Properties

Label 220.2.k.b.153.1
Level $220$
Weight $2$
Character 220.153
Analytic conductor $1.757$
Analytic rank $0$
Dimension $8$
CM discriminant -11
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [220,2,Mod(153,220)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(220, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([0, 3, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("220.153");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 220 = 2^{2} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 220.k (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.75670884447\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(i)\)
Coefficient field: 8.0.303595776.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 5x^{6} + 16x^{4} + 45x^{2} + 81 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{2}\cdot 5 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{4}]$

Embedding invariants

Embedding label 153.1
Root \(-1.26217 - 1.18614i\) of defining polynomial
Character \(\chi\) \(=\) 220.153
Dual form 220.2.k.b.197.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.44831 - 2.44831i) q^{3} +(-0.469882 - 2.18614i) q^{5} +8.98844i q^{9} -3.31662 q^{11} +(-4.20193 + 6.50277i) q^{15} +(-5.54013 - 5.54013i) q^{23} +(-4.55842 + 2.05446i) q^{25} +(14.6616 - 14.6616i) q^{27} -0.644810 q^{31} +(8.12012 + 8.12012i) q^{33} +(2.96014 - 2.96014i) q^{37} +(19.6500 - 4.22351i) q^{45} +(-2.68338 + 2.68338i) q^{47} -7.00000i q^{49} +(-9.63325 - 9.63325i) q^{53} +(1.55842 + 7.25061i) q^{55} -11.3321i q^{59} +(-10.7001 + 10.7001i) q^{67} +27.1279i q^{69} +15.8614 q^{71} +(16.1904 + 6.13048i) q^{75} -44.8267 q^{81} -9.86141i q^{89} +(1.57869 + 1.57869i) q^{93} +(3.68467 - 3.68467i) q^{97} -29.8113i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 2 q^{3} - 16 q^{15} - 18 q^{23} - 2 q^{25} + 26 q^{27} + 22 q^{33} + 14 q^{37} + 18 q^{45} - 48 q^{47} - 24 q^{53} - 22 q^{55} - 26 q^{67} + 12 q^{71} + 64 q^{75} - 100 q^{81} + 18 q^{93} + 34 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/220\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(111\) \(177\)
\(\chi(n)\) \(-1\) \(1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −2.44831 2.44831i −1.41353 1.41353i −0.728714 0.684819i \(-0.759881\pi\)
−0.684819 0.728714i \(-0.740119\pi\)
\(4\) 0 0
\(5\) −0.469882 2.18614i −0.210138 0.977672i
\(6\) 0 0
\(7\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(8\) 0 0
\(9\) 8.98844i 2.99615i
\(10\) 0 0
\(11\) −3.31662 −1.00000
\(12\) 0 0
\(13\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(14\) 0 0
\(15\) −4.20193 + 6.50277i −1.08493 + 1.67901i
\(16\) 0 0
\(17\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(18\) 0 0
\(19\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −5.54013 5.54013i −1.15520 1.15520i −0.985496 0.169701i \(-0.945720\pi\)
−0.169701 0.985496i \(-0.554280\pi\)
\(24\) 0 0
\(25\) −4.55842 + 2.05446i −0.911684 + 0.410891i
\(26\) 0 0
\(27\) 14.6616 14.6616i 2.82162 2.82162i
\(28\) 0 0
\(29\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(30\) 0 0
\(31\) −0.644810 −0.115811 −0.0579057 0.998322i \(-0.518442\pi\)
−0.0579057 + 0.998322i \(0.518442\pi\)
\(32\) 0 0
\(33\) 8.12012 + 8.12012i 1.41353 + 1.41353i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 2.96014 2.96014i 0.486643 0.486643i −0.420602 0.907245i \(-0.638181\pi\)
0.907245 + 0.420602i \(0.138181\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(42\) 0 0
\(43\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(44\) 0 0
\(45\) 19.6500 4.22351i 2.92925 0.629603i
\(46\) 0 0
\(47\) −2.68338 + 2.68338i −0.391411 + 0.391411i −0.875190 0.483779i \(-0.839264\pi\)
0.483779 + 0.875190i \(0.339264\pi\)
\(48\) 0 0
\(49\) 7.00000i 1.00000i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −9.63325 9.63325i −1.32323 1.32323i −0.911147 0.412082i \(-0.864802\pi\)
−0.412082 0.911147i \(-0.635198\pi\)
\(54\) 0 0
\(55\) 1.55842 + 7.25061i 0.210138 + 0.977672i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 11.3321i 1.47531i −0.675178 0.737655i \(-0.735933\pi\)
0.675178 0.737655i \(-0.264067\pi\)
\(60\) 0 0
\(61\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) −10.7001 + 10.7001i −1.30723 + 1.30723i −0.383819 + 0.923408i \(0.625391\pi\)
−0.923408 + 0.383819i \(0.874609\pi\)
\(68\) 0 0
\(69\) 27.1279i 3.26582i
\(70\) 0 0
\(71\) 15.8614 1.88240 0.941201 0.337846i \(-0.109698\pi\)
0.941201 + 0.337846i \(0.109698\pi\)
\(72\) 0 0
\(73\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(74\) 0 0
\(75\) 16.1904 + 6.13048i 1.86950 + 0.707887i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(80\) 0 0
\(81\) −44.8267 −4.98075
\(82\) 0 0
\(83\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 9.86141i 1.04531i −0.852545 0.522654i \(-0.824942\pi\)
0.852545 0.522654i \(-0.175058\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 1.57869 + 1.57869i 0.163703 + 0.163703i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 3.68467 3.68467i 0.374122 0.374122i −0.494854 0.868976i \(-0.664778\pi\)
0.868976 + 0.494854i \(0.164778\pi\)
\(98\) 0 0
\(99\) 29.8113i 2.99615i
\(100\) 0 0
\(101\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(102\) 0 0
\(103\) 11.9499 + 11.9499i 1.17746 + 1.17746i 0.980390 + 0.197066i \(0.0631413\pi\)
0.197066 + 0.980390i \(0.436859\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(108\) 0 0
\(109\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(110\) 0 0
\(111\) −14.4947 −1.37577
\(112\) 0 0
\(113\) −6.10856 6.10856i −0.574645 0.574645i 0.358778 0.933423i \(-0.383194\pi\)
−0.933423 + 0.358778i \(0.883194\pi\)
\(114\) 0 0
\(115\) −9.50830 + 14.7147i −0.886653 + 1.37215i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 11.0000 1.00000
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 6.63325 + 9.00000i 0.593296 + 0.804984i
\(126\) 0 0
\(127\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) −38.9414 25.1630i −3.35154 2.16569i
\(136\) 0 0
\(137\) 2.19985 2.19985i 0.187946 0.187946i −0.606861 0.794808i \(-0.707572\pi\)
0.794808 + 0.606861i \(0.207572\pi\)
\(138\) 0 0
\(139\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(140\) 0 0
\(141\) 13.1395 1.10654
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) −17.1382 + 17.1382i −1.41353 + 1.41353i
\(148\) 0 0
\(149\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(150\) 0 0
\(151\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0.302985 + 1.40965i 0.0243363 + 0.113225i
\(156\) 0 0
\(157\) 11.0052 11.0052i 0.878309 0.878309i −0.115050 0.993360i \(-0.536703\pi\)
0.993360 + 0.115050i \(0.0367030\pi\)
\(158\) 0 0
\(159\) 47.1704i 3.74085i
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 1.94987 + 1.94987i 0.152726 + 0.152726i 0.779334 0.626608i \(-0.215557\pi\)
−0.626608 + 0.779334i \(0.715557\pi\)
\(164\) 0 0
\(165\) 13.9362 21.5672i 1.08493 1.67901i
\(166\) 0 0
\(167\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(168\) 0 0
\(169\) 13.0000i 1.00000i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −27.7444 + 27.7444i −2.08540 + 2.08540i
\(178\) 0 0
\(179\) 3.86141i 0.288615i 0.989533 + 0.144308i \(0.0460955\pi\)
−0.989533 + 0.144308i \(0.953905\pi\)
\(180\) 0 0
\(181\) 16.6757 1.23949 0.619747 0.784801i \(-0.287235\pi\)
0.619747 + 0.784801i \(0.287235\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −7.86219 5.08036i −0.578039 0.373515i
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 24.5986 1.77989 0.889945 0.456068i \(-0.150743\pi\)
0.889945 + 0.456068i \(0.150743\pi\)
\(192\) 0 0
\(193\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(198\) 0 0
\(199\) 19.8997i 1.41066i −0.708881 0.705328i \(-0.750800\pi\)
0.708881 0.705328i \(-0.249200\pi\)
\(200\) 0 0
\(201\) 52.3944 3.69562
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 49.7971 49.7971i 3.46114 3.46114i
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(212\) 0 0
\(213\) −38.8336 38.8336i −2.66084 2.66084i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) −4.77985 4.77985i −0.320082 0.320082i 0.528716 0.848799i \(-0.322674\pi\)
−0.848799 + 0.528716i \(0.822674\pi\)
\(224\) 0 0
\(225\) −18.4664 40.9731i −1.23109 2.73154i
\(226\) 0 0
\(227\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(228\) 0 0
\(229\) 19.2549i 1.27240i −0.771523 0.636201i \(-0.780505\pi\)
0.771523 0.636201i \(-0.219495\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(234\) 0 0
\(235\) 7.12711 + 4.60537i 0.464921 + 0.300421i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(240\) 0 0
\(241\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(242\) 0 0
\(243\) 65.7650 + 65.7650i 4.21883 + 4.21883i
\(244\) 0 0
\(245\) −15.3030 + 3.28917i −0.977672 + 0.210138i
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −27.8614 −1.75860 −0.879298 0.476272i \(-0.841988\pi\)
−0.879298 + 0.476272i \(0.841988\pi\)
\(252\) 0 0
\(253\) 18.3745 + 18.3745i 1.15520 + 1.15520i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −4.26650 + 4.26650i −0.266137 + 0.266137i −0.827541 0.561405i \(-0.810261\pi\)
0.561405 + 0.827541i \(0.310261\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(264\) 0 0
\(265\) −16.5331 + 25.5861i −1.01562 + 1.57174i
\(266\) 0 0
\(267\) −24.1438 + 24.1438i −1.47758 + 1.47758i
\(268\) 0 0
\(269\) 13.2665i 0.808873i 0.914566 + 0.404436i \(0.132532\pi\)
−0.914566 + 0.404436i \(0.867468\pi\)
\(270\) 0 0
\(271\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 15.1186 6.81386i 0.911684 0.410891i
\(276\) 0 0
\(277\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(278\) 0 0
\(279\) 5.79584i 0.346988i
\(280\) 0 0
\(281\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(282\) 0 0
\(283\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 17.0000i 1.00000i
\(290\) 0 0
\(291\) −18.0424 −1.05767
\(292\) 0 0
\(293\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(294\) 0 0
\(295\) −24.7735 + 5.32473i −1.44237 + 0.310018i
\(296\) 0 0
\(297\) −48.6269 + 48.6269i −2.82162 + 2.82162i
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(308\) 0 0
\(309\) 58.5140i 3.32874i
\(310\) 0 0
\(311\) 12.0000 0.680458 0.340229 0.940343i \(-0.389495\pi\)
0.340229 + 0.940343i \(0.389495\pi\)
\(312\) 0 0
\(313\) −18.4401 18.4401i −1.04230 1.04230i −0.999065 0.0432311i \(-0.986235\pi\)
−0.0432311 0.999065i \(-0.513765\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −20.7984 + 20.7984i −1.16816 + 1.16816i −0.185514 + 0.982642i \(0.559395\pi\)
−0.982642 + 0.185514i \(0.940605\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −35.2858 −1.93948 −0.969742 0.244131i \(-0.921497\pi\)
−0.969742 + 0.244131i \(0.921497\pi\)
\(332\) 0 0
\(333\) 26.6070 + 26.6070i 1.45805 + 1.45805i
\(334\) 0 0
\(335\) 28.4198 + 18.3642i 1.55274 + 1.00334i
\(336\) 0 0
\(337\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(338\) 0 0
\(339\) 29.9113i 1.62456i
\(340\) 0 0
\(341\) 2.13859 0.115811
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 59.3054 12.7469i 3.19290 0.686271i
\(346\) 0 0
\(347\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(348\) 0 0
\(349\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −23.2712 23.2712i −1.23860 1.23860i −0.960574 0.278024i \(-0.910320\pi\)
−0.278024 0.960574i \(-0.589680\pi\)
\(354\) 0 0
\(355\) −7.45299 34.6753i −0.395564 1.84037i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(360\) 0 0
\(361\) −19.0000 −1.00000
\(362\) 0 0
\(363\) −26.9314 26.9314i −1.41353 1.41353i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 0.0244206 0.0244206i 0.00127475 0.00127475i −0.706469 0.707744i \(-0.749713\pi\)
0.707744 + 0.706469i \(0.249713\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(374\) 0 0
\(375\) 5.79454 38.2750i 0.299229 1.97651i
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 36.5754i 1.87875i −0.342885 0.939377i \(-0.611404\pi\)
0.342885 0.939377i \(-0.388596\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 4.87220 + 4.87220i 0.248958 + 0.248958i 0.820543 0.571585i \(-0.193671\pi\)
−0.571585 + 0.820543i \(0.693671\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 31.2318i 1.58352i 0.610835 + 0.791758i \(0.290834\pi\)
−0.610835 + 0.791758i \(0.709166\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 18.8997 18.8997i 0.948551 0.948551i −0.0501886 0.998740i \(-0.515982\pi\)
0.998740 + 0.0501886i \(0.0159822\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 26.5330 1.32499 0.662497 0.749064i \(-0.269497\pi\)
0.662497 + 0.749064i \(0.269497\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 21.0633 + 97.9975i 1.04664 + 4.86954i
\(406\) 0 0
\(407\) −9.81766 + 9.81766i −0.486643 + 0.486643i
\(408\) 0 0
\(409\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(410\) 0 0
\(411\) −10.7718 −0.531336
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 24.0000i 1.17248i −0.810139 0.586238i \(-0.800608\pi\)
0.810139 0.586238i \(-0.199392\pi\)
\(420\) 0 0
\(421\) −39.7995 −1.93971 −0.969854 0.243685i \(-0.921644\pi\)
−0.969854 + 0.243685i \(0.921644\pi\)
\(422\) 0 0
\(423\) −24.1194 24.1194i −1.17272 1.17272i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(432\) 0 0
\(433\) 25.6950 + 25.6950i 1.23482 + 1.23482i 0.962089 + 0.272736i \(0.0879285\pi\)
0.272736 + 0.962089i \(0.412071\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(440\) 0 0
\(441\) 62.9191 2.99615
\(442\) 0 0
\(443\) 21.0201 + 21.0201i 0.998695 + 0.998695i 0.999999 0.00130426i \(-0.000415158\pi\)
−0.00130426 + 0.999999i \(0.500415\pi\)
\(444\) 0 0
\(445\) −21.5584 + 4.63370i −1.02197 + 0.219658i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 33.8614i 1.59802i 0.601319 + 0.799009i \(0.294642\pi\)
−0.601319 + 0.799009i \(0.705358\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(462\) 0 0
\(463\) 14.7143 + 14.7143i 0.683830 + 0.683830i 0.960861 0.277031i \(-0.0893503\pi\)
−0.277031 + 0.960861i \(0.589350\pi\)
\(464\) 0 0
\(465\) 2.70945 4.19305i 0.125648 0.194448i
\(466\) 0 0
\(467\) −9.93984 + 9.93984i −0.459961 + 0.459961i −0.898642 0.438682i \(-0.855446\pi\)
0.438682 + 0.898642i \(0.355446\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) −53.8882 −2.48304
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 86.5879 86.5879i 3.96459 3.96459i
\(478\) 0 0
\(479\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −9.78658 6.32386i −0.444386 0.287151i
\(486\) 0 0
\(487\) 14.6654 14.6654i 0.664554 0.664554i −0.291896 0.956450i \(-0.594286\pi\)
0.956450 + 0.291896i \(0.0942860\pi\)
\(488\) 0 0
\(489\) 9.54779i 0.431766i
\(490\) 0 0
\(491\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) −65.1717 + 14.0078i −2.92925 + 0.629603i
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 19.8997i 0.890835i −0.895323 0.445418i \(-0.853055\pi\)
0.895323 0.445418i \(-0.146945\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 31.8280 31.8280i 1.41353 1.41353i
\(508\) 0 0
\(509\) 40.6295i 1.80087i 0.434992 + 0.900434i \(0.356751\pi\)
−0.434992 + 0.900434i \(0.643249\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 20.5091 31.7391i 0.903738 1.39859i
\(516\) 0 0
\(517\) 8.89975 8.89975i 0.391411 0.391411i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −8.56768 −0.375357 −0.187678 0.982231i \(-0.560096\pi\)
−0.187678 + 0.982231i \(0.560096\pi\)
\(522\) 0 0
\(523\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) 38.3861i 1.66896i
\(530\) 0 0
\(531\) 101.858 4.42024
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 9.45392 9.45392i 0.407967 0.407967i
\(538\) 0 0
\(539\) 23.2164i 1.00000i
\(540\) 0 0
\(541\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(542\) 0 0
\(543\) −40.8273 40.8273i −1.75207 1.75207i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 6.81078 + 31.6874i 0.289101 + 1.34505i
\(556\) 0 0
\(557\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(564\) 0 0
\(565\) −10.4839 + 16.2245i −0.441060 + 0.682569i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(570\) 0 0
\(571\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(572\) 0 0
\(573\) −60.2249 60.2249i −2.51593 2.51593i
\(574\) 0 0
\(575\) 36.6362 + 13.8723i 1.52784 + 0.578515i
\(576\) 0 0
\(577\) 30.2806 30.2806i 1.26060 1.26060i 0.309797 0.950803i \(-0.399739\pi\)
0.950803 0.309797i \(-0.100261\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 31.9499 + 31.9499i 1.32323 + 1.32323i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 27.3166 27.3166i 1.12748 1.12748i 0.136892 0.990586i \(-0.456289\pi\)
0.990586 0.136892i \(-0.0437113\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −48.7207 + 48.7207i −1.99401 + 1.99401i
\(598\) 0 0
\(599\) 36.0000i 1.47092i 0.677568 + 0.735460i \(0.263034\pi\)
−0.677568 + 0.735460i \(0.736966\pi\)
\(600\) 0 0
\(601\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(602\) 0 0
\(603\) −96.1774 96.1774i −3.91665 3.91665i
\(604\) 0 0
\(605\) −5.16870 24.0475i −0.210138 0.977672i
\(606\) 0 0
\(607\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −34.2665 + 34.2665i −1.37952 + 1.37952i −0.534089 + 0.845428i \(0.679345\pi\)
−0.845428 + 0.534089i \(0.820655\pi\)
\(618\) 0 0
\(619\) 43.5842i 1.75180i −0.482495 0.875899i \(-0.660269\pi\)
0.482495 0.875899i \(-0.339731\pi\)
\(620\) 0 0
\(621\) −162.454 −6.51905
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 16.5584 18.7302i 0.662337 0.749206i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) 39.5842 1.57582 0.787911 0.615789i \(-0.211162\pi\)
0.787911 + 0.615789i \(0.211162\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 142.569i 5.63995i
\(640\) 0 0
\(641\) −27.3630 −1.08077 −0.540386 0.841417i \(-0.681722\pi\)
−0.540386 + 0.841417i \(0.681722\pi\)
\(642\) 0 0
\(643\) 22.5407 + 22.5407i 0.888917 + 0.888917i 0.994419 0.105502i \(-0.0336450\pi\)
−0.105502 + 0.994419i \(0.533645\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 24.5075 24.5075i 0.963490 0.963490i −0.0358667 0.999357i \(-0.511419\pi\)
0.999357 + 0.0358667i \(0.0114192\pi\)
\(648\) 0 0
\(649\) 37.5842i 1.47531i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 35.4406 + 35.4406i 1.38690 + 1.38690i 0.831753 + 0.555147i \(0.187338\pi\)
0.555147 + 0.831753i \(0.312662\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(660\) 0 0
\(661\) 49.5842 1.92860 0.964301 0.264807i \(-0.0853084\pi\)
0.964301 + 0.264807i \(0.0853084\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 23.4051i 0.904893i
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(674\) 0 0
\(675\) −36.7120 + 96.9551i −1.41305 + 3.73180i
\(676\) 0 0
\(677\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −11.2164 11.2164i −0.429183 0.429183i 0.459167 0.888350i \(-0.348148\pi\)
−0.888350 + 0.459167i \(0.848148\pi\)
\(684\) 0 0
\(685\) −5.84286 3.77552i −0.223244 0.144255i
\(686\) 0 0
\(687\) −47.1421 + 47.1421i −1.79858 + 1.79858i
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) −51.5842 −1.96236 −0.981178 0.193105i \(-0.938144\pi\)
−0.981178 + 0.193105i \(0.938144\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) −6.17400 28.7247i −0.232526 1.08184i
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 33.5842i 1.26128i −0.776075 0.630641i \(-0.782792\pi\)
0.776075 0.630641i \(-0.217208\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 3.57233 + 3.57233i 0.133785 + 0.133785i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 39.8614i 1.48658i −0.668970 0.743290i \(-0.733264\pi\)
0.668970 0.743290i \(-0.266736\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) −38.0206 + 38.0206i −1.41011 + 1.41011i −0.651206 + 0.758901i \(0.725737\pi\)
−0.758901 + 0.651206i \(0.774263\pi\)
\(728\) 0 0
\(729\) 187.546i 6.94615i
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(734\) 0 0
\(735\) 45.5194 + 29.4135i 1.67901 + 1.08493i
\(736\) 0 0
\(737\) 35.4883 35.4883i 1.30723 1.30723i
\(738\) 0 0
\(739\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) −31.5842 −1.15252 −0.576262 0.817265i \(-0.695489\pi\)
−0.576262 + 0.817265i \(0.695489\pi\)
\(752\) 0 0
\(753\) 68.2133 + 68.2133i 2.48583 + 2.48583i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 38.8997 38.8997i 1.41384 1.41384i 0.690567 0.723269i \(-0.257361\pi\)
0.723269 0.690567i \(-0.242639\pi\)
\(758\) 0 0
\(759\) 89.9731i 3.26582i
\(760\) 0 0
\(761\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(770\) 0 0
\(771\) 20.8914 0.752386
\(772\) 0 0
\(773\) 20.3668 + 20.3668i 0.732541 + 0.732541i 0.971123 0.238581i \(-0.0766824\pi\)
−0.238581 + 0.971123i \(0.576682\pi\)
\(774\) 0 0
\(775\) 2.93932 1.32473i 0.105583 0.0475859i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) −52.6063 −1.88240
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −29.2300 18.8877i −1.04326 0.674132i
\(786\) 0 0
\(787\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 103.121 22.1645i 3.65733 0.786094i
\(796\) 0 0
\(797\) −37.9610 + 37.9610i −1.34465 + 1.34465i −0.453279 + 0.891368i \(0.649746\pi\)
−0.891368 + 0.453279i \(0.850254\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 88.6387 3.13189
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 32.4805 32.4805i 1.14337 1.14337i
\(808\) 0 0
\(809\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(810\) 0 0
\(811\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 3.34649 5.17891i 0.117222 0.181409i
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(822\) 0 0
\(823\) 29.3553 + 29.3553i 1.02326 + 1.02326i 0.999723 + 0.0235383i \(0.00749316\pi\)
0.0235383 + 0.999723i \(0.492507\pi\)
\(824\) 0 0
\(825\) −53.6974 20.3325i −1.86950 0.707887i
\(826\) 0 0
\(827\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(828\) 0 0
\(829\) 57.5842i 1.99998i 0.00416865 + 0.999991i \(0.498673\pi\)
−0.00416865 + 0.999991i \(0.501327\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) −9.45392 + 9.45392i −0.326775 + 0.326775i
\(838\) 0 0
\(839\) 20.7297i 0.715669i −0.933785 0.357834i \(-0.883515\pi\)
0.933785 0.357834i \(-0.116485\pi\)
\(840\) 0 0
\(841\) −29.0000 −1.00000
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 28.4198 6.10846i 0.977672 0.210138i
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −32.7991 −1.12434
\(852\) 0 0
\(853\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(858\) 0 0
\(859\) 27.5842i 0.941161i 0.882357 + 0.470581i \(0.155956\pi\)
−0.882357 + 0.470581i \(0.844044\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −41.2164 41.2164i −1.40302 1.40302i −0.790295 0.612727i \(-0.790072\pi\)
−0.612727 0.790295i \(-0.709928\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) −41.6213 + 41.6213i −1.41353 + 1.41353i
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 33.1195 + 33.1195i 1.12092 + 1.12092i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −14.1386 −0.476341 −0.238171 0.971223i \(-0.576548\pi\)
−0.238171 + 0.971223i \(0.576548\pi\)
\(882\) 0 0
\(883\) −18.0501 18.0501i −0.607435 0.607435i 0.334840 0.942275i \(-0.391318\pi\)
−0.942275 + 0.334840i \(0.891318\pi\)
\(884\) 0 0
\(885\) 73.6898 + 47.6166i 2.47706 + 1.60061i
\(886\) 0 0
\(887\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 148.673 4.98075
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 8.44158 1.81441i 0.282171 0.0606489i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −7.83561 36.4554i −0.260464 1.21182i
\(906\) 0 0
\(907\) −25.8496 + 25.8496i −0.858323 + 0.858323i −0.991140 0.132818i \(-0.957597\pi\)
0.132818 + 0.991140i \(0.457597\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −6.63325 −0.219769 −0.109885 0.993944i \(-0.535048\pi\)
−0.109885 + 0.993944i \(0.535048\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) −7.41208 + 19.5750i −0.243708 + 0.643623i
\(926\) 0 0
\(927\) −107.411 + 107.411i −3.52783 + 3.52783i
\(928\) 0 0
\(929\) 53.0660i 1.74104i −0.492134 0.870519i \(-0.663783\pi\)
0.492134 0.870519i \(-0.336217\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) −29.3797 29.3797i −0.961849 0.961849i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(938\) 0 0
\(939\) 90.2942i 2.94664i
\(940\) 0 0
\(941\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 43.1806 43.1806i 1.40318 1.40318i 0.613441 0.789741i \(-0.289785\pi\)
0.789741 0.613441i \(-0.210215\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 101.842 3.30245
\(952\) 0 0
\(953\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(954\) 0 0
\(955\) −11.5584 53.7759i −0.374022 1.74015i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −30.5842 −0.986588
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −60.5292 −1.94247 −0.971237 0.238114i \(-0.923471\pi\)
−0.971237 + 0.238114i \(0.923471\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 28.7601 28.7601i 0.920116 0.920116i −0.0769208 0.997037i \(-0.524509\pi\)
0.997037 + 0.0769208i \(0.0245089\pi\)
\(978\) 0 0
\(979\) 32.7066i 1.04531i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −34.2519 34.2519i −1.09247 1.09247i −0.995265 0.0972017i \(-0.969011\pi\)
−0.0972017 0.995265i \(-0.530989\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 59.6992 1.89641 0.948205 0.317660i \(-0.102897\pi\)
0.948205 + 0.317660i \(0.102897\pi\)
\(992\) 0 0
\(993\) 86.3906 + 86.3906i 2.74152 + 2.74152i
\(994\) 0 0
\(995\) −43.5036 + 9.35053i −1.37916 + 0.296432i
\(996\) 0 0
\(997\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(998\) 0 0
\(999\) 86.8004i 2.74624i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 220.2.k.b.153.1 8
3.2 odd 2 1980.2.y.b.1693.3 8
4.3 odd 2 880.2.bd.h.593.4 8
5.2 odd 4 inner 220.2.k.b.197.1 yes 8
5.3 odd 4 1100.2.k.b.857.4 8
5.4 even 2 1100.2.k.b.593.4 8
11.10 odd 2 CM 220.2.k.b.153.1 8
15.2 even 4 1980.2.y.b.1297.3 8
20.7 even 4 880.2.bd.h.417.4 8
33.32 even 2 1980.2.y.b.1693.3 8
44.43 even 2 880.2.bd.h.593.4 8
55.32 even 4 inner 220.2.k.b.197.1 yes 8
55.43 even 4 1100.2.k.b.857.4 8
55.54 odd 2 1100.2.k.b.593.4 8
165.32 odd 4 1980.2.y.b.1297.3 8
220.87 odd 4 880.2.bd.h.417.4 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
220.2.k.b.153.1 8 1.1 even 1 trivial
220.2.k.b.153.1 8 11.10 odd 2 CM
220.2.k.b.197.1 yes 8 5.2 odd 4 inner
220.2.k.b.197.1 yes 8 55.32 even 4 inner
880.2.bd.h.417.4 8 20.7 even 4
880.2.bd.h.417.4 8 220.87 odd 4
880.2.bd.h.593.4 8 4.3 odd 2
880.2.bd.h.593.4 8 44.43 even 2
1100.2.k.b.593.4 8 5.4 even 2
1100.2.k.b.593.4 8 55.54 odd 2
1100.2.k.b.857.4 8 5.3 odd 4
1100.2.k.b.857.4 8 55.43 even 4
1980.2.y.b.1297.3 8 15.2 even 4
1980.2.y.b.1297.3 8 165.32 odd 4
1980.2.y.b.1693.3 8 3.2 odd 2
1980.2.y.b.1693.3 8 33.32 even 2