Properties

Label 2070.2.e.b.1241.15
Level $2070$
Weight $2$
Character 2070.1241
Analytic conductor $16.529$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2070,2,Mod(1241,2070)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2070, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2070.1241");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2070 = 2 \cdot 3^{2} \cdot 5 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2070.e (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(16.5290332184\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 32x^{14} + 392x^{12} + 2324x^{10} + 6930x^{8} + 9856x^{6} + 5740x^{4} + 1108x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{23}]\)
Coefficient ring index: \( 2^{11} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1241.15
Root \(-1.90023i\) of defining polynomial
Character \(\chi\) \(=\) 2070.1241
Dual form 2070.2.e.b.1241.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000i q^{2} -1.00000 q^{4} +1.00000 q^{5} +2.68734i q^{7} -1.00000i q^{8} +1.00000i q^{10} +1.73106 q^{11} -2.55609 q^{13} -2.68734 q^{14} +1.00000 q^{16} +1.27312 q^{17} +1.40738i q^{19} -1.00000 q^{20} +1.73106i q^{22} +(-4.59909 + 1.35955i) q^{23} +1.00000 q^{25} -2.55609i q^{26} -2.68734i q^{28} +9.62624i q^{29} -1.47605 q^{31} +1.00000i q^{32} +1.27312i q^{34} +2.68734i q^{35} -4.20404i q^{37} -1.40738 q^{38} -1.00000i q^{40} +3.40455i q^{41} +2.35544i q^{43} -1.73106 q^{44} +(-1.35955 - 4.59909i) q^{46} +3.21211i q^{47} -0.221775 q^{49} +1.00000i q^{50} +2.55609 q^{52} -1.80473 q^{53} +1.73106 q^{55} +2.68734 q^{56} -9.62624 q^{58} +7.74331i q^{59} -6.78016i q^{61} -1.47605i q^{62} -1.00000 q^{64} -2.55609 q^{65} -7.71912i q^{67} -1.27312 q^{68} -2.68734 q^{70} +4.44631i q^{71} -1.36193 q^{73} +4.20404 q^{74} -1.40738i q^{76} +4.65193i q^{77} +10.0972i q^{79} +1.00000 q^{80} -3.40455 q^{82} -8.67571 q^{83} +1.27312 q^{85} -2.35544 q^{86} -1.73106i q^{88} -3.72626 q^{89} -6.86909i q^{91} +(4.59909 - 1.35955i) q^{92} -3.21211 q^{94} +1.40738i q^{95} -7.03405i q^{97} -0.221775i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 16 q^{4} + 16 q^{5} - 24 q^{11} + 16 q^{16} - 16 q^{20} - 4 q^{23} + 16 q^{25} - 8 q^{31} - 8 q^{38} + 24 q^{44} - 4 q^{46} - 16 q^{49} + 8 q^{53} - 24 q^{55} + 16 q^{58} - 16 q^{64} + 32 q^{73}+ \cdots + 4 q^{92}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2070\mathbb{Z}\right)^\times\).

\(n\) \(461\) \(1657\) \(1891\)
\(\chi(n)\) \(-1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000i 0.707107i
\(3\) 0 0
\(4\) −1.00000 −0.500000
\(5\) 1.00000 0.447214
\(6\) 0 0
\(7\) 2.68734i 1.01572i 0.861440 + 0.507859i \(0.169563\pi\)
−0.861440 + 0.507859i \(0.830437\pi\)
\(8\) 1.00000i 0.353553i
\(9\) 0 0
\(10\) 1.00000i 0.316228i
\(11\) 1.73106 0.521934 0.260967 0.965348i \(-0.415959\pi\)
0.260967 + 0.965348i \(0.415959\pi\)
\(12\) 0 0
\(13\) −2.55609 −0.708933 −0.354467 0.935069i \(-0.615338\pi\)
−0.354467 + 0.935069i \(0.615338\pi\)
\(14\) −2.68734 −0.718221
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) 1.27312 0.308778 0.154389 0.988010i \(-0.450659\pi\)
0.154389 + 0.988010i \(0.450659\pi\)
\(18\) 0 0
\(19\) 1.40738i 0.322875i 0.986883 + 0.161437i \(0.0516130\pi\)
−0.986883 + 0.161437i \(0.948387\pi\)
\(20\) −1.00000 −0.223607
\(21\) 0 0
\(22\) 1.73106i 0.369063i
\(23\) −4.59909 + 1.35955i −0.958976 + 0.283486i
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 2.55609i 0.501291i
\(27\) 0 0
\(28\) 2.68734i 0.507859i
\(29\) 9.62624i 1.78755i 0.448518 + 0.893774i \(0.351952\pi\)
−0.448518 + 0.893774i \(0.648048\pi\)
\(30\) 0 0
\(31\) −1.47605 −0.265106 −0.132553 0.991176i \(-0.542317\pi\)
−0.132553 + 0.991176i \(0.542317\pi\)
\(32\) 1.00000i 0.176777i
\(33\) 0 0
\(34\) 1.27312i 0.218339i
\(35\) 2.68734i 0.454243i
\(36\) 0 0
\(37\) 4.20404i 0.691140i −0.938393 0.345570i \(-0.887686\pi\)
0.938393 0.345570i \(-0.112314\pi\)
\(38\) −1.40738 −0.228307
\(39\) 0 0
\(40\) 1.00000i 0.158114i
\(41\) 3.40455i 0.531701i 0.964014 + 0.265850i \(0.0856527\pi\)
−0.964014 + 0.265850i \(0.914347\pi\)
\(42\) 0 0
\(43\) 2.35544i 0.359202i 0.983740 + 0.179601i \(0.0574807\pi\)
−0.983740 + 0.179601i \(0.942519\pi\)
\(44\) −1.73106 −0.260967
\(45\) 0 0
\(46\) −1.35955 4.59909i −0.200455 0.678099i
\(47\) 3.21211i 0.468534i 0.972172 + 0.234267i \(0.0752690\pi\)
−0.972172 + 0.234267i \(0.924731\pi\)
\(48\) 0 0
\(49\) −0.221775 −0.0316822
\(50\) 1.00000i 0.141421i
\(51\) 0 0
\(52\) 2.55609 0.354467
\(53\) −1.80473 −0.247899 −0.123949 0.992289i \(-0.539556\pi\)
−0.123949 + 0.992289i \(0.539556\pi\)
\(54\) 0 0
\(55\) 1.73106 0.233416
\(56\) 2.68734 0.359110
\(57\) 0 0
\(58\) −9.62624 −1.26399
\(59\) 7.74331i 1.00809i 0.863677 + 0.504046i \(0.168156\pi\)
−0.863677 + 0.504046i \(0.831844\pi\)
\(60\) 0 0
\(61\) 6.78016i 0.868111i −0.900886 0.434055i \(-0.857082\pi\)
0.900886 0.434055i \(-0.142918\pi\)
\(62\) 1.47605i 0.187458i
\(63\) 0 0
\(64\) −1.00000 −0.125000
\(65\) −2.55609 −0.317045
\(66\) 0 0
\(67\) 7.71912i 0.943040i −0.881855 0.471520i \(-0.843705\pi\)
0.881855 0.471520i \(-0.156295\pi\)
\(68\) −1.27312 −0.154389
\(69\) 0 0
\(70\) −2.68734 −0.321198
\(71\) 4.44631i 0.527679i 0.964567 + 0.263840i \(0.0849890\pi\)
−0.964567 + 0.263840i \(0.915011\pi\)
\(72\) 0 0
\(73\) −1.36193 −0.159401 −0.0797006 0.996819i \(-0.525396\pi\)
−0.0797006 + 0.996819i \(0.525396\pi\)
\(74\) 4.20404 0.488710
\(75\) 0 0
\(76\) 1.40738i 0.161437i
\(77\) 4.65193i 0.530137i
\(78\) 0 0
\(79\) 10.0972i 1.13602i 0.823022 + 0.568010i \(0.192286\pi\)
−0.823022 + 0.568010i \(0.807714\pi\)
\(80\) 1.00000 0.111803
\(81\) 0 0
\(82\) −3.40455 −0.375969
\(83\) −8.67571 −0.952283 −0.476141 0.879369i \(-0.657965\pi\)
−0.476141 + 0.879369i \(0.657965\pi\)
\(84\) 0 0
\(85\) 1.27312 0.138090
\(86\) −2.35544 −0.253994
\(87\) 0 0
\(88\) 1.73106i 0.184531i
\(89\) −3.72626 −0.394983 −0.197492 0.980305i \(-0.563280\pi\)
−0.197492 + 0.980305i \(0.563280\pi\)
\(90\) 0 0
\(91\) 6.86909i 0.720076i
\(92\) 4.59909 1.35955i 0.479488 0.141743i
\(93\) 0 0
\(94\) −3.21211 −0.331304
\(95\) 1.40738i 0.144394i
\(96\) 0 0
\(97\) 7.03405i 0.714200i −0.934066 0.357100i \(-0.883766\pi\)
0.934066 0.357100i \(-0.116234\pi\)
\(98\) 0.221775i 0.0224027i
\(99\) 0 0
\(100\) −1.00000 −0.100000
\(101\) 12.9956i 1.29311i 0.762866 + 0.646557i \(0.223792\pi\)
−0.762866 + 0.646557i \(0.776208\pi\)
\(102\) 0 0
\(103\) 0.230115i 0.0226739i 0.999936 + 0.0113369i \(0.00360874\pi\)
−0.999936 + 0.0113369i \(0.996391\pi\)
\(104\) 2.55609i 0.250646i
\(105\) 0 0
\(106\) 1.80473i 0.175291i
\(107\) −6.45265 −0.623801 −0.311901 0.950115i \(-0.600966\pi\)
−0.311901 + 0.950115i \(0.600966\pi\)
\(108\) 0 0
\(109\) 6.93477i 0.664231i 0.943239 + 0.332115i \(0.107762\pi\)
−0.943239 + 0.332115i \(0.892238\pi\)
\(110\) 1.73106i 0.165050i
\(111\) 0 0
\(112\) 2.68734i 0.253929i
\(113\) −1.03896 −0.0977371 −0.0488685 0.998805i \(-0.515562\pi\)
−0.0488685 + 0.998805i \(0.515562\pi\)
\(114\) 0 0
\(115\) −4.59909 + 1.35955i −0.428867 + 0.126779i
\(116\) 9.62624i 0.893774i
\(117\) 0 0
\(118\) −7.74331 −0.712829
\(119\) 3.42131i 0.313631i
\(120\) 0 0
\(121\) −8.00344 −0.727585
\(122\) 6.78016 0.613847
\(123\) 0 0
\(124\) 1.47605 0.132553
\(125\) 1.00000 0.0894427
\(126\) 0 0
\(127\) −11.3029 −1.00297 −0.501487 0.865165i \(-0.667213\pi\)
−0.501487 + 0.865165i \(0.667213\pi\)
\(128\) 1.00000i 0.0883883i
\(129\) 0 0
\(130\) 2.55609i 0.224184i
\(131\) 13.1993i 1.15323i 0.817017 + 0.576614i \(0.195626\pi\)
−0.817017 + 0.576614i \(0.804374\pi\)
\(132\) 0 0
\(133\) −3.78210 −0.327950
\(134\) 7.71912 0.666830
\(135\) 0 0
\(136\) 1.27312i 0.109169i
\(137\) 13.6218 1.16379 0.581895 0.813264i \(-0.302311\pi\)
0.581895 + 0.813264i \(0.302311\pi\)
\(138\) 0 0
\(139\) −4.08370 −0.346375 −0.173187 0.984889i \(-0.555407\pi\)
−0.173187 + 0.984889i \(0.555407\pi\)
\(140\) 2.68734i 0.227121i
\(141\) 0 0
\(142\) −4.44631 −0.373126
\(143\) −4.42475 −0.370016
\(144\) 0 0
\(145\) 9.62624i 0.799416i
\(146\) 1.36193i 0.112714i
\(147\) 0 0
\(148\) 4.20404i 0.345570i
\(149\) 3.31717 0.271753 0.135877 0.990726i \(-0.456615\pi\)
0.135877 + 0.990726i \(0.456615\pi\)
\(150\) 0 0
\(151\) −13.1448 −1.06971 −0.534854 0.844944i \(-0.679634\pi\)
−0.534854 + 0.844944i \(0.679634\pi\)
\(152\) 1.40738 0.114153
\(153\) 0 0
\(154\) −4.65193 −0.374863
\(155\) −1.47605 −0.118559
\(156\) 0 0
\(157\) 8.31606i 0.663694i −0.943333 0.331847i \(-0.892328\pi\)
0.943333 0.331847i \(-0.107672\pi\)
\(158\) −10.0972 −0.803287
\(159\) 0 0
\(160\) 1.00000i 0.0790569i
\(161\) −3.65357 12.3593i −0.287942 0.974049i
\(162\) 0 0
\(163\) 3.77069 0.295344 0.147672 0.989036i \(-0.452822\pi\)
0.147672 + 0.989036i \(0.452822\pi\)
\(164\) 3.40455i 0.265850i
\(165\) 0 0
\(166\) 8.67571i 0.673365i
\(167\) 16.9307i 1.31014i 0.755569 + 0.655070i \(0.227361\pi\)
−0.755569 + 0.655070i \(0.772639\pi\)
\(168\) 0 0
\(169\) −6.46638 −0.497414
\(170\) 1.27312i 0.0976440i
\(171\) 0 0
\(172\) 2.35544i 0.179601i
\(173\) 5.36460i 0.407863i −0.978985 0.203931i \(-0.934628\pi\)
0.978985 0.203931i \(-0.0653720\pi\)
\(174\) 0 0
\(175\) 2.68734i 0.203144i
\(176\) 1.73106 0.130483
\(177\) 0 0
\(178\) 3.72626i 0.279295i
\(179\) 9.56578i 0.714980i −0.933917 0.357490i \(-0.883633\pi\)
0.933917 0.357490i \(-0.116367\pi\)
\(180\) 0 0
\(181\) 12.4563i 0.925873i 0.886391 + 0.462937i \(0.153204\pi\)
−0.886391 + 0.462937i \(0.846796\pi\)
\(182\) 6.86909 0.509171
\(183\) 0 0
\(184\) 1.35955 + 4.59909i 0.100227 + 0.339049i
\(185\) 4.20404i 0.309087i
\(186\) 0 0
\(187\) 2.20385 0.161161
\(188\) 3.21211i 0.234267i
\(189\) 0 0
\(190\) −1.40738 −0.102102
\(191\) 8.39297 0.607294 0.303647 0.952785i \(-0.401796\pi\)
0.303647 + 0.952785i \(0.401796\pi\)
\(192\) 0 0
\(193\) 1.01621 0.0731486 0.0365743 0.999331i \(-0.488355\pi\)
0.0365743 + 0.999331i \(0.488355\pi\)
\(194\) 7.03405 0.505016
\(195\) 0 0
\(196\) 0.221775 0.0158411
\(197\) 5.60884i 0.399613i 0.979835 + 0.199806i \(0.0640313\pi\)
−0.979835 + 0.199806i \(0.935969\pi\)
\(198\) 0 0
\(199\) 9.76909i 0.692513i 0.938140 + 0.346256i \(0.112547\pi\)
−0.938140 + 0.346256i \(0.887453\pi\)
\(200\) 1.00000i 0.0707107i
\(201\) 0 0
\(202\) −12.9956 −0.914369
\(203\) −25.8689 −1.81564
\(204\) 0 0
\(205\) 3.40455i 0.237784i
\(206\) −0.230115 −0.0160329
\(207\) 0 0
\(208\) −2.55609 −0.177233
\(209\) 2.43625i 0.168519i
\(210\) 0 0
\(211\) 8.94211 0.615600 0.307800 0.951451i \(-0.400407\pi\)
0.307800 + 0.951451i \(0.400407\pi\)
\(212\) 1.80473 0.123949
\(213\) 0 0
\(214\) 6.45265i 0.441094i
\(215\) 2.35544i 0.160640i
\(216\) 0 0
\(217\) 3.96663i 0.269272i
\(218\) −6.93477 −0.469682
\(219\) 0 0
\(220\) −1.73106 −0.116708
\(221\) −3.25422 −0.218903
\(222\) 0 0
\(223\) 29.4525 1.97229 0.986144 0.165892i \(-0.0530504\pi\)
0.986144 + 0.165892i \(0.0530504\pi\)
\(224\) −2.68734 −0.179555
\(225\) 0 0
\(226\) 1.03896i 0.0691106i
\(227\) 0.140630 0.00933396 0.00466698 0.999989i \(-0.498514\pi\)
0.00466698 + 0.999989i \(0.498514\pi\)
\(228\) 0 0
\(229\) 22.3375i 1.47610i −0.674744 0.738052i \(-0.735746\pi\)
0.674744 0.738052i \(-0.264254\pi\)
\(230\) −1.35955 4.59909i −0.0896461 0.303255i
\(231\) 0 0
\(232\) 9.62624 0.631994
\(233\) 20.7396i 1.35870i −0.733817 0.679348i \(-0.762263\pi\)
0.733817 0.679348i \(-0.237737\pi\)
\(234\) 0 0
\(235\) 3.21211i 0.209535i
\(236\) 7.74331i 0.504046i
\(237\) 0 0
\(238\) −3.42131 −0.221770
\(239\) 5.54170i 0.358463i −0.983807 0.179231i \(-0.942639\pi\)
0.983807 0.179231i \(-0.0573610\pi\)
\(240\) 0 0
\(241\) 15.1612i 0.976619i −0.872670 0.488310i \(-0.837614\pi\)
0.872670 0.488310i \(-0.162386\pi\)
\(242\) 8.00344i 0.514481i
\(243\) 0 0
\(244\) 6.78016i 0.434055i
\(245\) −0.221775 −0.0141687
\(246\) 0 0
\(247\) 3.59739i 0.228897i
\(248\) 1.47605i 0.0937290i
\(249\) 0 0
\(250\) 1.00000i 0.0632456i
\(251\) 26.3921 1.66585 0.832927 0.553383i \(-0.186663\pi\)
0.832927 + 0.553383i \(0.186663\pi\)
\(252\) 0 0
\(253\) −7.96129 + 2.35346i −0.500522 + 0.147961i
\(254\) 11.3029i 0.709209i
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 1.04633i 0.0652682i 0.999467 + 0.0326341i \(0.0103896\pi\)
−0.999467 + 0.0326341i \(0.989610\pi\)
\(258\) 0 0
\(259\) 11.2977 0.702003
\(260\) 2.55609 0.158522
\(261\) 0 0
\(262\) −13.1993 −0.815455
\(263\) −10.4405 −0.643791 −0.321895 0.946775i \(-0.604320\pi\)
−0.321895 + 0.946775i \(0.604320\pi\)
\(264\) 0 0
\(265\) −1.80473 −0.110864
\(266\) 3.78210i 0.231895i
\(267\) 0 0
\(268\) 7.71912i 0.471520i
\(269\) 2.34357i 0.142890i 0.997445 + 0.0714450i \(0.0227611\pi\)
−0.997445 + 0.0714450i \(0.977239\pi\)
\(270\) 0 0
\(271\) 18.7738 1.14043 0.570213 0.821497i \(-0.306861\pi\)
0.570213 + 0.821497i \(0.306861\pi\)
\(272\) 1.27312 0.0771944
\(273\) 0 0
\(274\) 13.6218i 0.822924i
\(275\) 1.73106 0.104387
\(276\) 0 0
\(277\) 19.4871 1.17087 0.585433 0.810721i \(-0.300925\pi\)
0.585433 + 0.810721i \(0.300925\pi\)
\(278\) 4.08370i 0.244924i
\(279\) 0 0
\(280\) 2.68734 0.160599
\(281\) 21.1418 1.26121 0.630607 0.776103i \(-0.282806\pi\)
0.630607 + 0.776103i \(0.282806\pi\)
\(282\) 0 0
\(283\) 8.62629i 0.512780i −0.966573 0.256390i \(-0.917467\pi\)
0.966573 0.256390i \(-0.0825331\pi\)
\(284\) 4.44631i 0.263840i
\(285\) 0 0
\(286\) 4.42475i 0.261641i
\(287\) −9.14916 −0.540058
\(288\) 0 0
\(289\) −15.3792 −0.904656
\(290\) −9.62624 −0.565272
\(291\) 0 0
\(292\) 1.36193 0.0797006
\(293\) −23.1296 −1.35125 −0.675623 0.737247i \(-0.736125\pi\)
−0.675623 + 0.737247i \(0.736125\pi\)
\(294\) 0 0
\(295\) 7.74331i 0.450833i
\(296\) −4.20404 −0.244355
\(297\) 0 0
\(298\) 3.31717i 0.192159i
\(299\) 11.7557 3.47514i 0.679850 0.200973i
\(300\) 0 0
\(301\) −6.32987 −0.364848
\(302\) 13.1448i 0.756398i
\(303\) 0 0
\(304\) 1.40738i 0.0807187i
\(305\) 6.78016i 0.388231i
\(306\) 0 0
\(307\) 13.7536 0.784957 0.392479 0.919761i \(-0.371618\pi\)
0.392479 + 0.919761i \(0.371618\pi\)
\(308\) 4.65193i 0.265069i
\(309\) 0 0
\(310\) 1.47605i 0.0838337i
\(311\) 20.1319i 1.14157i 0.821098 + 0.570787i \(0.193362\pi\)
−0.821098 + 0.570787i \(0.806638\pi\)
\(312\) 0 0
\(313\) 6.80646i 0.384724i 0.981324 + 0.192362i \(0.0616148\pi\)
−0.981324 + 0.192362i \(0.938385\pi\)
\(314\) 8.31606 0.469302
\(315\) 0 0
\(316\) 10.0972i 0.568010i
\(317\) 28.1821i 1.58287i −0.611255 0.791433i \(-0.709335\pi\)
0.611255 0.791433i \(-0.290665\pi\)
\(318\) 0 0
\(319\) 16.6636i 0.932981i
\(320\) −1.00000 −0.0559017
\(321\) 0 0
\(322\) 12.3593 3.65357i 0.688757 0.203605i
\(323\) 1.79176i 0.0996965i
\(324\) 0 0
\(325\) −2.55609 −0.141787
\(326\) 3.77069i 0.208839i
\(327\) 0 0
\(328\) 3.40455 0.187985
\(329\) −8.63202 −0.475898
\(330\) 0 0
\(331\) 15.3989 0.846398 0.423199 0.906037i \(-0.360907\pi\)
0.423199 + 0.906037i \(0.360907\pi\)
\(332\) 8.67571 0.476141
\(333\) 0 0
\(334\) −16.9307 −0.926408
\(335\) 7.71912i 0.421741i
\(336\) 0 0
\(337\) 22.3140i 1.21552i −0.794121 0.607760i \(-0.792068\pi\)
0.794121 0.607760i \(-0.207932\pi\)
\(338\) 6.46638i 0.351725i
\(339\) 0 0
\(340\) −1.27312 −0.0690448
\(341\) −2.55512 −0.138367
\(342\) 0 0
\(343\) 18.2154i 0.983537i
\(344\) 2.35544 0.126997
\(345\) 0 0
\(346\) 5.36460 0.288403
\(347\) 29.2565i 1.57057i 0.619134 + 0.785285i \(0.287484\pi\)
−0.619134 + 0.785285i \(0.712516\pi\)
\(348\) 0 0
\(349\) 3.90447 0.209002 0.104501 0.994525i \(-0.466676\pi\)
0.104501 + 0.994525i \(0.466676\pi\)
\(350\) −2.68734 −0.143644
\(351\) 0 0
\(352\) 1.73106i 0.0922657i
\(353\) 3.76521i 0.200402i 0.994967 + 0.100201i \(0.0319486\pi\)
−0.994967 + 0.100201i \(0.968051\pi\)
\(354\) 0 0
\(355\) 4.44631i 0.235985i
\(356\) 3.72626 0.197492
\(357\) 0 0
\(358\) 9.56578 0.505567
\(359\) 10.9238 0.576538 0.288269 0.957549i \(-0.406920\pi\)
0.288269 + 0.957549i \(0.406920\pi\)
\(360\) 0 0
\(361\) 17.0193 0.895752
\(362\) −12.4563 −0.654691
\(363\) 0 0
\(364\) 6.86909i 0.360038i
\(365\) −1.36193 −0.0712864
\(366\) 0 0
\(367\) 8.01924i 0.418601i −0.977851 0.209300i \(-0.932881\pi\)
0.977851 0.209300i \(-0.0671187\pi\)
\(368\) −4.59909 + 1.35955i −0.239744 + 0.0708715i
\(369\) 0 0
\(370\) 4.20404 0.218558
\(371\) 4.84992i 0.251795i
\(372\) 0 0
\(373\) 19.2361i 0.996010i 0.867174 + 0.498005i \(0.165934\pi\)
−0.867174 + 0.498005i \(0.834066\pi\)
\(374\) 2.20385i 0.113958i
\(375\) 0 0
\(376\) 3.21211 0.165652
\(377\) 24.6056i 1.26725i
\(378\) 0 0
\(379\) 13.8927i 0.713618i −0.934177 0.356809i \(-0.883865\pi\)
0.934177 0.356809i \(-0.116135\pi\)
\(380\) 1.40738i 0.0721970i
\(381\) 0 0
\(382\) 8.39297i 0.429421i
\(383\) −4.25515 −0.217428 −0.108714 0.994073i \(-0.534673\pi\)
−0.108714 + 0.994073i \(0.534673\pi\)
\(384\) 0 0
\(385\) 4.65193i 0.237084i
\(386\) 1.01621i 0.0517239i
\(387\) 0 0
\(388\) 7.03405i 0.357100i
\(389\) 22.9092 1.16154 0.580771 0.814067i \(-0.302751\pi\)
0.580771 + 0.814067i \(0.302751\pi\)
\(390\) 0 0
\(391\) −5.85520 + 1.73087i −0.296110 + 0.0875341i
\(392\) 0.221775i 0.0112013i
\(393\) 0 0
\(394\) −5.60884 −0.282569
\(395\) 10.0972i 0.508043i
\(396\) 0 0
\(397\) 16.8037 0.843352 0.421676 0.906746i \(-0.361442\pi\)
0.421676 + 0.906746i \(0.361442\pi\)
\(398\) −9.76909 −0.489680
\(399\) 0 0
\(400\) 1.00000 0.0500000
\(401\) 22.3193 1.11457 0.557287 0.830320i \(-0.311842\pi\)
0.557287 + 0.830320i \(0.311842\pi\)
\(402\) 0 0
\(403\) 3.77291 0.187942
\(404\) 12.9956i 0.646557i
\(405\) 0 0
\(406\) 25.8689i 1.28385i
\(407\) 7.27744i 0.360729i
\(408\) 0 0
\(409\) −16.1240 −0.797280 −0.398640 0.917107i \(-0.630518\pi\)
−0.398640 + 0.917107i \(0.630518\pi\)
\(410\) −3.40455 −0.168139
\(411\) 0 0
\(412\) 0.230115i 0.0113369i
\(413\) −20.8089 −1.02394
\(414\) 0 0
\(415\) −8.67571 −0.425874
\(416\) 2.55609i 0.125323i
\(417\) 0 0
\(418\) −2.43625 −0.119161
\(419\) 32.2037 1.57325 0.786627 0.617429i \(-0.211826\pi\)
0.786627 + 0.617429i \(0.211826\pi\)
\(420\) 0 0
\(421\) 16.3229i 0.795531i −0.917487 0.397766i \(-0.869786\pi\)
0.917487 0.397766i \(-0.130214\pi\)
\(422\) 8.94211i 0.435295i
\(423\) 0 0
\(424\) 1.80473i 0.0876455i
\(425\) 1.27312 0.0617555
\(426\) 0 0
\(427\) 18.2206 0.881755
\(428\) 6.45265 0.311901
\(429\) 0 0
\(430\) −2.35544 −0.113590
\(431\) 27.1761 1.30903 0.654514 0.756050i \(-0.272873\pi\)
0.654514 + 0.756050i \(0.272873\pi\)
\(432\) 0 0
\(433\) 2.83957i 0.136461i −0.997670 0.0682305i \(-0.978265\pi\)
0.997670 0.0682305i \(-0.0217353\pi\)
\(434\) 3.96663 0.190404
\(435\) 0 0
\(436\) 6.93477i 0.332115i
\(437\) −1.91340 6.47266i −0.0915304 0.309629i
\(438\) 0 0
\(439\) 18.8418 0.899269 0.449634 0.893213i \(-0.351554\pi\)
0.449634 + 0.893213i \(0.351554\pi\)
\(440\) 1.73106i 0.0825249i
\(441\) 0 0
\(442\) 3.25422i 0.154788i
\(443\) 18.4455i 0.876372i 0.898884 + 0.438186i \(0.144379\pi\)
−0.898884 + 0.438186i \(0.855621\pi\)
\(444\) 0 0
\(445\) −3.72626 −0.176642
\(446\) 29.4525i 1.39462i
\(447\) 0 0
\(448\) 2.68734i 0.126965i
\(449\) 26.3810i 1.24500i −0.782620 0.622499i \(-0.786117\pi\)
0.782620 0.622499i \(-0.213883\pi\)
\(450\) 0 0
\(451\) 5.89347i 0.277513i
\(452\) 1.03896 0.0488685
\(453\) 0 0
\(454\) 0.140630i 0.00660010i
\(455\) 6.86909i 0.322028i
\(456\) 0 0
\(457\) 34.8995i 1.63253i 0.577679 + 0.816264i \(0.303958\pi\)
−0.577679 + 0.816264i \(0.696042\pi\)
\(458\) 22.3375 1.04376
\(459\) 0 0
\(460\) 4.59909 1.35955i 0.214434 0.0633894i
\(461\) 7.50500i 0.349543i −0.984609 0.174771i \(-0.944081\pi\)
0.984609 0.174771i \(-0.0559186\pi\)
\(462\) 0 0
\(463\) 11.5972 0.538967 0.269483 0.963005i \(-0.413147\pi\)
0.269483 + 0.963005i \(0.413147\pi\)
\(464\) 9.62624i 0.446887i
\(465\) 0 0
\(466\) 20.7396 0.960743
\(467\) 32.9988 1.52700 0.763502 0.645805i \(-0.223478\pi\)
0.763502 + 0.645805i \(0.223478\pi\)
\(468\) 0 0
\(469\) 20.7439 0.957863
\(470\) −3.21211 −0.148164
\(471\) 0 0
\(472\) 7.74331 0.356415
\(473\) 4.07741i 0.187480i
\(474\) 0 0
\(475\) 1.40738i 0.0645749i
\(476\) 3.42131i 0.156815i
\(477\) 0 0
\(478\) 5.54170 0.253471
\(479\) −33.0238 −1.50890 −0.754449 0.656359i \(-0.772096\pi\)
−0.754449 + 0.656359i \(0.772096\pi\)
\(480\) 0 0
\(481\) 10.7459i 0.489972i
\(482\) 15.1612 0.690574
\(483\) 0 0
\(484\) 8.00344 0.363793
\(485\) 7.03405i 0.319400i
\(486\) 0 0
\(487\) −0.656460 −0.0297470 −0.0148735 0.999889i \(-0.504735\pi\)
−0.0148735 + 0.999889i \(0.504735\pi\)
\(488\) −6.78016 −0.306923
\(489\) 0 0
\(490\) 0.221775i 0.0100188i
\(491\) 15.0228i 0.677971i 0.940792 + 0.338985i \(0.110084\pi\)
−0.940792 + 0.338985i \(0.889916\pi\)
\(492\) 0 0
\(493\) 12.2554i 0.551955i
\(494\) 3.59739 0.161854
\(495\) 0 0
\(496\) −1.47605 −0.0662764
\(497\) −11.9487 −0.535973
\(498\) 0 0
\(499\) 11.2596 0.504050 0.252025 0.967721i \(-0.418903\pi\)
0.252025 + 0.967721i \(0.418903\pi\)
\(500\) −1.00000 −0.0447214
\(501\) 0 0
\(502\) 26.3921i 1.17794i
\(503\) −43.0753 −1.92063 −0.960315 0.278916i \(-0.910025\pi\)
−0.960315 + 0.278916i \(0.910025\pi\)
\(504\) 0 0
\(505\) 12.9956i 0.578298i
\(506\) −2.35346 7.96129i −0.104624 0.353922i
\(507\) 0 0
\(508\) 11.3029 0.501487
\(509\) 15.9683i 0.707783i 0.935286 + 0.353892i \(0.115142\pi\)
−0.935286 + 0.353892i \(0.884858\pi\)
\(510\) 0 0
\(511\) 3.65995i 0.161907i
\(512\) 1.00000i 0.0441942i
\(513\) 0 0
\(514\) −1.04633 −0.0461516
\(515\) 0.230115i 0.0101401i
\(516\) 0 0
\(517\) 5.56034i 0.244544i
\(518\) 11.2977i 0.496391i
\(519\) 0 0
\(520\) 2.55609i 0.112092i
\(521\) 37.0312 1.62237 0.811184 0.584791i \(-0.198824\pi\)
0.811184 + 0.584791i \(0.198824\pi\)
\(522\) 0 0
\(523\) 7.47772i 0.326978i 0.986545 + 0.163489i \(0.0522748\pi\)
−0.986545 + 0.163489i \(0.947725\pi\)
\(524\) 13.1993i 0.576614i
\(525\) 0 0
\(526\) 10.4405i 0.455229i
\(527\) −1.87919 −0.0818586
\(528\) 0 0
\(529\) 19.3032 12.5054i 0.839272 0.543713i
\(530\) 1.80473i 0.0783925i
\(531\) 0 0
\(532\) 3.78210 0.163975
\(533\) 8.70235i 0.376940i
\(534\) 0 0
\(535\) −6.45265 −0.278972
\(536\) −7.71912 −0.333415
\(537\) 0 0
\(538\) −2.34357 −0.101039
\(539\) −0.383906 −0.0165360
\(540\) 0 0
\(541\) 30.8970 1.32837 0.664183 0.747570i \(-0.268780\pi\)
0.664183 + 0.747570i \(0.268780\pi\)
\(542\) 18.7738i 0.806402i
\(543\) 0 0
\(544\) 1.27312i 0.0545847i
\(545\) 6.93477i 0.297053i
\(546\) 0 0
\(547\) 0.826227 0.0353269 0.0176635 0.999844i \(-0.494377\pi\)
0.0176635 + 0.999844i \(0.494377\pi\)
\(548\) −13.6218 −0.581895
\(549\) 0 0
\(550\) 1.73106i 0.0738125i
\(551\) −13.5478 −0.577154
\(552\) 0 0
\(553\) −27.1345 −1.15388
\(554\) 19.4871i 0.827927i
\(555\) 0 0
\(556\) 4.08370 0.173187
\(557\) −21.0952 −0.893834 −0.446917 0.894576i \(-0.647478\pi\)
−0.446917 + 0.894576i \(0.647478\pi\)
\(558\) 0 0
\(559\) 6.02074i 0.254650i
\(560\) 2.68734i 0.113561i
\(561\) 0 0
\(562\) 21.1418i 0.891812i
\(563\) −7.54602 −0.318027 −0.159013 0.987276i \(-0.550831\pi\)
−0.159013 + 0.987276i \(0.550831\pi\)
\(564\) 0 0
\(565\) −1.03896 −0.0437094
\(566\) 8.62629 0.362590
\(567\) 0 0
\(568\) 4.44631 0.186563
\(569\) −38.5319 −1.61534 −0.807671 0.589633i \(-0.799272\pi\)
−0.807671 + 0.589633i \(0.799272\pi\)
\(570\) 0 0
\(571\) 15.6650i 0.655561i 0.944754 + 0.327781i \(0.106301\pi\)
−0.944754 + 0.327781i \(0.893699\pi\)
\(572\) 4.42475 0.185008
\(573\) 0 0
\(574\) 9.14916i 0.381879i
\(575\) −4.59909 + 1.35955i −0.191795 + 0.0566972i
\(576\) 0 0
\(577\) −18.2318 −0.759000 −0.379500 0.925192i \(-0.623904\pi\)
−0.379500 + 0.925192i \(0.623904\pi\)
\(578\) 15.3792i 0.639689i
\(579\) 0 0
\(580\) 9.62624i 0.399708i
\(581\) 23.3145i 0.967250i
\(582\) 0 0
\(583\) −3.12409 −0.129387
\(584\) 1.36193i 0.0563569i
\(585\) 0 0
\(586\) 23.1296i 0.955476i
\(587\) 5.97229i 0.246503i −0.992375 0.123251i \(-0.960668\pi\)
0.992375 0.123251i \(-0.0393322\pi\)
\(588\) 0 0
\(589\) 2.07735i 0.0855959i
\(590\) −7.74331 −0.318787
\(591\) 0 0
\(592\) 4.20404i 0.172785i
\(593\) 19.0934i 0.784073i −0.919950 0.392037i \(-0.871771\pi\)
0.919950 0.392037i \(-0.128229\pi\)
\(594\) 0 0
\(595\) 3.42131i 0.140260i
\(596\) −3.31717 −0.135877
\(597\) 0 0
\(598\) 3.47514 + 11.7557i 0.142109 + 0.480727i
\(599\) 23.8843i 0.975887i 0.872875 + 0.487944i \(0.162253\pi\)
−0.872875 + 0.487944i \(0.837747\pi\)
\(600\) 0 0
\(601\) −26.3129 −1.07333 −0.536664 0.843796i \(-0.680316\pi\)
−0.536664 + 0.843796i \(0.680316\pi\)
\(602\) 6.32987i 0.257986i
\(603\) 0 0
\(604\) 13.1448 0.534854
\(605\) −8.00344 −0.325386
\(606\) 0 0
\(607\) 17.9243 0.727523 0.363762 0.931492i \(-0.381492\pi\)
0.363762 + 0.931492i \(0.381492\pi\)
\(608\) −1.40738 −0.0570767
\(609\) 0 0
\(610\) 6.78016 0.274521
\(611\) 8.21045i 0.332159i
\(612\) 0 0
\(613\) 3.31763i 0.133998i −0.997753 0.0669990i \(-0.978658\pi\)
0.997753 0.0669990i \(-0.0213424\pi\)
\(614\) 13.7536i 0.555048i
\(615\) 0 0
\(616\) 4.65193 0.187432
\(617\) −19.1689 −0.771711 −0.385856 0.922559i \(-0.626094\pi\)
−0.385856 + 0.922559i \(0.626094\pi\)
\(618\) 0 0
\(619\) 10.8982i 0.438034i 0.975721 + 0.219017i \(0.0702850\pi\)
−0.975721 + 0.219017i \(0.929715\pi\)
\(620\) 1.47605 0.0592794
\(621\) 0 0
\(622\) −20.1319 −0.807214
\(623\) 10.0137i 0.401191i
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) −6.80646 −0.272041
\(627\) 0 0
\(628\) 8.31606i 0.331847i
\(629\) 5.35226i 0.213409i
\(630\) 0 0
\(631\) 8.17920i 0.325609i 0.986658 + 0.162804i \(0.0520539\pi\)
−0.986658 + 0.162804i \(0.947946\pi\)
\(632\) 10.0972 0.401644
\(633\) 0 0
\(634\) 28.1821 1.11926
\(635\) −11.3029 −0.448543
\(636\) 0 0
\(637\) 0.566879 0.0224605
\(638\) −16.6636 −0.659717
\(639\) 0 0
\(640\) 1.00000i 0.0395285i
\(641\) 8.05801 0.318272 0.159136 0.987257i \(-0.449129\pi\)
0.159136 + 0.987257i \(0.449129\pi\)
\(642\) 0 0
\(643\) 34.3659i 1.35526i −0.735404 0.677629i \(-0.763008\pi\)
0.735404 0.677629i \(-0.236992\pi\)
\(644\) 3.65357 + 12.3593i 0.143971 + 0.487025i
\(645\) 0 0
\(646\) −1.79176 −0.0704960
\(647\) 12.9531i 0.509239i 0.967041 + 0.254619i \(0.0819502\pi\)
−0.967041 + 0.254619i \(0.918050\pi\)
\(648\) 0 0
\(649\) 13.4041i 0.526157i
\(650\) 2.55609i 0.100258i
\(651\) 0 0
\(652\) −3.77069 −0.147672
\(653\) 0.903168i 0.0353437i 0.999844 + 0.0176718i \(0.00562541\pi\)
−0.999844 + 0.0176718i \(0.994375\pi\)
\(654\) 0 0
\(655\) 13.1993i 0.515739i
\(656\) 3.40455i 0.132925i
\(657\) 0 0
\(658\) 8.63202i 0.336511i
\(659\) 16.9355 0.659712 0.329856 0.944031i \(-0.393000\pi\)
0.329856 + 0.944031i \(0.393000\pi\)
\(660\) 0 0
\(661\) 12.6564i 0.492278i 0.969235 + 0.246139i \(0.0791619\pi\)
−0.969235 + 0.246139i \(0.920838\pi\)
\(662\) 15.3989i 0.598493i
\(663\) 0 0
\(664\) 8.67571i 0.336683i
\(665\) −3.78210 −0.146663
\(666\) 0 0
\(667\) −13.0874 44.2719i −0.506745 1.71422i
\(668\) 16.9307i 0.655070i
\(669\) 0 0
\(670\) 7.71912 0.298216
\(671\) 11.7368i 0.453096i
\(672\) 0 0
\(673\) −21.1871 −0.816704 −0.408352 0.912825i \(-0.633896\pi\)
−0.408352 + 0.912825i \(0.633896\pi\)
\(674\) 22.3140 0.859503
\(675\) 0 0
\(676\) 6.46638 0.248707
\(677\) 38.9430 1.49670 0.748350 0.663304i \(-0.230847\pi\)
0.748350 + 0.663304i \(0.230847\pi\)
\(678\) 0 0
\(679\) 18.9029 0.725426
\(680\) 1.27312i 0.0488220i
\(681\) 0 0
\(682\) 2.55512i 0.0978406i
\(683\) 4.58240i 0.175341i −0.996150 0.0876704i \(-0.972058\pi\)
0.996150 0.0876704i \(-0.0279422\pi\)
\(684\) 0 0
\(685\) 13.6218 0.520463
\(686\) −18.2154 −0.695466
\(687\) 0 0
\(688\) 2.35544i 0.0898005i
\(689\) 4.61306 0.175744
\(690\) 0 0
\(691\) 18.5212 0.704581 0.352291 0.935891i \(-0.385403\pi\)
0.352291 + 0.935891i \(0.385403\pi\)
\(692\) 5.36460i 0.203931i
\(693\) 0 0
\(694\) −29.2565 −1.11056
\(695\) −4.08370 −0.154904
\(696\) 0 0
\(697\) 4.33441i 0.164177i
\(698\) 3.90447i 0.147786i
\(699\) 0 0
\(700\) 2.68734i 0.101572i
\(701\) 42.3964 1.60129 0.800644 0.599140i \(-0.204491\pi\)
0.800644 + 0.599140i \(0.204491\pi\)
\(702\) 0 0
\(703\) 5.91667 0.223152
\(704\) −1.73106 −0.0652417
\(705\) 0 0
\(706\) −3.76521 −0.141706
\(707\) −34.9236 −1.31344
\(708\) 0 0
\(709\) 22.4911i 0.844672i −0.906439 0.422336i \(-0.861210\pi\)
0.906439 0.422336i \(-0.138790\pi\)
\(710\) −4.44631 −0.166867
\(711\) 0 0
\(712\) 3.72626i 0.139648i
\(713\) 6.78846 2.00676i 0.254230 0.0751537i
\(714\) 0 0
\(715\) −4.42475 −0.165476
\(716\) 9.56578i 0.357490i
\(717\) 0 0
\(718\) 10.9238i 0.407674i
\(719\) 2.42589i 0.0904703i 0.998976 + 0.0452352i \(0.0144037\pi\)
−0.998976 + 0.0452352i \(0.985596\pi\)
\(720\) 0 0
\(721\) −0.618396 −0.0230303
\(722\) 17.0193i 0.633392i
\(723\) 0 0
\(724\) 12.4563i 0.462937i
\(725\) 9.62624i 0.357510i
\(726\) 0 0
\(727\) 20.2634i 0.751526i −0.926716 0.375763i \(-0.877381\pi\)
0.926716 0.375763i \(-0.122619\pi\)
\(728\) −6.86909 −0.254585
\(729\) 0 0
\(730\) 1.36193i 0.0504071i
\(731\) 2.99877i 0.110913i
\(732\) 0 0
\(733\) 48.1405i 1.77811i 0.457799 + 0.889056i \(0.348638\pi\)
−0.457799 + 0.889056i \(0.651362\pi\)
\(734\) 8.01924 0.295995
\(735\) 0 0
\(736\) −1.35955 4.59909i −0.0501137 0.169525i
\(737\) 13.3622i 0.492204i
\(738\) 0 0
\(739\) 20.1099 0.739753 0.369877 0.929081i \(-0.379400\pi\)
0.369877 + 0.929081i \(0.379400\pi\)
\(740\) 4.20404i 0.154544i
\(741\) 0 0
\(742\) 4.84992 0.178046
\(743\) 47.5425 1.74416 0.872082 0.489359i \(-0.162769\pi\)
0.872082 + 0.489359i \(0.162769\pi\)
\(744\) 0 0
\(745\) 3.31717 0.121532
\(746\) −19.2361 −0.704285
\(747\) 0 0
\(748\) −2.20385 −0.0805807
\(749\) 17.3404i 0.633606i
\(750\) 0 0
\(751\) 20.9244i 0.763542i −0.924257 0.381771i \(-0.875314\pi\)
0.924257 0.381771i \(-0.124686\pi\)
\(752\) 3.21211i 0.117134i
\(753\) 0 0
\(754\) 24.6056 0.896082
\(755\) −13.1448 −0.478388
\(756\) 0 0
\(757\) 39.2876i 1.42793i −0.700180 0.713966i \(-0.746897\pi\)
0.700180 0.713966i \(-0.253103\pi\)
\(758\) 13.8927 0.504604
\(759\) 0 0
\(760\) 1.40738 0.0510510
\(761\) 2.27081i 0.0823169i 0.999153 + 0.0411584i \(0.0131048\pi\)
−0.999153 + 0.0411584i \(0.986895\pi\)
\(762\) 0 0
\(763\) −18.6361 −0.674671
\(764\) −8.39297 −0.303647
\(765\) 0 0
\(766\) 4.25515i 0.153745i
\(767\) 19.7926i 0.714670i
\(768\) 0 0
\(769\) 8.59866i 0.310076i −0.987909 0.155038i \(-0.950450\pi\)
0.987909 0.155038i \(-0.0495499\pi\)
\(770\) −4.65193 −0.167644
\(771\) 0 0
\(772\) −1.01621 −0.0365743
\(773\) −2.55997 −0.0920756 −0.0460378 0.998940i \(-0.514659\pi\)
−0.0460378 + 0.998940i \(0.514659\pi\)
\(774\) 0 0
\(775\) −1.47605 −0.0530211
\(776\) −7.03405 −0.252508
\(777\) 0 0
\(778\) 22.9092i 0.821334i
\(779\) −4.79148 −0.171673
\(780\) 0 0
\(781\) 7.69681i 0.275414i
\(782\) −1.73087 5.85520i −0.0618959 0.209382i
\(783\) 0 0
\(784\) −0.221775 −0.00792054
\(785\) 8.31606i 0.296813i
\(786\) 0 0
\(787\) 20.0596i 0.715046i −0.933904 0.357523i \(-0.883621\pi\)
0.933904 0.357523i \(-0.116379\pi\)
\(788\) 5.60884i 0.199806i
\(789\) 0 0
\(790\) −10.0972 −0.359241
\(791\) 2.79203i 0.0992733i
\(792\) 0 0
\(793\) 17.3307i 0.615432i
\(794\) 16.8037i 0.596340i
\(795\) 0 0
\(796\) 9.76909i 0.346256i
\(797\) −1.42166 −0.0503578 −0.0251789 0.999683i \(-0.508016\pi\)
−0.0251789 + 0.999683i \(0.508016\pi\)
\(798\) 0 0
\(799\) 4.08941i 0.144673i
\(800\) 1.00000i 0.0353553i
\(801\) 0 0
\(802\) 22.3193i 0.788123i
\(803\) −2.35757 −0.0831969
\(804\) 0 0
\(805\) −3.65357 12.3593i −0.128771 0.435608i
\(806\) 3.77291i 0.132895i
\(807\) 0 0
\(808\) 12.9956 0.457185
\(809\) 17.9165i 0.629911i −0.949106 0.314956i \(-0.898010\pi\)
0.949106 0.314956i \(-0.101990\pi\)
\(810\) 0 0
\(811\) 23.5315 0.826304 0.413152 0.910662i \(-0.364428\pi\)
0.413152 + 0.910662i \(0.364428\pi\)
\(812\) 25.8689 0.907822
\(813\) 0 0
\(814\) 7.27744 0.255074
\(815\) 3.77069 0.132082
\(816\) 0 0
\(817\) −3.31500 −0.115977
\(818\) 16.1240i 0.563762i
\(819\) 0 0
\(820\) 3.40455i 0.118892i
\(821\) 14.0412i 0.490041i −0.969518 0.245021i \(-0.921205\pi\)
0.969518 0.245021i \(-0.0787947\pi\)
\(822\) 0 0
\(823\) 18.0770 0.630125 0.315063 0.949071i \(-0.397974\pi\)
0.315063 + 0.949071i \(0.397974\pi\)
\(824\) 0.230115 0.00801643
\(825\) 0 0
\(826\) 20.8089i 0.724033i
\(827\) 5.12710 0.178287 0.0891434 0.996019i \(-0.471587\pi\)
0.0891434 + 0.996019i \(0.471587\pi\)
\(828\) 0 0
\(829\) −39.1505 −1.35975 −0.679877 0.733326i \(-0.737967\pi\)
−0.679877 + 0.733326i \(0.737967\pi\)
\(830\) 8.67571i 0.301138i
\(831\) 0 0
\(832\) 2.55609 0.0886166
\(833\) −0.282347 −0.00978275
\(834\) 0 0
\(835\) 16.9307i 0.585912i
\(836\) 2.43625i 0.0842596i
\(837\) 0 0
\(838\) 32.2037i 1.11246i
\(839\) −0.462401 −0.0159639 −0.00798193 0.999968i \(-0.502541\pi\)
−0.00798193 + 0.999968i \(0.502541\pi\)
\(840\) 0 0
\(841\) −63.6645 −2.19533
\(842\) 16.3229 0.562526
\(843\) 0 0
\(844\) −8.94211 −0.307800
\(845\) −6.46638 −0.222450
\(846\) 0 0
\(847\) 21.5079i 0.739021i
\(848\) −1.80473 −0.0619747
\(849\) 0 0
\(850\) 1.27312i 0.0436677i
\(851\) 5.71561 + 19.3348i 0.195928 + 0.662787i
\(852\) 0 0
\(853\) −34.1063 −1.16778 −0.583889 0.811834i \(-0.698470\pi\)
−0.583889 + 0.811834i \(0.698470\pi\)
\(854\) 18.2206i 0.623495i
\(855\) 0 0
\(856\) 6.45265i 0.220547i
\(857\) 31.7411i 1.08425i −0.840296 0.542127i \(-0.817619\pi\)
0.840296 0.542127i \(-0.182381\pi\)
\(858\) 0 0
\(859\) −32.8985 −1.12248 −0.561241 0.827652i \(-0.689676\pi\)
−0.561241 + 0.827652i \(0.689676\pi\)
\(860\) 2.35544i 0.0803200i
\(861\) 0 0
\(862\) 27.1761i 0.925623i
\(863\) 44.3676i 1.51029i −0.655558 0.755145i \(-0.727566\pi\)
0.655558 0.755145i \(-0.272434\pi\)
\(864\) 0 0
\(865\) 5.36460i 0.182402i
\(866\) 2.83957 0.0964925
\(867\) 0 0
\(868\) 3.96663i 0.134636i
\(869\) 17.4788i 0.592927i
\(870\) 0 0
\(871\) 19.7308i 0.668553i
\(872\) 6.93477 0.234841
\(873\) 0 0
\(874\) 6.47266 1.91340i 0.218941 0.0647218i
\(875\) 2.68734i 0.0908485i
\(876\) 0 0
\(877\) −21.8841 −0.738974 −0.369487 0.929236i \(-0.620467\pi\)
−0.369487 + 0.929236i \(0.620467\pi\)
\(878\) 18.8418i 0.635879i
\(879\) 0 0
\(880\) 1.73106 0.0583539
\(881\) 54.1710 1.82507 0.912534 0.409002i \(-0.134123\pi\)
0.912534 + 0.409002i \(0.134123\pi\)
\(882\) 0 0
\(883\) −42.5462 −1.43179 −0.715897 0.698205i \(-0.753982\pi\)
−0.715897 + 0.698205i \(0.753982\pi\)
\(884\) 3.25422 0.109451
\(885\) 0 0
\(886\) −18.4455 −0.619689
\(887\) 25.0529i 0.841195i 0.907247 + 0.420597i \(0.138179\pi\)
−0.907247 + 0.420597i \(0.861821\pi\)
\(888\) 0 0
\(889\) 30.3748i 1.01874i
\(890\) 3.72626i 0.124905i
\(891\) 0 0
\(892\) −29.4525 −0.986144
\(893\) −4.52065 −0.151278
\(894\) 0 0
\(895\) 9.56578i 0.319749i
\(896\) 2.68734 0.0897776
\(897\) 0 0
\(898\) 26.3810 0.880347
\(899\) 14.2088i 0.473889i
\(900\) 0 0
\(901\) −2.29764 −0.0765456
\(902\) −5.89347 −0.196231
\(903\) 0 0
\(904\) 1.03896i 0.0345553i
\(905\) 12.4563i 0.414063i
\(906\) 0 0
\(907\) 44.5983i 1.48086i 0.672132 + 0.740431i \(0.265379\pi\)
−0.672132 + 0.740431i \(0.734621\pi\)
\(908\) −0.140630 −0.00466698
\(909\) 0 0
\(910\) 6.86909 0.227708
\(911\) −17.7058 −0.586618 −0.293309 0.956018i \(-0.594756\pi\)
−0.293309 + 0.956018i \(0.594756\pi\)
\(912\) 0 0
\(913\) −15.0181 −0.497028
\(914\) −34.8995 −1.15437
\(915\) 0 0
\(916\) 22.3375i 0.738052i
\(917\) −35.4709 −1.17135
\(918\) 0 0
\(919\) 46.3021i 1.52737i −0.645592 0.763683i \(-0.723389\pi\)
0.645592 0.763683i \(-0.276611\pi\)
\(920\) 1.35955 + 4.59909i 0.0448231 + 0.151627i
\(921\) 0 0
\(922\) 7.50500 0.247164
\(923\) 11.3652i 0.374089i
\(924\) 0 0
\(925\) 4.20404i 0.138228i
\(926\) 11.5972i 0.381107i
\(927\) 0 0
\(928\) −9.62624 −0.315997
\(929\) 24.1969i 0.793874i −0.917846 0.396937i \(-0.870073\pi\)
0.917846 0.396937i \(-0.129927\pi\)
\(930\) 0 0
\(931\) 0.312122i 0.0102294i
\(932\) 20.7396i 0.679348i
\(933\) 0 0
\(934\) 32.9988i 1.07976i
\(935\) 2.20385 0.0720736
\(936\) 0 0
\(937\) 7.81390i 0.255269i 0.991821 + 0.127634i \(0.0407384\pi\)
−0.991821 + 0.127634i \(0.959262\pi\)
\(938\) 20.7439i 0.677311i
\(939\) 0 0
\(940\) 3.21211i 0.104767i
\(941\) 3.53043 0.115089 0.0575444 0.998343i \(-0.481673\pi\)
0.0575444 + 0.998343i \(0.481673\pi\)
\(942\) 0 0
\(943\) −4.62865 15.6578i −0.150730 0.509889i
\(944\) 7.74331i 0.252023i
\(945\) 0 0
\(946\) −4.07741 −0.132568
\(947\) 30.6079i 0.994624i 0.867572 + 0.497312i \(0.165680\pi\)
−0.867572 + 0.497312i \(0.834320\pi\)
\(948\) 0 0
\(949\) 3.48121 0.113005
\(950\) −1.40738 −0.0456614
\(951\) 0 0
\(952\) 3.42131 0.110885
\(953\) 4.99497 0.161803 0.0809014 0.996722i \(-0.474220\pi\)
0.0809014 + 0.996722i \(0.474220\pi\)
\(954\) 0 0
\(955\) 8.39297 0.271590
\(956\) 5.54170i 0.179231i
\(957\) 0 0
\(958\) 33.0238i 1.06695i
\(959\) 36.6064i 1.18208i
\(960\) 0 0
\(961\) −28.8213 −0.929719
\(962\) −10.7459 −0.346463
\(963\) 0 0
\(964\) 15.1612i 0.488310i
\(965\) 1.01621 0.0327131
\(966\) 0 0
\(967\) −9.11422 −0.293094 −0.146547 0.989204i \(-0.546816\pi\)
−0.146547 + 0.989204i \(0.546816\pi\)
\(968\) 8.00344i 0.257240i
\(969\) 0 0
\(970\) 7.03405 0.225850
\(971\) 28.6111 0.918175 0.459088 0.888391i \(-0.348176\pi\)
0.459088 + 0.888391i \(0.348176\pi\)
\(972\) 0 0
\(973\) 10.9743i 0.351819i
\(974\) 0.656460i 0.0210343i
\(975\) 0 0
\(976\) 6.78016i 0.217028i
\(977\) 55.1555 1.76458 0.882291 0.470705i \(-0.156000\pi\)
0.882291 + 0.470705i \(0.156000\pi\)
\(978\) 0 0
\(979\) −6.45038 −0.206155
\(980\) 0.221775 0.00708435
\(981\) 0 0
\(982\) −15.0228 −0.479398
\(983\) −15.1144 −0.482074 −0.241037 0.970516i \(-0.577488\pi\)
−0.241037 + 0.970516i \(0.577488\pi\)
\(984\) 0 0
\(985\) 5.60884i 0.178712i
\(986\) −12.2554 −0.390291
\(987\) 0 0
\(988\) 3.59739i 0.114448i
\(989\) −3.20235 10.8329i −0.101829 0.344466i
\(990\) 0 0
\(991\) 1.97026 0.0625875 0.0312938 0.999510i \(-0.490037\pi\)
0.0312938 + 0.999510i \(0.490037\pi\)
\(992\) 1.47605i 0.0468645i
\(993\) 0 0
\(994\) 11.9487i 0.378990i
\(995\) 9.76909i 0.309701i
\(996\) 0 0
\(997\) 19.9205 0.630889 0.315445 0.948944i \(-0.397846\pi\)
0.315445 + 0.948944i \(0.397846\pi\)
\(998\) 11.2596i 0.356417i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2070.2.e.b.1241.15 yes 16
3.2 odd 2 2070.2.e.a.1241.7 16
23.22 odd 2 2070.2.e.a.1241.10 yes 16
69.68 even 2 inner 2070.2.e.b.1241.2 yes 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2070.2.e.a.1241.7 16 3.2 odd 2
2070.2.e.a.1241.10 yes 16 23.22 odd 2
2070.2.e.b.1241.2 yes 16 69.68 even 2 inner
2070.2.e.b.1241.15 yes 16 1.1 even 1 trivial