Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [220,2,Mod(153,220)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(220, base_ring=CyclotomicField(4))
chi = DirichletCharacter(H, H._module([0, 3, 2]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("220.153");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 220 = 2^{2} \cdot 5 \cdot 11 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 220.k (of order \(4\), degree \(2\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(1.75670884447\) |
Analytic rank: | \(0\) |
Dimension: | \(8\) |
Relative dimension: | \(4\) over \(\Q(i)\) |
Coefficient field: | 8.0.303595776.1 |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: | \( x^{8} + 5x^{6} + 16x^{4} + 45x^{2} + 81 \) |
Coefficient ring: | \(\Z[a_1, \ldots, a_{11}]\) |
Coefficient ring index: | \( 2^{2}\cdot 5 \) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{U}(1)[D_{4}]$ |
Embedding invariants
Embedding label | 153.1 | ||
Root | \(-1.26217 - 1.18614i\) of defining polynomial | ||
Character | \(\chi\) | \(=\) | 220.153 |
Dual form | 220.2.k.b.197.1 |
$q$-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/220\mathbb{Z}\right)^\times\).
\(n\) | \(101\) | \(111\) | \(177\) |
\(\chi(n)\) | \(-1\) | \(1\) | \(e\left(\frac{3}{4}\right)\) |
Coefficient data
For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).
(See \(a_n\) instead)
(See \(a_n\) instead)
(See \(a_n\) instead)
(See only \(a_p\))
(See only \(a_p\))
(See only \(a_p\))
\(n\) | \(a_n\) | \(a_n / n^{(k-1)/2}\) | \( \alpha_n \) | \( \theta_n \) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
\(p\) | \(a_p\) | \(a_p / p^{(k-1)/2}\) | \( \alpha_p\) | \( \theta_p \) | ||||||
\(2\) | 0 | 0 | ||||||||
\(3\) | −2.44831 | − | 2.44831i | −1.41353 | − | 1.41353i | −0.728714 | − | 0.684819i | \(-0.759881\pi\) |
−0.684819 | − | 0.728714i | \(-0.740119\pi\) | |||||||
\(4\) | 0 | 0 | ||||||||
\(5\) | −0.469882 | − | 2.18614i | −0.210138 | − | 0.977672i | ||||
\(6\) | 0 | 0 | ||||||||
\(7\) | 0 | 0 | 0.707107 | − | 0.707107i | \(-0.250000\pi\) | ||||
−0.707107 | + | 0.707107i | \(0.750000\pi\) | |||||||
\(8\) | 0 | 0 | ||||||||
\(9\) | 8.98844i | 2.99615i | ||||||||
\(10\) | 0 | 0 | ||||||||
\(11\) | −3.31662 | −1.00000 | ||||||||
\(12\) | 0 | 0 | ||||||||
\(13\) | 0 | 0 | −0.707107 | − | 0.707107i | \(-0.750000\pi\) | ||||
0.707107 | + | 0.707107i | \(0.250000\pi\) | |||||||
\(14\) | 0 | 0 | ||||||||
\(15\) | −4.20193 | + | 6.50277i | −1.08493 | + | 1.67901i | ||||
\(16\) | 0 | 0 | ||||||||
\(17\) | 0 | 0 | 0.707107 | − | 0.707107i | \(-0.250000\pi\) | ||||
−0.707107 | + | 0.707107i | \(0.750000\pi\) | |||||||
\(18\) | 0 | 0 | ||||||||
\(19\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(20\) | 0 | 0 | ||||||||
\(21\) | 0 | 0 | ||||||||
\(22\) | 0 | 0 | ||||||||
\(23\) | −5.54013 | − | 5.54013i | −1.15520 | − | 1.15520i | −0.985496 | − | 0.169701i | \(-0.945720\pi\) |
−0.169701 | − | 0.985496i | \(-0.554280\pi\) | |||||||
\(24\) | 0 | 0 | ||||||||
\(25\) | −4.55842 | + | 2.05446i | −0.911684 | + | 0.410891i | ||||
\(26\) | 0 | 0 | ||||||||
\(27\) | 14.6616 | − | 14.6616i | 2.82162 | − | 2.82162i | ||||
\(28\) | 0 | 0 | ||||||||
\(29\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(30\) | 0 | 0 | ||||||||
\(31\) | −0.644810 | −0.115811 | −0.0579057 | − | 0.998322i | \(-0.518442\pi\) | ||||
−0.0579057 | + | 0.998322i | \(0.518442\pi\) | |||||||
\(32\) | 0 | 0 | ||||||||
\(33\) | 8.12012 | + | 8.12012i | 1.41353 | + | 1.41353i | ||||
\(34\) | 0 | 0 | ||||||||
\(35\) | 0 | 0 | ||||||||
\(36\) | 0 | 0 | ||||||||
\(37\) | 2.96014 | − | 2.96014i | 0.486643 | − | 0.486643i | −0.420602 | − | 0.907245i | \(-0.638181\pi\) |
0.907245 | + | 0.420602i | \(0.138181\pi\) | |||||||
\(38\) | 0 | 0 | ||||||||
\(39\) | 0 | 0 | ||||||||
\(40\) | 0 | 0 | ||||||||
\(41\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(42\) | 0 | 0 | ||||||||
\(43\) | 0 | 0 | −0.707107 | − | 0.707107i | \(-0.750000\pi\) | ||||
0.707107 | + | 0.707107i | \(0.250000\pi\) | |||||||
\(44\) | 0 | 0 | ||||||||
\(45\) | 19.6500 | − | 4.22351i | 2.92925 | − | 0.629603i | ||||
\(46\) | 0 | 0 | ||||||||
\(47\) | −2.68338 | + | 2.68338i | −0.391411 | + | 0.391411i | −0.875190 | − | 0.483779i | \(-0.839264\pi\) |
0.483779 | + | 0.875190i | \(0.339264\pi\) | |||||||
\(48\) | 0 | 0 | ||||||||
\(49\) | − | 7.00000i | − | 1.00000i | ||||||
\(50\) | 0 | 0 | ||||||||
\(51\) | 0 | 0 | ||||||||
\(52\) | 0 | 0 | ||||||||
\(53\) | −9.63325 | − | 9.63325i | −1.32323 | − | 1.32323i | −0.911147 | − | 0.412082i | \(-0.864802\pi\) |
−0.412082 | − | 0.911147i | \(-0.635198\pi\) | |||||||
\(54\) | 0 | 0 | ||||||||
\(55\) | 1.55842 | + | 7.25061i | 0.210138 | + | 0.977672i | ||||
\(56\) | 0 | 0 | ||||||||
\(57\) | 0 | 0 | ||||||||
\(58\) | 0 | 0 | ||||||||
\(59\) | − | 11.3321i | − | 1.47531i | −0.675178 | − | 0.737655i | \(-0.735933\pi\) | ||
0.675178 | − | 0.737655i | \(-0.264067\pi\) | |||||||
\(60\) | 0 | 0 | ||||||||
\(61\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(62\) | 0 | 0 | ||||||||
\(63\) | 0 | 0 | ||||||||
\(64\) | 0 | 0 | ||||||||
\(65\) | 0 | 0 | ||||||||
\(66\) | 0 | 0 | ||||||||
\(67\) | −10.7001 | + | 10.7001i | −1.30723 | + | 1.30723i | −0.383819 | + | 0.923408i | \(0.625391\pi\) |
−0.923408 | + | 0.383819i | \(0.874609\pi\) | |||||||
\(68\) | 0 | 0 | ||||||||
\(69\) | 27.1279i | 3.26582i | ||||||||
\(70\) | 0 | 0 | ||||||||
\(71\) | 15.8614 | 1.88240 | 0.941201 | − | 0.337846i | \(-0.109698\pi\) | ||||
0.941201 | + | 0.337846i | \(0.109698\pi\) | |||||||
\(72\) | 0 | 0 | ||||||||
\(73\) | 0 | 0 | −0.707107 | − | 0.707107i | \(-0.750000\pi\) | ||||
0.707107 | + | 0.707107i | \(0.250000\pi\) | |||||||
\(74\) | 0 | 0 | ||||||||
\(75\) | 16.1904 | + | 6.13048i | 1.86950 | + | 0.707887i | ||||
\(76\) | 0 | 0 | ||||||||
\(77\) | 0 | 0 | ||||||||
\(78\) | 0 | 0 | ||||||||
\(79\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(80\) | 0 | 0 | ||||||||
\(81\) | −44.8267 | −4.98075 | ||||||||
\(82\) | 0 | 0 | ||||||||
\(83\) | 0 | 0 | −0.707107 | − | 0.707107i | \(-0.750000\pi\) | ||||
0.707107 | + | 0.707107i | \(0.250000\pi\) | |||||||
\(84\) | 0 | 0 | ||||||||
\(85\) | 0 | 0 | ||||||||
\(86\) | 0 | 0 | ||||||||
\(87\) | 0 | 0 | ||||||||
\(88\) | 0 | 0 | ||||||||
\(89\) | − | 9.86141i | − | 1.04531i | −0.852545 | − | 0.522654i | \(-0.824942\pi\) | ||
0.852545 | − | 0.522654i | \(-0.175058\pi\) | |||||||
\(90\) | 0 | 0 | ||||||||
\(91\) | 0 | 0 | ||||||||
\(92\) | 0 | 0 | ||||||||
\(93\) | 1.57869 | + | 1.57869i | 0.163703 | + | 0.163703i | ||||
\(94\) | 0 | 0 | ||||||||
\(95\) | 0 | 0 | ||||||||
\(96\) | 0 | 0 | ||||||||
\(97\) | 3.68467 | − | 3.68467i | 0.374122 | − | 0.374122i | −0.494854 | − | 0.868976i | \(-0.664778\pi\) |
0.868976 | + | 0.494854i | \(0.164778\pi\) | |||||||
\(98\) | 0 | 0 | ||||||||
\(99\) | − | 29.8113i | − | 2.99615i | ||||||
\(100\) | 0 | 0 | ||||||||
\(101\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(102\) | 0 | 0 | ||||||||
\(103\) | 11.9499 | + | 11.9499i | 1.17746 | + | 1.17746i | 0.980390 | + | 0.197066i | \(0.0631413\pi\) |
0.197066 | + | 0.980390i | \(0.436859\pi\) | |||||||
\(104\) | 0 | 0 | ||||||||
\(105\) | 0 | 0 | ||||||||
\(106\) | 0 | 0 | ||||||||
\(107\) | 0 | 0 | 0.707107 | − | 0.707107i | \(-0.250000\pi\) | ||||
−0.707107 | + | 0.707107i | \(0.750000\pi\) | |||||||
\(108\) | 0 | 0 | ||||||||
\(109\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(110\) | 0 | 0 | ||||||||
\(111\) | −14.4947 | −1.37577 | ||||||||
\(112\) | 0 | 0 | ||||||||
\(113\) | −6.10856 | − | 6.10856i | −0.574645 | − | 0.574645i | 0.358778 | − | 0.933423i | \(-0.383194\pi\) |
−0.933423 | + | 0.358778i | \(0.883194\pi\) | |||||||
\(114\) | 0 | 0 | ||||||||
\(115\) | −9.50830 | + | 14.7147i | −0.886653 | + | 1.37215i | ||||
\(116\) | 0 | 0 | ||||||||
\(117\) | 0 | 0 | ||||||||
\(118\) | 0 | 0 | ||||||||
\(119\) | 0 | 0 | ||||||||
\(120\) | 0 | 0 | ||||||||
\(121\) | 11.0000 | 1.00000 | ||||||||
\(122\) | 0 | 0 | ||||||||
\(123\) | 0 | 0 | ||||||||
\(124\) | 0 | 0 | ||||||||
\(125\) | 6.63325 | + | 9.00000i | 0.593296 | + | 0.804984i | ||||
\(126\) | 0 | 0 | ||||||||
\(127\) | 0 | 0 | 0.707107 | − | 0.707107i | \(-0.250000\pi\) | ||||
−0.707107 | + | 0.707107i | \(0.750000\pi\) | |||||||
\(128\) | 0 | 0 | ||||||||
\(129\) | 0 | 0 | ||||||||
\(130\) | 0 | 0 | ||||||||
\(131\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(132\) | 0 | 0 | ||||||||
\(133\) | 0 | 0 | ||||||||
\(134\) | 0 | 0 | ||||||||
\(135\) | −38.9414 | − | 25.1630i | −3.35154 | − | 2.16569i | ||||
\(136\) | 0 | 0 | ||||||||
\(137\) | 2.19985 | − | 2.19985i | 0.187946 | − | 0.187946i | −0.606861 | − | 0.794808i | \(-0.707572\pi\) |
0.794808 | + | 0.606861i | \(0.207572\pi\) | |||||||
\(138\) | 0 | 0 | ||||||||
\(139\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(140\) | 0 | 0 | ||||||||
\(141\) | 13.1395 | 1.10654 | ||||||||
\(142\) | 0 | 0 | ||||||||
\(143\) | 0 | 0 | ||||||||
\(144\) | 0 | 0 | ||||||||
\(145\) | 0 | 0 | ||||||||
\(146\) | 0 | 0 | ||||||||
\(147\) | −17.1382 | + | 17.1382i | −1.41353 | + | 1.41353i | ||||
\(148\) | 0 | 0 | ||||||||
\(149\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(150\) | 0 | 0 | ||||||||
\(151\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(152\) | 0 | 0 | ||||||||
\(153\) | 0 | 0 | ||||||||
\(154\) | 0 | 0 | ||||||||
\(155\) | 0.302985 | + | 1.40965i | 0.0243363 | + | 0.113225i | ||||
\(156\) | 0 | 0 | ||||||||
\(157\) | 11.0052 | − | 11.0052i | 0.878309 | − | 0.878309i | −0.115050 | − | 0.993360i | \(-0.536703\pi\) |
0.993360 | + | 0.115050i | \(0.0367030\pi\) | |||||||
\(158\) | 0 | 0 | ||||||||
\(159\) | 47.1704i | 3.74085i | ||||||||
\(160\) | 0 | 0 | ||||||||
\(161\) | 0 | 0 | ||||||||
\(162\) | 0 | 0 | ||||||||
\(163\) | 1.94987 | + | 1.94987i | 0.152726 | + | 0.152726i | 0.779334 | − | 0.626608i | \(-0.215557\pi\) |
−0.626608 | + | 0.779334i | \(0.715557\pi\) | |||||||
\(164\) | 0 | 0 | ||||||||
\(165\) | 13.9362 | − | 21.5672i | 1.08493 | − | 1.67901i | ||||
\(166\) | 0 | 0 | ||||||||
\(167\) | 0 | 0 | 0.707107 | − | 0.707107i | \(-0.250000\pi\) | ||||
−0.707107 | + | 0.707107i | \(0.750000\pi\) | |||||||
\(168\) | 0 | 0 | ||||||||
\(169\) | 13.0000i | 1.00000i | ||||||||
\(170\) | 0 | 0 | ||||||||
\(171\) | 0 | 0 | ||||||||
\(172\) | 0 | 0 | ||||||||
\(173\) | 0 | 0 | −0.707107 | − | 0.707107i | \(-0.750000\pi\) | ||||
0.707107 | + | 0.707107i | \(0.250000\pi\) | |||||||
\(174\) | 0 | 0 | ||||||||
\(175\) | 0 | 0 | ||||||||
\(176\) | 0 | 0 | ||||||||
\(177\) | −27.7444 | + | 27.7444i | −2.08540 | + | 2.08540i | ||||
\(178\) | 0 | 0 | ||||||||
\(179\) | 3.86141i | 0.288615i | 0.989533 | + | 0.144308i | \(0.0460955\pi\) | ||||
−0.989533 | + | 0.144308i | \(0.953905\pi\) | |||||||
\(180\) | 0 | 0 | ||||||||
\(181\) | 16.6757 | 1.23949 | 0.619747 | − | 0.784801i | \(-0.287235\pi\) | ||||
0.619747 | + | 0.784801i | \(0.287235\pi\) | |||||||
\(182\) | 0 | 0 | ||||||||
\(183\) | 0 | 0 | ||||||||
\(184\) | 0 | 0 | ||||||||
\(185\) | −7.86219 | − | 5.08036i | −0.578039 | − | 0.373515i | ||||
\(186\) | 0 | 0 | ||||||||
\(187\) | 0 | 0 | ||||||||
\(188\) | 0 | 0 | ||||||||
\(189\) | 0 | 0 | ||||||||
\(190\) | 0 | 0 | ||||||||
\(191\) | 24.5986 | 1.77989 | 0.889945 | − | 0.456068i | \(-0.150743\pi\) | ||||
0.889945 | + | 0.456068i | \(0.150743\pi\) | |||||||
\(192\) | 0 | 0 | ||||||||
\(193\) | 0 | 0 | −0.707107 | − | 0.707107i | \(-0.750000\pi\) | ||||
0.707107 | + | 0.707107i | \(0.250000\pi\) | |||||||
\(194\) | 0 | 0 | ||||||||
\(195\) | 0 | 0 | ||||||||
\(196\) | 0 | 0 | ||||||||
\(197\) | 0 | 0 | 0.707107 | − | 0.707107i | \(-0.250000\pi\) | ||||
−0.707107 | + | 0.707107i | \(0.750000\pi\) | |||||||
\(198\) | 0 | 0 | ||||||||
\(199\) | − | 19.8997i | − | 1.41066i | −0.708881 | − | 0.705328i | \(-0.750800\pi\) | ||
0.708881 | − | 0.705328i | \(-0.249200\pi\) | |||||||
\(200\) | 0 | 0 | ||||||||
\(201\) | 52.3944 | 3.69562 | ||||||||
\(202\) | 0 | 0 | ||||||||
\(203\) | 0 | 0 | ||||||||
\(204\) | 0 | 0 | ||||||||
\(205\) | 0 | 0 | ||||||||
\(206\) | 0 | 0 | ||||||||
\(207\) | 49.7971 | − | 49.7971i | 3.46114 | − | 3.46114i | ||||
\(208\) | 0 | 0 | ||||||||
\(209\) | 0 | 0 | ||||||||
\(210\) | 0 | 0 | ||||||||
\(211\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(212\) | 0 | 0 | ||||||||
\(213\) | −38.8336 | − | 38.8336i | −2.66084 | − | 2.66084i | ||||
\(214\) | 0 | 0 | ||||||||
\(215\) | 0 | 0 | ||||||||
\(216\) | 0 | 0 | ||||||||
\(217\) | 0 | 0 | ||||||||
\(218\) | 0 | 0 | ||||||||
\(219\) | 0 | 0 | ||||||||
\(220\) | 0 | 0 | ||||||||
\(221\) | 0 | 0 | ||||||||
\(222\) | 0 | 0 | ||||||||
\(223\) | −4.77985 | − | 4.77985i | −0.320082 | − | 0.320082i | 0.528716 | − | 0.848799i | \(-0.322674\pi\) |
−0.848799 | + | 0.528716i | \(0.822674\pi\) | |||||||
\(224\) | 0 | 0 | ||||||||
\(225\) | −18.4664 | − | 40.9731i | −1.23109 | − | 2.73154i | ||||
\(226\) | 0 | 0 | ||||||||
\(227\) | 0 | 0 | 0.707107 | − | 0.707107i | \(-0.250000\pi\) | ||||
−0.707107 | + | 0.707107i | \(0.750000\pi\) | |||||||
\(228\) | 0 | 0 | ||||||||
\(229\) | − | 19.2549i | − | 1.27240i | −0.771523 | − | 0.636201i | \(-0.780505\pi\) | ||
0.771523 | − | 0.636201i | \(-0.219495\pi\) | |||||||
\(230\) | 0 | 0 | ||||||||
\(231\) | 0 | 0 | ||||||||
\(232\) | 0 | 0 | ||||||||
\(233\) | 0 | 0 | −0.707107 | − | 0.707107i | \(-0.750000\pi\) | ||||
0.707107 | + | 0.707107i | \(0.250000\pi\) | |||||||
\(234\) | 0 | 0 | ||||||||
\(235\) | 7.12711 | + | 4.60537i | 0.464921 | + | 0.300421i | ||||
\(236\) | 0 | 0 | ||||||||
\(237\) | 0 | 0 | ||||||||
\(238\) | 0 | 0 | ||||||||
\(239\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(240\) | 0 | 0 | ||||||||
\(241\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(242\) | 0 | 0 | ||||||||
\(243\) | 65.7650 | + | 65.7650i | 4.21883 | + | 4.21883i | ||||
\(244\) | 0 | 0 | ||||||||
\(245\) | −15.3030 | + | 3.28917i | −0.977672 | + | 0.210138i | ||||
\(246\) | 0 | 0 | ||||||||
\(247\) | 0 | 0 | ||||||||
\(248\) | 0 | 0 | ||||||||
\(249\) | 0 | 0 | ||||||||
\(250\) | 0 | 0 | ||||||||
\(251\) | −27.8614 | −1.75860 | −0.879298 | − | 0.476272i | \(-0.841988\pi\) | ||||
−0.879298 | + | 0.476272i | \(0.841988\pi\) | |||||||
\(252\) | 0 | 0 | ||||||||
\(253\) | 18.3745 | + | 18.3745i | 1.15520 | + | 1.15520i | ||||
\(254\) | 0 | 0 | ||||||||
\(255\) | 0 | 0 | ||||||||
\(256\) | 0 | 0 | ||||||||
\(257\) | −4.26650 | + | 4.26650i | −0.266137 | + | 0.266137i | −0.827541 | − | 0.561405i | \(-0.810261\pi\) |
0.561405 | + | 0.827541i | \(0.310261\pi\) | |||||||
\(258\) | 0 | 0 | ||||||||
\(259\) | 0 | 0 | ||||||||
\(260\) | 0 | 0 | ||||||||
\(261\) | 0 | 0 | ||||||||
\(262\) | 0 | 0 | ||||||||
\(263\) | 0 | 0 | −0.707107 | − | 0.707107i | \(-0.750000\pi\) | ||||
0.707107 | + | 0.707107i | \(0.250000\pi\) | |||||||
\(264\) | 0 | 0 | ||||||||
\(265\) | −16.5331 | + | 25.5861i | −1.01562 | + | 1.57174i | ||||
\(266\) | 0 | 0 | ||||||||
\(267\) | −24.1438 | + | 24.1438i | −1.47758 | + | 1.47758i | ||||
\(268\) | 0 | 0 | ||||||||
\(269\) | 13.2665i | 0.808873i | 0.914566 | + | 0.404436i | \(0.132532\pi\) | ||||
−0.914566 | + | 0.404436i | \(0.867468\pi\) | |||||||
\(270\) | 0 | 0 | ||||||||
\(271\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(272\) | 0 | 0 | ||||||||
\(273\) | 0 | 0 | ||||||||
\(274\) | 0 | 0 | ||||||||
\(275\) | 15.1186 | − | 6.81386i | 0.911684 | − | 0.410891i | ||||
\(276\) | 0 | 0 | ||||||||
\(277\) | 0 | 0 | 0.707107 | − | 0.707107i | \(-0.250000\pi\) | ||||
−0.707107 | + | 0.707107i | \(0.750000\pi\) | |||||||
\(278\) | 0 | 0 | ||||||||
\(279\) | − | 5.79584i | − | 0.346988i | ||||||
\(280\) | 0 | 0 | ||||||||
\(281\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(282\) | 0 | 0 | ||||||||
\(283\) | 0 | 0 | −0.707107 | − | 0.707107i | \(-0.750000\pi\) | ||||
0.707107 | + | 0.707107i | \(0.250000\pi\) | |||||||
\(284\) | 0 | 0 | ||||||||
\(285\) | 0 | 0 | ||||||||
\(286\) | 0 | 0 | ||||||||
\(287\) | 0 | 0 | ||||||||
\(288\) | 0 | 0 | ||||||||
\(289\) | − | 17.0000i | − | 1.00000i | ||||||
\(290\) | 0 | 0 | ||||||||
\(291\) | −18.0424 | −1.05767 | ||||||||
\(292\) | 0 | 0 | ||||||||
\(293\) | 0 | 0 | −0.707107 | − | 0.707107i | \(-0.750000\pi\) | ||||
0.707107 | + | 0.707107i | \(0.250000\pi\) | |||||||
\(294\) | 0 | 0 | ||||||||
\(295\) | −24.7735 | + | 5.32473i | −1.44237 | + | 0.310018i | ||||
\(296\) | 0 | 0 | ||||||||
\(297\) | −48.6269 | + | 48.6269i | −2.82162 | + | 2.82162i | ||||
\(298\) | 0 | 0 | ||||||||
\(299\) | 0 | 0 | ||||||||
\(300\) | 0 | 0 | ||||||||
\(301\) | 0 | 0 | ||||||||
\(302\) | 0 | 0 | ||||||||
\(303\) | 0 | 0 | ||||||||
\(304\) | 0 | 0 | ||||||||
\(305\) | 0 | 0 | ||||||||
\(306\) | 0 | 0 | ||||||||
\(307\) | 0 | 0 | 0.707107 | − | 0.707107i | \(-0.250000\pi\) | ||||
−0.707107 | + | 0.707107i | \(0.750000\pi\) | |||||||
\(308\) | 0 | 0 | ||||||||
\(309\) | − | 58.5140i | − | 3.32874i | ||||||
\(310\) | 0 | 0 | ||||||||
\(311\) | 12.0000 | 0.680458 | 0.340229 | − | 0.940343i | \(-0.389495\pi\) | ||||
0.340229 | + | 0.940343i | \(0.389495\pi\) | |||||||
\(312\) | 0 | 0 | ||||||||
\(313\) | −18.4401 | − | 18.4401i | −1.04230 | − | 1.04230i | −0.999065 | − | 0.0432311i | \(-0.986235\pi\) |
−0.0432311 | − | 0.999065i | \(-0.513765\pi\) | |||||||
\(314\) | 0 | 0 | ||||||||
\(315\) | 0 | 0 | ||||||||
\(316\) | 0 | 0 | ||||||||
\(317\) | −20.7984 | + | 20.7984i | −1.16816 | + | 1.16816i | −0.185514 | + | 0.982642i | \(0.559395\pi\) |
−0.982642 | + | 0.185514i | \(0.940605\pi\) | |||||||
\(318\) | 0 | 0 | ||||||||
\(319\) | 0 | 0 | ||||||||
\(320\) | 0 | 0 | ||||||||
\(321\) | 0 | 0 | ||||||||
\(322\) | 0 | 0 | ||||||||
\(323\) | 0 | 0 | ||||||||
\(324\) | 0 | 0 | ||||||||
\(325\) | 0 | 0 | ||||||||
\(326\) | 0 | 0 | ||||||||
\(327\) | 0 | 0 | ||||||||
\(328\) | 0 | 0 | ||||||||
\(329\) | 0 | 0 | ||||||||
\(330\) | 0 | 0 | ||||||||
\(331\) | −35.2858 | −1.93948 | −0.969742 | − | 0.244131i | \(-0.921497\pi\) | ||||
−0.969742 | + | 0.244131i | \(0.921497\pi\) | |||||||
\(332\) | 0 | 0 | ||||||||
\(333\) | 26.6070 | + | 26.6070i | 1.45805 | + | 1.45805i | ||||
\(334\) | 0 | 0 | ||||||||
\(335\) | 28.4198 | + | 18.3642i | 1.55274 | + | 1.00334i | ||||
\(336\) | 0 | 0 | ||||||||
\(337\) | 0 | 0 | 0.707107 | − | 0.707107i | \(-0.250000\pi\) | ||||
−0.707107 | + | 0.707107i | \(0.750000\pi\) | |||||||
\(338\) | 0 | 0 | ||||||||
\(339\) | 29.9113i | 1.62456i | ||||||||
\(340\) | 0 | 0 | ||||||||
\(341\) | 2.13859 | 0.115811 | ||||||||
\(342\) | 0 | 0 | ||||||||
\(343\) | 0 | 0 | ||||||||
\(344\) | 0 | 0 | ||||||||
\(345\) | 59.3054 | − | 12.7469i | 3.19290 | − | 0.686271i | ||||
\(346\) | 0 | 0 | ||||||||
\(347\) | 0 | 0 | 0.707107 | − | 0.707107i | \(-0.250000\pi\) | ||||
−0.707107 | + | 0.707107i | \(0.750000\pi\) | |||||||
\(348\) | 0 | 0 | ||||||||
\(349\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(350\) | 0 | 0 | ||||||||
\(351\) | 0 | 0 | ||||||||
\(352\) | 0 | 0 | ||||||||
\(353\) | −23.2712 | − | 23.2712i | −1.23860 | − | 1.23860i | −0.960574 | − | 0.278024i | \(-0.910320\pi\) |
−0.278024 | − | 0.960574i | \(-0.589680\pi\) | |||||||
\(354\) | 0 | 0 | ||||||||
\(355\) | −7.45299 | − | 34.6753i | −0.395564 | − | 1.84037i | ||||
\(356\) | 0 | 0 | ||||||||
\(357\) | 0 | 0 | ||||||||
\(358\) | 0 | 0 | ||||||||
\(359\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(360\) | 0 | 0 | ||||||||
\(361\) | −19.0000 | −1.00000 | ||||||||
\(362\) | 0 | 0 | ||||||||
\(363\) | −26.9314 | − | 26.9314i | −1.41353 | − | 1.41353i | ||||
\(364\) | 0 | 0 | ||||||||
\(365\) | 0 | 0 | ||||||||
\(366\) | 0 | 0 | ||||||||
\(367\) | 0.0244206 | − | 0.0244206i | 0.00127475 | − | 0.00127475i | −0.706469 | − | 0.707744i | \(-0.749713\pi\) |
0.707744 | + | 0.706469i | \(0.249713\pi\) | |||||||
\(368\) | 0 | 0 | ||||||||
\(369\) | 0 | 0 | ||||||||
\(370\) | 0 | 0 | ||||||||
\(371\) | 0 | 0 | ||||||||
\(372\) | 0 | 0 | ||||||||
\(373\) | 0 | 0 | −0.707107 | − | 0.707107i | \(-0.750000\pi\) | ||||
0.707107 | + | 0.707107i | \(0.250000\pi\) | |||||||
\(374\) | 0 | 0 | ||||||||
\(375\) | 5.79454 | − | 38.2750i | 0.299229 | − | 1.97651i | ||||
\(376\) | 0 | 0 | ||||||||
\(377\) | 0 | 0 | ||||||||
\(378\) | 0 | 0 | ||||||||
\(379\) | − | 36.5754i | − | 1.87875i | −0.342885 | − | 0.939377i | \(-0.611404\pi\) | ||
0.342885 | − | 0.939377i | \(-0.388596\pi\) | |||||||
\(380\) | 0 | 0 | ||||||||
\(381\) | 0 | 0 | ||||||||
\(382\) | 0 | 0 | ||||||||
\(383\) | 4.87220 | + | 4.87220i | 0.248958 | + | 0.248958i | 0.820543 | − | 0.571585i | \(-0.193671\pi\) |
−0.571585 | + | 0.820543i | \(0.693671\pi\) | |||||||
\(384\) | 0 | 0 | ||||||||
\(385\) | 0 | 0 | ||||||||
\(386\) | 0 | 0 | ||||||||
\(387\) | 0 | 0 | ||||||||
\(388\) | 0 | 0 | ||||||||
\(389\) | 31.2318i | 1.58352i | 0.610835 | + | 0.791758i | \(0.290834\pi\) | ||||
−0.610835 | + | 0.791758i | \(0.709166\pi\) | |||||||
\(390\) | 0 | 0 | ||||||||
\(391\) | 0 | 0 | ||||||||
\(392\) | 0 | 0 | ||||||||
\(393\) | 0 | 0 | ||||||||
\(394\) | 0 | 0 | ||||||||
\(395\) | 0 | 0 | ||||||||
\(396\) | 0 | 0 | ||||||||
\(397\) | 18.8997 | − | 18.8997i | 0.948551 | − | 0.948551i | −0.0501886 | − | 0.998740i | \(-0.515982\pi\) |
0.998740 | + | 0.0501886i | \(0.0159822\pi\) | |||||||
\(398\) | 0 | 0 | ||||||||
\(399\) | 0 | 0 | ||||||||
\(400\) | 0 | 0 | ||||||||
\(401\) | 26.5330 | 1.32499 | 0.662497 | − | 0.749064i | \(-0.269497\pi\) | ||||
0.662497 | + | 0.749064i | \(0.269497\pi\) | |||||||
\(402\) | 0 | 0 | ||||||||
\(403\) | 0 | 0 | ||||||||
\(404\) | 0 | 0 | ||||||||
\(405\) | 21.0633 | + | 97.9975i | 1.04664 | + | 4.86954i | ||||
\(406\) | 0 | 0 | ||||||||
\(407\) | −9.81766 | + | 9.81766i | −0.486643 | + | 0.486643i | ||||
\(408\) | 0 | 0 | ||||||||
\(409\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(410\) | 0 | 0 | ||||||||
\(411\) | −10.7718 | −0.531336 | ||||||||
\(412\) | 0 | 0 | ||||||||
\(413\) | 0 | 0 | ||||||||
\(414\) | 0 | 0 | ||||||||
\(415\) | 0 | 0 | ||||||||
\(416\) | 0 | 0 | ||||||||
\(417\) | 0 | 0 | ||||||||
\(418\) | 0 | 0 | ||||||||
\(419\) | − | 24.0000i | − | 1.17248i | −0.810139 | − | 0.586238i | \(-0.800608\pi\) | ||
0.810139 | − | 0.586238i | \(-0.199392\pi\) | |||||||
\(420\) | 0 | 0 | ||||||||
\(421\) | −39.7995 | −1.93971 | −0.969854 | − | 0.243685i | \(-0.921644\pi\) | ||||
−0.969854 | + | 0.243685i | \(0.921644\pi\) | |||||||
\(422\) | 0 | 0 | ||||||||
\(423\) | −24.1194 | − | 24.1194i | −1.17272 | − | 1.17272i | ||||
\(424\) | 0 | 0 | ||||||||
\(425\) | 0 | 0 | ||||||||
\(426\) | 0 | 0 | ||||||||
\(427\) | 0 | 0 | ||||||||
\(428\) | 0 | 0 | ||||||||
\(429\) | 0 | 0 | ||||||||
\(430\) | 0 | 0 | ||||||||
\(431\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(432\) | 0 | 0 | ||||||||
\(433\) | 25.6950 | + | 25.6950i | 1.23482 | + | 1.23482i | 0.962089 | + | 0.272736i | \(0.0879285\pi\) |
0.272736 | + | 0.962089i | \(0.412071\pi\) | |||||||
\(434\) | 0 | 0 | ||||||||
\(435\) | 0 | 0 | ||||||||
\(436\) | 0 | 0 | ||||||||
\(437\) | 0 | 0 | ||||||||
\(438\) | 0 | 0 | ||||||||
\(439\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(440\) | 0 | 0 | ||||||||
\(441\) | 62.9191 | 2.99615 | ||||||||
\(442\) | 0 | 0 | ||||||||
\(443\) | 21.0201 | + | 21.0201i | 0.998695 | + | 0.998695i | 0.999999 | − | 0.00130426i | \(-0.000415158\pi\) |
−0.00130426 | + | 0.999999i | \(0.500415\pi\) | |||||||
\(444\) | 0 | 0 | ||||||||
\(445\) | −21.5584 | + | 4.63370i | −1.02197 | + | 0.219658i | ||||
\(446\) | 0 | 0 | ||||||||
\(447\) | 0 | 0 | ||||||||
\(448\) | 0 | 0 | ||||||||
\(449\) | 33.8614i | 1.59802i | 0.601319 | + | 0.799009i | \(0.294642\pi\) | ||||
−0.601319 | + | 0.799009i | \(0.705358\pi\) | |||||||
\(450\) | 0 | 0 | ||||||||
\(451\) | 0 | 0 | ||||||||
\(452\) | 0 | 0 | ||||||||
\(453\) | 0 | 0 | ||||||||
\(454\) | 0 | 0 | ||||||||
\(455\) | 0 | 0 | ||||||||
\(456\) | 0 | 0 | ||||||||
\(457\) | 0 | 0 | 0.707107 | − | 0.707107i | \(-0.250000\pi\) | ||||
−0.707107 | + | 0.707107i | \(0.750000\pi\) | |||||||
\(458\) | 0 | 0 | ||||||||
\(459\) | 0 | 0 | ||||||||
\(460\) | 0 | 0 | ||||||||
\(461\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(462\) | 0 | 0 | ||||||||
\(463\) | 14.7143 | + | 14.7143i | 0.683830 | + | 0.683830i | 0.960861 | − | 0.277031i | \(-0.0893503\pi\) |
−0.277031 | + | 0.960861i | \(0.589350\pi\) | |||||||
\(464\) | 0 | 0 | ||||||||
\(465\) | 2.70945 | − | 4.19305i | 0.125648 | − | 0.194448i | ||||
\(466\) | 0 | 0 | ||||||||
\(467\) | −9.93984 | + | 9.93984i | −0.459961 | + | 0.459961i | −0.898642 | − | 0.438682i | \(-0.855446\pi\) |
0.438682 | + | 0.898642i | \(0.355446\pi\) | |||||||
\(468\) | 0 | 0 | ||||||||
\(469\) | 0 | 0 | ||||||||
\(470\) | 0 | 0 | ||||||||
\(471\) | −53.8882 | −2.48304 | ||||||||
\(472\) | 0 | 0 | ||||||||
\(473\) | 0 | 0 | ||||||||
\(474\) | 0 | 0 | ||||||||
\(475\) | 0 | 0 | ||||||||
\(476\) | 0 | 0 | ||||||||
\(477\) | 86.5879 | − | 86.5879i | 3.96459 | − | 3.96459i | ||||
\(478\) | 0 | 0 | ||||||||
\(479\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(480\) | 0 | 0 | ||||||||
\(481\) | 0 | 0 | ||||||||
\(482\) | 0 | 0 | ||||||||
\(483\) | 0 | 0 | ||||||||
\(484\) | 0 | 0 | ||||||||
\(485\) | −9.78658 | − | 6.32386i | −0.444386 | − | 0.287151i | ||||
\(486\) | 0 | 0 | ||||||||
\(487\) | 14.6654 | − | 14.6654i | 0.664554 | − | 0.664554i | −0.291896 | − | 0.956450i | \(-0.594286\pi\) |
0.956450 | + | 0.291896i | \(0.0942860\pi\) | |||||||
\(488\) | 0 | 0 | ||||||||
\(489\) | − | 9.54779i | − | 0.431766i | ||||||
\(490\) | 0 | 0 | ||||||||
\(491\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(492\) | 0 | 0 | ||||||||
\(493\) | 0 | 0 | ||||||||
\(494\) | 0 | 0 | ||||||||
\(495\) | −65.1717 | + | 14.0078i | −2.92925 | + | 0.629603i | ||||
\(496\) | 0 | 0 | ||||||||
\(497\) | 0 | 0 | ||||||||
\(498\) | 0 | 0 | ||||||||
\(499\) | − | 19.8997i | − | 0.890835i | −0.895323 | − | 0.445418i | \(-0.853055\pi\) | ||
0.895323 | − | 0.445418i | \(-0.146945\pi\) | |||||||
\(500\) | 0 | 0 | ||||||||
\(501\) | 0 | 0 | ||||||||
\(502\) | 0 | 0 | ||||||||
\(503\) | 0 | 0 | −0.707107 | − | 0.707107i | \(-0.750000\pi\) | ||||
0.707107 | + | 0.707107i | \(0.250000\pi\) | |||||||
\(504\) | 0 | 0 | ||||||||
\(505\) | 0 | 0 | ||||||||
\(506\) | 0 | 0 | ||||||||
\(507\) | 31.8280 | − | 31.8280i | 1.41353 | − | 1.41353i | ||||
\(508\) | 0 | 0 | ||||||||
\(509\) | 40.6295i | 1.80087i | 0.434992 | + | 0.900434i | \(0.356751\pi\) | ||||
−0.434992 | + | 0.900434i | \(0.643249\pi\) | |||||||
\(510\) | 0 | 0 | ||||||||
\(511\) | 0 | 0 | ||||||||
\(512\) | 0 | 0 | ||||||||
\(513\) | 0 | 0 | ||||||||
\(514\) | 0 | 0 | ||||||||
\(515\) | 20.5091 | − | 31.7391i | 0.903738 | − | 1.39859i | ||||
\(516\) | 0 | 0 | ||||||||
\(517\) | 8.89975 | − | 8.89975i | 0.391411 | − | 0.391411i | ||||
\(518\) | 0 | 0 | ||||||||
\(519\) | 0 | 0 | ||||||||
\(520\) | 0 | 0 | ||||||||
\(521\) | −8.56768 | −0.375357 | −0.187678 | − | 0.982231i | \(-0.560096\pi\) | ||||
−0.187678 | + | 0.982231i | \(0.560096\pi\) | |||||||
\(522\) | 0 | 0 | ||||||||
\(523\) | 0 | 0 | −0.707107 | − | 0.707107i | \(-0.750000\pi\) | ||||
0.707107 | + | 0.707107i | \(0.250000\pi\) | |||||||
\(524\) | 0 | 0 | ||||||||
\(525\) | 0 | 0 | ||||||||
\(526\) | 0 | 0 | ||||||||
\(527\) | 0 | 0 | ||||||||
\(528\) | 0 | 0 | ||||||||
\(529\) | 38.3861i | 1.66896i | ||||||||
\(530\) | 0 | 0 | ||||||||
\(531\) | 101.858 | 4.42024 | ||||||||
\(532\) | 0 | 0 | ||||||||
\(533\) | 0 | 0 | ||||||||
\(534\) | 0 | 0 | ||||||||
\(535\) | 0 | 0 | ||||||||
\(536\) | 0 | 0 | ||||||||
\(537\) | 9.45392 | − | 9.45392i | 0.407967 | − | 0.407967i | ||||
\(538\) | 0 | 0 | ||||||||
\(539\) | 23.2164i | 1.00000i | ||||||||
\(540\) | 0 | 0 | ||||||||
\(541\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(542\) | 0 | 0 | ||||||||
\(543\) | −40.8273 | − | 40.8273i | −1.75207 | − | 1.75207i | ||||
\(544\) | 0 | 0 | ||||||||
\(545\) | 0 | 0 | ||||||||
\(546\) | 0 | 0 | ||||||||
\(547\) | 0 | 0 | 0.707107 | − | 0.707107i | \(-0.250000\pi\) | ||||
−0.707107 | + | 0.707107i | \(0.750000\pi\) | |||||||
\(548\) | 0 | 0 | ||||||||
\(549\) | 0 | 0 | ||||||||
\(550\) | 0 | 0 | ||||||||
\(551\) | 0 | 0 | ||||||||
\(552\) | 0 | 0 | ||||||||
\(553\) | 0 | 0 | ||||||||
\(554\) | 0 | 0 | ||||||||
\(555\) | 6.81078 | + | 31.6874i | 0.289101 | + | 1.34505i | ||||
\(556\) | 0 | 0 | ||||||||
\(557\) | 0 | 0 | 0.707107 | − | 0.707107i | \(-0.250000\pi\) | ||||
−0.707107 | + | 0.707107i | \(0.750000\pi\) | |||||||
\(558\) | 0 | 0 | ||||||||
\(559\) | 0 | 0 | ||||||||
\(560\) | 0 | 0 | ||||||||
\(561\) | 0 | 0 | ||||||||
\(562\) | 0 | 0 | ||||||||
\(563\) | 0 | 0 | −0.707107 | − | 0.707107i | \(-0.750000\pi\) | ||||
0.707107 | + | 0.707107i | \(0.250000\pi\) | |||||||
\(564\) | 0 | 0 | ||||||||
\(565\) | −10.4839 | + | 16.2245i | −0.441060 | + | 0.682569i | ||||
\(566\) | 0 | 0 | ||||||||
\(567\) | 0 | 0 | ||||||||
\(568\) | 0 | 0 | ||||||||
\(569\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(570\) | 0 | 0 | ||||||||
\(571\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(572\) | 0 | 0 | ||||||||
\(573\) | −60.2249 | − | 60.2249i | −2.51593 | − | 2.51593i | ||||
\(574\) | 0 | 0 | ||||||||
\(575\) | 36.6362 | + | 13.8723i | 1.52784 | + | 0.578515i | ||||
\(576\) | 0 | 0 | ||||||||
\(577\) | 30.2806 | − | 30.2806i | 1.26060 | − | 1.26060i | 0.309797 | − | 0.950803i | \(-0.399739\pi\) |
0.950803 | − | 0.309797i | \(-0.100261\pi\) | |||||||
\(578\) | 0 | 0 | ||||||||
\(579\) | 0 | 0 | ||||||||
\(580\) | 0 | 0 | ||||||||
\(581\) | 0 | 0 | ||||||||
\(582\) | 0 | 0 | ||||||||
\(583\) | 31.9499 | + | 31.9499i | 1.32323 | + | 1.32323i | ||||
\(584\) | 0 | 0 | ||||||||
\(585\) | 0 | 0 | ||||||||
\(586\) | 0 | 0 | ||||||||
\(587\) | 27.3166 | − | 27.3166i | 1.12748 | − | 1.12748i | 0.136892 | − | 0.990586i | \(-0.456289\pi\) |
0.990586 | − | 0.136892i | \(-0.0437113\pi\) | |||||||
\(588\) | 0 | 0 | ||||||||
\(589\) | 0 | 0 | ||||||||
\(590\) | 0 | 0 | ||||||||
\(591\) | 0 | 0 | ||||||||
\(592\) | 0 | 0 | ||||||||
\(593\) | 0 | 0 | −0.707107 | − | 0.707107i | \(-0.750000\pi\) | ||||
0.707107 | + | 0.707107i | \(0.250000\pi\) | |||||||
\(594\) | 0 | 0 | ||||||||
\(595\) | 0 | 0 | ||||||||
\(596\) | 0 | 0 | ||||||||
\(597\) | −48.7207 | + | 48.7207i | −1.99401 | + | 1.99401i | ||||
\(598\) | 0 | 0 | ||||||||
\(599\) | 36.0000i | 1.47092i | 0.677568 | + | 0.735460i | \(0.263034\pi\) | ||||
−0.677568 | + | 0.735460i | \(0.736966\pi\) | |||||||
\(600\) | 0 | 0 | ||||||||
\(601\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(602\) | 0 | 0 | ||||||||
\(603\) | −96.1774 | − | 96.1774i | −3.91665 | − | 3.91665i | ||||
\(604\) | 0 | 0 | ||||||||
\(605\) | −5.16870 | − | 24.0475i | −0.210138 | − | 0.977672i | ||||
\(606\) | 0 | 0 | ||||||||
\(607\) | 0 | 0 | 0.707107 | − | 0.707107i | \(-0.250000\pi\) | ||||
−0.707107 | + | 0.707107i | \(0.750000\pi\) | |||||||
\(608\) | 0 | 0 | ||||||||
\(609\) | 0 | 0 | ||||||||
\(610\) | 0 | 0 | ||||||||
\(611\) | 0 | 0 | ||||||||
\(612\) | 0 | 0 | ||||||||
\(613\) | 0 | 0 | −0.707107 | − | 0.707107i | \(-0.750000\pi\) | ||||
0.707107 | + | 0.707107i | \(0.250000\pi\) | |||||||
\(614\) | 0 | 0 | ||||||||
\(615\) | 0 | 0 | ||||||||
\(616\) | 0 | 0 | ||||||||
\(617\) | −34.2665 | + | 34.2665i | −1.37952 | + | 1.37952i | −0.534089 | + | 0.845428i | \(0.679345\pi\) |
−0.845428 | + | 0.534089i | \(0.820655\pi\) | |||||||
\(618\) | 0 | 0 | ||||||||
\(619\) | − | 43.5842i | − | 1.75180i | −0.482495 | − | 0.875899i | \(-0.660269\pi\) | ||
0.482495 | − | 0.875899i | \(-0.339731\pi\) | |||||||
\(620\) | 0 | 0 | ||||||||
\(621\) | −162.454 | −6.51905 | ||||||||
\(622\) | 0 | 0 | ||||||||
\(623\) | 0 | 0 | ||||||||
\(624\) | 0 | 0 | ||||||||
\(625\) | 16.5584 | − | 18.7302i | 0.662337 | − | 0.749206i | ||||
\(626\) | 0 | 0 | ||||||||
\(627\) | 0 | 0 | ||||||||
\(628\) | 0 | 0 | ||||||||
\(629\) | 0 | 0 | ||||||||
\(630\) | 0 | 0 | ||||||||
\(631\) | 39.5842 | 1.57582 | 0.787911 | − | 0.615789i | \(-0.211162\pi\) | ||||
0.787911 | + | 0.615789i | \(0.211162\pi\) | |||||||
\(632\) | 0 | 0 | ||||||||
\(633\) | 0 | 0 | ||||||||
\(634\) | 0 | 0 | ||||||||
\(635\) | 0 | 0 | ||||||||
\(636\) | 0 | 0 | ||||||||
\(637\) | 0 | 0 | ||||||||
\(638\) | 0 | 0 | ||||||||
\(639\) | 142.569i | 5.63995i | ||||||||
\(640\) | 0 | 0 | ||||||||
\(641\) | −27.3630 | −1.08077 | −0.540386 | − | 0.841417i | \(-0.681722\pi\) | ||||
−0.540386 | + | 0.841417i | \(0.681722\pi\) | |||||||
\(642\) | 0 | 0 | ||||||||
\(643\) | 22.5407 | + | 22.5407i | 0.888917 | + | 0.888917i | 0.994419 | − | 0.105502i | \(-0.0336450\pi\) |
−0.105502 | + | 0.994419i | \(0.533645\pi\) | |||||||
\(644\) | 0 | 0 | ||||||||
\(645\) | 0 | 0 | ||||||||
\(646\) | 0 | 0 | ||||||||
\(647\) | 24.5075 | − | 24.5075i | 0.963490 | − | 0.963490i | −0.0358667 | − | 0.999357i | \(-0.511419\pi\) |
0.999357 | + | 0.0358667i | \(0.0114192\pi\) | |||||||
\(648\) | 0 | 0 | ||||||||
\(649\) | 37.5842i | 1.47531i | ||||||||
\(650\) | 0 | 0 | ||||||||
\(651\) | 0 | 0 | ||||||||
\(652\) | 0 | 0 | ||||||||
\(653\) | 35.4406 | + | 35.4406i | 1.38690 | + | 1.38690i | 0.831753 | + | 0.555147i | \(0.187338\pi\) |
0.555147 | + | 0.831753i | \(0.312662\pi\) | |||||||
\(654\) | 0 | 0 | ||||||||
\(655\) | 0 | 0 | ||||||||
\(656\) | 0 | 0 | ||||||||
\(657\) | 0 | 0 | ||||||||
\(658\) | 0 | 0 | ||||||||
\(659\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(660\) | 0 | 0 | ||||||||
\(661\) | 49.5842 | 1.92860 | 0.964301 | − | 0.264807i | \(-0.0853084\pi\) | ||||
0.964301 | + | 0.264807i | \(0.0853084\pi\) | |||||||
\(662\) | 0 | 0 | ||||||||
\(663\) | 0 | 0 | ||||||||
\(664\) | 0 | 0 | ||||||||
\(665\) | 0 | 0 | ||||||||
\(666\) | 0 | 0 | ||||||||
\(667\) | 0 | 0 | ||||||||
\(668\) | 0 | 0 | ||||||||
\(669\) | 23.4051i | 0.904893i | ||||||||
\(670\) | 0 | 0 | ||||||||
\(671\) | 0 | 0 | ||||||||
\(672\) | 0 | 0 | ||||||||
\(673\) | 0 | 0 | −0.707107 | − | 0.707107i | \(-0.750000\pi\) | ||||
0.707107 | + | 0.707107i | \(0.250000\pi\) | |||||||
\(674\) | 0 | 0 | ||||||||
\(675\) | −36.7120 | + | 96.9551i | −1.41305 | + | 3.73180i | ||||
\(676\) | 0 | 0 | ||||||||
\(677\) | 0 | 0 | 0.707107 | − | 0.707107i | \(-0.250000\pi\) | ||||
−0.707107 | + | 0.707107i | \(0.750000\pi\) | |||||||
\(678\) | 0 | 0 | ||||||||
\(679\) | 0 | 0 | ||||||||
\(680\) | 0 | 0 | ||||||||
\(681\) | 0 | 0 | ||||||||
\(682\) | 0 | 0 | ||||||||
\(683\) | −11.2164 | − | 11.2164i | −0.429183 | − | 0.429183i | 0.459167 | − | 0.888350i | \(-0.348148\pi\) |
−0.888350 | + | 0.459167i | \(0.848148\pi\) | |||||||
\(684\) | 0 | 0 | ||||||||
\(685\) | −5.84286 | − | 3.77552i | −0.223244 | − | 0.144255i | ||||
\(686\) | 0 | 0 | ||||||||
\(687\) | −47.1421 | + | 47.1421i | −1.79858 | + | 1.79858i | ||||
\(688\) | 0 | 0 | ||||||||
\(689\) | 0 | 0 | ||||||||
\(690\) | 0 | 0 | ||||||||
\(691\) | −51.5842 | −1.96236 | −0.981178 | − | 0.193105i | \(-0.938144\pi\) | ||||
−0.981178 | + | 0.193105i | \(0.938144\pi\) | |||||||
\(692\) | 0 | 0 | ||||||||
\(693\) | 0 | 0 | ||||||||
\(694\) | 0 | 0 | ||||||||
\(695\) | 0 | 0 | ||||||||
\(696\) | 0 | 0 | ||||||||
\(697\) | 0 | 0 | ||||||||
\(698\) | 0 | 0 | ||||||||
\(699\) | 0 | 0 | ||||||||
\(700\) | 0 | 0 | ||||||||
\(701\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(702\) | 0 | 0 | ||||||||
\(703\) | 0 | 0 | ||||||||
\(704\) | 0 | 0 | ||||||||
\(705\) | −6.17400 | − | 28.7247i | −0.232526 | − | 1.08184i | ||||
\(706\) | 0 | 0 | ||||||||
\(707\) | 0 | 0 | ||||||||
\(708\) | 0 | 0 | ||||||||
\(709\) | − | 33.5842i | − | 1.26128i | −0.776075 | − | 0.630641i | \(-0.782792\pi\) | ||
0.776075 | − | 0.630641i | \(-0.217208\pi\) | |||||||
\(710\) | 0 | 0 | ||||||||
\(711\) | 0 | 0 | ||||||||
\(712\) | 0 | 0 | ||||||||
\(713\) | 3.57233 | + | 3.57233i | 0.133785 | + | 0.133785i | ||||
\(714\) | 0 | 0 | ||||||||
\(715\) | 0 | 0 | ||||||||
\(716\) | 0 | 0 | ||||||||
\(717\) | 0 | 0 | ||||||||
\(718\) | 0 | 0 | ||||||||
\(719\) | − | 39.8614i | − | 1.48658i | −0.668970 | − | 0.743290i | \(-0.733264\pi\) | ||
0.668970 | − | 0.743290i | \(-0.266736\pi\) | |||||||
\(720\) | 0 | 0 | ||||||||
\(721\) | 0 | 0 | ||||||||
\(722\) | 0 | 0 | ||||||||
\(723\) | 0 | 0 | ||||||||
\(724\) | 0 | 0 | ||||||||
\(725\) | 0 | 0 | ||||||||
\(726\) | 0 | 0 | ||||||||
\(727\) | −38.0206 | + | 38.0206i | −1.41011 | + | 1.41011i | −0.651206 | + | 0.758901i | \(0.725737\pi\) |
−0.758901 | + | 0.651206i | \(0.774263\pi\) | |||||||
\(728\) | 0 | 0 | ||||||||
\(729\) | − | 187.546i | − | 6.94615i | ||||||
\(730\) | 0 | 0 | ||||||||
\(731\) | 0 | 0 | ||||||||
\(732\) | 0 | 0 | ||||||||
\(733\) | 0 | 0 | −0.707107 | − | 0.707107i | \(-0.750000\pi\) | ||||
0.707107 | + | 0.707107i | \(0.250000\pi\) | |||||||
\(734\) | 0 | 0 | ||||||||
\(735\) | 45.5194 | + | 29.4135i | 1.67901 | + | 1.08493i | ||||
\(736\) | 0 | 0 | ||||||||
\(737\) | 35.4883 | − | 35.4883i | 1.30723 | − | 1.30723i | ||||
\(738\) | 0 | 0 | ||||||||
\(739\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(740\) | 0 | 0 | ||||||||
\(741\) | 0 | 0 | ||||||||
\(742\) | 0 | 0 | ||||||||
\(743\) | 0 | 0 | −0.707107 | − | 0.707107i | \(-0.750000\pi\) | ||||
0.707107 | + | 0.707107i | \(0.250000\pi\) | |||||||
\(744\) | 0 | 0 | ||||||||
\(745\) | 0 | 0 | ||||||||
\(746\) | 0 | 0 | ||||||||
\(747\) | 0 | 0 | ||||||||
\(748\) | 0 | 0 | ||||||||
\(749\) | 0 | 0 | ||||||||
\(750\) | 0 | 0 | ||||||||
\(751\) | −31.5842 | −1.15252 | −0.576262 | − | 0.817265i | \(-0.695489\pi\) | ||||
−0.576262 | + | 0.817265i | \(0.695489\pi\) | |||||||
\(752\) | 0 | 0 | ||||||||
\(753\) | 68.2133 | + | 68.2133i | 2.48583 | + | 2.48583i | ||||
\(754\) | 0 | 0 | ||||||||
\(755\) | 0 | 0 | ||||||||
\(756\) | 0 | 0 | ||||||||
\(757\) | 38.8997 | − | 38.8997i | 1.41384 | − | 1.41384i | 0.690567 | − | 0.723269i | \(-0.257361\pi\) |
0.723269 | − | 0.690567i | \(-0.242639\pi\) | |||||||
\(758\) | 0 | 0 | ||||||||
\(759\) | − | 89.9731i | − | 3.26582i | ||||||
\(760\) | 0 | 0 | ||||||||
\(761\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(762\) | 0 | 0 | ||||||||
\(763\) | 0 | 0 | ||||||||
\(764\) | 0 | 0 | ||||||||
\(765\) | 0 | 0 | ||||||||
\(766\) | 0 | 0 | ||||||||
\(767\) | 0 | 0 | ||||||||
\(768\) | 0 | 0 | ||||||||
\(769\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(770\) | 0 | 0 | ||||||||
\(771\) | 20.8914 | 0.752386 | ||||||||
\(772\) | 0 | 0 | ||||||||
\(773\) | 20.3668 | + | 20.3668i | 0.732541 | + | 0.732541i | 0.971123 | − | 0.238581i | \(-0.0766824\pi\) |
−0.238581 | + | 0.971123i | \(0.576682\pi\) | |||||||
\(774\) | 0 | 0 | ||||||||
\(775\) | 2.93932 | − | 1.32473i | 0.105583 | − | 0.0475859i | ||||
\(776\) | 0 | 0 | ||||||||
\(777\) | 0 | 0 | ||||||||
\(778\) | 0 | 0 | ||||||||
\(779\) | 0 | 0 | ||||||||
\(780\) | 0 | 0 | ||||||||
\(781\) | −52.6063 | −1.88240 | ||||||||
\(782\) | 0 | 0 | ||||||||
\(783\) | 0 | 0 | ||||||||
\(784\) | 0 | 0 | ||||||||
\(785\) | −29.2300 | − | 18.8877i | −1.04326 | − | 0.674132i | ||||
\(786\) | 0 | 0 | ||||||||
\(787\) | 0 | 0 | 0.707107 | − | 0.707107i | \(-0.250000\pi\) | ||||
−0.707107 | + | 0.707107i | \(0.750000\pi\) | |||||||
\(788\) | 0 | 0 | ||||||||
\(789\) | 0 | 0 | ||||||||
\(790\) | 0 | 0 | ||||||||
\(791\) | 0 | 0 | ||||||||
\(792\) | 0 | 0 | ||||||||
\(793\) | 0 | 0 | ||||||||
\(794\) | 0 | 0 | ||||||||
\(795\) | 103.121 | − | 22.1645i | 3.65733 | − | 0.786094i | ||||
\(796\) | 0 | 0 | ||||||||
\(797\) | −37.9610 | + | 37.9610i | −1.34465 | + | 1.34465i | −0.453279 | + | 0.891368i | \(0.649746\pi\) |
−0.891368 | + | 0.453279i | \(0.850254\pi\) | |||||||
\(798\) | 0 | 0 | ||||||||
\(799\) | 0 | 0 | ||||||||
\(800\) | 0 | 0 | ||||||||
\(801\) | 88.6387 | 3.13189 | ||||||||
\(802\) | 0 | 0 | ||||||||
\(803\) | 0 | 0 | ||||||||
\(804\) | 0 | 0 | ||||||||
\(805\) | 0 | 0 | ||||||||
\(806\) | 0 | 0 | ||||||||
\(807\) | 32.4805 | − | 32.4805i | 1.14337 | − | 1.14337i | ||||
\(808\) | 0 | 0 | ||||||||
\(809\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(810\) | 0 | 0 | ||||||||
\(811\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(812\) | 0 | 0 | ||||||||
\(813\) | 0 | 0 | ||||||||
\(814\) | 0 | 0 | ||||||||
\(815\) | 3.34649 | − | 5.17891i | 0.117222 | − | 0.181409i | ||||
\(816\) | 0 | 0 | ||||||||
\(817\) | 0 | 0 | ||||||||
\(818\) | 0 | 0 | ||||||||
\(819\) | 0 | 0 | ||||||||
\(820\) | 0 | 0 | ||||||||
\(821\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(822\) | 0 | 0 | ||||||||
\(823\) | 29.3553 | + | 29.3553i | 1.02326 | + | 1.02326i | 0.999723 | + | 0.0235383i | \(0.00749316\pi\) |
0.0235383 | + | 0.999723i | \(0.492507\pi\) | |||||||
\(824\) | 0 | 0 | ||||||||
\(825\) | −53.6974 | − | 20.3325i | −1.86950 | − | 0.707887i | ||||
\(826\) | 0 | 0 | ||||||||
\(827\) | 0 | 0 | 0.707107 | − | 0.707107i | \(-0.250000\pi\) | ||||
−0.707107 | + | 0.707107i | \(0.750000\pi\) | |||||||
\(828\) | 0 | 0 | ||||||||
\(829\) | 57.5842i | 1.99998i | 0.00416865 | + | 0.999991i | \(0.498673\pi\) | ||||
−0.00416865 | + | 0.999991i | \(0.501327\pi\) | |||||||
\(830\) | 0 | 0 | ||||||||
\(831\) | 0 | 0 | ||||||||
\(832\) | 0 | 0 | ||||||||
\(833\) | 0 | 0 | ||||||||
\(834\) | 0 | 0 | ||||||||
\(835\) | 0 | 0 | ||||||||
\(836\) | 0 | 0 | ||||||||
\(837\) | −9.45392 | + | 9.45392i | −0.326775 | + | 0.326775i | ||||
\(838\) | 0 | 0 | ||||||||
\(839\) | − | 20.7297i | − | 0.715669i | −0.933785 | − | 0.357834i | \(-0.883515\pi\) | ||
0.933785 | − | 0.357834i | \(-0.116485\pi\) | |||||||
\(840\) | 0 | 0 | ||||||||
\(841\) | −29.0000 | −1.00000 | ||||||||
\(842\) | 0 | 0 | ||||||||
\(843\) | 0 | 0 | ||||||||
\(844\) | 0 | 0 | ||||||||
\(845\) | 28.4198 | − | 6.10846i | 0.977672 | − | 0.210138i | ||||
\(846\) | 0 | 0 | ||||||||
\(847\) | 0 | 0 | ||||||||
\(848\) | 0 | 0 | ||||||||
\(849\) | 0 | 0 | ||||||||
\(850\) | 0 | 0 | ||||||||
\(851\) | −32.7991 | −1.12434 | ||||||||
\(852\) | 0 | 0 | ||||||||
\(853\) | 0 | 0 | −0.707107 | − | 0.707107i | \(-0.750000\pi\) | ||||
0.707107 | + | 0.707107i | \(0.250000\pi\) | |||||||
\(854\) | 0 | 0 | ||||||||
\(855\) | 0 | 0 | ||||||||
\(856\) | 0 | 0 | ||||||||
\(857\) | 0 | 0 | 0.707107 | − | 0.707107i | \(-0.250000\pi\) | ||||
−0.707107 | + | 0.707107i | \(0.750000\pi\) | |||||||
\(858\) | 0 | 0 | ||||||||
\(859\) | 27.5842i | 0.941161i | 0.882357 | + | 0.470581i | \(0.155956\pi\) | ||||
−0.882357 | + | 0.470581i | \(0.844044\pi\) | |||||||
\(860\) | 0 | 0 | ||||||||
\(861\) | 0 | 0 | ||||||||
\(862\) | 0 | 0 | ||||||||
\(863\) | −41.2164 | − | 41.2164i | −1.40302 | − | 1.40302i | −0.790295 | − | 0.612727i | \(-0.790072\pi\) |
−0.612727 | − | 0.790295i | \(-0.709928\pi\) | |||||||
\(864\) | 0 | 0 | ||||||||
\(865\) | 0 | 0 | ||||||||
\(866\) | 0 | 0 | ||||||||
\(867\) | −41.6213 | + | 41.6213i | −1.41353 | + | 1.41353i | ||||
\(868\) | 0 | 0 | ||||||||
\(869\) | 0 | 0 | ||||||||
\(870\) | 0 | 0 | ||||||||
\(871\) | 0 | 0 | ||||||||
\(872\) | 0 | 0 | ||||||||
\(873\) | 33.1195 | + | 33.1195i | 1.12092 | + | 1.12092i | ||||
\(874\) | 0 | 0 | ||||||||
\(875\) | 0 | 0 | ||||||||
\(876\) | 0 | 0 | ||||||||
\(877\) | 0 | 0 | 0.707107 | − | 0.707107i | \(-0.250000\pi\) | ||||
−0.707107 | + | 0.707107i | \(0.750000\pi\) | |||||||
\(878\) | 0 | 0 | ||||||||
\(879\) | 0 | 0 | ||||||||
\(880\) | 0 | 0 | ||||||||
\(881\) | −14.1386 | −0.476341 | −0.238171 | − | 0.971223i | \(-0.576548\pi\) | ||||
−0.238171 | + | 0.971223i | \(0.576548\pi\) | |||||||
\(882\) | 0 | 0 | ||||||||
\(883\) | −18.0501 | − | 18.0501i | −0.607435 | − | 0.607435i | 0.334840 | − | 0.942275i | \(-0.391318\pi\) |
−0.942275 | + | 0.334840i | \(0.891318\pi\) | |||||||
\(884\) | 0 | 0 | ||||||||
\(885\) | 73.6898 | + | 47.6166i | 2.47706 | + | 1.60061i | ||||
\(886\) | 0 | 0 | ||||||||
\(887\) | 0 | 0 | 0.707107 | − | 0.707107i | \(-0.250000\pi\) | ||||
−0.707107 | + | 0.707107i | \(0.750000\pi\) | |||||||
\(888\) | 0 | 0 | ||||||||
\(889\) | 0 | 0 | ||||||||
\(890\) | 0 | 0 | ||||||||
\(891\) | 148.673 | 4.98075 | ||||||||
\(892\) | 0 | 0 | ||||||||
\(893\) | 0 | 0 | ||||||||
\(894\) | 0 | 0 | ||||||||
\(895\) | 8.44158 | − | 1.81441i | 0.282171 | − | 0.0606489i | ||||
\(896\) | 0 | 0 | ||||||||
\(897\) | 0 | 0 | ||||||||
\(898\) | 0 | 0 | ||||||||
\(899\) | 0 | 0 | ||||||||
\(900\) | 0 | 0 | ||||||||
\(901\) | 0 | 0 | ||||||||
\(902\) | 0 | 0 | ||||||||
\(903\) | 0 | 0 | ||||||||
\(904\) | 0 | 0 | ||||||||
\(905\) | −7.83561 | − | 36.4554i | −0.260464 | − | 1.21182i | ||||
\(906\) | 0 | 0 | ||||||||
\(907\) | −25.8496 | + | 25.8496i | −0.858323 | + | 0.858323i | −0.991140 | − | 0.132818i | \(-0.957597\pi\) |
0.132818 | + | 0.991140i | \(0.457597\pi\) | |||||||
\(908\) | 0 | 0 | ||||||||
\(909\) | 0 | 0 | ||||||||
\(910\) | 0 | 0 | ||||||||
\(911\) | −6.63325 | −0.219769 | −0.109885 | − | 0.993944i | \(-0.535048\pi\) | ||||
−0.109885 | + | 0.993944i | \(0.535048\pi\) | |||||||
\(912\) | 0 | 0 | ||||||||
\(913\) | 0 | 0 | ||||||||
\(914\) | 0 | 0 | ||||||||
\(915\) | 0 | 0 | ||||||||
\(916\) | 0 | 0 | ||||||||
\(917\) | 0 | 0 | ||||||||
\(918\) | 0 | 0 | ||||||||
\(919\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(920\) | 0 | 0 | ||||||||
\(921\) | 0 | 0 | ||||||||
\(922\) | 0 | 0 | ||||||||
\(923\) | 0 | 0 | ||||||||
\(924\) | 0 | 0 | ||||||||
\(925\) | −7.41208 | + | 19.5750i | −0.243708 | + | 0.643623i | ||||
\(926\) | 0 | 0 | ||||||||
\(927\) | −107.411 | + | 107.411i | −3.52783 | + | 3.52783i | ||||
\(928\) | 0 | 0 | ||||||||
\(929\) | − | 53.0660i | − | 1.74104i | −0.492134 | − | 0.870519i | \(-0.663783\pi\) | ||
0.492134 | − | 0.870519i | \(-0.336217\pi\) | |||||||
\(930\) | 0 | 0 | ||||||||
\(931\) | 0 | 0 | ||||||||
\(932\) | 0 | 0 | ||||||||
\(933\) | −29.3797 | − | 29.3797i | −0.961849 | − | 0.961849i | ||||
\(934\) | 0 | 0 | ||||||||
\(935\) | 0 | 0 | ||||||||
\(936\) | 0 | 0 | ||||||||
\(937\) | 0 | 0 | 0.707107 | − | 0.707107i | \(-0.250000\pi\) | ||||
−0.707107 | + | 0.707107i | \(0.750000\pi\) | |||||||
\(938\) | 0 | 0 | ||||||||
\(939\) | 90.2942i | 2.94664i | ||||||||
\(940\) | 0 | 0 | ||||||||
\(941\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(942\) | 0 | 0 | ||||||||
\(943\) | 0 | 0 | ||||||||
\(944\) | 0 | 0 | ||||||||
\(945\) | 0 | 0 | ||||||||
\(946\) | 0 | 0 | ||||||||
\(947\) | 43.1806 | − | 43.1806i | 1.40318 | − | 1.40318i | 0.613441 | − | 0.789741i | \(-0.289785\pi\) |
0.789741 | − | 0.613441i | \(-0.210215\pi\) | |||||||
\(948\) | 0 | 0 | ||||||||
\(949\) | 0 | 0 | ||||||||
\(950\) | 0 | 0 | ||||||||
\(951\) | 101.842 | 3.30245 | ||||||||
\(952\) | 0 | 0 | ||||||||
\(953\) | 0 | 0 | −0.707107 | − | 0.707107i | \(-0.750000\pi\) | ||||
0.707107 | + | 0.707107i | \(0.250000\pi\) | |||||||
\(954\) | 0 | 0 | ||||||||
\(955\) | −11.5584 | − | 53.7759i | −0.374022 | − | 1.74015i | ||||
\(956\) | 0 | 0 | ||||||||
\(957\) | 0 | 0 | ||||||||
\(958\) | 0 | 0 | ||||||||
\(959\) | 0 | 0 | ||||||||
\(960\) | 0 | 0 | ||||||||
\(961\) | −30.5842 | −0.986588 | ||||||||
\(962\) | 0 | 0 | ||||||||
\(963\) | 0 | 0 | ||||||||
\(964\) | 0 | 0 | ||||||||
\(965\) | 0 | 0 | ||||||||
\(966\) | 0 | 0 | ||||||||
\(967\) | 0 | 0 | 0.707107 | − | 0.707107i | \(-0.250000\pi\) | ||||
−0.707107 | + | 0.707107i | \(0.750000\pi\) | |||||||
\(968\) | 0 | 0 | ||||||||
\(969\) | 0 | 0 | ||||||||
\(970\) | 0 | 0 | ||||||||
\(971\) | −60.5292 | −1.94247 | −0.971237 | − | 0.238114i | \(-0.923471\pi\) | ||||
−0.971237 | + | 0.238114i | \(0.923471\pi\) | |||||||
\(972\) | 0 | 0 | ||||||||
\(973\) | 0 | 0 | ||||||||
\(974\) | 0 | 0 | ||||||||
\(975\) | 0 | 0 | ||||||||
\(976\) | 0 | 0 | ||||||||
\(977\) | 28.7601 | − | 28.7601i | 0.920116 | − | 0.920116i | −0.0769208 | − | 0.997037i | \(-0.524509\pi\) |
0.997037 | + | 0.0769208i | \(0.0245089\pi\) | |||||||
\(978\) | 0 | 0 | ||||||||
\(979\) | 32.7066i | 1.04531i | ||||||||
\(980\) | 0 | 0 | ||||||||
\(981\) | 0 | 0 | ||||||||
\(982\) | 0 | 0 | ||||||||
\(983\) | −34.2519 | − | 34.2519i | −1.09247 | − | 1.09247i | −0.995265 | − | 0.0972017i | \(-0.969011\pi\) |
−0.0972017 | − | 0.995265i | \(-0.530989\pi\) | |||||||
\(984\) | 0 | 0 | ||||||||
\(985\) | 0 | 0 | ||||||||
\(986\) | 0 | 0 | ||||||||
\(987\) | 0 | 0 | ||||||||
\(988\) | 0 | 0 | ||||||||
\(989\) | 0 | 0 | ||||||||
\(990\) | 0 | 0 | ||||||||
\(991\) | 59.6992 | 1.89641 | 0.948205 | − | 0.317660i | \(-0.102897\pi\) | ||||
0.948205 | + | 0.317660i | \(0.102897\pi\) | |||||||
\(992\) | 0 | 0 | ||||||||
\(993\) | 86.3906 | + | 86.3906i | 2.74152 | + | 2.74152i | ||||
\(994\) | 0 | 0 | ||||||||
\(995\) | −43.5036 | + | 9.35053i | −1.37916 | + | 0.296432i | ||||
\(996\) | 0 | 0 | ||||||||
\(997\) | 0 | 0 | 0.707107 | − | 0.707107i | \(-0.250000\pi\) | ||||
−0.707107 | + | 0.707107i | \(0.750000\pi\) | |||||||
\(998\) | 0 | 0 | ||||||||
\(999\) | − | 86.8004i | − | 2.74624i |
(See \(a_n\) instead)
(See \(a_n\) instead)
(See \(a_n\) instead)
(See only \(a_p\))
(See only \(a_p\))
(See only \(a_p\))
Twists
By twisting character | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Type | Twist | Min | Dim | |
1.1 | even | 1 | trivial | 220.2.k.b.153.1 | ✓ | 8 | |
3.2 | odd | 2 | 1980.2.y.b.1693.3 | 8 | |||
4.3 | odd | 2 | 880.2.bd.h.593.4 | 8 | |||
5.2 | odd | 4 | inner | 220.2.k.b.197.1 | yes | 8 | |
5.3 | odd | 4 | 1100.2.k.b.857.4 | 8 | |||
5.4 | even | 2 | 1100.2.k.b.593.4 | 8 | |||
11.10 | odd | 2 | CM | 220.2.k.b.153.1 | ✓ | 8 | |
15.2 | even | 4 | 1980.2.y.b.1297.3 | 8 | |||
20.7 | even | 4 | 880.2.bd.h.417.4 | 8 | |||
33.32 | even | 2 | 1980.2.y.b.1693.3 | 8 | |||
44.43 | even | 2 | 880.2.bd.h.593.4 | 8 | |||
55.32 | even | 4 | inner | 220.2.k.b.197.1 | yes | 8 | |
55.43 | even | 4 | 1100.2.k.b.857.4 | 8 | |||
55.54 | odd | 2 | 1100.2.k.b.593.4 | 8 | |||
165.32 | odd | 4 | 1980.2.y.b.1297.3 | 8 | |||
220.87 | odd | 4 | 880.2.bd.h.417.4 | 8 |
By twisted newform | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Type | |
220.2.k.b.153.1 | ✓ | 8 | 1.1 | even | 1 | trivial | |
220.2.k.b.153.1 | ✓ | 8 | 11.10 | odd | 2 | CM | |
220.2.k.b.197.1 | yes | 8 | 5.2 | odd | 4 | inner | |
220.2.k.b.197.1 | yes | 8 | 55.32 | even | 4 | inner | |
880.2.bd.h.417.4 | 8 | 20.7 | even | 4 | |||
880.2.bd.h.417.4 | 8 | 220.87 | odd | 4 | |||
880.2.bd.h.593.4 | 8 | 4.3 | odd | 2 | |||
880.2.bd.h.593.4 | 8 | 44.43 | even | 2 | |||
1100.2.k.b.593.4 | 8 | 5.4 | even | 2 | |||
1100.2.k.b.593.4 | 8 | 55.54 | odd | 2 | |||
1100.2.k.b.857.4 | 8 | 5.3 | odd | 4 | |||
1100.2.k.b.857.4 | 8 | 55.43 | even | 4 | |||
1980.2.y.b.1297.3 | 8 | 15.2 | even | 4 | |||
1980.2.y.b.1297.3 | 8 | 165.32 | odd | 4 | |||
1980.2.y.b.1693.3 | 8 | 3.2 | odd | 2 | |||
1980.2.y.b.1693.3 | 8 | 33.32 | even | 2 |