||||
\(674\) | 0 | 0 | ||||||||
\(675\) | 0 | 0 | ||||||||
\(676\) | 0 | 0 | ||||||||
\(677\) | 0 | 0 | −0.707107 | − | 0.707107i | \(-0.750000\pi\) | ||||
0.707107 | + | 0.707107i | \(0.250000\pi\) | |||||||
\(678\) | 0 | 0 | ||||||||
\(679\) | 0 | 0 | ||||||||
\(680\) | 0 | 0 | ||||||||
\(681\) | 0 | 0 | ||||||||
\(682\) | 0 | 0 | ||||||||
\(683\) | 11.2164 | − | 11.2164i | 0.429183 | − | 0.429183i | −0.459167 | − | 0.888350i | \(-0.651852\pi\) |
0.888350 | + | 0.459167i | \(0.151852\pi\) | |||||||
\(684\) | 0 | 0 | ||||||||
\(685\) | −5.84286 | + | 3.77552i | −0.223244 | + | 0.144255i | ||||
\(686\) | 0 | 0 | ||||||||
\(687\) | 0 | 0 | ||||||||
\(688\) | 0 | 0 | ||||||||
\(689\) | 0 | 0 | ||||||||
\(690\) | 0 | 0 | ||||||||
\(691\) | −51.5842 | −1.96236 | −0.981178 | − | 0.193105i | \(-0.938144\pi\) | ||||
−0.981178 | + | 0.193105i | \(0.938144\pi\) | |||||||
\(692\) | 0 | 0 | ||||||||
\(693\) | 0 | 0 | ||||||||
\(694\) | 0 | 0 | ||||||||
\(695\) | 0 | 0 | ||||||||
\(696\) | 0 | 0 | ||||||||
\(697\) | 0 | 0 | ||||||||
\(698\) | 0 | 0 | ||||||||
\(699\) | 0 | 0 | ||||||||
\(700\) | 0 | 0 | ||||||||
\(701\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(702\) | 0 | 0 | ||||||||
\(703\) | 0 | 0 | ||||||||
\(704\) | 0 | 0 | ||||||||
\(705\) | 0 | 0 | ||||||||
\(706\) | 0 | 0 | ||||||||
\(707\) | 0 | 0 | ||||||||
\(708\) | 0 | 0 | ||||||||
\(709\) | 33.5842i | 1.26128i | 0.776075 | + | 0.630641i | \(0.217208\pi\) | ||||
−0.776075 | + | 0.630641i | \(0.782792\pi\) | |||||||
\(710\) | 0 | 0 | ||||||||
\(711\) | 0 | 0 | ||||||||
\(712\) | 0 | 0 | ||||||||
\(713\) | −3.57233 | + | 3.57233i | −0.133785 | + | 0.133785i | ||||
\(714\) | 0 | 0 | ||||||||
\(715\) | 0 | 0 | ||||||||
\(716\) | 0 | 0 | ||||||||
\(717\) | 0 | 0 | ||||||||
\(718\) | 0 | 0 | ||||||||
\(719\) | − | 39.8614i | − | 1.48658i | −0.668970 | − | 0.743290i | \(-0.733264\pi\) | ||
0.668970 | − | 0.743290i | \(-0.266736\pi\) | |||||||
\(720\) | 0 | 0 | ||||||||
\(721\) | 0 | 0 | ||||||||
\(722\) | 0 | 0 | ||||||||
\(723\) | 0 | 0 | ||||||||
\(724\) | 0 | 0 | ||||||||
\(725\) | 0 | 0 | ||||||||
\(726\) | 0 | 0 | ||||||||
\(727\) | −38.0206 | − | 38.0206i | −1.41011 | − | 1.41011i | −0.758901 | − | 0.651206i | \(-0.774263\pi\) |
−0.651206 | − | 0.758901i | \(-0.725737\pi\) | |||||||
\(728\) | 0 | 0 | ||||||||
\(729\) | 0 | 0 | ||||||||
\(730\) | 0 | 0 | ||||||||
\(731\) | 0 | 0 | ||||||||
\(732\) | 0 | 0 | ||||||||
\(733\) | 0 | 0 | 0.707107 | − | 0.707107i | \(-0.250000\pi\) | ||||
−0.707107 | + | 0.707107i | \(0.750000\pi\) | |||||||
\(734\) | 0 | 0 | ||||||||
\(735\) | 0 | 0 | ||||||||
\(736\) | 0 | 0 | ||||||||
\(737\) | −35.4883 | − | 35.4883i | −1.30723 | − | 1.30723i | ||||
\(738\) | 0 | 0 | ||||||||
\(739\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(740\) | 0 | 0 | ||||||||
\(741\) | 0 | 0 | ||||||||
\(742\) | 0 | 0 | ||||||||
\(743\) | 0 | 0 | 0.707107 | − | 0.707107i | \(-0.250000\pi\) | ||||
−0.707107 | + | 0.707107i | \(0.750000\pi\) | |||||||
\(744\) | 0 | 0 | ||||||||
\(745\) | 0 | 0 | ||||||||
\(746\) | 0 | 0 | ||||||||
\(747\) | 0 | 0 | ||||||||
\(748\) | 0 | 0 | ||||||||
\(749\) | 0 | 0 | ||||||||
\(750\) | 0 | 0 | ||||||||
\(751\) | −31.5842 | −1.15252 | −0.576262 | − | 0.817265i | \(-0.695489\pi\) | ||||
−0.576262 | + | 0.817265i | \(0.695489\pi\) | |||||||
\(752\) | 0 | 0 | ||||||||
\(753\) | 0 | 0 | ||||||||
\(754\) | 0 | 0 | ||||||||
\(755\) | 0 | 0 | ||||||||
\(756\) | 0 | 0 | ||||||||
\(757\) | 38.8997 | + | 38.8997i | 1.41384 | + | 1.41384i | 0.723269 | + | 0.690567i | \(0.242639\pi\) |
0.690567 | + | 0.723269i | \(0.257361\pi\) | |||||||
\(758\) | 0 | 0 | ||||||||
\(759\) | 0 | 0 | ||||||||
\(760\) | 0 | 0 | ||||||||
\(761\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(762\) | 0 | 0 | ||||||||
\(763\) | 0 | 0 | ||||||||
\(764\) | 0 | 0 | ||||||||
\(765\) | 0 | 0 | ||||||||
\(766\) | 0 | 0 | ||||||||
\(767\) | 0 | 0 | ||||||||
\(768\) | 0 | 0 | ||||||||
\(769\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(770\) | 0 | 0 | ||||||||
\(771\) | 0 | 0 | ||||||||
\(772\) | 0 | 0 | ||||||||
\(773\) | −20.3668 | + | 20.3668i | −0.732541 | + | 0.732541i | −0.971123 | − | 0.238581i | \(-0.923318\pi\) |
0.238581 | + | 0.971123i | \(0.423318\pi\) | |||||||
\(774\) | 0 | 0 | ||||||||
\(775\) | 2.93932 | + | 1.32473i | 0.105583 | + | 0.0475859i | ||||
\(776\) | 0 | 0 | ||||||||
\(777\) | 0 | 0 | ||||||||
\(778\) | 0 | 0 | ||||||||
\(779\) | 0 | 0 | ||||||||
\(780\) | 0 | 0 | ||||||||
\(781\) | −52.6063 | −1.88240 | ||||||||
\(782\) | 0 | 0 | ||||||||
\(783\) | 0 | 0 | ||||||||
\(784\) | 0 | 0 | ||||||||
\(785\) | 29.2300 | − | 18.8877i | 1.04326 | − | 0.674132i | ||||
\(786\) | 0 | 0 | ||||||||
\(787\) | 0 | 0 | −0.707107 | − | 0.707107i | \(-0.750000\pi\) | ||||
0.707107 | + | 0.707107i | \(0.250000\pi\) | |||||||
\(788\) | 0 | 0 | ||||||||
\(789\) | 0 | 0 | ||||||||
\(790\) | 0 | 0 | ||||||||
\(791\) | 0 | 0 | ||||||||
\(792\) | 0 | 0 | ||||||||
\(793\) | 0 | 0 | ||||||||
\(794\) | 0 | 0 | ||||||||
\(795\) | 0 | 0 | ||||||||
\(796\) | 0 | 0 | ||||||||
\(797\) | 37.9610 | + | 37.9610i | 1.34465 | + | 1.34465i | 0.891368 | + | 0.453279i | \(0.149746\pi\) |
0.453279 | + | 0.891368i | \(0.350254\pi\) | |||||||
\(798\) | 0 | 0 | ||||||||
\(799\) | 0 | 0 | ||||||||
\(800\) | 0 | 0 | ||||||||
\(801\) | 0 | 0 | ||||||||
\(802\) | 0 | 0 | ||||||||
\(803\) | 0 | 0 | ||||||||
\(804\) | 0 | 0 | ||||||||
\(805\) | 0 | 0 | ||||||||
\(806\) | 0 | 0 | ||||||||
\(807\) | 0 | 0 | ||||||||
\(808\) | 0 | 0 | ||||||||
\(809\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(810\) | 0 | 0 | ||||||||
\(811\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(812\) | 0 | 0 | ||||||||
\(813\) | 0 | 0 | ||||||||
\(814\) | 0 | 0 | ||||||||
\(815\) | −3.34649 | − | 5.17891i | −0.117222 | − | 0.181409i | ||||
\(816\) | 0 | 0 | ||||||||
\(817\) | 0 | 0 | ||||||||
\(818\) | 0 | 0 | ||||||||
\(819\) | 0 | 0 | ||||||||
\(820\) | 0 | 0 | ||||||||
\(821\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(822\) | 0 | 0 | ||||||||
\(823\) | 29.3553 | − | 29.3553i | 1.02326 | − | 1.02326i | 0.0235383 | − | 0.999723i | \(-0.492507\pi\) |
0.999723 | − | 0.0235383i | \(-0.00749316\pi\) | |||||||
\(824\) | 0 | 0 | ||||||||
\(825\) | 0 | 0 | ||||||||
\(826\) | 0 | 0 | ||||||||
\(827\) | 0 | 0 | −0.707107 | − | 0.707107i | \(-0.750000\pi\) | ||||
0.707107 | + | 0.707107i | \(0.250000\pi\) | |||||||
\(828\) | 0 | 0 | ||||||||
\(829\) | − | 57.5842i | − | 1.99998i | −0.00416865 | − | 0.999991i | \(-0.501327\pi\) | ||
0.00416865 | − | 0.999991i | \(-0.498673\pi\) | |||||||
\(830\) | 0 | 0 | ||||||||
\(831\) | 0 | 0 | ||||||||
\(832\) | 0 | 0 | ||||||||
\(833\) | 0 | 0 | ||||||||
\(834\) | 0 | 0 | ||||||||
\(835\) | 0 | 0 | ||||||||
\(836\) | 0 | 0 | ||||||||
\(837\) | 0 | 0 | ||||||||
\(838\) | 0 | 0 | ||||||||
\(839\) | − | 20.7297i | − | 0.715669i | −0.933785 | − | 0.357834i | \(-0.883515\pi\) | ||
0.933785 | − | 0.357834i | \(-0.116485\pi\) | |||||||
\(840\) | 0 | 0 | ||||||||
\(841\) | −29.0000 | −1.00000 | ||||||||
\(842\) | 0 | 0 | ||||||||
\(843\) | 0 | 0 | ||||||||
\(844\) | 0 | 0 | ||||||||
\(845\) | −28.4198 | − | 6.10846i | −0.977672 | − | 0.210138i | ||||
\(846\) | 0 | 0 | ||||||||
\(847\) | 0 | 0 | ||||||||
\(848\) | 0 | 0 | ||||||||
\(849\) | 0 | 0 | ||||||||
\(850\) | 0 | 0 | ||||||||
\(851\) | 32.7991 | 1.12434 | ||||||||
\(852\) | 0 | 0 | ||||||||
\(853\) | 0 | 0 | 0.707107 | − | 0.707107i | \(-0.250000\pi\) | ||||
−0.707107 | + | 0.707107i | \(0.750000\pi\) | |||||||
\(854\) | 0 | 0 | ||||||||
\(855\) | 0 | 0 | ||||||||
\(856\) | 0 | 0 | ||||||||
\(857\) | 0 | 0 | −0.707107 | − | 0.707107i | \(-0.750000\pi\) | ||||
0.707107 | + | 0.707107i | \(0.250000\pi\) | |||||||
\(858\) | 0 | 0 | ||||||||
\(859\) | − | 27.5842i | − | 0.941161i | −0.882357 | − | 0.470581i | \(-0.844044\pi\) | ||
0.882357 | − | 0.470581i | \(-0.155956\pi\) | |||||||
\(860\) | 0 | 0 | ||||||||
\(861\) | 0 | 0 | ||||||||
\(862\) | 0 | 0 | ||||||||
\(863\) | 41.2164 | − | 41.2164i | 1.40302 | − | 1.40302i | 0.612727 | − | 0.790295i | \(-0.290072\pi\) |
0.790295 | − | 0.612727i | \(-0.209928\pi\) | |||||||
\(864\) | 0 | 0 | ||||||||
\(865\) | 0 | 0 | ||||||||
\(866\) | 0 | 0 | ||||||||
\(867\) | 0 | 0 | ||||||||
\(868\) | 0 | 0 | ||||||||
\(869\) | 0 | 0 | ||||||||
\(870\) | 0 | 0 | ||||||||
\(871\) | 0 | 0 | ||||||||
\(872\) | 0 | 0 | ||||||||
\(873\) | 0 | 0 | ||||||||
\(874\) | 0 | 0 | ||||||||
\(875\) | 0 | 0 | ||||||||
\(876\) | 0 | 0 | ||||||||
\(877\) | 0 | 0 | −0.707107 | − | 0.707107i | \(-0.750000\pi\) | ||||
0.707107 | + | 0.707107i | \(0.250000\pi\) | |||||||
\(878\) | 0 | 0 | ||||||||
\(879\) | 0 | 0 | ||||||||
\(880\) | 0 | 0 | ||||||||
\(881\) | 14.1386 | 0.476341 | 0.238171 | − | 0.971223i | \(-0.423452\pi\) | ||||
0.238171 | + | 0.971223i | \(0.423452\pi\) | |||||||
\(882\) | 0 | 0 | ||||||||
\(883\) | −18.0501 | + | 18.0501i | −0.607435 | + | 0.607435i | −0.942275 | − | 0.334840i | \(-0.891318\pi\) |
0.334840 | + | 0.942275i | \(0.391318\pi\) | |||||||
\(884\) | 0 | 0 | ||||||||
\(885\) | 0 | 0 | ||||||||
\(886\) | 0 | 0 | ||||||||
\(887\) | 0 | 0 | −0.707107 | − | 0.707107i | \(-0.750000\pi\) | ||||
0.707107 | + | 0.707107i | \(0.250000\pi\) | |||||||
\(888\) | 0 | 0 | ||||||||
\(889\) | 0 | 0 | ||||||||
\(890\) | 0 | 0 | ||||||||
\(891\) | 0 | 0 | ||||||||
\(892\) | 0 | 0 | ||||||||
\(893\) | 0 | 0 | ||||||||
\(894\) | 0 | 0 | ||||||||
\(895\) | 8.44158 | + | 1.81441i | 0.282171 | + | 0.0606489i | ||||
\(896\) | 0 | 0 | ||||||||
\(897\) | 0 | 0 | ||||||||
\(898\) | 0 | 0 | ||||||||
\(899\) | 0 | 0 | ||||||||
\(900\) | 0 | 0 | ||||||||
\(901\) | 0 | 0 | ||||||||
\(902\) | 0 | 0 | ||||||||
\(903\) | 0 | 0 | ||||||||
\(904\) | 0 | 0 | ||||||||
\(905\) | 7.83561 | − | 36.4554i | 0.260464 | − | 1.21182i | ||||
\(906\) | 0 | 0 | ||||||||
\(907\) | −25.8496 | − | 25.8496i | −0.858323 | − | 0.858323i | 0.132818 | − | 0.991140i | \(-0.457597\pi\) |
−0.991140 | + | 0.132818i | \(0.957597\pi\) | |||||||
\(908\) | 0 | 0 | ||||||||
\(909\) | 0 | 0 | ||||||||
\(910\) | 0 | 0 | ||||||||
\(911\) | 6.63325 | 0.219769 | 0.109885 | − | 0.993944i | \(-0.464952\pi\) | ||||
0.109885 | + | 0.993944i | \(0.464952\pi\) | |||||||
\(912\) | 0 | 0 | ||||||||
\(913\) | 0 | 0 | ||||||||
\(914\) | 0 | 0 | ||||||||
\(915\) | 0 | 0 | ||||||||
\(916\) | 0 | 0 | ||||||||
\(917\) | 0 | 0 | ||||||||
\(918\) | 0 | 0 | ||||||||
\(919\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(920\) | 0 | 0 | ||||||||
\(921\) | 0 | 0 | ||||||||
\(922\) | 0 | 0 | ||||||||
\(923\) | 0 | 0 | ||||||||
\(924\) | 0 | 0 | ||||||||
\(925\) | −7.41208 | − | 19.5750i | −0.243708 | − | 0.643623i | ||||
\(926\) | 0 | 0 | ||||||||
\(927\) | 0 | 0 | ||||||||
\(928\) | 0 | 0 | ||||||||
\(929\) | − | 53.0660i | − | 1.74104i | −0.492134 | − | 0.870519i | \(-0.663783\pi\) | ||
0.492134 | − | 0.870519i | \(-0.336217\pi\) | |||||||
\(930\) | 0 | 0 | ||||||||
\(931\) | 0 | 0 | ||||||||
\(932\) | 0 | 0 | ||||||||
\(933\) | 0 | 0 | ||||||||
\(934\) | 0 | 0 | ||||||||
\(935\) | 0 | 0 | ||||||||
\(936\) | 0 | 0 | ||||||||
\(937\) | 0 | 0 | −0.707107 | − | 0.707107i | \(-0.750000\pi\) | ||||
0.707107 | + | 0.707107i | \(0.250000\pi\) | |||||||
\(938\) | 0 | 0 | ||||||||
\(939\) | 0 | 0 | ||||||||
\(940\) | 0 | 0 | ||||||||
\(941\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(942\) | 0 | 0 | ||||||||
\(943\) | 0 | 0 | ||||||||
\(944\) | 0 | 0 | ||||||||
\(945\) | 0 | 0 | ||||||||
\(946\) | 0 | 0 | ||||||||
\(947\) | −43.1806 | − | 43.1806i | −1.40318 | − | 1.40318i | −0.789741 | − | 0.613441i | \(-0.789785\pi\) |
−0.613441 | − | 0.789741i | \(-0.710215\pi\) | |||||||
\(948\) | 0 | 0 | ||||||||
\(949\) | 0 | 0 | ||||||||
\(950\) | 0 | 0 | ||||||||
\(951\) | 0 | 0 | ||||||||
\(952\) | 0 | 0 | ||||||||
\(953\) | 0 | 0 | 0.707107 | − | 0.707107i | \(-0.250000\pi\) | ||||
−0.707107 | + | 0.707107i | \(0.750000\pi\) | |||||||
\(954\) | 0 | 0 | ||||||||
\(955\) | −11.5584 | + | 53.7759i | −0.374022 | + | 1.74015i | ||||
\(956\) | 0 | 0 | ||||||||
\(957\) | 0 | 0 | ||||||||
\(958\) | 0 | 0 | ||||||||
\(959\) | 0 | 0 | ||||||||
\(960\) | 0 | 0 | ||||||||
\(961\) | −30.5842 | −0.986588 | ||||||||
\(962\) | 0 | 0 | ||||||||
\(963\) | 0 | 0 | ||||||||
\(964\) | 0 | 0 | ||||||||
\(965\) | 0 | 0 | ||||||||
\(966\) | 0 | 0 | ||||||||
\(967\) | 0 | 0 | −0.707107 | − | 0.707107i | \(-0.750000\pi\) | ||||
0.707107 | + | 0.707107i | \(0.250000\pi\) | |||||||
\(968\) | 0 | 0 | ||||||||
\(969\) | 0 | 0 | ||||||||
\(970\) | 0 | 0 | ||||||||
\(971\) | 60.5292 | 1.94247 | 0.971237 | − | 0.238114i | \(-0.0765291\pi\) | ||||
0.971237 | + | 0.238114i | \(0.0765291\pi\) | |||||||
\(972\) | 0 | 0 | ||||||||
\(973\) | 0 | 0 | ||||||||
\(974\) | 0 | 0 | ||||||||
\(975\) | 0 | 0 | ||||||||
\(976\) | 0 | 0 | ||||||||
\(977\) | −28.7601 | − | 28.7601i | −0.920116 | − | 0.920116i | 0.0769208 | − | 0.997037i | \(-0.475491\pi\) |
−0.997037 | + | 0.0769208i | \(0.975491\pi\) | |||||||
\(978\) | 0 | 0 | ||||||||
\(979\) | − | 32.7066i | − | 1.04531i | ||||||
\(980\) | 0 | 0 | ||||||||
\(981\) | 0 | 0 | ||||||||
\(982\) | 0 | 0 | ||||||||
\(983\) | 34.2519 | − | 34.2519i | 1.09247 | − | 1.09247i | 0.0972017 | − | 0.995265i | \(-0.469011\pi\) |
0.995265 | − | 0.0972017i | \(-0.0309892\pi\) | |||||||
\(984\) | 0 | 0 | ||||||||
\(985\) | 0 | 0 | ||||||||
\(986\) | 0 | 0 | ||||||||
\(987\) | 0 | 0 | ||||||||
\(988\) | 0 | 0 | ||||||||
\(989\) | 0 | 0 | ||||||||
\(990\) | 0 | 0 | ||||||||
\(991\) | 59.6992 | 1.89641 | 0.948205 | − | 0.317660i | \(-0.102897\pi\) | ||||
0.948205 | + | 0.317660i | \(0.102897\pi\) | |||||||
\(992\) | 0 | 0 | ||||||||
\(993\) | 0 | 0 | ||||||||
\(994\) | 0 | 0 | ||||||||
\(995\) | 43.5036 | + | 9.35053i | 1.37916 | + | 0.296432i | ||||
\(996\) | 0 | 0 | ||||||||
\(997\) | 0 | 0 | −0.707107 | − | 0.707107i | \(-0.750000\pi\) | ||||
0.707107 | + | 0.707107i | \(0.250000\pi\) | |||||||
\(998\) | 0 | 0 | ||||||||
\(999\) | 0 | 0 |
(See \(a_n\) instead)
(See \(a_n\) instead)
(See \(a_n\) instead)
(See only \(a_p\))
(See only \(a_p\))
(See only \(a_p\))
Twists
By twisting character | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Type | Twist | Min | Dim | |
1.1 | even | 1 | trivial | 1980.2.y.b.1297.3 | 8 | ||
3.2 | odd | 2 | 220.2.k.b.197.1 | yes | 8 | ||
5.3 | odd | 4 | inner | 1980.2.y.b.1693.3 | 8 | ||
11.10 | odd | 2 | CM | 1980.2.y.b.1297.3 | 8 | ||
12.11 | even | 2 | 880.2.bd.h.417.4 | 8 | |||
15.2 | even | 4 | 1100.2.k.b.593.4 | 8 | |||
15.8 | even | 4 | 220.2.k.b.153.1 | ✓ | 8 | ||
15.14 | odd | 2 | 1100.2.k.b.857.4 | 8 | |||
33.32 | even | 2 | 220.2.k.b.197.1 | yes | 8 | ||
55.43 | even | 4 | inner | 1980.2.y.b.1693.3 | 8 | ||
60.23 | odd | 4 | 880.2.bd.h.593.4 | 8 | |||
132.131 | odd | 2 | 880.2.bd.h.417.4 | 8 | |||
165.32 | odd | 4 | 1100.2.k.b.593.4 | 8 | |||
165.98 | odd | 4 | 220.2.k.b.153.1 | ✓ | 8 | ||
165.164 | even | 2 | 1100.2.k.b.857.4 | 8 | |||
660.263 | even | 4 | 880.2.bd.h.593.4 | 8 |
By twisted newform | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Type | |
220.2.k.b.153.1 | ✓ | 8 | 15.8 | even | 4 | ||
220.2.k.b.153.1 | ✓ | 8 | 165.98 | odd | 4 | ||
220.2.k.b.197.1 | yes | 8 | 3.2 | odd | 2 | ||
220.2.k.b.197.1 | yes | 8 | 33.32 | even | 2 | ||
880.2.bd.h.417.4 | 8 | 12.11 | even | 2 | |||
880.2.bd.h.417.4 | 8 | 132.131 | odd | 2 | |||
880.2.bd.h.593.4 | 8 | 60.23 | odd | 4 | |||
880.2.bd.h.593.4 | 8 | 660.263 | even | 4 | |||
1100.2.k.b.593.4 | 8 | 15.2 | even | 4 | |||
1100.2.k.b.593.4 | 8 | 165.32 | odd | 4 | |||
1100.2.k.b.857.4 | 8 | 15.14 | odd | 2 | |||
1100.2.k.b.857.4 | 8 | 165.164 | even | 2 | |||
1980.2.y.b.1297.3 | 8 | 1.1 | even | 1 | trivial | ||
1980.2.y.b.1297.3 | 8 | 11.10 | odd | 2 | CM | ||
1980.2.y.b.1693.3 | 8 | 5.3 | odd | 4 | inner | ||
1980.2.y.b.1693.3 | 8 | 55.43 | even | 4 | inner |