gp: [N,k,chi] = [2028,2,Mod(529,2028)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2028, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([0, 0, 4]))
N = Newforms(chi, 2, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("2028.529");
S:= CuspForms(chi, 2);
N := Newforms(S);
Newform invariants
sage: traces = [4,0,2,0,0,0,0,0,-2,0,0,0,0,0,0,0,6]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(17)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the q q q -expansion are expressed in terms of a basis 1 , β 1 , β 2 , β 3 1,\beta_1,\beta_2,\beta_3 1 , β 1 , β 2 , β 3 for the coefficient ring described below.
We also show the integral q q q -expansion of the trace form .
Basis of coefficient ring
β 1 \beta_{1} β 1 = = =
ζ 12 2 \zeta_{12}^{2} ζ 1 2 2
v^2
β 2 \beta_{2} β 2 = = =
ζ 12 3 + ζ 12 \zeta_{12}^{3} + \zeta_{12} ζ 1 2 3 + ζ 1 2
v^3 + v
β 3 \beta_{3} β 3 = = =
− ζ 12 3 + 2 ζ 12 -\zeta_{12}^{3} + 2\zeta_{12} − ζ 1 2 3 + 2 ζ 1 2
-v^3 + 2*v
ζ 12 \zeta_{12} ζ 1 2 = = =
( β 3 + β 2 ) / 3 ( \beta_{3} + \beta_{2} ) / 3 ( β 3 + β 2 ) / 3
(b3 + b2) / 3
ζ 12 2 \zeta_{12}^{2} ζ 1 2 2 = = =
β 1 \beta_1 β 1
b1
ζ 12 3 \zeta_{12}^{3} ζ 1 2 3 = = =
( − β 3 + 2 β 2 ) / 3 ( -\beta_{3} + 2\beta_{2} ) / 3 ( − β 3 + 2 β 2 ) / 3
(-b3 + 2*b2) / 3
Character values
We give the values of χ \chi χ on generators for ( Z / 2028 Z ) × \left(\mathbb{Z}/2028\mathbb{Z}\right)^\times ( Z / 2 0 2 8 Z ) × .
n n n
677 677 6 7 7
1015 1015 1 0 1 5
1861 1861 1 8 6 1
χ ( n ) \chi(n) χ ( n )
1 1 1
1 1 1
− 1 + β 1 -1 + \beta_{1} − 1 + β 1
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S 2 n e w ( 2028 , [ χ ] ) S_{2}^{\mathrm{new}}(2028, [\chi]) S 2 n e w ( 2 0 2 8 , [ χ ] ) :
T 5 2 − 3 T_{5}^{2} - 3 T 5 2 − 3
T5^2 - 3
T 7 4 + 12 T 7 2 + 144 T_{7}^{4} + 12T_{7}^{2} + 144 T 7 4 + 1 2 T 7 2 + 1 4 4
T7^4 + 12*T7^2 + 144
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T 4 T^{4} T 4
T^4
3 3 3
( T 2 − T + 1 ) 2 (T^{2} - T + 1)^{2} ( T 2 − T + 1 ) 2
(T^2 - T + 1)^2
5 5 5
( T 2 − 3 ) 2 (T^{2} - 3)^{2} ( T 2 − 3 ) 2
(T^2 - 3)^2
7 7 7
T 4 + 12 T 2 + 144 T^{4} + 12T^{2} + 144 T 4 + 1 2 T 2 + 1 4 4
T^4 + 12*T^2 + 144
11 11 1 1
T 4 + 12 T 2 + 144 T^{4} + 12T^{2} + 144 T 4 + 1 2 T 2 + 1 4 4
T^4 + 12*T^2 + 144
13 13 1 3
T 4 T^{4} T 4
T^4
17 17 1 7
( T 2 − 3 T + 9 ) 2 (T^{2} - 3 T + 9)^{2} ( T 2 − 3 T + 9 ) 2
(T^2 - 3*T + 9)^2
19 19 1 9
T 4 + 12 T 2 + 144 T^{4} + 12T^{2} + 144 T 4 + 1 2 T 2 + 1 4 4
T^4 + 12*T^2 + 144
23 23 2 3
( T 2 − 6 T + 36 ) 2 (T^{2} - 6 T + 36)^{2} ( T 2 − 6 T + 3 6 ) 2
(T^2 - 6*T + 36)^2
29 29 2 9
( T 2 + 9 T + 81 ) 2 (T^{2} + 9 T + 81)^{2} ( T 2 + 9 T + 8 1 ) 2
(T^2 + 9*T + 81)^2
31 31 3 1
T 4 T^{4} T 4
T^4
37 37 3 7
T 4 + 27 T 2 + 729 T^{4} + 27T^{2} + 729 T 4 + 2 7 T 2 + 7 2 9
T^4 + 27*T^2 + 729
41 41 4 1
T 4 + 75 T 2 + 5625 T^{4} + 75T^{2} + 5625 T 4 + 7 5 T 2 + 5 6 2 5
T^4 + 75*T^2 + 5625
43 43 4 3
( T 2 − 2 T + 4 ) 2 (T^{2} - 2 T + 4)^{2} ( T 2 − 2 T + 4 ) 2
(T^2 - 2*T + 4)^2
47 47 4 7
( T 2 − 12 ) 2 (T^{2} - 12)^{2} ( T 2 − 1 2 ) 2
(T^2 - 12)^2
53 53 5 3
( T + 9 ) 4 (T + 9)^{4} ( T + 9 ) 4
(T + 9)^4
59 59 5 9
T 4 + 192 T 2 + 36864 T^{4} + 192 T^{2} + 36864 T 4 + 1 9 2 T 2 + 3 6 8 6 4
T^4 + 192*T^2 + 36864
61 61 6 1
( T 2 − 11 T + 121 ) 2 (T^{2} - 11 T + 121)^{2} ( T 2 − 1 1 T + 1 2 1 ) 2
(T^2 - 11*T + 121)^2
67 67 6 7
T 4 + 108 T 2 + 11664 T^{4} + 108 T^{2} + 11664 T 4 + 1 0 8 T 2 + 1 1 6 6 4
T^4 + 108*T^2 + 11664
71 71 7 1
T 4 + 108 T 2 + 11664 T^{4} + 108 T^{2} + 11664 T 4 + 1 0 8 T 2 + 1 1 6 6 4
T^4 + 108*T^2 + 11664
73 73 7 3
( T 2 − 27 ) 2 (T^{2} - 27)^{2} ( T 2 − 2 7 ) 2
(T^2 - 27)^2
79 79 7 9
( T + 8 ) 4 (T + 8)^{4} ( T + 8 ) 4
(T + 8)^4
83 83 8 3
( T 2 − 12 ) 2 (T^{2} - 12)^{2} ( T 2 − 1 2 ) 2
(T^2 - 12)^2
89 89 8 9
T 4 + 48 T 2 + 2304 T^{4} + 48T^{2} + 2304 T 4 + 4 8 T 2 + 2 3 0 4
T^4 + 48*T^2 + 2304
97 97 9 7
T 4 + 48 T 2 + 2304 T^{4} + 48T^{2} + 2304 T 4 + 4 8 T 2 + 2 3 0 4
T^4 + 48*T^2 + 2304
show more
show less