Properties

Label 2028.2.i.h
Level 20282028
Weight 22
Character orbit 2028.i
Analytic conductor 16.19416.194
Analytic rank 00
Dimension 44
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2028,2,Mod(529,2028)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2028, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 4])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2028.529"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: N N == 2028=223132 2028 = 2^{2} \cdot 3 \cdot 13^{2}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 2028.i (of order 33, degree 22, not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,2,0,0,0,0,0,-2,0,0,0,0,0,0,0,6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(17)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 16.193661529916.1936615299
Analytic rank: 00
Dimension: 44
Relative dimension: 22 over Q(ζ3)\Q(\zeta_{3})
Coefficient field: Q(ζ12)\Q(\zeta_{12})
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x4x2+1 x^{4} - x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a5]\Z[a_1, \ldots, a_{5}]
Coefficient ring index: 3 3
Twist minimal: no (minimal twist has level 156)
Sato-Tate group: SU(2)[C3]\mathrm{SU}(2)[C_{3}]

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,β2,β31,\beta_1,\beta_2,\beta_3 for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+β1q3β3q5+(2β3+2β2)q7+(β11)q9+2β2q11β2q15+(3β1+3)q17+(2β3+2β2)q19+2β3q99+O(q100) q + \beta_1 q^{3} - \beta_{3} q^{5} + ( - 2 \beta_{3} + 2 \beta_{2}) q^{7} + (\beta_1 - 1) q^{9} + 2 \beta_{2} q^{11} - \beta_{2} q^{15} + ( - 3 \beta_1 + 3) q^{17} + ( - 2 \beta_{3} + 2 \beta_{2}) q^{19}+ \cdots - 2 \beta_{3} q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q+2q32q9+6q17+12q238q254q2718q29+12q35+4q4310q49+12q5136q5312q55+22q6112q694q7548q7732q79++12q95+O(q100) 4 q + 2 q^{3} - 2 q^{9} + 6 q^{17} + 12 q^{23} - 8 q^{25} - 4 q^{27} - 18 q^{29} + 12 q^{35} + 4 q^{43} - 10 q^{49} + 12 q^{51} - 36 q^{53} - 12 q^{55} + 22 q^{61} - 12 q^{69} - 4 q^{75} - 48 q^{77} - 32 q^{79}+ \cdots + 12 q^{95}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring

β1\beta_{1}== ζ122 \zeta_{12}^{2} Copy content Toggle raw display
β2\beta_{2}== ζ123+ζ12 \zeta_{12}^{3} + \zeta_{12} Copy content Toggle raw display
β3\beta_{3}== ζ123+2ζ12 -\zeta_{12}^{3} + 2\zeta_{12} Copy content Toggle raw display
ζ12\zeta_{12}== (β3+β2)/3 ( \beta_{3} + \beta_{2} ) / 3 Copy content Toggle raw display
ζ122\zeta_{12}^{2}== β1 \beta_1 Copy content Toggle raw display
ζ123\zeta_{12}^{3}== (β3+2β2)/3 ( -\beta_{3} + 2\beta_{2} ) / 3 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/2028Z)×\left(\mathbb{Z}/2028\mathbb{Z}\right)^\times.

nn 677677 10151015 18611861
χ(n)\chi(n) 11 11 1+β1-1 + \beta_{1}

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
529.1
0.866025 0.500000i
−0.866025 + 0.500000i
0.866025 + 0.500000i
−0.866025 0.500000i
0 0.500000 0.866025i 0 −1.73205 0 −1.73205 3.00000i 0 −0.500000 0.866025i 0
529.2 0 0.500000 0.866025i 0 1.73205 0 1.73205 + 3.00000i 0 −0.500000 0.866025i 0
2005.1 0 0.500000 + 0.866025i 0 −1.73205 0 −1.73205 + 3.00000i 0 −0.500000 + 0.866025i 0
2005.2 0 0.500000 + 0.866025i 0 1.73205 0 1.73205 3.00000i 0 −0.500000 + 0.866025i 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
13.b even 2 1 inner
13.c even 3 1 inner
13.e even 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2028.2.i.h 4
13.b even 2 1 inner 2028.2.i.h 4
13.c even 3 1 2028.2.a.h 2
13.c even 3 1 inner 2028.2.i.h 4
13.d odd 4 1 156.2.q.a 2
13.d odd 4 1 2028.2.q.a 2
13.e even 6 1 2028.2.a.h 2
13.e even 6 1 inner 2028.2.i.h 4
13.f odd 12 1 156.2.q.a 2
13.f odd 12 2 2028.2.b.b 2
13.f odd 12 1 2028.2.q.a 2
39.f even 4 1 468.2.t.c 2
39.h odd 6 1 6084.2.a.u 2
39.i odd 6 1 6084.2.a.u 2
39.k even 12 1 468.2.t.c 2
39.k even 12 2 6084.2.b.c 2
52.f even 4 1 624.2.bv.a 2
52.i odd 6 1 8112.2.a.bt 2
52.j odd 6 1 8112.2.a.bt 2
52.l even 12 1 624.2.bv.a 2
65.f even 4 1 3900.2.bw.e 4
65.g odd 4 1 3900.2.cd.a 2
65.k even 4 1 3900.2.bw.e 4
65.o even 12 1 3900.2.bw.e 4
65.s odd 12 1 3900.2.cd.a 2
65.t even 12 1 3900.2.bw.e 4
156.l odd 4 1 1872.2.by.b 2
156.v odd 12 1 1872.2.by.b 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
156.2.q.a 2 13.d odd 4 1
156.2.q.a 2 13.f odd 12 1
468.2.t.c 2 39.f even 4 1
468.2.t.c 2 39.k even 12 1
624.2.bv.a 2 52.f even 4 1
624.2.bv.a 2 52.l even 12 1
1872.2.by.b 2 156.l odd 4 1
1872.2.by.b 2 156.v odd 12 1
2028.2.a.h 2 13.c even 3 1
2028.2.a.h 2 13.e even 6 1
2028.2.b.b 2 13.f odd 12 2
2028.2.i.h 4 1.a even 1 1 trivial
2028.2.i.h 4 13.b even 2 1 inner
2028.2.i.h 4 13.c even 3 1 inner
2028.2.i.h 4 13.e even 6 1 inner
2028.2.q.a 2 13.d odd 4 1
2028.2.q.a 2 13.f odd 12 1
3900.2.bw.e 4 65.f even 4 1
3900.2.bw.e 4 65.k even 4 1
3900.2.bw.e 4 65.o even 12 1
3900.2.bw.e 4 65.t even 12 1
3900.2.cd.a 2 65.g odd 4 1
3900.2.cd.a 2 65.s odd 12 1
6084.2.a.u 2 39.h odd 6 1
6084.2.a.u 2 39.i odd 6 1
6084.2.b.c 2 39.k even 12 2
8112.2.a.bt 2 52.i odd 6 1
8112.2.a.bt 2 52.j odd 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(2028,[χ])S_{2}^{\mathrm{new}}(2028, [\chi]):

T523 T_{5}^{2} - 3 Copy content Toggle raw display
T74+12T72+144 T_{7}^{4} + 12T_{7}^{2} + 144 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T4 T^{4} Copy content Toggle raw display
33 (T2T+1)2 (T^{2} - T + 1)^{2} Copy content Toggle raw display
55 (T23)2 (T^{2} - 3)^{2} Copy content Toggle raw display
77 T4+12T2+144 T^{4} + 12T^{2} + 144 Copy content Toggle raw display
1111 T4+12T2+144 T^{4} + 12T^{2} + 144 Copy content Toggle raw display
1313 T4 T^{4} Copy content Toggle raw display
1717 (T23T+9)2 (T^{2} - 3 T + 9)^{2} Copy content Toggle raw display
1919 T4+12T2+144 T^{4} + 12T^{2} + 144 Copy content Toggle raw display
2323 (T26T+36)2 (T^{2} - 6 T + 36)^{2} Copy content Toggle raw display
2929 (T2+9T+81)2 (T^{2} + 9 T + 81)^{2} Copy content Toggle raw display
3131 T4 T^{4} Copy content Toggle raw display
3737 T4+27T2+729 T^{4} + 27T^{2} + 729 Copy content Toggle raw display
4141 T4+75T2+5625 T^{4} + 75T^{2} + 5625 Copy content Toggle raw display
4343 (T22T+4)2 (T^{2} - 2 T + 4)^{2} Copy content Toggle raw display
4747 (T212)2 (T^{2} - 12)^{2} Copy content Toggle raw display
5353 (T+9)4 (T + 9)^{4} Copy content Toggle raw display
5959 T4+192T2+36864 T^{4} + 192 T^{2} + 36864 Copy content Toggle raw display
6161 (T211T+121)2 (T^{2} - 11 T + 121)^{2} Copy content Toggle raw display
6767 T4+108T2+11664 T^{4} + 108 T^{2} + 11664 Copy content Toggle raw display
7171 T4+108T2+11664 T^{4} + 108 T^{2} + 11664 Copy content Toggle raw display
7373 (T227)2 (T^{2} - 27)^{2} Copy content Toggle raw display
7979 (T+8)4 (T + 8)^{4} Copy content Toggle raw display
8383 (T212)2 (T^{2} - 12)^{2} Copy content Toggle raw display
8989 T4+48T2+2304 T^{4} + 48T^{2} + 2304 Copy content Toggle raw display
9797 T4+48T2+2304 T^{4} + 48T^{2} + 2304 Copy content Toggle raw display
show more
show less