Properties

Label 2070.2.e.b.1241.15
Level 20702070
Weight 22
Character 2070.1241
Analytic conductor 16.52916.529
Analytic rank 00
Dimension 1616
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2070,2,Mod(1241,2070)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2070, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2070.1241"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: N N == 2070=232523 2070 = 2 \cdot 3^{2} \cdot 5 \cdot 23
Weight: k k == 2 2
Character orbit: [χ][\chi] == 2070.e (of order 22, degree 11, minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,-16,16] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 16.529033218416.5290332184
Analytic rank: 00
Dimension: 1616
Coefficient field: Q[x]/(x16+)\mathbb{Q}[x]/(x^{16} + \cdots)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x16+32x14+392x12+2324x10+6930x8+9856x6+5740x4+1108x2+1 x^{16} + 32x^{14} + 392x^{12} + 2324x^{10} + 6930x^{8} + 9856x^{6} + 5740x^{4} + 1108x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a23]\Z[a_1, \ldots, a_{23}]
Coefficient ring index: 211 2^{11}
Twist minimal: yes
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

Embedding invariants

Embedding label 1241.15
Root 1.90023i-1.90023i of defining polynomial
Character χ\chi == 2070.1241
Dual form 2070.2.e.b.1241.2

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
f(q)f(q) == q+1.00000iq21.00000q4+1.00000q5+2.68734iq71.00000iq8+1.00000iq10+1.73106q112.55609q132.68734q14+1.00000q16+1.27312q17+1.40738iq191.00000q20+1.73106iq22+(4.59909+1.35955i)q23+1.00000q252.55609iq262.68734iq28+9.62624iq291.47605q31+1.00000iq32+1.27312iq34+2.68734iq354.20404iq371.40738q381.00000iq40+3.40455iq41+2.35544iq431.73106q44+(1.359554.59909i)q46+3.21211iq470.221775q49+1.00000iq50+2.55609q521.80473q53+1.73106q55+2.68734q569.62624q58+7.74331iq596.78016iq611.47605iq621.00000q642.55609q657.71912iq671.27312q682.68734q70+4.44631iq711.36193q73+4.20404q741.40738iq76+4.65193iq77+10.0972iq79+1.00000q803.40455q828.67571q83+1.27312q852.35544q861.73106iq883.72626q896.86909iq91+(4.599091.35955i)q923.21211q94+1.40738iq957.03405iq970.221775iq98+O(q100)q+1.00000i q^{2} -1.00000 q^{4} +1.00000 q^{5} +2.68734i q^{7} -1.00000i q^{8} +1.00000i q^{10} +1.73106 q^{11} -2.55609 q^{13} -2.68734 q^{14} +1.00000 q^{16} +1.27312 q^{17} +1.40738i q^{19} -1.00000 q^{20} +1.73106i q^{22} +(-4.59909 + 1.35955i) q^{23} +1.00000 q^{25} -2.55609i q^{26} -2.68734i q^{28} +9.62624i q^{29} -1.47605 q^{31} +1.00000i q^{32} +1.27312i q^{34} +2.68734i q^{35} -4.20404i q^{37} -1.40738 q^{38} -1.00000i q^{40} +3.40455i q^{41} +2.35544i q^{43} -1.73106 q^{44} +(-1.35955 - 4.59909i) q^{46} +3.21211i q^{47} -0.221775 q^{49} +1.00000i q^{50} +2.55609 q^{52} -1.80473 q^{53} +1.73106 q^{55} +2.68734 q^{56} -9.62624 q^{58} +7.74331i q^{59} -6.78016i q^{61} -1.47605i q^{62} -1.00000 q^{64} -2.55609 q^{65} -7.71912i q^{67} -1.27312 q^{68} -2.68734 q^{70} +4.44631i q^{71} -1.36193 q^{73} +4.20404 q^{74} -1.40738i q^{76} +4.65193i q^{77} +10.0972i q^{79} +1.00000 q^{80} -3.40455 q^{82} -8.67571 q^{83} +1.27312 q^{85} -2.35544 q^{86} -1.73106i q^{88} -3.72626 q^{89} -6.86909i q^{91} +(4.59909 - 1.35955i) q^{92} -3.21211 q^{94} +1.40738i q^{95} -7.03405i q^{97} -0.221775i q^{98} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 16q16q4+16q524q11+16q1616q204q23+16q258q318q38+24q444q4616q49+8q5324q55+16q5816q64+32q73++4q92+O(q100) 16 q - 16 q^{4} + 16 q^{5} - 24 q^{11} + 16 q^{16} - 16 q^{20} - 4 q^{23} + 16 q^{25} - 8 q^{31} - 8 q^{38} + 24 q^{44} - 4 q^{46} - 16 q^{49} + 8 q^{53} - 24 q^{55} + 16 q^{58} - 16 q^{64} + 32 q^{73}+ \cdots + 4 q^{92}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/2070Z)×\left(\mathbb{Z}/2070\mathbb{Z}\right)^\times.

nn 461461 16571657 18911891
χ(n)\chi(n) 1-1 11 1-1

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 1.00000i 0.707107i
33 0 0
44 −1.00000 −0.500000
55 1.00000 0.447214
66 0 0
77 2.68734i 1.01572i 0.861440 + 0.507859i 0.169563π0.169563\pi
−0.861440 + 0.507859i 0.830437π0.830437\pi
88 1.00000i 0.353553i
99 0 0
1010 1.00000i 0.316228i
1111 1.73106 0.521934 0.260967 0.965348i 0.415959π-0.415959\pi
0.260967 + 0.965348i 0.415959π0.415959\pi
1212 0 0
1313 −2.55609 −0.708933 −0.354467 0.935069i 0.615338π-0.615338\pi
−0.354467 + 0.935069i 0.615338π0.615338\pi
1414 −2.68734 −0.718221
1515 0 0
1616 1.00000 0.250000
1717 1.27312 0.308778 0.154389 0.988010i 0.450659π-0.450659\pi
0.154389 + 0.988010i 0.450659π0.450659\pi
1818 0 0
1919 1.40738i 0.322875i 0.986883 + 0.161437i 0.0516130π0.0516130\pi
−0.986883 + 0.161437i 0.948387π0.948387\pi
2020 −1.00000 −0.223607
2121 0 0
2222 1.73106i 0.369063i
2323 −4.59909 + 1.35955i −0.958976 + 0.283486i
2424 0 0
2525 1.00000 0.200000
2626 2.55609i 0.501291i
2727 0 0
2828 2.68734i 0.507859i
2929 9.62624i 1.78755i 0.448518 + 0.893774i 0.351952π0.351952\pi
−0.448518 + 0.893774i 0.648048π0.648048\pi
3030 0 0
3131 −1.47605 −0.265106 −0.132553 0.991176i 0.542317π-0.542317\pi
−0.132553 + 0.991176i 0.542317π0.542317\pi
3232 1.00000i 0.176777i
3333 0 0
3434 1.27312i 0.218339i
3535 2.68734i 0.454243i
3636 0 0
3737 4.20404i 0.691140i −0.938393 0.345570i 0.887686π-0.887686\pi
0.938393 0.345570i 0.112314π-0.112314\pi
3838 −1.40738 −0.228307
3939 0 0
4040 1.00000i 0.158114i
4141 3.40455i 0.531701i 0.964014 + 0.265850i 0.0856527π0.0856527\pi
−0.964014 + 0.265850i 0.914347π0.914347\pi
4242 0 0
4343 2.35544i 0.359202i 0.983740 + 0.179601i 0.0574807π0.0574807\pi
−0.983740 + 0.179601i 0.942519π0.942519\pi
4444 −1.73106 −0.260967
4545 0 0
4646 −1.35955 4.59909i −0.200455 0.678099i
4747 3.21211i 0.468534i 0.972172 + 0.234267i 0.0752690π0.0752690\pi
−0.972172 + 0.234267i 0.924731π0.924731\pi
4848 0 0
4949 −0.221775 −0.0316822
5050 1.00000i 0.141421i
5151 0 0
5252 2.55609 0.354467
5353 −1.80473 −0.247899 −0.123949 0.992289i 0.539556π-0.539556\pi
−0.123949 + 0.992289i 0.539556π0.539556\pi
5454 0 0
5555 1.73106 0.233416
5656 2.68734 0.359110
5757 0 0
5858 −9.62624 −1.26399
5959 7.74331i 1.00809i 0.863677 + 0.504046i 0.168156π0.168156\pi
−0.863677 + 0.504046i 0.831844π0.831844\pi
6060 0 0
6161 6.78016i 0.868111i −0.900886 0.434055i 0.857082π-0.857082\pi
0.900886 0.434055i 0.142918π-0.142918\pi
6262 1.47605i 0.187458i
6363 0 0
6464 −1.00000 −0.125000
6565 −2.55609 −0.317045
6666 0 0
6767 7.71912i 0.943040i −0.881855 0.471520i 0.843705π-0.843705\pi
0.881855 0.471520i 0.156295π-0.156295\pi
6868 −1.27312 −0.154389
6969 0 0
7070 −2.68734 −0.321198
7171 4.44631i 0.527679i 0.964567 + 0.263840i 0.0849890π0.0849890\pi
−0.964567 + 0.263840i 0.915011π0.915011\pi
7272 0 0
7373 −1.36193 −0.159401 −0.0797006 0.996819i 0.525396π-0.525396\pi
−0.0797006 + 0.996819i 0.525396π0.525396\pi
7474 4.20404 0.488710
7575 0 0
7676 1.40738i 0.161437i
7777 4.65193i 0.530137i
7878 0 0
7979 10.0972i 1.13602i 0.823022 + 0.568010i 0.192286π0.192286\pi
−0.823022 + 0.568010i 0.807714π0.807714\pi
8080 1.00000 0.111803
8181 0 0
8282 −3.40455 −0.375969
8383 −8.67571 −0.952283 −0.476141 0.879369i 0.657965π-0.657965\pi
−0.476141 + 0.879369i 0.657965π0.657965\pi
8484 0 0
8585 1.27312 0.138090
8686 −2.35544 −0.253994
8787 0 0
8888 1.73106i 0.184531i
8989 −3.72626 −0.394983 −0.197492 0.980305i 0.563280π-0.563280\pi
−0.197492 + 0.980305i 0.563280π0.563280\pi
9090 0 0
9191 6.86909i 0.720076i
9292 4.59909 1.35955i 0.479488 0.141743i
9393 0 0
9494 −3.21211 −0.331304
9595 1.40738i 0.144394i
9696 0 0
9797 7.03405i 0.714200i −0.934066 0.357100i 0.883766π-0.883766\pi
0.934066 0.357100i 0.116234π-0.116234\pi
9898 0.221775i 0.0224027i
9999 0 0
100100 −1.00000 −0.100000
101101 12.9956i 1.29311i 0.762866 + 0.646557i 0.223792π0.223792\pi
−0.762866 + 0.646557i 0.776208π0.776208\pi
102102 0 0
103103 0.230115i 0.0226739i 0.999936 + 0.0113369i 0.00360874π0.00360874\pi
−0.999936 + 0.0113369i 0.996391π0.996391\pi
104104 2.55609i 0.250646i
105105 0 0
106106 1.80473i 0.175291i
107107 −6.45265 −0.623801 −0.311901 0.950115i 0.600966π-0.600966\pi
−0.311901 + 0.950115i 0.600966π0.600966\pi
108108 0 0
109109 6.93477i 0.664231i 0.943239 + 0.332115i 0.107762π0.107762\pi
−0.943239 + 0.332115i 0.892238π0.892238\pi
110110 1.73106i 0.165050i
111111 0 0
112112 2.68734i 0.253929i
113113 −1.03896 −0.0977371 −0.0488685 0.998805i 0.515562π-0.515562\pi
−0.0488685 + 0.998805i 0.515562π0.515562\pi
114114 0 0
115115 −4.59909 + 1.35955i −0.428867 + 0.126779i
116116 9.62624i 0.893774i
117117 0 0
118118 −7.74331 −0.712829
119119 3.42131i 0.313631i
120120 0 0
121121 −8.00344 −0.727585
122122 6.78016 0.613847
123123 0 0
124124 1.47605 0.132553
125125 1.00000 0.0894427
126126 0 0
127127 −11.3029 −1.00297 −0.501487 0.865165i 0.667213π-0.667213\pi
−0.501487 + 0.865165i 0.667213π0.667213\pi
128128 1.00000i 0.0883883i
129129 0 0
130130 2.55609i 0.224184i
131131 13.1993i 1.15323i 0.817017 + 0.576614i 0.195626π0.195626\pi
−0.817017 + 0.576614i 0.804374π0.804374\pi
132132 0 0
133133 −3.78210 −0.327950
134134 7.71912 0.666830
135135 0 0
136136 1.27312i 0.109169i
137137 13.6218 1.16379 0.581895 0.813264i 0.302311π-0.302311\pi
0.581895 + 0.813264i 0.302311π0.302311\pi
138138 0 0
139139 −4.08370 −0.346375 −0.173187 0.984889i 0.555407π-0.555407\pi
−0.173187 + 0.984889i 0.555407π0.555407\pi
140140 2.68734i 0.227121i
141141 0 0
142142 −4.44631 −0.373126
143143 −4.42475 −0.370016
144144 0 0
145145 9.62624i 0.799416i
146146 1.36193i 0.112714i
147147 0 0
148148 4.20404i 0.345570i
149149 3.31717 0.271753 0.135877 0.990726i 0.456615π-0.456615\pi
0.135877 + 0.990726i 0.456615π0.456615\pi
150150 0 0
151151 −13.1448 −1.06971 −0.534854 0.844944i 0.679634π-0.679634\pi
−0.534854 + 0.844944i 0.679634π0.679634\pi
152152 1.40738 0.114153
153153 0 0
154154 −4.65193 −0.374863
155155 −1.47605 −0.118559
156156 0 0
157157 8.31606i 0.663694i −0.943333 0.331847i 0.892328π-0.892328\pi
0.943333 0.331847i 0.107672π-0.107672\pi
158158 −10.0972 −0.803287
159159 0 0
160160 1.00000i 0.0790569i
161161 −3.65357 12.3593i −0.287942 0.974049i
162162 0 0
163163 3.77069 0.295344 0.147672 0.989036i 0.452822π-0.452822\pi
0.147672 + 0.989036i 0.452822π0.452822\pi
164164 3.40455i 0.265850i
165165 0 0
166166 8.67571i 0.673365i
167167 16.9307i 1.31014i 0.755569 + 0.655070i 0.227361π0.227361\pi
−0.755569 + 0.655070i 0.772639π0.772639\pi
168168 0 0
169169 −6.46638 −0.497414
170170 1.27312i 0.0976440i
171171 0 0
172172 2.35544i 0.179601i
173173 5.36460i 0.407863i −0.978985 0.203931i 0.934628π-0.934628\pi
0.978985 0.203931i 0.0653720π-0.0653720\pi
174174 0 0
175175 2.68734i 0.203144i
176176 1.73106 0.130483
177177 0 0
178178 3.72626i 0.279295i
179179 9.56578i 0.714980i −0.933917 0.357490i 0.883633π-0.883633\pi
0.933917 0.357490i 0.116367π-0.116367\pi
180180 0 0
181181 12.4563i 0.925873i 0.886391 + 0.462937i 0.153204π0.153204\pi
−0.886391 + 0.462937i 0.846796π0.846796\pi
182182 6.86909 0.509171
183183 0 0
184184 1.35955 + 4.59909i 0.100227 + 0.339049i
185185 4.20404i 0.309087i
186186 0 0
187187 2.20385 0.161161
188188 3.21211i 0.234267i
189189 0 0
190190 −1.40738 −0.102102
191191 8.39297 0.607294 0.303647 0.952785i 0.401796π-0.401796\pi
0.303647 + 0.952785i 0.401796π0.401796\pi
192192 0 0
193193 1.01621 0.0731486 0.0365743 0.999331i 0.488355π-0.488355\pi
0.0365743 + 0.999331i 0.488355π0.488355\pi
194194 7.03405 0.505016
195195 0 0
196196 0.221775 0.0158411
197197 5.60884i 0.399613i 0.979835 + 0.199806i 0.0640313π0.0640313\pi
−0.979835 + 0.199806i 0.935969π0.935969\pi
198198 0 0
199199 9.76909i 0.692513i 0.938140 + 0.346256i 0.112547π0.112547\pi
−0.938140 + 0.346256i 0.887453π0.887453\pi
200200 1.00000i 0.0707107i
201201 0 0
202202 −12.9956 −0.914369
203203 −25.8689 −1.81564
204204 0 0
205205 3.40455i 0.237784i
206206 −0.230115 −0.0160329
207207 0 0
208208 −2.55609 −0.177233
209209 2.43625i 0.168519i
210210 0 0
211211 8.94211 0.615600 0.307800 0.951451i 0.400407π-0.400407\pi
0.307800 + 0.951451i 0.400407π0.400407\pi
212212 1.80473 0.123949
213213 0 0
214214 6.45265i 0.441094i
215215 2.35544i 0.160640i
216216 0 0
217217 3.96663i 0.269272i
218218 −6.93477 −0.469682
219219 0 0
220220 −1.73106 −0.116708
221221 −3.25422 −0.218903
222222 0 0
223223 29.4525 1.97229 0.986144 0.165892i 0.0530504π-0.0530504\pi
0.986144 + 0.165892i 0.0530504π0.0530504\pi
224224 −2.68734 −0.179555
225225 0 0
226226 1.03896i 0.0691106i
227227 0.140630 0.00933396 0.00466698 0.999989i 0.498514π-0.498514\pi
0.00466698 + 0.999989i 0.498514π0.498514\pi
228228 0 0
229229 22.3375i 1.47610i −0.674744 0.738052i 0.735746π-0.735746\pi
0.674744 0.738052i 0.264254π-0.264254\pi
230230 −1.35955 4.59909i −0.0896461 0.303255i
231231 0 0
232232 9.62624 0.631994
233233 20.7396i 1.35870i −0.733817 0.679348i 0.762263π-0.762263\pi
0.733817 0.679348i 0.237737π-0.237737\pi
234234 0 0
235235 3.21211i 0.209535i
236236 7.74331i 0.504046i
237237 0 0
238238 −3.42131 −0.221770
239239 5.54170i 0.358463i −0.983807 0.179231i 0.942639π-0.942639\pi
0.983807 0.179231i 0.0573610π-0.0573610\pi
240240 0 0
241241 15.1612i 0.976619i −0.872670 0.488310i 0.837614π-0.837614\pi
0.872670 0.488310i 0.162386π-0.162386\pi
242242 8.00344i 0.514481i
243243 0 0
244244 6.78016i 0.434055i
245245 −0.221775 −0.0141687
246246 0 0
247247 3.59739i 0.228897i
248248 1.47605i 0.0937290i
249249 0 0
250250 1.00000i 0.0632456i
251251 26.3921 1.66585 0.832927 0.553383i 0.186663π-0.186663\pi
0.832927 + 0.553383i 0.186663π0.186663\pi
252252 0 0
253253 −7.96129 + 2.35346i −0.500522 + 0.147961i
254254 11.3029i 0.709209i
255255 0 0
256256 1.00000 0.0625000
257257 1.04633i 0.0652682i 0.999467 + 0.0326341i 0.0103896π0.0103896\pi
−0.999467 + 0.0326341i 0.989610π0.989610\pi
258258 0 0
259259 11.2977 0.702003
260260 2.55609 0.158522
261261 0 0
262262 −13.1993 −0.815455
263263 −10.4405 −0.643791 −0.321895 0.946775i 0.604320π-0.604320\pi
−0.321895 + 0.946775i 0.604320π0.604320\pi
264264 0 0
265265 −1.80473 −0.110864
266266 3.78210i 0.231895i
267267 0 0
268268 7.71912i 0.471520i
269269 2.34357i 0.142890i 0.997445 + 0.0714450i 0.0227611π0.0227611\pi
−0.997445 + 0.0714450i 0.977239π0.977239\pi
270270 0 0
271271 18.7738 1.14043 0.570213 0.821497i 0.306861π-0.306861\pi
0.570213 + 0.821497i 0.306861π0.306861\pi
272272 1.27312 0.0771944
273273 0 0
274274 13.6218i 0.822924i
275275 1.73106 0.104387
276276 0 0
277277 19.4871 1.17087 0.585433 0.810721i 0.300925π-0.300925\pi
0.585433 + 0.810721i 0.300925π0.300925\pi
278278 4.08370i 0.244924i
279279 0 0
280280 2.68734 0.160599
281281 21.1418 1.26121 0.630607 0.776103i 0.282806π-0.282806\pi
0.630607 + 0.776103i 0.282806π0.282806\pi
282282 0 0
283283 8.62629i 0.512780i −0.966573 0.256390i 0.917467π-0.917467\pi
0.966573 0.256390i 0.0825331π-0.0825331\pi
284284 4.44631i 0.263840i
285285 0 0
286286 4.42475i 0.261641i
287287 −9.14916 −0.540058
288288 0 0
289289 −15.3792 −0.904656
290290 −9.62624 −0.565272
291291 0 0
292292 1.36193 0.0797006
293293 −23.1296 −1.35125 −0.675623 0.737247i 0.736125π-0.736125\pi
−0.675623 + 0.737247i 0.736125π0.736125\pi
294294 0 0
295295 7.74331i 0.450833i
296296 −4.20404 −0.244355
297297 0 0
298298 3.31717i 0.192159i
299299 11.7557 3.47514i 0.679850 0.200973i
300300 0 0
301301 −6.32987 −0.364848
302302 13.1448i 0.756398i
303303 0 0
304304 1.40738i 0.0807187i
305305 6.78016i 0.388231i
306306 0 0
307307 13.7536 0.784957 0.392479 0.919761i 0.371618π-0.371618\pi
0.392479 + 0.919761i 0.371618π0.371618\pi
308308 4.65193i 0.265069i
309309 0 0
310310 1.47605i 0.0838337i
311311 20.1319i 1.14157i 0.821098 + 0.570787i 0.193362π0.193362\pi
−0.821098 + 0.570787i 0.806638π0.806638\pi
312312 0 0
313313 6.80646i 0.384724i 0.981324 + 0.192362i 0.0616148π0.0616148\pi
−0.981324 + 0.192362i 0.938385π0.938385\pi
314314 8.31606 0.469302
315315 0 0
316316 10.0972i 0.568010i
317317 28.1821i 1.58287i −0.611255 0.791433i 0.709335π-0.709335\pi
0.611255 0.791433i 0.290665π-0.290665\pi
318318 0 0
319319 16.6636i 0.932981i
320320 −1.00000 −0.0559017
321321 0 0
322322 12.3593 3.65357i 0.688757 0.203605i
323323 1.79176i 0.0996965i
324324 0 0
325325 −2.55609 −0.141787
326326 3.77069i 0.208839i
327327 0 0
328328 3.40455 0.187985
329329 −8.63202 −0.475898
330330 0 0
331331 15.3989 0.846398 0.423199 0.906037i 0.360907π-0.360907\pi
0.423199 + 0.906037i 0.360907π0.360907\pi
332332 8.67571 0.476141
333333 0 0
334334 −16.9307 −0.926408
335335 7.71912i 0.421741i
336336 0 0
337337 22.3140i 1.21552i −0.794121 0.607760i 0.792068π-0.792068\pi
0.794121 0.607760i 0.207932π-0.207932\pi
338338 6.46638i 0.351725i
339339 0 0
340340 −1.27312 −0.0690448
341341 −2.55512 −0.138367
342342 0 0
343343 18.2154i 0.983537i
344344 2.35544 0.126997
345345 0 0
346346 5.36460 0.288403
347347 29.2565i 1.57057i 0.619134 + 0.785285i 0.287484π0.287484\pi
−0.619134 + 0.785285i 0.712516π0.712516\pi
348348 0 0
349349 3.90447 0.209002 0.104501 0.994525i 0.466676π-0.466676\pi
0.104501 + 0.994525i 0.466676π0.466676\pi
350350 −2.68734 −0.143644
351351 0 0
352352 1.73106i 0.0922657i
353353 3.76521i 0.200402i 0.994967 + 0.100201i 0.0319486π0.0319486\pi
−0.994967 + 0.100201i 0.968051π0.968051\pi
354354 0 0
355355 4.44631i 0.235985i
356356 3.72626 0.197492
357357 0 0
358358 9.56578 0.505567
359359 10.9238 0.576538 0.288269 0.957549i 0.406920π-0.406920\pi
0.288269 + 0.957549i 0.406920π0.406920\pi
360360 0 0
361361 17.0193 0.895752
362362 −12.4563 −0.654691
363363 0 0
364364 6.86909i 0.360038i
365365 −1.36193 −0.0712864
366366 0 0
367367 8.01924i 0.418601i −0.977851 0.209300i 0.932881π-0.932881\pi
0.977851 0.209300i 0.0671187π-0.0671187\pi
368368 −4.59909 + 1.35955i −0.239744 + 0.0708715i
369369 0 0
370370 4.20404 0.218558
371371 4.84992i 0.251795i
372372 0 0
373373 19.2361i 0.996010i 0.867174 + 0.498005i 0.165934π0.165934\pi
−0.867174 + 0.498005i 0.834066π0.834066\pi
374374 2.20385i 0.113958i
375375 0 0
376376 3.21211 0.165652
377377 24.6056i 1.26725i
378378 0 0
379379 13.8927i 0.713618i −0.934177 0.356809i 0.883865π-0.883865\pi
0.934177 0.356809i 0.116135π-0.116135\pi
380380 1.40738i 0.0721970i
381381 0 0
382382 8.39297i 0.429421i
383383 −4.25515 −0.217428 −0.108714 0.994073i 0.534673π-0.534673\pi
−0.108714 + 0.994073i 0.534673π0.534673\pi
384384 0 0
385385 4.65193i 0.237084i
386386 1.01621i 0.0517239i
387387 0 0
388388 7.03405i 0.357100i
389389 22.9092 1.16154 0.580771 0.814067i 0.302751π-0.302751\pi
0.580771 + 0.814067i 0.302751π0.302751\pi
390390 0 0
391391 −5.85520 + 1.73087i −0.296110 + 0.0875341i
392392 0.221775i 0.0112013i
393393 0 0
394394 −5.60884 −0.282569
395395 10.0972i 0.508043i
396396 0 0
397397 16.8037 0.843352 0.421676 0.906746i 0.361442π-0.361442\pi
0.421676 + 0.906746i 0.361442π0.361442\pi
398398 −9.76909 −0.489680
399399 0 0
400400 1.00000 0.0500000
401401 22.3193 1.11457 0.557287 0.830320i 0.311842π-0.311842\pi
0.557287 + 0.830320i 0.311842π0.311842\pi
402402 0 0
403403 3.77291 0.187942
404404 12.9956i 0.646557i
405405 0 0
406406 25.8689i 1.28385i
407407 7.27744i 0.360729i
408408 0 0
409409 −16.1240 −0.797280 −0.398640 0.917107i 0.630518π-0.630518\pi
−0.398640 + 0.917107i 0.630518π0.630518\pi
410410 −3.40455 −0.168139
411411 0 0
412412 0.230115i 0.0113369i
413413 −20.8089 −1.02394
414414 0 0
415415 −8.67571 −0.425874
416416 2.55609i 0.125323i
417417 0 0
418418 −2.43625 −0.119161
419419 32.2037 1.57325 0.786627 0.617429i 0.211826π-0.211826\pi
0.786627 + 0.617429i 0.211826π0.211826\pi
420420 0 0
421421 16.3229i 0.795531i −0.917487 0.397766i 0.869786π-0.869786\pi
0.917487 0.397766i 0.130214π-0.130214\pi
422422 8.94211i 0.435295i
423423 0 0
424424 1.80473i 0.0876455i
425425 1.27312 0.0617555
426426 0 0
427427 18.2206 0.881755
428428 6.45265 0.311901
429429 0 0
430430 −2.35544 −0.113590
431431 27.1761 1.30903 0.654514 0.756050i 0.272873π-0.272873\pi
0.654514 + 0.756050i 0.272873π0.272873\pi
432432 0 0
433433 2.83957i 0.136461i −0.997670 0.0682305i 0.978265π-0.978265\pi
0.997670 0.0682305i 0.0217353π-0.0217353\pi
434434 3.96663 0.190404
435435 0 0
436436 6.93477i 0.332115i
437437 −1.91340 6.47266i −0.0915304 0.309629i
438438 0 0
439439 18.8418 0.899269 0.449634 0.893213i 0.351554π-0.351554\pi
0.449634 + 0.893213i 0.351554π0.351554\pi
440440 1.73106i 0.0825249i
441441 0 0
442442 3.25422i 0.154788i
443443 18.4455i 0.876372i 0.898884 + 0.438186i 0.144379π0.144379\pi
−0.898884 + 0.438186i 0.855621π0.855621\pi
444444 0 0
445445 −3.72626 −0.176642
446446 29.4525i 1.39462i
447447 0 0
448448 2.68734i 0.126965i
449449 26.3810i 1.24500i −0.782620 0.622499i 0.786117π-0.786117\pi
0.782620 0.622499i 0.213883π-0.213883\pi
450450 0 0
451451 5.89347i 0.277513i
452452 1.03896 0.0488685
453453 0 0
454454 0.140630i 0.00660010i
455455 6.86909i 0.322028i
456456 0 0
457457 34.8995i 1.63253i 0.577679 + 0.816264i 0.303958π0.303958\pi
−0.577679 + 0.816264i 0.696042π0.696042\pi
458458 22.3375 1.04376
459459 0 0
460460 4.59909 1.35955i 0.214434 0.0633894i
461461 7.50500i 0.349543i −0.984609 0.174771i 0.944081π-0.944081\pi
0.984609 0.174771i 0.0559186π-0.0559186\pi
462462 0 0
463463 11.5972 0.538967 0.269483 0.963005i 0.413147π-0.413147\pi
0.269483 + 0.963005i 0.413147π0.413147\pi
464464 9.62624i 0.446887i
465465 0 0
466466 20.7396 0.960743
467467 32.9988 1.52700 0.763502 0.645805i 0.223478π-0.223478\pi
0.763502 + 0.645805i 0.223478π0.223478\pi
468468 0 0
469469 20.7439 0.957863
470470 −3.21211 −0.148164
471471 0 0
472472 7.74331 0.356415
473473 4.07741i 0.187480i
474474 0 0
475475 1.40738i 0.0645749i
476476 3.42131i 0.156815i
477477 0 0
478478 5.54170 0.253471
479479 −33.0238 −1.50890 −0.754449 0.656359i 0.772096π-0.772096\pi
−0.754449 + 0.656359i 0.772096π0.772096\pi
480480 0 0
481481 10.7459i 0.489972i
482482 15.1612 0.690574
483483 0 0
484484 8.00344 0.363793
485485 7.03405i 0.319400i
486486 0 0
487487 −0.656460 −0.0297470 −0.0148735 0.999889i 0.504735π-0.504735\pi
−0.0148735 + 0.999889i 0.504735π0.504735\pi
488488 −6.78016 −0.306923
489489 0 0
490490 0.221775i 0.0100188i
491491 15.0228i 0.677971i 0.940792 + 0.338985i 0.110084π0.110084\pi
−0.940792 + 0.338985i 0.889916π0.889916\pi
492492 0 0
493493 12.2554i 0.551955i
494494 3.59739 0.161854
495495 0 0
496496 −1.47605 −0.0662764
497497 −11.9487 −0.535973
498498 0 0
499499 11.2596 0.504050 0.252025 0.967721i 0.418903π-0.418903\pi
0.252025 + 0.967721i 0.418903π0.418903\pi
500500 −1.00000 −0.0447214
501501 0 0
502502 26.3921i 1.17794i
503503 −43.0753 −1.92063 −0.960315 0.278916i 0.910025π-0.910025\pi
−0.960315 + 0.278916i 0.910025π0.910025\pi
504504 0 0
505505 12.9956i 0.578298i
506506 −2.35346 7.96129i −0.104624 0.353922i
507507 0 0
508508 11.3029 0.501487
509509 15.9683i 0.707783i 0.935286 + 0.353892i 0.115142π0.115142\pi
−0.935286 + 0.353892i 0.884858π0.884858\pi
510510 0 0
511511 3.65995i 0.161907i
512512 1.00000i 0.0441942i
513513 0 0
514514 −1.04633 −0.0461516
515515 0.230115i 0.0101401i
516516 0 0
517517 5.56034i 0.244544i
518518 11.2977i 0.496391i
519519 0 0
520520 2.55609i 0.112092i
521521 37.0312 1.62237 0.811184 0.584791i 0.198824π-0.198824\pi
0.811184 + 0.584791i 0.198824π0.198824\pi
522522 0 0
523523 7.47772i 0.326978i 0.986545 + 0.163489i 0.0522748π0.0522748\pi
−0.986545 + 0.163489i 0.947725π0.947725\pi
524524 13.1993i 0.576614i
525525 0 0
526526 10.4405i 0.455229i
527527 −1.87919 −0.0818586
528528 0 0
529529 19.3032 12.5054i 0.839272 0.543713i
530530 1.80473i 0.0783925i
531531 0 0
532532 3.78210 0.163975
533533 8.70235i 0.376940i
534534 0 0
535535 −6.45265 −0.278972
536536 −7.71912 −0.333415
537537 0 0
538538 −2.34357 −0.101039
539539 −0.383906 −0.0165360
540540 0 0
541541 30.8970 1.32837 0.664183 0.747570i 0.268780π-0.268780\pi
0.664183 + 0.747570i 0.268780π0.268780\pi
542542 18.7738i 0.806402i
543543 0 0
544544 1.27312i 0.0545847i
545545 6.93477i 0.297053i
546546 0 0
547547 0.826227 0.0353269 0.0176635 0.999844i 0.494377π-0.494377\pi
0.0176635 + 0.999844i 0.494377π0.494377\pi
548548 −13.6218 −0.581895
549549 0 0
550550 1.73106i 0.0738125i
551551 −13.5478 −0.577154
552552 0 0
553553 −27.1345 −1.15388
554554 19.4871i 0.827927i
555555 0 0
556556 4.08370 0.173187
557557 −21.0952 −0.893834 −0.446917 0.894576i 0.647478π-0.647478\pi
−0.446917 + 0.894576i 0.647478π0.647478\pi
558558 0 0
559559 6.02074i 0.254650i
560560 2.68734i 0.113561i
561561 0 0
562562 21.1418i 0.891812i
563563 −7.54602 −0.318027 −0.159013 0.987276i 0.550831π-0.550831\pi
−0.159013 + 0.987276i 0.550831π0.550831\pi
564564 0 0
565565 −1.03896 −0.0437094
566566 8.62629 0.362590
567567 0 0
568568 4.44631 0.186563
569569 −38.5319 −1.61534 −0.807671 0.589633i 0.799272π-0.799272\pi
−0.807671 + 0.589633i 0.799272π0.799272\pi
570570 0 0
571571 15.6650i 0.655561i 0.944754 + 0.327781i 0.106301π0.106301\pi
−0.944754 + 0.327781i 0.893699π0.893699\pi
572572 4.42475 0.185008
573573 0 0
574574 9.14916i 0.381879i
575575 −4.59909 + 1.35955i −0.191795 + 0.0566972i
576576 0 0
577577 −18.2318 −0.759000 −0.379500 0.925192i 0.623904π-0.623904\pi
−0.379500 + 0.925192i 0.623904π0.623904\pi
578578 15.3792i 0.639689i
579579 0 0
580580 9.62624i 0.399708i
581581 23.3145i 0.967250i
582582 0 0
583583 −3.12409 −0.129387
584584 1.36193i 0.0563569i
585585 0 0
586586 23.1296i 0.955476i
587587 5.97229i 0.246503i −0.992375 0.123251i 0.960668π-0.960668\pi
0.992375 0.123251i 0.0393322π-0.0393322\pi
588588 0 0
589589 2.07735i 0.0855959i
590590 −7.74331 −0.318787
591591 0 0
592592 4.20404i 0.172785i
593593 19.0934i 0.784073i −0.919950 0.392037i 0.871771π-0.871771\pi
0.919950 0.392037i 0.128229π-0.128229\pi
594594 0 0
595595 3.42131i 0.140260i
596596 −3.31717 −0.135877
597597 0 0
598598 3.47514 + 11.7557i 0.142109 + 0.480727i
599599 23.8843i 0.975887i 0.872875 + 0.487944i 0.162253π0.162253\pi
−0.872875 + 0.487944i 0.837747π0.837747\pi
600600 0 0
601601 −26.3129 −1.07333 −0.536664 0.843796i 0.680316π-0.680316\pi
−0.536664 + 0.843796i 0.680316π0.680316\pi
602602 6.32987i 0.257986i
603603 0 0
604604 13.1448 0.534854
605605 −8.00344 −0.325386
606606 0 0
607607 17.9243 0.727523 0.363762 0.931492i 0.381492π-0.381492\pi
0.363762 + 0.931492i 0.381492π0.381492\pi
608608 −1.40738 −0.0570767
609609 0 0
610610 6.78016 0.274521
611611 8.21045i 0.332159i
612612 0 0
613613 3.31763i 0.133998i −0.997753 0.0669990i 0.978658π-0.978658\pi
0.997753 0.0669990i 0.0213424π-0.0213424\pi
614614 13.7536i 0.555048i
615615 0 0
616616 4.65193 0.187432
617617 −19.1689 −0.771711 −0.385856 0.922559i 0.626094π-0.626094\pi
−0.385856 + 0.922559i 0.626094π0.626094\pi
618618 0 0
619619 10.8982i 0.438034i 0.975721 + 0.219017i 0.0702850π0.0702850\pi
−0.975721 + 0.219017i 0.929715π0.929715\pi
620620 1.47605 0.0592794
621621 0 0
622622 −20.1319 −0.807214
623623 10.0137i 0.401191i
624624 0 0
625625 1.00000 0.0400000
626626 −6.80646 −0.272041
627627 0 0
628628 8.31606i 0.331847i
629629 5.35226i 0.213409i
630630 0 0
631631 8.17920i 0.325609i 0.986658 + 0.162804i 0.0520539π0.0520539\pi
−0.986658 + 0.162804i 0.947946π0.947946\pi
632632 10.0972 0.401644
633633 0 0
634634 28.1821 1.11926
635635 −11.3029 −0.448543
636636 0 0
637637 0.566879 0.0224605
638638 −16.6636 −0.659717
639639 0 0
640640 1.00000i 0.0395285i
641641 8.05801 0.318272 0.159136 0.987257i 0.449129π-0.449129\pi
0.159136 + 0.987257i 0.449129π0.449129\pi
642642 0 0
643643 34.3659i 1.35526i −0.735404 0.677629i 0.763008π-0.763008\pi
0.735404 0.677629i 0.236992π-0.236992\pi
644644 3.65357 + 12.3593i 0.143971 + 0.487025i
645645 0 0
646646 −1.79176 −0.0704960
647647 12.9531i 0.509239i 0.967041 + 0.254619i 0.0819502π0.0819502\pi
−0.967041 + 0.254619i 0.918050π0.918050\pi
648648 0 0
649649 13.4041i 0.526157i
650650 2.55609i 0.100258i
651651 0 0
652652 −3.77069 −0.147672
653653 0.903168i 0.0353437i 0.999844 + 0.0176718i 0.00562541π0.00562541\pi
−0.999844 + 0.0176718i 0.994375π0.994375\pi
654654 0 0
655655 13.1993i 0.515739i
656656 3.40455i 0.132925i
657657 0 0
658658 8.63202i 0.336511i
659659 16.9355 0.659712 0.329856 0.944031i 0.393000π-0.393000\pi
0.329856 + 0.944031i 0.393000π0.393000\pi
660660 0 0
661661 12.6564i 0.492278i 0.969235 + 0.246139i 0.0791619π0.0791619\pi
−0.969235 + 0.246139i 0.920838π0.920838\pi
662662 15.3989i 0.598493i
663663 0 0
664664 8.67571i 0.336683i
665665 −3.78210 −0.146663
666666 0 0
667667 −13.0874 44.2719i −0.506745 1.71422i
668668 16.9307i 0.655070i
669669 0 0
670670 7.71912 0.298216
671671 11.7368i 0.453096i
672672 0 0
673673 −21.1871 −0.816704 −0.408352 0.912825i 0.633896π-0.633896\pi
−0.408352 + 0.912825i 0.633896π0.633896\pi
674674 22.3140 0.859503
675675 0 0
676676 6.46638 0.248707
677677 38.9430 1.49670 0.748350 0.663304i 0.230847π-0.230847\pi
0.748350 + 0.663304i 0.230847π0.230847\pi
678678 0 0
679679 18.9029 0.725426
680680 1.27312i 0.0488220i
681681 0 0
682682 2.55512i 0.0978406i
683683 4.58240i 0.175341i −0.996150 0.0876704i 0.972058π-0.972058\pi
0.996150 0.0876704i 0.0279422π-0.0279422\pi
684684 0 0
685685 13.6218 0.520463
686686 −18.2154 −0.695466
687687 0 0
688688 2.35544i 0.0898005i
689689 4.61306 0.175744
690690 0 0
691691 18.5212 0.704581 0.352291 0.935891i 0.385403π-0.385403\pi
0.352291 + 0.935891i 0.385403π0.385403\pi
692692 5.36460i 0.203931i
693693 0 0
694694 −29.2565 −1.11056
695695 −4.08370 −0.154904
696696 0 0
697697 4.33441i 0.164177i
698698 3.90447i 0.147786i
699699 0 0
700700 2.68734i 0.101572i
701701 42.3964 1.60129 0.800644 0.599140i 0.204491π-0.204491\pi
0.800644 + 0.599140i 0.204491π0.204491\pi
702702 0 0
703703 5.91667 0.223152
704704 −1.73106 −0.0652417
705705 0 0
706706 −3.76521 −0.141706
707707 −34.9236 −1.31344
708708 0 0
709709 22.4911i 0.844672i −0.906439 0.422336i 0.861210π-0.861210\pi
0.906439 0.422336i 0.138790π-0.138790\pi
710710 −4.44631 −0.166867
711711 0 0
712712 3.72626i 0.139648i
713713 6.78846 2.00676i 0.254230 0.0751537i
714714 0 0
715715 −4.42475 −0.165476
716716 9.56578i 0.357490i
717717 0 0
718718 10.9238i 0.407674i
719719 2.42589i 0.0904703i 0.998976 + 0.0452352i 0.0144037π0.0144037\pi
−0.998976 + 0.0452352i 0.985596π0.985596\pi
720720 0 0
721721 −0.618396 −0.0230303
722722 17.0193i 0.633392i
723723 0 0
724724 12.4563i 0.462937i
725725 9.62624i 0.357510i
726726 0 0
727727 20.2634i 0.751526i −0.926716 0.375763i 0.877381π-0.877381\pi
0.926716 0.375763i 0.122619π-0.122619\pi
728728 −6.86909 −0.254585
729729 0 0
730730 1.36193i 0.0504071i
731731 2.99877i 0.110913i
732732 0 0
733733 48.1405i 1.77811i 0.457799 + 0.889056i 0.348638π0.348638\pi
−0.457799 + 0.889056i 0.651362π0.651362\pi
734734 8.01924 0.295995
735735 0 0
736736 −1.35955 4.59909i −0.0501137 0.169525i
737737 13.3622i 0.492204i
738738 0 0
739739 20.1099 0.739753 0.369877 0.929081i 0.379400π-0.379400\pi
0.369877 + 0.929081i 0.379400π0.379400\pi
740740 4.20404i 0.154544i
741741 0 0
742742 4.84992 0.178046
743743 47.5425 1.74416 0.872082 0.489359i 0.162769π-0.162769\pi
0.872082 + 0.489359i 0.162769π0.162769\pi
744744 0 0
745745 3.31717 0.121532
746746 −19.2361 −0.704285
747747 0 0
748748 −2.20385 −0.0805807
749749 17.3404i 0.633606i
750750 0 0
751751 20.9244i 0.763542i −0.924257 0.381771i 0.875314π-0.875314\pi
0.924257 0.381771i 0.124686π-0.124686\pi
752752 3.21211i 0.117134i
753753 0 0
754754 24.6056 0.896082
755755 −13.1448 −0.478388
756756 0 0
757757 39.2876i 1.42793i −0.700180 0.713966i 0.746897π-0.746897\pi
0.700180 0.713966i 0.253103π-0.253103\pi
758758 13.8927 0.504604
759759 0 0
760760 1.40738 0.0510510
761761 2.27081i 0.0823169i 0.999153 + 0.0411584i 0.0131048π0.0131048\pi
−0.999153 + 0.0411584i 0.986895π0.986895\pi
762762 0 0
763763 −18.6361 −0.674671
764764 −8.39297 −0.303647
765765 0 0
766766 4.25515i 0.153745i
767767 19.7926i 0.714670i
768768 0 0
769769 8.59866i 0.310076i −0.987909 0.155038i 0.950450π-0.950450\pi
0.987909 0.155038i 0.0495499π-0.0495499\pi
770770 −4.65193 −0.167644
771771 0 0
772772 −1.01621 −0.0365743
773773 −2.55997 −0.0920756 −0.0460378 0.998940i 0.514659π-0.514659\pi
−0.0460378 + 0.998940i 0.514659π0.514659\pi
774774 0 0
775775 −1.47605 −0.0530211
776776 −7.03405 −0.252508
777777 0 0
778778 22.9092i 0.821334i
779779 −4.79148 −0.171673
780780 0 0
781781 7.69681i 0.275414i
782782 −1.73087 5.85520i −0.0618959 0.209382i
783783 0 0
784784 −0.221775 −0.00792054
785785 8.31606i 0.296813i
786786 0 0
787787 20.0596i 0.715046i −0.933904 0.357523i 0.883621π-0.883621\pi
0.933904 0.357523i 0.116379π-0.116379\pi
788788 5.60884i 0.199806i
789789 0 0
790790 −10.0972 −0.359241
791791 2.79203i 0.0992733i
792792 0 0
793793 17.3307i 0.615432i
794794 16.8037i 0.596340i
795795 0 0
796796 9.76909i 0.346256i
797797 −1.42166 −0.0503578 −0.0251789 0.999683i 0.508016π-0.508016\pi
−0.0251789 + 0.999683i 0.508016π0.508016\pi
798798 0 0
799799 4.08941i 0.144673i
800800 1.00000i 0.0353553i
801801 0 0
802802 22.3193i 0.788123i
803803 −2.35757 −0.0831969
804804 0 0
805805 −3.65357 12.3593i −0.128771 0.435608i
806806 3.77291i 0.132895i
807807 0 0
808808 12.9956 0.457185
809809 17.9165i 0.629911i −0.949106 0.314956i 0.898010π-0.898010\pi
0.949106 0.314956i 0.101990π-0.101990\pi
810810 0 0
811811 23.5315 0.826304 0.413152 0.910662i 0.364428π-0.364428\pi
0.413152 + 0.910662i 0.364428π0.364428\pi
812812 25.8689 0.907822
813813 0 0
814814 7.27744 0.255074
815815 3.77069 0.132082
816816 0 0
817817 −3.31500 −0.115977
818818 16.1240i 0.563762i
819819 0 0
820820 3.40455i 0.118892i
821821 14.0412i 0.490041i −0.969518 0.245021i 0.921205π-0.921205\pi
0.969518 0.245021i 0.0787947π-0.0787947\pi
822822 0 0
823823 18.0770 0.630125 0.315063 0.949071i 0.397974π-0.397974\pi
0.315063 + 0.949071i 0.397974π0.397974\pi
824824 0.230115 0.00801643
825825 0 0
826826 20.8089i 0.724033i
827827 5.12710 0.178287 0.0891434 0.996019i 0.471587π-0.471587\pi
0.0891434 + 0.996019i 0.471587π0.471587\pi
828828 0 0
829829 −39.1505 −1.35975 −0.679877 0.733326i 0.737967π-0.737967\pi
−0.679877 + 0.733326i 0.737967π0.737967\pi
830830 8.67571i 0.301138i
831831 0 0
832832 2.55609 0.0886166
833833 −0.282347 −0.00978275
834834 0 0
835835 16.9307i 0.585912i
836836 2.43625i 0.0842596i
837837 0 0
838838 32.2037i 1.11246i
839839 −0.462401 −0.0159639 −0.00798193 0.999968i 0.502541π-0.502541\pi
−0.00798193 + 0.999968i 0.502541π0.502541\pi
840840 0 0
841841 −63.6645 −2.19533
842842 16.3229 0.562526
843843 0 0
844844 −8.94211 −0.307800
845845 −6.46638 −0.222450
846846 0 0
847847 21.5079i 0.739021i
848848 −1.80473 −0.0619747
849849 0 0
850850 1.27312i 0.0436677i
851851 5.71561 + 19.3348i 0.195928 + 0.662787i
852852 0 0
853853 −34.1063 −1.16778 −0.583889 0.811834i 0.698470π-0.698470\pi
−0.583889 + 0.811834i 0.698470π0.698470\pi
854854 18.2206i 0.623495i
855855 0 0
856856 6.45265i 0.220547i
857857 31.7411i 1.08425i −0.840296 0.542127i 0.817619π-0.817619\pi
0.840296 0.542127i 0.182381π-0.182381\pi
858858 0 0
859859 −32.8985 −1.12248 −0.561241 0.827652i 0.689676π-0.689676\pi
−0.561241 + 0.827652i 0.689676π0.689676\pi
860860 2.35544i 0.0803200i
861861 0 0
862862 27.1761i 0.925623i
863863 44.3676i 1.51029i −0.655558 0.755145i 0.727566π-0.727566\pi
0.655558 0.755145i 0.272434π-0.272434\pi
864864 0 0
865865 5.36460i 0.182402i
866866 2.83957 0.0964925
867867 0 0
868868 3.96663i 0.134636i
869869 17.4788i 0.592927i
870870 0 0
871871 19.7308i 0.668553i
872872 6.93477 0.234841
873873 0 0
874874 6.47266 1.91340i 0.218941 0.0647218i
875875 2.68734i 0.0908485i
876876 0 0
877877 −21.8841 −0.738974 −0.369487 0.929236i 0.620467π-0.620467\pi
−0.369487 + 0.929236i 0.620467π0.620467\pi
878878 18.8418i 0.635879i
879879 0 0
880880 1.73106 0.0583539
881881 54.1710 1.82507 0.912534 0.409002i 0.134123π-0.134123\pi
0.912534 + 0.409002i 0.134123π0.134123\pi
882882 0 0
883883 −42.5462 −1.43179 −0.715897 0.698205i 0.753982π-0.753982\pi
−0.715897 + 0.698205i 0.753982π0.753982\pi
884884 3.25422 0.109451
885885 0 0
886886 −18.4455 −0.619689
887887 25.0529i 0.841195i 0.907247 + 0.420597i 0.138179π0.138179\pi
−0.907247 + 0.420597i 0.861821π0.861821\pi
888888 0 0
889889 30.3748i 1.01874i
890890 3.72626i 0.124905i
891891 0 0
892892 −29.4525 −0.986144
893893 −4.52065 −0.151278
894894 0 0
895895 9.56578i 0.319749i
896896 2.68734 0.0897776
897897 0 0
898898 26.3810 0.880347
899899 14.2088i 0.473889i
900900 0 0
901901 −2.29764 −0.0765456
902902 −5.89347 −0.196231
903903 0 0
904904 1.03896i 0.0345553i
905905 12.4563i 0.414063i
906906 0 0
907907 44.5983i 1.48086i 0.672132 + 0.740431i 0.265379π0.265379\pi
−0.672132 + 0.740431i 0.734621π0.734621\pi
908908 −0.140630 −0.00466698
909909 0 0
910910 6.86909 0.227708
911911 −17.7058 −0.586618 −0.293309 0.956018i 0.594756π-0.594756\pi
−0.293309 + 0.956018i 0.594756π0.594756\pi
912912 0 0
913913 −15.0181 −0.497028
914914 −34.8995 −1.15437
915915 0 0
916916 22.3375i 0.738052i
917917 −35.4709 −1.17135
918918 0 0
919919 46.3021i 1.52737i −0.645592 0.763683i 0.723389π-0.723389\pi
0.645592 0.763683i 0.276611π-0.276611\pi
920920 1.35955 + 4.59909i 0.0448231 + 0.151627i
921921 0 0
922922 7.50500 0.247164
923923 11.3652i 0.374089i
924924 0 0
925925 4.20404i 0.138228i
926926 11.5972i 0.381107i
927927 0 0
928928 −9.62624 −0.315997
929929 24.1969i 0.793874i −0.917846 0.396937i 0.870073π-0.870073\pi
0.917846 0.396937i 0.129927π-0.129927\pi
930930 0 0
931931 0.312122i 0.0102294i
932932 20.7396i 0.679348i
933933 0 0
934934 32.9988i 1.07976i
935935 2.20385 0.0720736
936936 0 0
937937 7.81390i 0.255269i 0.991821 + 0.127634i 0.0407384π0.0407384\pi
−0.991821 + 0.127634i 0.959262π0.959262\pi
938938 20.7439i 0.677311i
939939 0 0
940940 3.21211i 0.104767i
941941 3.53043 0.115089 0.0575444 0.998343i 0.481673π-0.481673\pi
0.0575444 + 0.998343i 0.481673π0.481673\pi
942942 0 0
943943 −4.62865 15.6578i −0.150730 0.509889i
944944 7.74331i 0.252023i
945945 0 0
946946 −4.07741 −0.132568
947947 30.6079i 0.994624i 0.867572 + 0.497312i 0.165680π0.165680\pi
−0.867572 + 0.497312i 0.834320π0.834320\pi
948948 0 0
949949 3.48121 0.113005
950950 −1.40738 −0.0456614
951951 0 0
952952 3.42131 0.110885
953953 4.99497 0.161803 0.0809014 0.996722i 0.474220π-0.474220\pi
0.0809014 + 0.996722i 0.474220π0.474220\pi
954954 0 0
955955 8.39297 0.271590
956956 5.54170i 0.179231i
957957 0 0
958958 33.0238i 1.06695i
959959 36.6064i 1.18208i
960960 0 0
961961 −28.8213 −0.929719
962962 −10.7459 −0.346463
963963 0 0
964964 15.1612i 0.488310i
965965 1.01621 0.0327131
966966 0 0
967967 −9.11422 −0.293094 −0.146547 0.989204i 0.546816π-0.546816\pi
−0.146547 + 0.989204i 0.546816π0.546816\pi
968968 8.00344i 0.257240i
969969 0 0
970970 7.03405 0.225850
971971 28.6111 0.918175 0.459088 0.888391i 0.348176π-0.348176\pi
0.459088 + 0.888391i 0.348176π0.348176\pi
972972 0 0
973973 10.9743i 0.351819i
974974 0.656460i 0.0210343i
975975 0 0
976976 6.78016i 0.217028i
977977 55.1555 1.76458 0.882291 0.470705i 0.156000π-0.156000\pi
0.882291 + 0.470705i 0.156000π0.156000\pi
978978 0 0
979979 −6.45038 −0.206155
980980 0.221775 0.00708435
981981 0 0
982982 −15.0228 −0.479398
983983 −15.1144 −0.482074 −0.241037 0.970516i 0.577488π-0.577488\pi
−0.241037 + 0.970516i 0.577488π0.577488\pi
984984 0 0
985985 5.60884i 0.178712i
986986 −12.2554 −0.390291
987987 0 0
988988 3.59739i 0.114448i
989989 −3.20235 10.8329i −0.101829 0.344466i
990990 0 0
991991 1.97026 0.0625875 0.0312938 0.999510i 0.490037π-0.490037\pi
0.0312938 + 0.999510i 0.490037π0.490037\pi
992992 1.47605i 0.0468645i
993993 0 0
994994 11.9487i 0.378990i
995995 9.76909i 0.309701i
996996 0 0
997997 19.9205 0.630889 0.315445 0.948944i 0.397846π-0.397846\pi
0.315445 + 0.948944i 0.397846π0.397846\pi
998998 11.2596i 0.356417i
999999 0 0
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2070.2.e.b.1241.15 yes 16
3.2 odd 2 2070.2.e.a.1241.7 16
23.22 odd 2 2070.2.e.a.1241.10 yes 16
69.68 even 2 inner 2070.2.e.b.1241.2 yes 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2070.2.e.a.1241.7 16 3.2 odd 2
2070.2.e.a.1241.10 yes 16 23.22 odd 2
2070.2.e.b.1241.2 yes 16 69.68 even 2 inner
2070.2.e.b.1241.15 yes 16 1.1 even 1 trivial